
PHYSICAL REVIEW MATERIALS 6, 040302 (2022)
Research Updates

Atomistic modeling of Li- and post-Li-ion batteries

H. Euchner1,* and A. Groß1,2,†

1Helmholtz Institute for Electrochemical Energy Storage Ulm, D-89081 Ulm, Germany
2Institute of Theoretical Chemistry, Ulm University, D-89081 Ulm, Germany

(Received 13 December 2021; revised 21 February 2022; accepted 22 March 2022; published 11 April 2022)

Alkali metal ion batteries, and in particular Li-ion batteries, have become a key technology for current
and future energy storage, already nowadays powering many devices in our daily lives. Due to the inherent
complexity of batteries and their components, the use of computational approaches on all length and timescales
has been largely evolving in recent years. Gaining insight in complex processes or predicting new materials
for specific applications are two of the main perspectives computational studies can offer, making them an
indispensable tool of modern material science and hence battery research. After a short introduction to battery
technology, this review will first focus on the theoretical concepts that underlie the functioning of Li- and
post-Li-ion batteries. This will be followed by a discussion of the most prominent computational methods and
their applications, currently available for the investigation of battery materials on an atomistic scale.

DOI: 10.1103/PhysRevMaterials.6.040302

I. INTRODUCTION

Already today our society is facing enormous challenges
with respect to global warming and its consequences. Stop-
ping or at least slowing down climate change, however, means
that we have to change the way we are producing and consum-
ing energy. While renewable energies are an indispensable
part to achieve a zero emission society, their intermittent char-
acter calls for advanced energy storage concepts. Therefore,
apart from their use in electronic devices and for e-mobility,
batteries have become one of the key technologies for our near
future [1,2]. Currently the battery market is dominated by Li-
ion technology, however, for applications such as stationary
storage post Li-ion technologies are recently gaining signif-
icantly more interest, as, e.g., sodium is much cheaper and
more easily available than lithium. This is likely to become an
important factor with respect to the increasing demand for en-
ergy storage in our society [3–5]. Hence, it is no exaggeration
to emphasize the importance of battery technology and the
further development of the different aspects of a functioning
battery. Indeed, since the commercialization of the first Li-ion
batteries (LIBs) in 1991 [6], there has been a tremendous
improvement in battery performance, which, on the other
hand, results in steadily increasing requirements that batteries
have to fulfill [2,7–11]. Different kinds of applications call for
higher volumetric and gravimetric energy density, high rate
capability, long cycle life, safety, and of course, low cost [12].
In the quest for batteries with a better performance, theoretical
studies addressing structures and processes in batteries on an
atomic level play an increasingly important role [13–19]. In
this review, we will describe the theoretical and numerical
methods employed in the evaluation of battery properties and
also highlight the insights gained from such studies. This
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review starts with a short discussion of state of the art bat-
tery technology and introduces some of the standard battery
terminology, typically using LIBs as prototypical example. In
the next chapters, the underlying theoretical concepts of a bat-
tery will be derived, before the most prominent computational
approaches that are currently used in battery research will be
discussed. While we are often referring to specific materials
when discussing particular numerical methods, this review
has its focus on theoretical concepts and computational ap-
proaches, thus not meaning to give a comprehensive overview
over recent developments in the battery field. Note also that
many aspects of the approaches that are presented here can
be generalized to all types of batteries, the focus of this work,
however, lies on Li- and post-Li-ion systems and their specific
challenges.

A. State of the art

In a prototypical Li-ion cell that is nowadays in use, a likely
setup consists of a graphitic anode and a NMC (Ni-Mn-Co
oxide) type cathode, which are separated by a membrane
soaked with electrolyte that shuttles the Li ions between anode
and cathode (see Fig. 1). During discharge of such a rocking
chair type LIB positively charged ions are deintercalated at
the anode and shuttle to the cathode, where they interca-
late in between the layers of the NMC. The corresponding
electrons take the path through the external electric circuit,
thus allowing for the exploitation of the energy gain of the
underlying reaction—often also expressed as difference in the
Li chemical potential between anode and cathode as will be
demonstrated below—e.g., powering an electronic device.

