
PHYSICAL REVIEW MATERIALS 6, 043801 (2022)
Editors’ Suggestion

Data-centric framework for crystal structure identification in atomistic simulations
using machine learning

Heejung W. Chung,1,2,3,* Rodrigo Freitas ,2,4,*,† Gowoon Cheon,5,‡ and Evan J. Reed2,§

1Department of Computer Science, Stanford University, Stanford, California 94305, USA
2Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA

3Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
4Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

5Department of Applied Physics, Stanford University, Stanford, California 94305, USA

(Received 14 January 2022; accepted 11 March 2022; published 5 April 2022)

Atomic-level modeling performed at large scales enables the investigation of mesoscale materials properties
with atom-by-atom resolution. The spatial complexity of such cross-scale simulations renders them unsuitable
for simple human visual inspection. Instead, specialized structure characterization techniques are required to aid
interpretation. These have historically been challenging to construct, requiring significant intuition and effort.
Here we propose an alternative framework for a fundamental structural characterization task: classifying atoms
according to the crystal structure to which they belong. Our approach is data-centric and favors the employment
of Machine Learning over heuristic rules of classification. A group of data-science tools and simple local
descriptors of atomic structure are employed together with an efficient synthetic training set. We also introduce
the first standard and publicly available benchmark data set for evaluation of algorithms for crystal-structure
classification. It is demonstrated that our data-centric framework outperforms all of the most popular heuristic
methods—especially at high temperatures when lattices are the most distorted—while introducing a systematic
route for generalization to new crystal structures. Moreover, through the use of outlier detection algorithms our
approach is capable of discerning between amorphous atomic motifs (i.e., noncrystalline phases) and unknown
crystal structures, making it uniquely suited for exploratory materials synthesis simulations.
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I. INTRODUCTION

Atomic-level computational modeling enables the calcu-
lation of materials’ properties while taking into account the
contribution of each constituent atom individually. When such
simulations are large enough (�106 atoms)—also known as
cross scale—they enable the understanding of mesoscale ma-
terials phenomena with atomic resolution [1–6]. Nevertheless,
the spatial complexity of cross-scale simulations renders them
unsuitable for simple human visual inspection, severely limit-
ing the amount and quality of scientific information that can
be extracted. Widespread access to computing capabilities that
were not long ago available only to select research centers has
heightened the need for algorithms that aid and augment hu-
man intuition in interpreting large-scale atomistic simulations
[7–9].

The ability to detect ordered atomic motifs lies at the
heart of most algorithms designed to assist in the interpre-
tation of large-scale simulations. This local crystal structure
identification is important because the structure surround-
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ing atoms constituting microstructural elements (i.e., crystal
defects) is different from the structure of crystalline lattices
[see Fig. 1(a)].

There exists a myriad of crystal-structure classification
methods [10–17] employing a variety of different approaches
such as computational graphs, advanced geometrical algo-
rithms, and sometimes relying solely on sets of ad hoc
empirical rules [17]. Yet, despite such variety, most crystal
classification methods share similar drawbacks. For exam-
ple, none of the available methods can be systematically
generalized to new structures or to systems with an arbi-
trary number of chemical elements, making them unsuitable
for high-throughput approaches [18–21] that are pervasive
nowadays in materials science. While expert domain knowl-
edge is useful in developing heuristics that work well for
particular tasks, there is no guarantee of out-of-distribution
generalization to different systems. Another marked lapse in
the field is the lack of a rigorous benchmark comparison of
the performance of each method, despite their importance
and widespread application. We also note that none of the
currently available methods can discern between disordered
atomic motifs – such as present in liquids and glasses—and
unknown crystal structures, making them unsuitable for ex-
ploratory materials synthesis simulations [2,5].

Recently, numerous Machine Learning (ML) approaches
have been developed with the capacity to process infor-
mation contained in atomistic simulations, see for exam-
ple Refs. [2,9,22–31]. These efforts have unequivocally
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FIG. 1. Illustration of the fundamental tasks performed by a crystal-structure classification algorithm. (a) Crystal-structure classification
of a molecular dynamics simulations of copper crystallization with two million atoms. On the left the input atomic configuration of a cross
section of a simulation snapshot is shown. On the right each atom has been color coded according to its local structure. Notice how it becomes
easy to visually discern the growing crystal from the melt. Moreover, it is also possible to identify microstructural elements of the growing
crystal: The crystal structure is face-centered cubic while stacking-fault defects are easily identified by atoms with local hexagonal close-packed
structure. (b) The starting point of a crystal-structure classification algorithm is the atomic configuration provided by an atomistic simulation
snapshot. One of the atoms from the simulation is selected and its local structure is characterized by quantifying a set of structural features that
capture metrics of the local symmetry. During the crystal-structure classification step the structural features are employed to make a decision
about which crystal structure in the algorithm database best approximates the atom’s local structure. It is possible that the local structure is
unknown or even amorphous (such as in liquids and glasses), thus the classification algorithm should be able to detect such cases.

established the ability of ML algorithms to find subtle but
meaningful patterns in the structure and dynamics of atomic
motion. The applications of these new algorithms have been
various, ranging from the structural analysis of complex
atomic arrangements at a various scales [9,22–24] to the cre-
ation of novel physical models about the behavior of materials
[2,25,26].

In this article we leverage ML and other data-science
tools in order to develop a complete framework for struc-
ture classification that functions similarly to well-established
and widely-adopted crystal-structure classification methods
[10–17]. Unlike existing heuristic methods, our framework
for crystal-structure classification, namely the data-centric
crystal classifier (which we will refer to as DC3), does not
rely on predefined programmed rules created by the intu-
ition of human experts. This makes DC3 easily extendable
to chemically complex systems, for which heuristics would
be difficult to construct. Through a careful statistical analy-
sis we demonstrate that this data-centric approach has better
accuracy than any of the most popular heuristic algorithms.
Moreover, through a variety of examples we establish the
capacity of this data-centric framework to be systematically
generalized to different crystal structures and systems with

arbitrary chemical complexity (i.e., structures with multiple
chemical elements), while remaining highly transferable (i.e.,
material independent), and robust against thermal noise.

II. METHODS

A. Local-structure characterization

The fundamental task of a crystal classification algorithm
is to assign a label ỹi to each atom i according to its sur-
rounding structure [Fig. 1(b)], where each label is uniquely
associated with a crystal structure. Heuristic algorithms for
crystal classification drawn from the knowledge of experts
about crystal symmetries in order to make such classification
decisions. Whichever crystal-structure features an expert con-
siders important is converted into an algorithm that, given an
atom i, quantifies such features and makes a decision about
the most appropriate crystal structure to be assigned.

