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Strongly out-of-equilibrium growth morphologies in fast solidifying eutectics
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In metal printing processes such as laser-based additive manufacturing, typical solidification velocities yield

a strongly out-of-equilibrium (SOE) growth regime that is intermediate between the slow solidification in
conventional metal casting and rapid solidification regimes characterized by severe solute trapping. Using
phase-field simulations supported by experimental observations, we provide evidence for an inherent growth
mode of the SOE regime in slightly hypereutectic Al-Ni, leading to the destabilization of the planar eutectic

coupled growth front and the development of a protruded state. We interpret this scenario theoretically in terms
of a concomitant growth of different solidification modes, here the coupled eutectic together with « primary
phase. As another example of concomitant growth under SOE conditions, we present simulation results for
single-phase solidification of a Ni fcc-phase exhibiting dendrites and doublons.

DOLI: 10.1103/PhysRevMaterials.6.043405

I. INTRODUCTION

The solidification of a pure substance or of an alloy has
been the subject of an enormous body of studies in the
literature, of course owing to the practical interest of metal-
lurgical processes, but also because it represents an archetype
of nonlinear dynamics leading to pattern formation [1]. In
particular, dendritic and eutectic growths have attracted a lot
of attention of physicists in the 1980s and the 1990s. The
dendritic theory, based on the pioneering work by Ivantsov
[2], was developed in order to account for the uniqueness of
the operating state observed in the experiments. The selection
mechanism, providing the relation between growth veloc-
ity and undercooling, turned out to be subtly related to the
anisotropy of surface tension [3—6]. In opposition, a so-called
parity-broken dendrite or doublon was found in the absence of
anisotropy [7,8].

Eutectic coupled growth was also extensively studied.
First, its basic state was described in the seminal paper by
Jackson and Hunt (JH) [9]: for a given growth velocity V, the
temperature of the growth front depends on the periodicity A
of the lamellar or fibrous structure. Steady states were found
within a continuous interval of A [10,11], and several branches
were found [12], showing oscillatory, tilted, or indented struc-
tures [13—15]. In general, a large variety of growth patterns
were evidenced, illustrating bifurcations, symmetry breaking,
or period doubling as fundamental concepts of nonlinear dy-
namics. It should be noted that hybrid objects exhibiting a fine
eutectic structure and a dendritic shape on a larger scale were
also evidenced [16-18].

While the predominance of boundary-integral techniques
[3,4,7,12,14] had restricted the studies to two dimensions,
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the phase field method enabled scientists to tackle three-
dimensional problems. In particular, the three-dimensional
dendritic theory [6] was confirmed by Karma and Rappel
[19]. More recently, large arrays of dendrites under directional
solidification conditions were simulated [20]. On the side
of eutectics, the lamellae-to-rod transition [21], the zigzag
bifurcation [22], or the spiral dendrite [23], could be in-
vestigated. In opposition to the boundary-integral technique,
phase field models are nowadays also able to treat the prob-
lem of a contrast of diffusivity between the growing and the
mother phase [24], owing to the introduction of a kinetic cross
coupling [25].

Recently, the development of laser-based additive manu-
facturing has lead to a renewed attention on solidification at
larger velocities. In contrast to highly undercooled levitated
droplets [26,27], here the laser scanning speed provides an
upper bound for the solidification velocity and clearly the
latter remains well below the absolute stability velocity, corre-
sponding to rapid solidification, for which pattern formation is
highly suppressed and flat front solidification takes place [28].
In Ref. [29], some of us investigated, using phase field simu-
lations and experiments, the columnar solidification that takes
place in laser powder bed fusion (LPBF) experiments. Using
theoretical arguments inherited from the dendritic theory, the
commonly observed cellularlike growth directed along the
cubic axis of the underlying crystal was explained in terms
of the strongly out-of-equilibrium (SOE) regime. The latter is
defined through the dimensionless driving force A, and is in-
termediate between the weakly out-of-equilibrium regime for
which A « 1 and the regime approaching rapid solidification
for which 1 — A < 1. In the SOE regime A and 1 — A are
of the same order. Then, the growth front temperature 7; is
neither close to the liquidus temperature 7, nor close to the
solidus temperature T for the single-phase SOE solidification
studied in Ref. [29], for which A = (T; — T1.)/(Ts — Tp).
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FIG. 1. Schematic phase diagram focused on the eutectic plateau
of the Al-Ni binary system. The concentration in the o and the
B phases are approximately independent of temperature, and the
difference in liquidus concentrations C;, and Cy 4 defines the driving
force A; when the front temperature 7, deviates from the eutectic
temperature 7, (see text). Cy, is the global concentration of the alloy
that is reached far ahead of the solidification front through diffusion
of solute.