For battery applications, the amount of energy that can be
stored is the crucial variable, as it for instance determines how
far an electric vehicle can drive. The ability to store energy
is quantified by the energy density which is either given as
energy per unit weight (gravimetric or specific energy density,
in Wh/kg) or per unit volume (volumetric energy density,
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FIG. 1. Schematic of the functioning of a rocking chair type Li-
ion battery with a graphite anode and a TM-oxide cathode. During
discharge, Li ions are deintercalated at the anode and intercalated at
the cathode, while the electrolyte is responsible for shuttling the ions
between the electrodes.

in Wh/l). With respect to improving the energy density, the
cathode is the most decisive factor, resulting in large research
efforts aiming at improved and new cathode materials. The
energy density of a cathode is determined by its storage capac-
ity and its operating voltage. While the capacity determines
the number of ions (and electrons) that can be stored in an
electrode per unit weight (gravimetric or specific capacity in
mAh/g) or per unit volume (volumetric capacity in mAh/l),
the operating voltage states the potential of the cathode with
respect to a chosen reference (typically the respective alkali
metal).

In Fig. 2, the voltage profile of typical cathode materials is
depicted as a function of the capacity. The energy density of

FIG. 2. Voltage profile for solid solution and phase separation
behavior for several characteristic cathode materials. Reprinted from
Liu et al. [43]. With permission from Elsevier.

FIG. 3. Cell voltage and capacity with respect to different
anode/cathode combinations for LIBs. The filled oval areas comprise
experimentally reported voltage and capacity values. From Landi
et al. [23]. With permission of the Royal Society of Chemistry.

these cathode materials is obtained from the integral in Eq. (1)
and corresponds to the area below the voltage profile:

E =
∫

U (q)dq, (1)

with U (q) the voltage as a function of the capacity and the
associated charge q. Clearly, significant progress has been
achieved during the last decades [20]. The originally intro-
duced layered LiCoO2 electrodes have further evolved and
cobalt has partially been replaced by more environmentally
benign materials such as manganese and nickel. This re-
sulted in the development of the so-called NMC cathodes
(LixNiyMnzCo1−y−zO2) [21], which are typically named with
respect to the atomic ratio of the transition metals (e.g.,
NMC532, NMC622, NMC811, etc.). A next step for achiev-
ing higher energy densities was to aim at an increase of the
Li content in these layered cathode materials, which resulted
in the development of Li-rich NMCs [21]. These achieve ca-
pacities beyond 250 mAh/g and reach energy densities of up
to ≈ 1000 Wh/kg. Moreover, other compounds such as spinel
phases and polyanionic compounds have been developed.

In fact, while most efforts aim at improving cathode
materials, the energy density nevertheless is determined by
capacity and voltage (potential) of both electrodes, as can
be inferred from Fig. 3. In general, the ideal battery anode
lies at low potential and offers high capacity, whereas the
ideal cathode offers a high voltage also combined with a
high capacity. In the case of LIBs, Li metal would be the
ideal anode, however, safety issues related to the growth of
dendrites have so far hindered the use of Li metal as anode
material in rechargeable LIBs [22].
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FIG. 4. Interrelation of the energy density on material level to
that on pack level and final application. From Placke et al. [27].
Reprinted with permission from this reference with permission from
Springer Nature.

When discussing energy densities, one has to be careful
which numbers are to be compared. The above discussed
cathode energy densities are obtained on a material level,
i.e., only the active material is considered. However, batteries
are complex many-component systems, meaning that further
parts such as current collectors, binders, and other additives
are also involved, resulting in additional weight, going along
with a highly complex interplay of these components [24–27].
Consequently, the energy density of a working electrode is
also influenced by these components, thus reducing its actual
energy density, as schematically depicted in Fig. 4. Finally,
when the performance of a full battery is assessed, it still
makes a difference if one is referring to cell level, module
level or even pack level (see Fig. 4). Hence, while the
above discussed active materials reach energy densities in
the order of 1000 Wh/kg, the best commercially available
Li-ion batteries currently reach about 260 Wh/kg on cell
level [28].

The complexity of a battery—the different components and
their interplay—and the almost infinite number of possibilities
for combining these components point to the importance of
knowledge-based design strategies for next generation battery
systems. Consequently, a first crucial step is the detailed in-
vestigation of the main components, where all attempts for
understanding the whole battery system with the underlying
mechanisms have to set in. Therefore the typical approach,
also on the experimental side, is the separate search for
novel and improved anode, cathode and electrolyte materials.
Yet, it has to be kept in mind that it is not only the single
components but their interplay which makes a battery work,
such that full cell studies are always needed. From a theo-
retical point of view, the simulation of a full battery on an
atomistic scale is anyway still far from what currently can
be achieved, such that the properties of anode, cathode and
electrolyte have to be studied independently, or simplified
model systems have to be addressed, where, e.g., only the in-
teraction of electrolyte molecules with the electrode surface is
investigated [29,30].