Our approach does not rely on expert knowledge to se-
lect features that may be important. Instead, the structure
surrounding atoms is characterized as completely as possible
using a variety of symmetry and structure functions. The task
of assigning a crystal structure based on such characterization
is then delegated to an ML algorithm. Hence, the final format
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of this local-structure characterization must be appropriate to
be used with ML algorithms, which means that each atom i
must have an associated high-dimensional feature vector xi

describing its local structure.
Each feature vector xi, capturing the local structure of atom

i, was constructed using two families of functions. The first
family of functions employed is known as Steinhardt parame-
ters [32]

QNb
� (i) =

√√√√ 4π

2� + 1

�∑
m=−�

∣∣qNb
�,m(i)

∣∣2
, (1)

where i is the number of the atom for which the local neigh-
borhood is being described, Nb is the number of nearest
neighbors being considered, and � is an integer. The quantity
qNb

�,m(i) is defined as

qNb
�,m(i) = 1

Nb

Nb∑
j=1

Y m
� (r̂i j ) (2)

where Y m
� (r̂i j ) are spherical harmonics and r̂i j is the unit

vector along the direction connecting atom i to atom j. Stein-
hardt parameters are functions designed to capture purely
angular information about the local structure [see Eqs. (1)
and (2)]. More specifically, for each value of � this function
is sensitive to different orientational symmetries present in
the local-neighborhood of atom i as defined by its first Nb

neighbors. The second family of functions is known as radial
structure functions (RSF) [33]:

GNb
r,σ (i) =

N (rcut )∑
j=1

exp[−(ri j − r)2/2σ 2] (3)

where N (rcut ) is the number of neighbors of atom i within
cutoff radius rcut, r and σ are free parameters, and ri j is the
distance between atoms i and j. The RSFs are designed to
capture purely radial information about the local structure
[see Eq. (3)]. More specifically, this function quantifies the
density of atoms at distance r from atom i with a spatial reso-
lution controlled by σ . The feature vectors xi are composed
of both families of functions, RSF and Steinhardt parame-
ters, with each vector component corresponding to one of
these functions evaluated using a set of parameters: (�, Nb)
for Steinhardt features or (r, σ, Nb) for RSFs (see the Ap-
pendix C for details on the selection of the numerical values of
these parameters). Notice that the feature vector defined above
does not account for chemical complexity (i.e., all atoms are
considered to belong to the same species). In Sec. III C we
demonstrate how for structures with multiple chemical ele-
ments can be accounted for in this data-centric framework.

The local-structure characterization process needs to gen-
eralize across different materials sharing the same crystal
structure (e.g., Al and Cu both have face-centered cubic struc-
tures but the lattice constant is 4.1 Å for Al and 3.6 Å for
Cu). Thus, a discussion about RSF parameters r and σ is war-
ranted. In order to render xi independent of the material lattice
constant the parameters r and σ are not preselected before the
local-structure characterization takes place. Instead, these pa-
rameters are determined with regard to a local-distance metric

calculated only during the evaluation of xi, which effectively
renders xi independent of the magnitude of the lattice con-
stant (see the Appendix C section for more details on the
numerical algorithm to evaluate the local-distance metric).
This approach was inspired by the adaptive cutoff method
developed by Stukowski [13].

B. Unbiased data generation for training

An ML algorithm learns how to assign crystal structure
labels ỹi from local-structure feature vectors xi by observing
patterns in a data set: {(yi, xi )}, where (yi, xi ) are pairs of
correctly associated labels and feature vectors. Due to crystal
structure distortions caused by thermal noise many different
feature vectors xi are associated with the same label yi. Hence,
it is important that the training of an ML model is performed
on a data set consisting of examples drawn from structure
distortions corresponding to a variety of thermal noise am-
plitudes.

In order for DC3 to generalize across different materials
sharing the same underlying crystal structure the training data
set must not be associated with any particular material chem-
istry. This is because even materials with the same crystal
structure at the same level of thermal noise have different
vibration patterns (i.e., phonon spectrum) that generate dif-
ferent structure distortions. In order to not bias our ML model
towards one preferred vibration pattern we introduce a data
set created using random crystal structure distortions. This
synthetic data set is built by first creating an undisturbed
crystal structure where atoms lie exactly at their ideal posi-
tions. Then each atom is randomly displaced such that the
displacements are on average uniformly distributed over a
sphere of radius defined by the amplitude of thermal noise we
desire to sample. The displacement amplitude is made with
respect to the distance d to the atom’s first neighbor in the
undisturbed crystal structure, with displacement radii as large
as 0.25d being employed (see the Appendix B for a more
detailed description of the algorithm).

Synthetic data sets were built for six crystal structures:
face-centered cubic (fcc), body-centered cubic (bcc), hexag-
onal close-packed (hcp), cubic diamond (cd), hexagonal
diamond (hd), and simple cubic (sc). Three of these structures
are fundamental Bravais lattices: fcc, bcc, and sc, while the
other three are constructed from Bravais lattices by the addi-
tion of a basis (i.e., an atomic motif). A feature vector xi was
computed for each atom in the synthetic data set. Visualization
of the feature vectors distribution in their high-dimensional
space can be performed through the application of a dimen-
sionality reduction technique known as tSNE [34], as shown
in Fig. 2(a). This figure establishes that our approach for local-
structure characterization can effectively distinguish between
crystal structures, despite the presence of large distortions due
to thermal noise.

C. Machine learning classifier algorithm

The next step in our data-centric framework is the introduc-
tion of a proper ML algorithm to predict a labels ỹi for given
feature vectors xi. For this task we employed a multiclass
feed-forward neural network composed of three hidden layers
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FIG. 2. Distribution of different crystal structures in the high-dimensional space of feature vectors as visualized through tSNE (see
Appendix J for details on the application of tSNE). (a) tSNE results for a randomly selected subset of the synthetic data set, demonstrating
that the local-structure characterization approach developed here can effectively distinguish between crystal structures. Black data points
correspond to the feature vector of perfect crystal structures (i.e., undisturbed by thermal noise). (b) Data from molecular dynamics simulations
(with temperatures ranging from 0.04 Tm to 1.32 Tm) have a similar tSNE distribution as the data from the synthetic data set, demonstrating the
adequacy of the synthetic data set for training the Machine Learning model. (c) tSNE plot of the temperature-resolved distribution of the hcp
structure feature vectors. Data points corresponding to high temperatures (i.e., large thermal noise) are the most challenging cases to classify
due to their increased distance from the perfect reference structure (shown as the red circle for the hcp structure)

with 100 rectified linear units and softmax output. Training
was performed using only data from the synthetic data set. See
Appendix D for more details on the neural network training
and model selection. The neural network classification task is
shown in the central part of the DC3 framework illustrated in
Fig. 3.

D. Recognizing amorphous motifs and unknown
crystal structures

An important capability of any crystal-structure classi-
fication algorithm is its capacity to recognize amorphous
motifs—present in liquids and glasses—and unknown crys-
tal structures as such. In the absence of this capability a
known crystal structure label ỹi would be mistakenly assigned,
leading to false-positive errors. Hence, in order to discern
amorphous motifs from unknown crystal structures we have
developed an outlier detection algorithm suitable to our data-
centric framework. Next we describe the outlier detection
algorithm and how it fits in the DC3 framework, illustrated
in Fig. 3.