In the present article we evidence using three-dimensional
phase field simulations, a scenario leading to a destabilization
of the eutectic coupled growth in a slightly hypereutectic Al-
Ni alloy. In particular, we show that our simulations reproduce
faithfully the mixed dendritic/eutectic regime that we observe
experimentally. We analyze this regime and attribute its pecu-
liarity, i.e., the concomitant growth of different solidification
modes, to the SOE conditions. Finally, we give another ex-
ample of such a concomitant growth with two-dimensional
simulations of a single-phase solidification structure com-
posed of dendrites and doublons.

II. STRONGLY OUT-OF-EQUILIBRIUM REGIME IN THE
Al-Ni EUTECTIC SYSTEM

A. Phenomenology of eutectic coupled growth

The Al-Ni binary system presents a eutectic temperature
(see Fig. 1) below which the liquid L loses stability to the
benefit of the o phase, almost pure in aluminum, and the
intermetallic 8 phase Al3Ni. Owing to the fact that the eutectic
concentration C, is small, i.e., around 6 wt. % Ni (compared
to 42 wt. % Ni in B), the coupled growth takes place through
thin fibers of B phase embedded in a matrix of « phase
[30,31]. At low velocities, coupled growth occurs when the
alloy concentration is in the neighborhood of the eutectic
concentration, while dendrites of o (8) phase grow when the
deviation from eutectic concentration is large enough on the
hypo(hyper)-eutectic side. The outcome of this competition
between coupled and dendritic growths provides the bound-
aries of the so-called coupled zone [32], in which coupled
growth is dominant.

During the latter, the solute is rejected by the « phase and
absorbed by the 8 phase. The coupled motion of the « /liquid
and B/liquid interfaces is driven by concentration gradients
in the liquid that may be quantified using a dimensionless
driving force Ay. This driving force describes the deviation
from eutectic temperature and is proportional to the difference

in liquidus concentrations Cr, and Cyg, i.e.,
Cro — Cig
Cs —Cy ’

As we infer from Fig. 1, when the temperature of the growth

front Ty is close enough to the eutectic temperature 7,, the
variations of concentration in the liquid L are small compared
to the width of the eutectic plateau Cg — C,, and Ap < 1.
This corresponds to the weakly out-of-equilibrium (WOE)
regime for which the JH theory was developed. Diffusion
takes place in the liquid through concentration gradients of
order Ay /A, and the conservation of mass at the interfaces
moving at velocity V implies

AL = ey

v~p AL 2)
e
where D is the diffusion coefficient in the liquid. On the other
hand, capillary effects proportional to the capillary length dy
are present due to the curvature of the solid/liquid interfaces,
and their magnitude dy/A is of order A;, yielding the well-
known scaling relation between A and V:

* (Vdo)_l/z 3)
dy D ’

We see that the diffusion length I = D/V obeys Ip ~ L/AL
and is thus much larger than the spacing A in the WOE regime,
i.e., when A; < 1. Moreover, far ahead of the growth front,
the global concentration of the alloy C,, is reached through a
gradient on the scale of the diffusion length. The magnitude
of this gradient is related to the driving force for single-phase
solidification (in our case the solidification of «)

A, = M )

CLO( - CD(

and is of order A, /lp. We thus see that, in the WOE regime,
this gradient becomes comparable with the gradient respon-
sible for coupled growth A /A when A, becomes of order
unity, i.e., when the deviation from C, of the hypoeutectic con-
centration C, is comparable to the concentration gap C, — C,.
The equality of these two gradients may be envisioned as a
definition of the boundary of the coupled zone.

B. Destabilization of eutectic coupled growth

According to our phase field simulations and experiments
[33,34], the phenomenology presented just above breaks
down precisely at growth velocities that are typical for the
LPBF additive process. The new phenomenology that arises is
related to the shape of the coupled zone in Al-Ni. Already long
ago, it was noticed that the coupled zone in Al-Ni is skewed
towards hypereutectic concentrations [35]. This means that
alloys increasingly rich in Ni may be solidified via coupled
growth by increasing the growth rate. In Ref. [33] we have
evidenced both numerically and experimentally this skewness
of the coupled zone in Al-Ni. In particular, for a given 10 cm/s
laser scanning speed, the area fraction of the melt pool which
exhibits coupled growth increases with increasing Ni concen-
tration in the alloy. This shows that the larger C, the larger
the solidification velocity at which coupled growth is possible.
It was suggested that the asymmetry of the phase diagram,

043405-2



STRONGLY OUT-OF-EQUILIBRIUM GROWTH ...