II. ELECTROCHEMICAL ENERGY STORAGE

When Li-ion and post-Li-ion batteries—with alkali metal
ions shuttling back and forth between anode and cathode—
are discussed, one of the big advantages that facilitates the
computational treatment is the fact that the ion leaving on
the anode side is of the same type as the ion entering at
the cathode side. This represents an important difference to
classical battery types such as, e.g., the Daniell element. In
fact, during the discharge of a Daniell element, at the anode
Zn2+ ions go in solution, while at the cathode side Cu is
deposited. Hence, the differences in the respective solvation
energies also contribute to the overall reaction and, therefore,
to the voltage of the battery.

A. The general case

While the fact that solvation free energies do not need to be
accounted for make the computational treatment of standard
Li- and post-Li-ion systems much easier, we nevertheless
first derive the battery voltage from a formal thermodynamic
approach. By expressing the change in Gibbs free energy in
terms of the thermodynamic variables, one obtains

dG = −SdT + V d p +
∑

i

μidni, (2)

with S the entropy, T the temperature, and V and p repre-
senting volume and pressure. Finally, μi denotes the chemical
potential of component i, while dni refers to the corresponding
change in the number of particles. Yet, in an electrochem-
ical environment, we are dealing with charged species and
therefore, here the electrochemical potential μ̃i has to be con-
sidered. The latter one can simply be expressed as the sum of
chemical potential μi and electrostatic potential ϕi multiplied
by the corresponding charge zie:

μ̃i = μi + zieϕi = μ0
i + kBT ln(ai ) + zieϕi, (3)

where in the last step, the chemical potential of an ideal solu-
tion is introduced, which comprises the activity coefficients ai

and the standard chemical potential μ0
i . Now, we first consider

a half cell (consisting of electrode and electrolyte) for which
equilibrium conditions require that dG = 0. Hence, under the
assumption of constant temperature and constant pressure, the
following equation needs to be fulfilled for the half cell in
equilibrium:

dG =
∑

i

μ̃idni = 0. (4)

In this formulation, dni accounts for the change in parti-
cle number of the respective species involved. Considering a
typical half cell reaction, such as M � Mz+ + ze−, this then
translates into

dG = μ0
M + kBT ln(aM )

− μ0
Mz+ − kBT ln(aMz+ ) − zeϕsol

− neμ
0
e− − nekBT ln(ae− ) + neeϕel.

= 0 (5)

In the above expression ϕel and ϕsol correspond to
the electrostatic potential in the electrode and the solution,
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respectively. Moreover, it has to be noted that in this for-
mulation z and ne are identical by definition. However, for
clarity, at this point z is used for the charge of the oxidized
metal and ne for the number of electrons. Next, introducing
the change in Gibbs free energy at the standard state �G0

(with �G0 = μ0
M − μ0

Mz+ − neμ
0
e− ), followed by a subsequent

regrouping, yields:

�G0 + kBT ln
aM

aMz+ + ane
e−

+ nee(ϕel − ϕsol ) = 0 (6)

It has to be noted that �G0 is directly related to the stan-
dard electrode potential (E0 = −�G0

nee ) and in principle still
contains a temperature dependence. In other words, the usu-
ally applied standard electrode potential is strictly speaking
only valid at standard conditions and actually decreases with
temperature ( ∂E0

∂T is typically of the order of 1 mV/K). Fur-
thermore, by identifying the potential difference ϕel − ϕsol

with �ϕ, finally the Nernst equation for the corresponding
half cell is obtained:

�ϕ = E0 − kBT

nee
ln

aM

aMz+ ane
e−

= −�GR

nee
. (7)

In the last step, �GR represents the Gibbs free energy of
reaction for the electrode. The above derived Nernst equa-
tion for a half cell can now easily be extended to a general
formulation for the full cell. Clearly, the open-circuit voltage
(OCV) of any battery is determined by the respective half-
cell reactions on the anode and cathode side and thus by
the resulting overall change in Gibbs free energy during the
electrochemical reactions in the full cell, thus yielding

UOCV = �ϕcathode − �ϕanode

= �E0
cell − kBT

nee
ln

∏
i

avi
i . (8)

In practice, at low concentration, the activity coefficients
ai can usually be replaced by the concentration of the respec-
tive element. As will be discussed in the next paragraph, a
computational treatment of a half cell is possible by making
use of the computational hydrogen electrode concept. After-
wards, this formal thermodynamic treatment will be applied
to the case of Li- and post-Li-ion type batteries, resulting in a
significant simplification of the above equation.