Given the local structure surrounding atom i, the first step
of the outlier detection procedure is to determine whether
this local structure corresponds to a crystalline motif or an
amorphous one. Physically, the difference between these two
motifs is that if atom i is in a crystalline motif there is a high
degree of similarity between its local structure and the local
structure of its neighbors, while such similarity does not exist
for amorphous motifs. Thus, we define the structure coherence
parameter αi = (1/Nb)

∑Nb
j=1 ξi · ξ j between i and its first Nb

neighbors, where ξi is a vector composed of a combination of
spherical harmonics in such way that the closer the structure
surrounding atom i and j is the more parallel vectors ξi and ξ j
become. If αi > αcutoff the local motif surrounding atom i is
considered crystalline, otherwise it is considered amorphous
(our definition of the coherence parameter αi was inspired by
the study of Rein ten Wolde et al. [35]). The values of αcutoff

and Nb were determined using only the synthetic data sets, see
Appendix E for more details on vector ξi and the coherence
parameter αi.

Continuing with the example of atom i, let us assume that
the local motif was identified as crystalline (i.e., αi > αcutoff).
In this case, our framework must determine next whether the
local structure surrounding atom i corresponds to crystalline
motif seen during training or to an unknown crystal motif.
First the feature vector xi is evaluated for atom i and the neural
network trained previously is employed to predict a label
ỹi. Once this has been done the outlier detection procedure
must determine if the assigned label ỹi is appropriate or if,
instead, xi corresponds to an unknown crystal structure. In
order to make that decision notice that each crystal structure
has a feature vector that is special compared to all others: the
one corresponding to the undistorted crystal structure (i.e., no
thermal noise), shown in Fig. 2. For a crystal structure with
label yi this special feature vector is x∗(yi ). Hence, the dis-
tance δ(xi, x∗(ỹi )) from xi to x∗(ỹi ) is evaluated and compared
to the location of the 99th percentile (δ99th

ỹi
) of the distance

density distribution as obtained from the synthetic data set
(see Fig. 4 for an example for the case of the hcp structure).
If δ(xi, x∗(ỹi )) � δ99th

ỹi
the predicted label ỹi is considered ap-

propriate, otherwise xi is determined to belong to an unknown
crystal structure.

III. RESULTS

A. Benchmark comparison against heuristic methods

Comparison of performance between different crystal-
structure classification algorithms should ideally be done on
standardized data sets consisting of relevant and realistic ma-
terials simulations designed to push the limits of the methods
capabilities. Such standard does not currently exist, which
led us to develop and make publicly available the following
benchmark data set.

One or more representative materials and corresponding
interatomic potentials were chosen for each of the six crys-
tal structures considered in this article (see Table I). The
family of materials considered include metals, semiconduc-
tors, ionic solids, and molecular crystals. The choice of
potentials span a variety of the most employed potentials in
atomistic simulations, ranging from simple analytic poten-
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TABLE I. Materials and interatomic potentials chosen to build data sets for the benchmark of crystal classification methods and the
extension of DC3 to chemically complex systems (i.e., binary compounds). Tm is the melting temperature and Tml is the highest temperature at
which the material could be equilibrated in the crystal phase (i.e., the metastability limit). See Appendix A for details on the calculation of Tml.

Structure Material Potential Tm [K] Tml [Tm]

fcc Al EAM [36] 933 1.16
fcc Ar Lennard-Jones [37] 83.8 1.12
bcc Li SNAP [38] 454 1.20
bcc Fe EAM [39] 1811 1.08

Benchmark hcp Ti MEAM [40] 1941 1.16
data set hcp Mg EAM [41] 923 1.16

cd Si EDIP [42] 1687 1.16
cd Ge Tersoff [43] 1211 1.32
hd H2Oa Stillinger-Weber [44] 273 1.32
sc NaClb Tosi-Fumi [45,46] 1074 1.16

L10 CuNi EAM [47] 1462 1.24
L12 CuNi EAM [47] 1462 1.24

Chemically complex B1 (rock salt) NaClc Tosi-Fumi [45,46] 1074 1.16
data set B2 CoAl EAM [48] 1913 1.04

B3 (zincblende) InP SNAP [49] 1355 1.20
B4 (wurtzite) ZnO ReaxFF [50] 850d 1.16

aThe potential for H2O is a coarse-grained monoatomic model where each molecule is represented by a single particle, resulting in the
hexagonal diamond structure.
bIn the benchmark data set both atom types (Na and Cl) were considered to be identical for the purpose of the crystal-structure classification,
resulting in the simple cubic structure.
cDifferently from the benchmark data set, in the chemically complex data set both types of atoms (Na and Cl) are considered to be distinct.
dNotice that the melting point for the ZnO potential is markedly different from the experimental melting point (2249 K).

tials to state-of-the-art ML potentials. Molecular dynamics
(MD) simulations (described in Appendix A) with approx-
imately 17 000 atoms were performed for each material at
their respective melting temperatures at zero pressure. Over
the course of the simulations configuration snapshots were
saved at time intervals long enough to guarantee statistical
independence between the snapshots. The accuracy of crystal-
structure classification methods is then to be evaluated in each
set of snapshots. Employing Tm as the simulation temperature
has the benefit of resulting in similarly large levels of the
thermal noise for all materials, while being a temperature ac-
cessible to all crystal phases. Yet another MD simulation was
performed for each potential in the liquid phase at T = 1.6 Tm.
This group of simulations is to be employed in verifying
the capability of crystal-structure classification methods to
recognize amorphous atomic motifs and avoid false-positive
crystal labels.

Next, we evaluate the performance of DC3 and other
heuristic crystal classification methods in this independent
and standardized benchmark data set. The following heuristic
crystal classification algorithms were considered: Polyhedral
template matching [10] (PTM), common-neighbor analysis
[11–13] (CNA), interval CNA [14] (iCNA), Ackland-Jones
analysis [17] (AJA), VoroTop [15], and Chill+ [16]. See Ap-
pendix F for the parameter selection and application details
for each of these methods. As it can be seen on Table II the
DC3 method has the best accuracy for almost all materials
considered, with the exception of Si and water where PTM
and Chill+ are superior. Note, however, that in these two cases
the accuracy of DC3 is already very high (above 99%) and
only slightly inferior to other methods by about 0.8%. This is
in contrast to cases such as Ti, where DC3 accuracy (89.4%)

is larger than the second best method by almost 7%. Another
relevant observation is that DC3 maintains similar levels of
accuracy across all six crystal structures, with the largest dif-
ference being a factor of 1.17 between Fe (bcc) and Ge (cd).
A similar analysis for heuristic methods results in factors of
1.21 for PTM (Ti hcp vs water hd), 2.17 for AJA (Li bcc vs
Ar fcc), 2.65 for VoroTop (Ar fcc vs Fe bcc), and 2.71 for
iCNA (Ti hcp vs Ar fcc). This suggests that expert knowledge
biases algorithms towards better performance on structures for
which the expert has better familiarity and intuition.