PHYSICAL REVIEW MATERIALS 6, 043405 (2022)

FIG. 2. Planar coupled growth pattern that we obtain for
V =0.5cm/s.

i.e., the large difference between Cg —C, and C, — Cy, is
responsible for an increase of the liquid concentration at the
growth front when out-of-equilibrium effects become impor-
tant. Then, the diffusion flux on the scale of the diffusion
length that allows the diffusion field to reach C, ahead of
the solidification front inevitably overcomes the diffusion flux
responsible for coupled growth, and « dendritic growth takes
over at higher solidification velocities, as observed experi-
mentally in the bulk of the melt pool.

Let us now investigate in detail by numerical simulations
how the destabilization of coupled growth occurs. Three-
dimensional phase field simulations are performed using the
software MICRESS [36], in which the phase field model
[37,38] is coupled to the SSOL6 (SGTE Alloy Solutions
Database v6.0) thermodynamic database for the Al-Ni sys-
tem. Purely isotropic solid/liquid surface tensions (op =
10737 / cm?) and kinetic coefficients [po = 10 cm* /(J s)] are
assumed, and the local driving force (in J/cm?) at the interface
is calculated using the thermodynamic database. The mobility
correction that appears in the frame of the thin-interface limit
is also taken into account. The diffusion coefficient is assumed
as constant and equal to 2 x 1075 cm?/s.

A constant and unidirectional thermal gradient G =
10° K/cm, typical for the LPBF process [39], is imposed
and the growth velocity V, aligned with the thermal gradient,
is varied between 0.5 and 1.5 cm/s. The initial conditions
correspond to a planar solidification front at a temperature
slightly below the eutectic temperature (A =~ 0.02) with four
unevenly spaced fibers. In the growth direction, the diffu-
sion field is assumed unidimensional at distances larger than
300 nm from the growth front, kept fixed in the simulation
box by a moving frame procedure. Perpendicularly to the
growth direction, the simulation domain represents 330 nm
x 400 nm. The discretization step is 2.5 nm and periodic
conditions are applied to each boundary of the simulation box
whose normal vector is perpendicular to the growth direction.
At the hot end of the simulation box, i.e., in the liquid far
ahead of the growth front, a 9 wt. % Ni hypereutectic con-
centration is fixed (we recall that the eutectic concentration
corresponds to 6 wt. % Ni).

For the lowest velocities, planar coupled growth, with the
axis of the fibers aligned with the growth direction, is found
as presented in Fig. 2 for V = 0.5 cm/s. This “classical”
eutectic coupled growth mode is found stable for velocities

0.1101  0.65625¢m /s
0.65625cm /s
0.105
Ap
0.625cm/s
0.100 1
velocity jumps
0.095 . f f 4
0.0 0.0683 0.1366 0.2049
Dt/13

FIG. 3. Time evolution of the growth front temperature ex-
pressed by the eutectic undercooling A, for the indicated velocities.
The two successive velocity jumps yield a stable planar coupled
growth for V = 0.65625 cm/s, while a chaotic dynamics may also
be observed at this velocity (red curve).

V < 0.625 cm/s. In Fig. 3 the time evolution of the dimen-
sionless growth front temperature A; (defined as the “hottest”
position of the solid), is plotted. Since in our study V varies
and the thermal gradient G remains fixed, the time unit l% /D
is defined through the thermal length I = 8T /G, where 6T is
the temperature interval corresponding to 0 < Ay < 1 (here
121 K for the Al-Ni binary alloy with a 920 K eutectic tem-
perature). We see that for V = 0.625 cm/s the initial transient
leads to a constant undercooling. Actually, the growth is not
strictly speaking at steady state because spacing adjustment
slowly takes place, but the variations in time of the undercool-
ing are undistinguishable on the scale of Fig. 3.

In opposition, a destabilization of the planar coupled
growth takes place at V = 0.65625 cm/s. The growth mode
bifurcates towards a chaotic dynamics, corresponding to the
red curve in Fig. 3 that indicates irregular front temper-
ature variations over time. This mode corresponds to the
microstructure in Fig. 4. The chaotic dynamics is sustained by
so-called termination events, i.e., individual fibers disappear
in the rear of the growth front. In WOE eutectic growth, this
termination is known to be the process by which the planar
coupled growth structure accommodates and evolves towards
a stable spacing when the initial one is too small [10]. In this
case, the lateral solute fluxes responsible for coupled growth

FIG. 4. Chaotic eutectic growth pattern that we obtain for V =
0.65625 cm/s. The arrows indicate termination events, and the en-
circling illustrates the elongation of the § fibers.
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FIG. 5. Eutectic undercooling A, as a function of the growth
velocity V. The vertical dotted line denotes the transition, when V
increases, towards a chaotic dynamics. A jump of A, is observed
between V = 0.8125 cm/s and V = 0.9375 cm/s, corresponding to
the appearance of the protruded state and the entrance in the SOE
regime. The numbering from 1 to 4 is intended to facilitate the link
with Figs. 2, 4, 7, and 8.