1. Computational hydrogen electrode (CHE)

Before continuing with the case of Li-ion type batteries, we
focus on the above derived general case and line out how the
reactions at the respective electrodes can be described com-
putationally. For this purpose, we again take the expression of
the Nernst equation for the half cell as given in Eq. (7). As
already introduced above, this formalism contains the elec-
trochemical potentials of the solvated ions in the respective
half cell. Therefore a direct computation would be extremely
expensive, as a proper modeling of solvation free energies in
principle necessitates explicit ensemble averages and thermo-
dynamic integration schemes [31]. Fortunately, a very elegant
concept to circumvent this issue, which is frequently used
in surface science, does exist: The computational hydrogen
electrode (CHE). The CHE allows to investigate half cells

within a grand-canonical approach, yet, without increased
computational cost [32,33].

The CHE concept makes use of the fact that at stan-
dard conditions, which define the standard hydrogen electrode
(SHE), hydrogen in the gas phase and protons in solu-
tion are in equilibrium, meaning μ̃H+

(aq) + μ̃e− = 1
2μH2 .

Furthermore, the dependence of the SHE on the electrode
potential and pH value (or concentration) is well-known. As
a consequence, instead of addressing the solvated proton,
the computationally accessible hydrogen molecule in the gas
phase can be used as a reference [32–34]. Applying this ap-
proach for the case of hydrogen, one arrives at the following
expression with respect to the electrochemical potential of
proton and electron in solution:

μ̃H+
(aq) + μ̃e− = 1

2μH2 − eUSHE − kBT ln(10)pH. (9)

Here, USHE stands for the electrode potential with respect
to the standard hydrogen electrode potential. An analogous
extension of this concept to other redox couples is then easily
possible [34,35]:

μ̃Mez+
(aq)

+ zμ̃e− = μMe − ze(USHE − U0) − kBT ln(aMez+ )
(10)

with U0 the reduction potential of the Me/Mez+ couple with
respect to the SHE scale and the pH replaced by the activity.
With these expressions for the electrochemical potentials of
the charged ions in solution, the half-cell reaction in Eq. (7)
can be determined without explicit calculation of the solvated
species.

In practice, this grand-canonical approach is often applied
to determine phase diagrams as a function of the electrochem-
ical environment—again, this is in particular used in surface
science to investigate the most stable surface coverage for
given conditions [36]. For this purpose, the dependence of
the electrochemical potential on temperature, concentration
and applied potential can formally be combined to a single
term �μ̃, which is obtained by subtracting the total energy of
the bulk phase from the electrochemical potential of solvated
proton and electron. This normalization step corresponds to
the assumption that the bulk phase free energy is independent
of temperature and electrochemical environment and hence
can be approximated by the total energy, which for instance
is directly accessible by density functional theory (DFT) cal-
culations. For the proton, this then results in the following
equation:

�μ̃H+ (T, p,U ) = μ̃H+
(aq) (T, p,U ) + μ̃e− − 1

2 EH2

≈ −eUSHE − kBT ln(10)pH. (11)

For the case of metal species, the same line of thought yields

�μ̃Mez+ (T, p,U ) = μ̃Mez+
(aq)

(T, p,U ) + zμ̃e− − EMe

≈ −ze(USHE − U0) − kBT ln(aMez+ ). (12)

This approach is well-known for accessing the phase di-
agrams of electrode surfaces [34,37–39], where the change
in Gibbs free energy, �G, due to the adsorption of a certain
species on an electrode surface is typically expressed as a
function of the normalized electrochemical potential �μ̃ of
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FIG. 5. Schematic representation of a surface phase diagram
with respect to the normalized electrochemical potential for the co-
adsorption of chlorine and hydrogen on a Pt (111) surface. Reprinted
from Gossenberger et al. [34] with permission from Elsevier.

the involved species:

�G ≈ Eads −
∑

i

ni�μ̃i(T, p,U ) (13)

Here, Eads corresponds to the energy difference between the
surface with adsorbed species on the one hand and the clean
surface and the bulk phase of the adsorbates on the other.
Note that for the discussion of electrode surfaces the change in
Gibbs free energy is typically additionally normalized to the
surface area (�γ = �G/A). The most stable phase for given
conditions is then the one with the lowest �γ , thus translating
in a phase diagram [34] as depicted in Fig. 5.

This formalism can now easily be transferred to investigate
the stability of intercalation compounds—obviously there is a
close analogy between the case of adsorption on a surface and
an intercalation process—under given electrochemical condi-
tions. For this purpose, the adsorption energy simply has to be
replaced by the insertion energy, which analogously becomes
the energy of formation of the intercalation phase with respect
to the pristine electrode material and the bulk phase of the
charge carrier. This now allows to evaluate the stable bulk
phases at given electrochemical conditions, exactly as in the
case of a surface. Moreover, for a given electrode reaction
the CHE approach can then also be used to determine the
corresponding voltage of the half cell with respect to the SHE.