The best-performing heuristic method is PTM. Because of
its excellent performance a discussion about some aspects
of this method is warranted. In order to be used optimally
PTM must first be fine-tuned before its application, with the
tuning process being dependent on the material, interatomic
potential, crystal structure, and thermodynamic conditions
(i.e., simulation temperature). The PTM accuracies shown on
Table II correspond to the performance of PTM using a set
of highly optimized parameters tuned to work individually
with each material and temperature in the benchmark data set
(see Appendix G for the PTM optimization details). Another
point worth noticing is that PTM cannot be globally opti-
mized to work with multiple crystalline phases or materials.
For example, the optimal parameters for Ge (cd) result in
an accuracy of 99.2% for Ge but only an accuracy of 8.3%
for NaCl (sc), but PTM can achieve up to 94.6% accuracy if
optimized specifically for NaCl. This can be a complication
when working with multiple crystalline phases such as, for
example, when investigating the interface between dissimilar
crystal structures. The optimal PTM parameters are also not
transferable across different materials with the same crystal
structure. For example, the optimal parameters for Ge (cd)
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TABLE II. Accuracy comparison between the DC3 framework and the most popular heuristic algorithms as evaluated on the benchmark
data set of Table I (consisting of MD simulations at T = Tm). The largest accuracy for each crystal structure is highlighted in a bold font, while
the 95% confidence interval around the mean is shown in parentheses (see Appendix I for details on the confidence interval calculation). The
missing entries on the table are due to the fact that not all heuristic methods are capable of identifying all six structures. Notice that results for
PTM and Chill+ were obtained using a set of highly optimized parameters for each individual material and temperature.

Al (fcc) Fe (bcc) Ti (hcp) Si (cd) H2O (hd) NaCl (sc) Ar (fcc) Li (bcc) Mg (hcp) Ge (cd) Liquid

DC3 96.9 (3) 86.8 (5) 89.4 (5) 99.0 (1) 99.2 (1) 95.6 (3) 97.5 (2) 85.8 (5) 97.4 (2) 100.0 (0) 96.4 (1)
PTM1 95.9 (3) 84.3 (5) 82.8 (5) 99.9 (1) 100.0 (0) 94.6 (3) 96.9 (2) 83.1 (5) 95.7 (3) 99.2 (1) 99.5 (1)
iCNA 68.5 (6) 56.6 (7) 27.9 (6) 75.7 (6) 51.6 (7) 64.9 (6) 99.1 (1)
CNA 50.3 (8) 39.9 (6) 15.7 (5) 98.8 (2) 97.6 (2) 57.1 (7) 34.4 (6) 47.3 (6) 100.0 (0) 100.0 (0)
AJA 66.9 (7) 35.6 (7) 42.4 (6) 74.0 (5) 34.1 (7) 67.0 (6) 84.3 (2)
VoroTop 24.0 (6) 61.2 (6) 57.5 (7) 23.1 (6) 57.2 (6) 57.4 (6) 77.4 (2)
Chill+a 99.8 (1) 98.8 (1) 100.0 (0) 91.9 (2)

aThe parameters for PTM and Chill+ were highly optimized for each individual material (at T = Tm) using data from the same simulations
employed to compute the reported accuracies.

decreases the accuracy of Si (also cd) from 99.9% to only
55.9%. DC3 is simultaneously optimized for each crystal
structure and does not suffer from this problem, i.e., DC3 can
be applied with its optimal accuracy to any number of crystal
structures simultaneously.

B. Temperature dependence

The accuracies shown on Table II correspond to MD simu-
lations performed at a single temperature, namely the melting
point of each respective material. Yet, it is desirable for
crystal-structure classification methods to perform well under
the presence of a variety of thermal noise amplitudes (i.e.,
temperatures). Further MD simulations were performed for
all materials in the benchmark data set in order to evaluate
the DC3 model transferability with respect to temperature.
These simulations covered the entire temperature range from
0.04 Tm to Tml, where Tml is the highest temperature at which
the crystal phase could be equilibrated (see Appendix A for
details on the calculation of Tml), shown on Table I. The
temperature dependence of the accuracy of DC3 and the
heuristic methods is shown in Fig. 5 (see Fig. S1 within SM
[51] for the results of the other materials on Table I). It can
be seen in this figure that DC3 remains the best performing
method for the entire range of temperatures. Notice that for
H2O (hd) the trends on Table II seem to change at T ≈ Tml,
where the accuracy of DC3 seemly becomes superior to PTM
due to better robustness against thermal noise (i.e., slower
decrease in accuracy with temperature). It can be seen in
Fig. 5 that all methods present a general trend: lower ac-
curacy as temperature increases. Such a trend is due to the
fact that structural distortions caused by thermal noise make
it more difficult to discern between the crystal structures.
This can be seen in Fig. 2(c), where the temperature-resolved
tSNE analysis of the MD simulations of Ti (hcp) shows that
data points corresponding to high temperatures are the ones
farthest from the perfect crystalline structure, and therefore
closer to areas of the feature space occupied by other crystal
structures.

The tSNE analysis of the MD-generated data set is shown
in Fig. 2(b) and it can be compared to the tSNE distribution
of the synthetic data set in Fig. 2(a). The similarities between
the two distributions is another evidence that our procedure

to build a synthetic data set was successful in creating an
effective training set for the ML classifier.

C. Generalization to chemically complex structures

The DC3 model developed so far is only capable of clas-
sifying crystal structures of materials composed of a single
element (benchmark data set on Table I). This limitation can
be overcome by appropriately modifying the feature vector xi.
In this section we demonstrate how this can be accomplished
for binary compounds: AnBm. The approach chosen here is to
augment the feature vector definition such that xi = (xA

i , xB
i ),

where xX
i is the same feature vector defined for single-element

materials but computed using only those neighbors of atom i
that belong to the chemical species X . In order to test this
approach we have performed MD simulations of six binary
compounds (listed on Table I) at temperatures ranging from
Tm to Tml. The accuracy as a function of temperature is shown
in Fig. 6, where it can be seen that the DC3 approach retains
similar levels of accuracy as those observed for single-element
structures. The average accuracy for the corresponding liquid
phases was 99.4% ± 0.1%. See Appendix H for more details
on the DC3 generalized algorithm.