(of order Ay /A as mentioned above) are largely predominant,
the termination of a fiber only produces a slight perturbation
of the growth front, and the planar growth is maintained. In
case of the chaotic dynamics, the termination events, indicated
by the arrows in Fig. 4, produce a groove in the growth
front that ceases to be planar. This allows the velocity of
the S/liquid interfaces to acquire a significant component
perpendicular to the growth direction, yielding an elongation
of the fibers as illustrated by the encircling of one of them in
Fig. 4. This dynamics seems closely related to the one leading
to large amplitude oscillations in two-dimensional eutectic
growth, reported experimentally [40] and using phase field
simulations [41]. In the course of time, the termination events
are compensated by a splitting of elongated fibers, which
together leads to the chaotic dynamics as a quasistationary
growth process.

As also visible in Fig. 3, when the quasi-steady-state con-
figuration obtained for V = 0.625 cm/s is subjected to a jump
in velocity, bringing it to V = 0.6375 cm/s, the planar cou-
pled growth remains stable. Subsequently, when the velocity
experiences a second jump to V = 0.65625 cm/s, the planar
coupled growth also remains stable, although this velocity is
the same as for the red curve, demonstrating bistability of the
growth regime. Note also that the difference in undercooling
for these two states is relatively small, the undercooling of the
chaotic regime being of course quantified using an average
over time.

When we plot the undercooling as a function of the velocity
V in Fig. 5, the bifurcation towards chaos, represented by the
vertical dotted line, is found to be rather smooth. Let us note
that the two undercoolings corresponding to the bistability at
V = 0.65625 cm/s are undistinguishable on this scale. In
opposition, a discontinuity in A is observed between V =
0.8125 cm/s and V = 0.9375 cm/s. The results for these two
velocities are obtained by the application of a velocity drop

0.5+

1.5cm/s
sl 1.2cm/s
0.9375cm/s
AL 0.3+
0.2+ 0.8125cm/s
0.14 0.75cm/s
0.5cm/s
0 0.068  0.1366  0.2049
Dt/1%

FIG. 6. Time evolution of the growth front undercooling A, for
the indicated velocities. In black: planar coupled growth; in green:
chaotic eutectic coupled growth; in red: protruded growth.

to the configuration at V = 1 cm/s. The time evolution of A,
as plotted in Fig. 6 shows that for V =1 cm/s a long initial
transient leads to a stabilization of the undercooling around
Ap >~ 0.39. When the velocity drops to V = 0.8125 cm/s, the
front undercooling decreases drastically to a value A;, ~ 0.17
that is close to the result for V. = 0.75 cm/s, i.e., Ay >~ 0.14.
In opposition, Ay remains close to 0.39 when the velocity
drops to V = 0.9375 cm/s.

This qualitative difference corresponds to the jump in Ay
observed in Fig. 5 and to the emergence of a new pattern
that we present in Fig. 7 for V = 1 cm/s. A protrusion of «
phase emerges and tends to grow at a slightly higher temper-
ature than the eutectic structure. Here, again, the dynamics
is chaotic. The protrusion repeatedly vanishes and reappears
in another part of the simulation domain (see movie 1 in the

FIG. 7. Protruded state of growth for V. =1 cm/s. The protru-
sion repeatedly vanishes and reappears at a new location in the
simulation domain with an associated timescale on the order D/V?2.
Its extension, i.e., the difference in temperature between the protru-
sion’s tip and the eutectic structure, is in this snapshot maximal. We
refer to movie 1 in the Supplemental Material [42] for an evolution
atV = 1.1 cm/s, very similar to V = 1 cm/s.
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FIG. 8. Protruded state with several protrusions that we obtain
for V. = 1.5 cm/s. The extension of the protrusion is larger than
for V. =1 cm/s, illustrating the phenomenology of the competition
between coupled growth and single-phase « growth (see text).

Supplemental Material [42] for V = 1.1 cm/s). The snapshot
that is presented in Fig. 7 represents a time at which the
protrusion has its largest extension. During the lifetime of
a given protrusion, a cylinder in which S fibers are absent
develops in the solid in the rear of the growth front.