The fact that DC3 performance is similar for single-
element materials and binary compounds warrants some
observations since the task of creating heuristic rules to dis-
cern binary-compound structures is more difficult than for
single-element materials due to the increased complexity
added by the presence of multiple elements. Hence, it is
unexpected that this does not seem to be the case for an
ML-based data-centric approach. For example, the L10 and
L12 crystal structures are both alloys obtained from the fcc
structure by simple chemical substitution performed at certain
crystal lattice points. Yet, DC3 is capable of discerning be-
tween these two structures with perfect accuracy within the
standard error (i.e., �0.1%), as can be seen in the confusion
matrix in Fig. S6 within SM [51]. In fact, all four chemically
complex structures with cubic symmetry show less than 0.4%
false-positive errors. These excellent accuracies suggest that
DC3 is capable of easily assimilating the extra information
contained in the description of chemically complex structures.
The same chemical complexity that makes the creation of
heuristic rules more arduous for human intuition.
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FIG. 3. Data-centric crystal classifier (DC3) framework. The
initial point of the framework is the input of the local structure
surrounding atom i (blue box). The algorithm ends when a label has
been assigned to this local structure (green boxes). The feature vector
of the perfect crystal structure (i.e., no thermal noise) associated with
label ỹi is x∗(yi ).

IV. DISCUSSION AND CONCLUSIONS

One of the distinguishing properties of the DC3 framework
is that it can be systematically generalized to novel crys-
tal structures, as illustrated in Fig. 7. This follows from its
streamlined pipeline (Fig. 3) that does not require predefined
rules to be derived for each new structure. Instead, a synthetic
data set is automatically generated from the description of the
new crystal structure and a neural network learns structural
distortions patterns from the data. With this data-centric ap-
proach DC3 can be easily generalized to an arbitrary number
of complex crystal structures. It has been shown here that
new DC3 models with extended capabilities can be generated
by simply extending the feature vector xi, such as adding
species-sensitive features in order to classify chemically com-

FIG. 4. Histogram of distances of the feature vectors to the point
corresponding to the perfect hcp structure, i.e., δ(x, x∗(y)) with y =
hcp. The molecular dynamics data set (with temperatures ranging
from 0.04 Tm to 1.16 Tm) is depicted in gray while the synthetic data
set is shown in blue. The 99th percentile of distances δ99th

y for the
synthetic data set is marked as the dashed blue line.

plex structures. Extending the feature vector is a much simpler
task than creating new heuristic rules to achieve the same
capabilities. Thus, DC3 is a natural algorithm to employ when
flexibility to adapt to new material structures is imperative,
such as in the high-throughput frameworks [18–21] pervasive
in materials science nowadays.

The approach developed here is also the only crystal-
structure classification algorithm capable of discerning un-
known crystal structures from amorphous motifs (i.e., non-
crystalline phases). All heuristic methods bundle these two
categories together and only differentiate them from known
crystal structures. This capability makes DC3 useful in sim-
ulations of crystal growth and other materials synthesis
processes where the formation of novel crystal structures
might go unnoticed if such structure is not already contained
in the method’s database. With DC3 this problem would not
arise because a novel crystal phase would be identified as
such, and not as an amorphous structure that might be easily
mistaken as not part of the material being synthesized. For
example, during crystal growth from the melt the nucleating
crystallite is embedded in a matrix of its own liquid phase.
In this case DC3 easily identifies the new crystallite (as a
known or unknown crystal structure) while recognizing the
liquid phase as a noncrystalline phase.

Identification of crystal defects is an important problem in
computational materials science. Methods to detect defects
invariably begin [8,52,53] by first identifying the atoms
belonging to perfect crystal structure, since those need not to
be included in the search and classification of crystal defects.
This requirement has limited the applicability of crystal
defect identification methods to lattices for which crystal
classification algorithms exist. This limitation can be lifted
with DC3 because of its ability to discern unknown crystal
structures from amorphous motifs. With DC3 one will be able
to identify crystal defects in any crystal structure, even those
unknown to DC3.
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FIG. 5. Accuracy as a function of the homologous temperature as evaluated on materials of the benchmark data set (Table I). Lines represent
the mean accuracy, while the shadows show the 95% confidence interval around the mean (see Appendix I for details on the confidence interval
calculation). The temperature of the MD simulations ranged from 0.04 Tm to Tml, where Tml is the highest temperature at which the crystal
structure could be equilibrated. The vertical-dashed line marks the melting temperature. The general trend of lower accuracy as temperature
increases is due to structural distortions caused by thermal noise. Notice that not all heuristic methods are capable of identifying all crystal
structures. Similar results for other materials on Table I are shown in Fig. S1 within the Supplemental Material (SM) [51].

More generally, the approach developed here is applica-
ble not only to crystal structures, but also to any general
atomic motif that needs to be identified in the presence of

FIG. 6. Accuracy of the DC3 method for binary compounds
as a function of the homologous temperature. Lines represent the
mean accuracy, while the shadows show the 95% confidence inter-
val around the mean (see Appendix I for details on the confidence
interval calculation). The DC3 approach was capable of retaining
a similar level of accuracy for chemically complex structures as
those observed for single-element structures. Extension of DC3 to
multielement systems was accomplished by simply augmenting the
feature vector xi to account for different chemical species.

thermal noise. Such as for example, local chemical order in
high-entropy alloys [54], unusual coordination in supercooled
liquids [55], solvation shells in various aqueous solutions [56],
grain boundary structures [57,58], and structural features at
surfaces [59,60]. The only requirement is the creation of an
appropriate synthetic data set for training DC3 framework to
identify the atomic motif of interest.

In conclusion, we have created a data-centric framework
for crystal-structure classification in atomistic simulations.
Our approach does not rely on expert knowledge to derive
rules for discerning crystal structures, instead the task of de-
riving heuristic rules is delegated to an ML algorithm that
learns the optimal patterns of classification from an unbi-
ased and material-independent synthetic data set. The entire
process of generalization to new structures can be easily au-
tomated to run without human intervention, a capability that
sets this approach apart from heuristic structure classification
algorithms. We have also created the first statistically rigorous
benchmark data set to compare performance of different meth-
ods. Using this benchmark data set it was shown that DC3
has better performance than any of the most popular heuristic
algorithms. The data-centric framework developed here has
proven to be a flexible template on which more specialized
methods can easily build upon for niche applications. Because
of its data-centric format, extension of DC3 capabilities can
be performed using a variety of state-of-the-art ML and data-
science methods.

The code and scripts used to generate the results in this pa-
per can be downloaded from the repository [82]. In addition,
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FIG. 7. Flowchart illustrating the steps required to incorporate a new crystal structure with label y = N into an already existing DC3 model
capable of identifying crystal structures with labels y = 1, 2, . . . , N − 1. The DC3 framework can be systematically generalized to novel
crystal structures without the need to perform any materials simulation, making it especially suitable to high-throughput approaches. Notice
how the pipeline does not require predefined rules to be derived for each new structure.

any data that supports the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: MOLECULAR DYNAMICS SIMULATIONS

The MD simulations were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS
[61]). Atomic forces and energies were described using the
following interatomic potentials: Finnis-Sinclair embedded-
atom model (EAM-FS [62–64]) for Fe [39], Al [36], Mg [41],
CuNi [47], and CoAl [48], modified embedded-atom model
(MEAM [65,66]) for Ti [40], Stillinger-Weber [67] for a
coarse-grained monoatomic model of H2O [44], environment-
dependent interatomic potential (EDIP [42]) for Si, Tosi-Fumi
model [45,46] for NaCl, spectral neighbor analysis potential
(SNAP [68]) for Li [38] and InP [49], Lennard-Jones [69,70]
for Ar [37], Tersoff [71] for Ge [43], and ReaxFF [72,73] for
ZnO [50].

The timestep for all simulations was 1 fs. The Bussi-
Donadio-Parrinello thermostat [74] was employed with a

relaxation time of 0.1 ps. In order to maintain the system at
zero pressure we employed an isotropic Nosé-Hoover chain
barostat [75–77] with chain length of three and relaxation time
of 1 ps. The system size was chosen such that it contained at
least 17 000 atoms while maintaining the system dimensions
as close to a cube as possible.

For each crystal structure (and corresponding interatomic
potential) the system was initialized with atoms in a perfect
crystal structure with lattice parameter corresponding to the
zero temperature equilibrium value. The system was equili-
brated at the target temperature and zero pressure for 10 ps
followed by a period of 90 ps during which snapshots of the
atomic coordinates were collected every 10 ps.

Simulations were run for each structure at temperatures
ranging from 0.04 Tm to 1.60 Tm in intervals of 0.04 Tm. In or-
der to determine if the system had melted over the course of a
simulation the atomic coordinates of the last snapshot of each
simulation were relaxed to their local energy minima using the
conjugate-gradient [78] algorithm with a quadratic line search
and maximum atom displacement of 0.1 Å. We considered the
relaxation to have converged once the line search backtracks
to zero distance (i.e., the energy and force tolerances are zero
and there is no limit on the number of iterations).

The final data set obtained from MD simulations con-
tained 17 000 data points per crystal structure per temperature.
The accuracy statistics of different classification methods
was computed employing only data from temperatures for
which the system was 100% crystalline at the end of the MD
simulation. Notice that crystalline phases can be metastable
and therefore retain their crystal structure above Tm. Nev-
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ertheless, each material has a limit of metastability marked
by a temperature Tml � Tm above which the crystal phase
cannot be equilibrated anymore. Here we have estimated Tml

for each material as the highest temperature at which the last
snapshot of the MD simulation relaxed back to its perfect
crystal structure. Data points at T > Tm are invaluable when
benchmarking the accuracy of crystal-structure classification
methods because they are the most challenging to classify due
to the large thermal fluctuations present.

The statistics of the liquid phase was computed for all ma-
terials using data from T = 1.60 Tm, a temperature at which
all materials had completely melted after the initial equilibra-
tion time.

APPENDIX B: SYNTHETIC DATA CREATION

Synthetic data for each crystal structure was constructed by
initializing a system with atoms at their perfect crystal struc-
ture positions and applying a random displacement to each
atom. These random displacements are performed uniformly
over a sphere of radius r by selecting the spherical coordinates
of the displacement vector as follows. The azimuthal angle
φ is chosen randomly over a uniform distribution with range
[0, 2π ), while the polar angle θ is chosen such that cos θ

is uniformly distributed over [−1, 1). The radial distance r
is chosen such that r3 is uniformly distributed, while r falls
inside the interval [0, αd ), where d is the distance to the first
neighbor in the perfect crystal structure and α is a parameter
used to control the magnitude of the displacements. In order
to mimic structures at different temperatures we employed
40 different values of α uniformly distributed in the range
[0.01,0.25]. The final synthetic data set contained 69 000
unique data points per crystal structure.

APPENDIX C: FEATURE VECTOR CONSTRUCTION

Each atom had its local neighborhood described by a set of
features composed of the two families of functions shown in
Eqs. (1) and (3). It is clear from these equations that Steinhardt
parameters capture angular information about the local struc-
ture, while RSF account for the radial information. Each RSF
evaluates the density of atoms at a distance r away from the
central atom. If a neighbor’s radial distance is different from r
its contribution to the density is controlled by σ . Meanwhile,
for each value of � the Steinhardt parameter is sensitive to a
different orientational symmetry present in the local neighbor-
hood of atom i as defined by its first Nb neighbors.

Next we describe how the free parameters in Eqs. (1)
and (3) were selected. For QNb

� (i) the free parameters are �

and Nb. Traditionally, � = 4 and 6 are often employed with
mild success to differentiate certain crystal structures, mostly
because they allow the classification to be done by visual
inspection of a two-dimensional plot. Here we take the data-
centric route and employ � = 1, 2, 3, 4, . . . , 15 (� = 0 results
in constant spherical harmonics), leaving the task of extracting
information from the high-dimensional data created to the ML
algorithm. The Nb parameter was picked in a similar spirit.
The number of nearest neighbors in each crystal structure
considered here are 6 for sc, 8 for bcc, 12 for fcc and hcp, 16
for cd and hd. Hence, we chose Nb = 2, 3, 4, . . . 16 (Nb = 1

does not contain any local-symmetry information) for each
value of �. Notice that the cd and hd structures have 4 iden-
tical nearest neighbors, thus it is necessary to employ the 12
second-nearest neighbors in order to differentiate these two
structures.

The free parameters for GNb
r,σ (i) (r and σ ) are computed

as follows. Notice that in order to render xi independent of
the material lattice constant the parameters r and σ are not
preselected before the local-structure characterization takes
place. Instead, these parameters are determined with regard to
a local-distance metric calculated only during the evaluation
of xi, which effectively renders xi independent of the magni-
tude of the lattice constant (this approach was inspired by the
adaptive cutoff method developed by Stukowski [13]). The
local-distance metric for a given atom i and a given number
of nearest neighbors Nb is chosen as the the average radial
distance of the first Nb nearest neighbors of i:

〈ri j〉Nb
= 1

Nb

Nb∑
j=1

ri j .

Hence, the values of r employed for atom i are
r/〈rNb

i j 〉 = 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, while

σ (i) = 0.05〈rNb
i j 〉. Notice that the summation in Eq. (3)

is over all atoms within a cutoff radius rcut, instead of a
summation over the first Nb neighbors. The parameter Nb is
only employed to determine r and σ for each atom. The value
of rcut is chosen such that contributions of neighbors beyond
the cutoff are negligible: rcut = max[r(i)] + 4 ∗ max[σ (i)],
where the max function is taken over all atoms in the system
for a given Nb.