In Fig. 5 we see that A, continues to increase with V
after the jump in Ay, ie., for V > 0.9375 cm/s. In Fig. 8
the pattern that is obtained for V = 1.5 cm/s is presented.
Several protrusions of « phase grow at higher temperature
than the B phase within the simulation domain, and this dif-
ference in growth temperature is substantially larger than for
V =1 cm/s. Moreover, the § phase develops interconnected
lamellae instead of fibers, as a result of mass conservation and
of the fact that now a large portion of the growth front is filled
with protrusions. The dynamics of their tip is more complex
than for V = 1 cm/s, at which the protrusion simply develops
and then disappears. We see in Fig. 8 that for example the tip
may split. The protrusions are actually in competition, with
some of them vanishing and others growing, the difference in
temperature between the most advanced tips and the 8 phase
remaining mainly constant in time.

As mentioned above, the solid/liquid interfaces’ properties
are assumed isotropic in the simulations, while the anisotropy
of the «r-liquid surface tension in metallic alloys is typically on
the order of a few percent, and the anisotropy of kinetic coef-
ficient, which is less easy to apprehend, most likely presents
the same order of magnitude. Thus, in view of the impor-
tance of anisotropy in the physics of dendrites, the dynamics
of the protrusion tips in Fig. 8 is probably questionable. In
this respect, the variation of A, with V that is found for
V > 0.9375 cm/s may be over or under estimated. Never-
theless, the finding of the transition towards the protruded
state represented by the jump in A seems to be robust. This
statement is underpinned by an additional simulation with
8y = 2% and 4% anisotropy for, respectively, the a-liquid
and B-liquid surface tensions, and §, = 10% and 20% for

the kinetic coefficient. The orientation-dependent surface ten-
sion o then reads o (6, ¢) = oo[l + 8, {cos* O + sin* O(1 —
2sin® ¢ cos? ¢)}], and the same formula holds when replacing
o (0, ¢) by u(d, ¢), oo by 1o, and §, by §,,. Here we assume
that the (100) cubic crystalline axis is aligned with the growth
axis (the thermal gradient). 6 and ¢ are the usual angles in the
spherical coordinate system, i.e., 6 is the angle between the
normal to the interface and the growth axis, and ¢ is the angle
between one of the remaining cubic axis (010) or (001) and
the projection of the normal vector onto the plane perpendic-
ular to the growth axis. Supporting the results for isotropic
properties, the simulation also shows protruded states (see
movie 2 in the Supplemental Material [42]). We find the latter
at V =0.79 cm/s, which is below the transition velocity in
the isotropic case that lies between 0.8125 and 0.9375 cm/s,
see Fig. 5. This is in line with the fact that the anisotropy of
interfacial properties favors the dendritic solution.

Let us now comment on the dynamics of the protrusion
in the isotropic case. Near the threshold for its appearance,
the protrusion develops and fades away with a relatively small
extension in the growth direction, and as can be seen in Fig. 7,
it mainly consists of a flat «-liquid interface perpendicular
to the growth direction. This flat front dynamics may be
described by the driving force A,, which is already close
to 0.5 at V =1 cm/s. A, being smaller than unity, the flat
front slows down in time (in principle with a velocity that
evolves as 1/+/7), and the protrusion vanishes. The develop-
ment of the protrusion may in principle be understood in terms
of a Mullins-Sekerka instability [43], inhibited when A, /Ip
is much smaller than A /A [see the discussion following
Eq. (4)] and able to proceed when they are of the same order.
Indeed, for the protrusion to develop, capillary effect should
be overcome, and we may thus interpret the splitting of the
protrusion tip observed in Fig. 8 as a manifestation of the de-
crease of the Mullins-Sekerka critical length when the growth
velocity increases. Further work is required to understand the
dynamics of the protrusion in the anisotropic case.

Let us comment also on the observed increase, when
comparing Figs. 7 and 8, of the extension in the growth
direction of the protrusion when the velocity increases, i.e.,
when A; and A, increase. This tendency may be under-
stood using the following theoretical arguments. Since distinct
growth modes in general exhibit different power-law relations
between their characteristic length scales, velocity, and under-
cooling, a concomitant growth of the corresponding structures
at comparable temperatures and velocities is hardly achieved
in the WOE regime. In contrast, when the undercooling for
the different growth modes become of order unity, as here
Ay and A, for V > 0.9375 cm/s, the different characteristic
length scales collapse, with Peclet numbers becoming of order
unity (as for example for the cellularlike growth described
in Ref. [29], and the coupled growth described above), and
the growth temperatures and velocities of the different struc-
tures may be close to each other, allowing their concomitant
growth. The protruded state may thus be interpreted as the
manifestation of the SOE regime. In addition, the concomitant
growth yielding the protruded state illustrates the transition
between coupled growth at low velocities and single-phase
growth at large velocities. The difference of temperature be-
tween the protrusion’s tip and the eutectic front thus naturally
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increases when the growth velocity increases, as observed
from Figs. 7 and 8.