Finally, the feature vector xi for atom i is constructed as
follows:

xi = [
Q2

1, Q2
2, Q2

3, . . . , Q2
15,

Q3
1, Q3

2, Q3
3, . . . , Q3

15,

Q4
1, Q4

2, Q4
3, . . . , Q4

15,

... ,
... ,

... ,
... ,

... ,

Q16
1 , Q16

2 , Q16
3 , . . . , Q16

15,

G2
r,0.85r, G2

r,0.90r, G2
r,0.95r, . . . , G2

r,1.15r,

G3
r,0.85r, G3

r,0.90r, G3
r,0.95r, . . . , G3

r,1.15r,

... ,
... ,

... ,
... ,

... ,

G16
r,0.85r, G16

r,0.90r, G16
r,0.95r, . . . , G16

r,1.15r

]
,

(C1)

where the (i) dependence inside the vector was omitted for
clarity.

Note that, in total, our feature vector has length 330. Given
this magnitude of features, significant training data (on the
order of at least 50 000 examples) must be used in order to
avoid overfitting. Since, generating this amount of training
data using MD would be inefficient and even infeasible for
more chemically complex systems, our synthetic method may
be the only way to train this kind of framework.
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Finally, a linear transformation was applied to the collec-
tion of feature vectors in the synthetic data set such that each
component of xi had zero mean and standard deviation of one.
The same linear transformation was subsequently applied to
the MD data sets (benchmark data set on Table I).

APPENDIX D: MACHINE LEARNING MODEL TRAINING

The synthetic data set (consisting of 414 000 data points)
was employed to parametrized a multiclass feed-forward neu-
ral network composed of three hidden layers with 100 rectified
linear units and softmax output one [79,80]. Training was
performed using the early stopping strategy [79]: 10% of the
training set was set aside and used as validation, training
stopped when the validation score did not improve by at least
10−4 for 10 epochs. Optimization of the log-loss function was
carried out using the Adam [81] algorithm with β1 = 0.9,
β2 = 0.999, ε = 10−8, learning rate initialization of 5 × 10−3,
minibatches of size 200, and a L2-regularization term with pa-
rameter 10−4. The model parametrization strategy described
above was decided based on a hyperparameter optimization
procedure shown in Fig. S2 within SM [51].

APPENDIX E: OUTLIER DETECTION ALGORITHM

The outlier detection algorithm has two different objec-
tives. First it must determine whether a feature vector xi

corresponds to a crystal structure or an amorphous atomic
motif. If this first assessment concludes that xi corresponds
to a crystal structure, then the second goal of the outlier de-
tection algorithm is to determine whether the crystal structure
is known (i.e., is included in the ML classifier database) or
unknown.

In order to determine whether xi corresponds to a crystal
structure or an amorphous motif the information contained in
xi is used to construct the following vector:

ξ̃i = [
qNb

4 (i), qNb
6 (i), qNb

8 (i), qNb
12 (i)

]

where qNb
� (i) is defined as

qNb
� (i) = [

qNb
�,m=−�(i), qNb

�,m=−�+1(i), . . . , qNb
�,m=�(i)

]
,

with qNb
�,m(i) given in Eq. (2). Finally, vector ξi is the normal-

ized version of ξ̃i:

ξi = ξ̃i∣∣ξ̃i

∣∣ . (E1)

Vector ξi is such that the more similar the structure surround-
ing atoms i and j is, the more parallel vectors ξi and ξ j will
be. For example, in a perfectly undisturbed Bravais lattice
ξi · ξ j = 1 for any two pairs of atoms i and j, while for a
system composed of a truly random distribution of atoms
〈ξi · ξ j〉 = 0, where the average 〈. . .〉 is over all atoms in the
system. Finally, the structure coherence parameter is defined
as

αi = 1

Nb

Nb∑
j=1

ξi · ξ j .

Using the synthetic training set the distribution of αi was
evaluated for all crystal structures. Similarly, another data set
composed of randomly distributed atoms, meant to mimic
amorphous and liquid materials, was employed to determine
the αi distribution for amorphous motifs. Based on these two
distributions (shown in Fig. S3 within SM [51]) the opti-
mal cutoff value αcutoff = 0.196 was determined such as to
maximize the probability of correctly classifying an atom as
belonging to a crystal structure or to an amorphous motif:
if αi � αcutoff then atom i is determined to be crystalline,
otherwise it is surrounded by an amorphous arrangement of
neighbors.

The above definition of the structure coherence factor αi

warrants some observations. First, notice that our definition of
αi and ξi is a direct generalization of concepts introduced by
the work of Rein ten Wolde et al. [35]. We have first attempted
to define ξi = xi, but this definition led to poor accuracy of
the outlier detection algorithm. One of the most important
properties of xi is that it is rotationally invariant, which is only
the case because the definition of QNb

� (i) involves rotationally
invariant combinations of qNb

�,m(i). This is a desirable property
for the ML classifier because a feature vector corresponding
to a specific crystal structure should be the same no matter the
(physically arbitrary) orientation of the system in space. But
this is not a requirement when trying to discern if the local
structure surrounding atom i is crystalline or not, because ξi is
only compared to a few nearest neighbors. Thus, in defining
ξi we forgo the rotationally invariant requirement in order to
retain the angular information that is lost when the modulus
of qNb

�,m(i) is taken. We have also observed that the most
important contributions to αi came from � = 4, 6, 8, and 12,
since no statistically measurable improvement was observed
by employing more values of � or the RSF [Eq. (3)]. Hence,
ξi took the more compact definition presented in Eq. (E1),
which does not require any additional computation since all
information needed to evaluate ξi was already computed when
evaluating xi. Finally, the Nb = 16 value was employed since
this is the maximum number of first neighbors of all structures
considered on Table I.

The outlier detection algorithm ends if the analysis of
αi determined that the local structure surrounding atom i is
amorphous. But, if the analysis above determined the local
structure to be crystalline the algorithm must now decide
whether this is a known crystal structure or not. In this case
the next step is to apply the ML classifier to predict a label
ỹi to this feature vector. Then it must be statistically decided
whether label ỹi is appropriate or xi corresponds instead to
an unknown crystal structure. In order to make that decision
notice that each crystal structure has a feature vector that is
special compared to all others: the one corresponding to the
undistorted crystal structure (i.e., no thermal noise), shown
in Fig. 2. For a crystal structure with label ỹi this special
feature vector x∗(ỹi ) is the perfect example of the crystal
structure. Hence, the distance δ(xi, x∗(ỹi )) from xi to x∗(ỹi ) is
evaluated and compared to the location of the 99th percentile
(δ99th

ỹi
) of the distance density distribution as obtained from

the synthetic data set (see Fig. 4 for an example for the case
of the hcp structure). If δ(xi, x∗(ỹi )) � δ99th

ỹi
the label ỹi is

considered appropriate, otherwise xi is determined to belong
to an unknown crystal structure.
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APPENDIX F: BENCHMARK OF CRYSTAL
CLASSIFICATION METHODS

In order to assess the quality of the DC3 method we have
also computed the accuracy of different algorithms of crystal
classification available in the literature. The methods consid-
ered here were: polyhedral template matching (PTM [10]),
common-neighbor analysis (CNA [11,12]), interval common-
neighbor analysis (iCNA [14]), Ackland-Jones analysis (AJA
[17]), VoroTop [15], and Chill+ [16].