We will finally comment on the thermal conditions that
were used in our simulations. We have selected values for the
cooling rate and the thermal gradient that are in the range
of typical experimental conditions for L-PBF [39]. In the
simulations, the cooling rate has been varied, while the ther-
mal gradient was kept fixed. While the value of the thermal
gradient is usually not key to the understanding of the eutectic
coupled growth, it may however have an influence on the
development of the protruded state, since the concomitant
growth results from the existence of two solutions having
close but different growth temperatures. Some future work
may thus focus on investigating the effect of the thermal
gradient. In particular, how the thermal gradient influences the
interval of growth velocities for which concomitant growth is
observed needs to be studied.

C. Experiments

The simulation results and the discussion above are sup-
ported by experimental results from LPBF for a Al-8 wt. % Ni
alloy. Samples have been produced with a 150 °C preheated
building platform, at a 10 cm/s laser scanning speed and a
230 W laser power. Each powder layer was 50 um in height
and the hatch distance between different tracks was 135 pum.
After being cut, the sample was analyzed under a scanning
electron microscope (SEM) after a vibration polishing of the
surface. In Fig. 9(a) the solidification microstructure found in
the vicinity of the bottom of a melt pool is presented. One
identifies the so-called interlayer boundary (ILB), i.e., the
region where the material has experienced a vanishing cooling
rate at the very bottom of the melt pool. As a result of the time
dependent thermal field during the LPBF process, the velocity
at which the alloy has solidified increases with the distance
to the ILB, resulting in the transition from eutectic coupled
growth to single-phase « dendritic growth, as observed. Fo-
cusing on the transition region in Fig. 9(b), we see in the
lower left corner homogeneously gray regions corresponding
to coupled growth, and separated by bright grain boundaries.
On the other hand, in the upper right corner a contrast pattern
corresponding to « dendritic growth is observed. From the
lower left corner to the upper right one, the transition takes
place through the appearance of isolated or multiple « cells.
Although the transition is quite abrupt, the density of such
a cells and the number of cells within a multiplet increase
progressively. Finally, a larger magnification of the dashed
rectangle is presented in Fig. 9(c), where the eutectic structure
surrounding the o multiplets is clearly visible. These experi-
mental results are in full agreement with the phenomenology
revealed by the phase field simulations, i.e., the « cells that we
observe in the experiment correspond to the cylinder in which
B fibers are absent (see description of Fig. 7). Moreover, the
characteristic length scales evidenced experimentally, i.e., eu-
tectic spacing and width of the « cells, are in good agreement
with the simulations.

Let us comment on the justification of this qualitative
comparison between the simulations and the experiment. In
each simulation the thermal gradient and the growth velocity
are fixed, and the latter changes from one simulation to the

-

inter—Iayer :
boundary

: cupIed growth [

FIG. 9. SEM image of a Al-8 wt. % Ni alloy, that is LPBF
processed with a laser scanning speed 10 cm/s (see text for more
details). The building direction points out of the plane of the image.
In (a) we present the neighborhood of an interlayer boundary (ILB).
As the solidification velocity increases with the distance from the
ILB, one first observes a region where eutectic coupled growth has
taken place and then a region where « dendritic growth occurred.
In (b), a closeup is shown on the transition region between coupled
growth and dendritic growth. We see isolated or multiple o cells
arising progressively as growth velocity increases from the lower
left corner to the upper right one. In (c), the region in the dashed
rectangle is shown and we see groups of « cells surrounded by the
eutectic coupled growth structure.

other. The question is whether the microstructure observed
experimentally in the neighborhood of the transition region
corresponds to a succession of quasi-steady-states at differ-
ent velocities and, at least not significantly varying, thermal
gradient. Thus, we want to show that the timescale for the
establishment of a quasi-steady-state solidification is much
smaller than the characteristic timescale for the evolution of
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the solidification velocity. In other words, the relative varia-
tion of solidification velocity during the time needed for the
establishment of steady state should be negligible. As can
be seen in Fig. 9, the radius of curvature of the ILB, which
is on the order of the characteristic length scale of the melt
pool (in our case the melt pool presents a single characteristic
length scale since we are neither in a deep keyhole regime
nor in a conduction regime with an elongated melt pool in
the scanning direction), is much larger than any other length
scale of relevance. These other length scales are the width of
the coupled growth or concomitant growth region, the thermal
length, which is for a thermal gradient 10° K/cm on the order
of 10 um, and the diffusion length, which is smaller than a
micrometer for solidification velocities on the order of a tenth
of the scanning speed as assumed in our simulations. Since the
ILB locates a position where the thermal gradient is finite and
the growth velocity vanishes, one may indeed assume that the
solidification conditions for the microstructure presented in
Fig. 9 correspond to a thermal gradient directed perpendicular
to the ILB and having a magnitude that does not significantly
vary, and a growth velocity that increases with the distance y
to the ILB on the micrograph. For simplicity we assume that
the melt pool is an axisymmetric paraboloid around the origin
of our system of coordinates. We define x as the scanning
direction, y as the built direction, and z as the third direction.
The origin moves with the scanning velocity Vs along the x
direction, and we focus on the symmetry plane z = 0. Then
the shape of the melt pool can be written as y ~ x?/p, with
p on the order of the radius of curvature of the ILB. The
radius p is large compared to the microstructure length scales,
and we shall use a small slope approximation, i.e., y, x < p.
While the laser moves with velocity Vs, the material solidifies
with a growth velocity V ~ Vs(dy/dx) ~ Vs(x/p) in the rear
of the moving melt pool, at a position x that increases with
time ¢ as x = Viz. The time derivative of the growth velocity
V is thus dV/dt ~ VS2 /p. Moreover, we may assume that the
characteristic timescale for the establishment of the steady
state is t, ~ Ip/V, i.e., that the growth structure covers, with
a velocity V, a distance of the order of the diffusion length
Ip ~ D/V before reaching steady state. The variation of V
during such a timescale (dV/dt)ty, is D/y, and should be
much smaller than V itself. Thus, the observed microstructure
consists of a succession of steady states as long as y > Ip,
which is safely verified in our experiment, with a submicrom-
eter diffusion length. This justifies the comparison between
simulations and experiment discussed in this paper.

The phenomenology presented above was also clearly ev-
idenced in the Al-Ce system investigated in Ref. [44]. Al-Ce
presents, as Al-Ni, a very asymmetric eutectic phase diagram,
and thus should exhibit similar solidification pattern in the
SOE regime. We refer in particular, but not exclusively, to the
right panel of Fig. 6 in Ref. [44], in which the observation
of the concomitant growth of the eutectic structure and of
isolated « cells is even clearer than in our experiment.

III. CONCOMITANT GROWTH OF DENDRITES AND
DOUBLONS IN SINGLE-PHASE SOLIDIFICATION

The two-dimensional growth of a single fcc phase, i.e.,
the « phase in the AI-Ni alloy, yields another example of

concomitant growth in the SOE regime. As mentioned in the
Introduction, growth at typical velocities for LPBF takes place
through a cellularlike structure with weakly interacting tips
[29]. This yields a disordered array, and in two dimensions
an inhomogeneous spacing. Moreover, the tips are growing
in the cubic direction of the underlying crystal showing their
dendritic nature.

In the theory of dendritic growth for a cubic crystal, there
are mainly two kinds of solutions. The first is the classical
object with a fourfold symmetry [6]. The other one is called
parity-broken dendrite, and in two dimensions is referred to
as doublon [8]. Alike the classical dendrite, it assumes an axis
of symmetry, but at which a small liquid channel is present.
In both cases, the Ivantsov theory holds for the shape of the
interface asymptotically far from the tip (which is twofold for
the doublon).

For a two-dimensional classical dendrite growing at ve-

locity V... and undercooling A .., the scaling relation
between these two quantities reads
dovd drit 4 7
endrite /4
D Adendrile € ®)

with again D the diffusion coefficient in the liquid. As men-
tioned before, the anisotropy of capillary length (or surface
tension) is crucial for the dendritic problem and needs to
be accounted for in order to have a solution. One assumes
a capillary length that depends on the orientation 6 of the
interface with respect to the axis of the crystal:

d(0) =dy(1 — ecos4b). (6)

The strength of the anisotropy of capillary length is provided
by €, and the corresponding amplitude for the anisotropy of
surface tension is €/15.

On the other hand, for a doublon growing at velocity V, .
and undercooling A the scaling relation reads

doublon ?

dyV.
0¥ doublon ~ A9 . (7)
D doublon
Moreover, the existence of this solution requires [45]
Aduublon > € ]/4' (8)

Thus, the competition between the classical dendrite
and the doublon crucially depends on the strength of the
anisotropy €. While the undercooling of the doublon does
not depend on €, the undercooling of the classical dendrite
A, increases when e decreases. At low anisotropy, the
doublon is therefore favorable. For a concomitant growth at
Viewsiic = Viounon» the inequality (8) implies

A < A €))

doublon dendrite

Thus, since the latter inequality implies A
When Adendrile

doublon <A
« 1, we see that a concomitant growth with
A e ™~ Dy Only takes place in the SOE regime, i.e.,
when A .. and A are of order unity.