Each of these methods require a different set of parameters
in order to perform optimally. The PTM optimization process
is intricate and we devote the next section to describe it. The
CNA and iCNA methods were employed here in conjunction
with the adaptive approach developed in Ref. [13], which has
the dual benefits of having no global adjustable parameter and
also performing better than the standard fixed-cutoff variant.
The AJA method does not require any adjustable parameter.
The VoroTop method requires the application of a filter to
specify the structure types. Here we have chosen the most
general filter available: FCC-BCC-ICOS-HCP. The Chill+
method requires a cutoff radius for the first-neighbor bond,
which we have set to 3.4 Å (fcc), 3.0 Å (bcc), 3.5 Å (hcp),
2.9 Å (cd), 3.5 Å (hd), 3.5 Å (sc). Notice that Chill+ can only
classify cd and hd crystal structures, but in order to obtain
good accuracy for liquid classification of the other structures
we also optimized the cutoff for their respective materials.

Not all structures can be classified using the methods con-
sidered here, with the single exception of PTM, which works
for all six crystal structures. The CNA and iCNA methods
can classify fcc, bcc, hcp, cd, and hd. The AJA and VoroTop
methods work for fcc, bcc, and hcp. The Chill+ works for cd
and hd.

In order for the accuracy comparison among the methods
and against DC3 to be considered fair we took the following
steps. The option to classify icosahedral structures was turned
off for the CNA, iCNA, and AJA (the VoroTop filter does not
allow for ignoring icosahedral structures but we did verify that
the amount of icosahedral misclassification is not statistically
relevant). The option to identify first and second neighbors in
cd and hd structures was turned off for the CNA and iCNA.

The statistics of each method were collected by applying
them to the crystal and liquid data sets obtained from MD
simulations. The synthetic data set was used solely in the
parametrization and model selection for the DC3 method.

APPENDIX G: OPTIMIZATION OF THE PTM METHOD

During the process of classification the PTM method esti-
mates how close a certain atom neighborhood is to a perfect
crystal structure (i.e., the similarity between both sets of
points) by evaluating the root-mean-square deviation (RMSD)
between the data point and the perfect structure template.
The classification decision is made by computing the RMSD
between the data point and all structures considered, and then
choosing the structure that results in the lowest RMSD. A data
point is determined to not belong to any of the structures con-
sidered if the all RMSDs computed are above a predetermined

cutoff value. This cutoff value is temperature and material de-
pendent and must be chosen carefully prior to the application
of the PTM in order for the method to perform optimally. For
example, consider a system that is half crystalline and half
liquid. If the RMSD cutoff is too large many liquid atoms can
be mistakenly classified as crystalline, while a too small value
will result in many atoms belonging to the crystal classified as
liquid.

Using the data set obtained from MD simulations we have
computed the density distribution of the RMSDs obtained for
each material at T = Tm (see Fig. S7 within SM [51]). It is
clear from Fig. S7 within SM [51] that each material has a
different optimal RMSD cutoff value. For example, Si (cd)
has an optimal cutoff of 0.1425 while NaCl (sc) requires a
cutoff of at least 0.2145. Hence, differently from DC3 the
PTM method cannot be simultaneously optimized for all ma-
terials. Moreover, in Fig. S8 within SM [51] we show that the
accuracy of classification of the liquid phase is also strongly
dependent on the choice of the RMSD cutoff.

In order to obtain the optimal classification accuracy for all
materials in their crystalline and liquid phases we optimized
the PTM method individually for each material as follows.
First density distribution of RMSD values for each material’s
crystal (at T = Tm) and liquid phases (at T = 1.6Tm) was
evaluated (see Fig. S7 within SM [51]). Then the accuracy of
the PTM method was evaluated for RMSD values in the range
from 0.0 to 0.6 in intervals of 0.003 both phases (crystal and
liquid). For each material the average between the accuracy
of the crystal and liquid was computed (Fig. S8 within SM
[51]) and the RMSD at the maximum average accuracy was
employed as RMSD cutoff.

This trade-off between the accuracy of the crystal struc-
tures and the accuracy of the liquid (or unknown structures)
can be seen from a data-science point of view as a man-
ifestation of the bias-variance error trade-off in the PTM
classification model. Large RMSD cutoffs result in many false
positives while small RMSD cutoffs result in many false neg-
atives. Minimization of these two sources of error cannot be
done independently and the optimal overall score can only be
improved by changing the statistical model itself.

APPENDIX H: DC3 GENERALIZATION TO BINARY
COMPOUNDS

The DC3 model for binary compounds was developed
using the exact same approach as described above for the
single-element DC3 model. The only modifications per-
formed are described in this section.

The most significant modification was with respect to the
feature vector. In order to account for the different elements
in the AnBm compounds the feature vectors were augmented
such that xi = (xA

i , xB
i ), where xX

i is the same feature vector
defined for single-element materials in Eq. (C1) but computed
only using those neighbors of atom i that belong to chemical
species X .

Modifications were also necessary in the outlier detection
algorithm because each atom type can now have a different
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perfect feature vector x∗(yi ), up to a maximum total of two
for the binary structures considered here. The modification
occurred during the step where it is necessary to determine
whether label yi is appropriate or xi belongs instead to an un-
known crystal structure. The distance from xi was computed
for both perfect feature vectors and the smaller of the two
distances was then employed to make the decision. Similarly,
the density distribution of x∗(yi ) was constructed using only
the smaller distance from each data point in the synthetic
data set to the corresponding perfect feature vectors. Another
modification to the outlier detection algorithm is the new
value of αcutoff = 2.206 that optimizes the average accuracy
between crystal and liquid for this data set (see Fig. S5 within
SM [51]).

Notice also that the InP SNAP potential did not have a
stable liquid phase and therefore was not included in the liquid
data set for chemically complex structures.

APPENDIX I: ERROR BAR CALCULATION

The statistical error bar on Table II and Figs. 5 and 6 repre-
sent the 95% confidence interval around the mean computed
using the bootstrap method with 200 samples of the same size
as the original distributions.

APPENDIX J: TSNE CALCULATIONS

The plots in Figs. 2(a) and 2(b) were obtained by applying
tSNE to a data set composed of 10 000 data points from the
MD benchmark data set, 10 000 points from the synthetic
training set, and the six perfect feature vectors (one per struc-
ture). Figure 2(c) was obtained by applying tSNE to 10 000
data points corresponding to the hcp structure extracted from
the MD data set with temperatures ranging from 0.04 Tm to
1.16 Tm. For all figures a perplexity value of 1000 was em-
ployed.
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