Here we illustrate this phenomenon with simulations for
which the growth velocity is 12 cm/s and the thermal gradient
is 2 x 10° K/cm. While the anisotropy of kinetic coefficient
is neglected, we vary the anisotropy of solid/liquid surface
tension. The thermal gradient and the axis of the crystal are

dendrite

doublon
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800 nm

FIG. 10. Two-dimensional cellularlike solidification of the fcc
phase, at V = 12 cm/s and for a thermal gradient (aligned with the
velocity V) equal to 2 x 10° K/cm. We see the concomitant growth
of dendrites and doublons, with the latter growing at slightly higher
temperature than the former. Here the anisotropy strength (see text)
is 0.05.

directed along the velocity V. In Fig. 10 we present the cel-
lularlike array that we obtain for € = 0.05. We distinguish
classical dendrites and doublons from the difference in their
growth temperature and from the fact that we observe an early
decomposition of the liquid channel into droplets at the axis
of symmetry of the doublons. Here the anisotropy is rather
small. It corresponds to an anisotropy of surface tension of
0.33% (0.05/15). As can be seen in Fig. 11, the difference
in growth temperature decreases when € increases. In Fig. 12
we plot the undercoolings A .. and A, - as a function of €.
Owing to the relatively high growth velocity, the undercooling
is large. The difference A, . — A, decreases when e
increases as inferred from Fig. 11.

We also see that both undercoolings decrease when ¢ in-
creases. On the one hand, this is contradictory to Eq. (7), and
on the other hand, the scaling relation in Eq. (5) clearly does
not hold in view of Fig. 12. Two arguments may be invoked
to explain these discrepancies. First, the scaling laws that are
recalled above are derived in the limit of the WOE regime,

180 nm

e=0.2 e=0.3

FIG. 11. Closeup on a doublon and its neighboring dendrites, for
different values of anisotropy strength €. Small values of € favors the
growth of the doublon, i.e., the difference in temperature between the
dendrites’ tips and the doublon’s tip increases when € decreases.

0.94
g | Il doublon
2 092+ @ dendrite
2 |
4"0 0.90 +
o 0.88-
2 |
< 0.86+
g |
[0]
4'5 0.84+
0.82 ‘ | ‘ 1 ‘ 1
0.0 0.1 0.2 0.3

€

FIG. 12. Undercoolings of the dendrites A _ .. and the doublons

A as a function of the anisotropy strength €.

doublon

i.e., for small undercooling, and are thus not expected to hold
here in the SOE regime. Second, the scaling laws are derived
for isolated objects, while here the microstructure consists of
an array of objects interacting via their diffusion field. Note
that this interaction, although rather weak, seems sufficient to
direct the growth of doublons along the same cubic direction
as for the dendritic growth, although an isolated doublon does
not have a preferred growth direction.

To summarize, the results of our two-dimensional simu-
lations are in full accordance with the qualitative arguments
given above concerning the competition between the dendrite
and the doublon, i.e., concerning the fact that less anisotropy
favors the doublon. In particular, we have observed that when
doublons and dendrites are able to grow at the same velocity
and at a comparable undercooling, the anisotropy strength €
tunes the difference in temperature of the tips. Moreover, we
have shown using theoretical arguments that his concomitant
growth is a particularity of the SOE regime of single-phase
solidification. Let us finally recall that the phenomenology
presented in this section concerns single phase solidification.
Thus it corresponds to the scenario where o dendritic growth
takes over at larger velocities than the ones investigated in the
previous section. As explained above, the protruded state may
then be understood as a precursor for this regime.

IV. CONCLUSION

In this article we have studied the development of the
strongly out-of-equilibrium (SOE) regime of solidification
in the Al-Ni eutectic alloy using phase field simulations.
The planar coupled growth of o and B phases destabilizes
with increasing growth velocity. The destabilization takes
place through a smooth transition towards a chaotic dynam-
ics, followed by a jump in undercooling at larger velocities,
corresponding to the development of a protruded state. A
concomitant growth of a protrusion of « phase and of the eu-
tectic structure is possible when the undercoolings for eutectic
and for single-phase solidification become comparable and of
order unity. This concomitant growth is thus a manifestation
of the SOE regime. The protrusions leave 8 free regions in
the solid, which has been found also in experiments. We
also present two-dimensional simulations of a single-phase
solidification structure composed of dendrites and doublons
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that provides another example for a concomitant growth under
SOE conditions.
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