B. Alkali metal ion batteries

The expression for the respective half cell potentials as
derived in Eq. (7) is fairly complicated and would, without the
work-around introduced in the previous paragraph, be highly
demanding to access computationally. However, in case of
alkali metal ion batteries such as LIBs, we are even in a
more fortunate situation as only one species is involved in the
overall process. In fact, the effective thermodynamic process
that occurs during discharge is the transfer of a Li atom from
anode to cathode, such that the actual solvation (desolvation)
process of Li+ ions at the anode (cathode) and its energy gain
(cost) do not have to be considered in the total energy balance.

In other words, for determining the energy gain per transferred
electron (i.e., the voltage) of a LIB, the half-cell reactions do
not have to be explicitly considered. The corresponding open-
circuit voltage can instead directly be obtained in terms of the
overall change in Gibbs free energy between the respective
states of anode and cathode material:

UOCV = −�G

nee
. (14)

In Eq. (14), �G corresponds to the change in the Gibbs
energy, whereas UOCV is the resulting open-circuit voltage. ne

is the number of electrons that is transferred between anode
and cathode, while e denotes the elementary charge. When
�G is expressed in eV, then UOCV in volts can be very conve-
niently determined by just dividing this value by the number
of transferred electrons ne. If the Gibbs free energy and the
charge transfer are given per mole, Eq. (14) transforms into
the frequently used form

UOCV = −�G

zF
, (15)

where F corresponds to the Faraday constant, whereas z de-
notes the valency of the charge carrier, i.e., 1 in the case of
alkali metal atoms and 2 in the case of alkaline earth atoms.

In the following, the determination of the OCV for an
archetype LIB with a graphite intercalation compound (GIC)
as anode and a transition metal (TM) oxide cathode will be
exemplified. For this purpose, the following full cell reaction
has to be considered:

Lix1+�xC6 + Lix2 TMO2 → Lix2+�xTMO2 + Lix1 C6. (16)

Here, �x > 0 is assumed, such that the reaction direction
represents the discharge of the battery, i.e., Li deintercalates
at the GIC anode and is transferred to the TM oxide cathode.
As discussed above, the OCV for this cell reaction is then
obtained from the corresponding overall difference in Gibbs
free energy:

�G = G(Lix2+�xTMO2) + G(Lix1 C6)

− [G(Lix2 TMO2) + G(Lix1+�xC6)]. (17)

As already pointed out before, this simply means that we
consider the free energy gain for moving a Li atom from the
anode side to the cathode side. In practice, the free energy
expressions are typically approximated by the total energies,
which can easily be obtained from DFT calculations, thus
yielding:

�G ≈ �E = Etot (Lix2+�xTMO2) + Etot (Lix1 C6)

− [Etot (Lix2 TMO2) + Etot (Lix1+�xC6)]. (18)

This assumption is justified by the fact that the total energy
is the dominant contribution to the Gibbs free energy, while,
e.g., pV (for a solid) as well as vibrational and configurational
entropy are typically rather small. In fact, the configurational
entropy of a binary solid solution amounts to less than ∼20
meV/atom at room temperature, whereas vibrational entropy
typically lies roughly in the same range. Moreover, only
the entropy differences between the different states are of
importance, which means that a large part of the entropic
contribution typically cancels out, thus resulting in overall
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FIG. 6. Gibbs free energy of two different cathode materials and
the corresponding voltage profiles with respect to the chemical com-
position (LixM) for the prototypical cases of solid solution behavior
(left) and phase separation into two phases α and β (right). The
straight yellow line corresponds to the common tangent construction
(see Ref. [42] for similar discussion).

errors in the order of 0.01 V [40,41]. Finally, the voltage at
a given state of charge (i.e., between x1 + �x and x1) can be
directly obtained via

U (x1 + �x, x1) = − �E

e(�x)
. (19)

Remember that the discharge process formally corresponds
to the transfer of neutral Li atoms from anode to cathode.
Under the assumption of constant temperature and pressure,
the change in Gibbs free energy can also be expressed by the
respective Li chemical potential, μLi = ( ∂GLi

∂nLi
)P,T :

UOCV = −�G

nee
= −μcathode

Li − μanode
Li

e
, (20)

with μcathode
Li and μanode

Li the Li chemical potentials at the cath-
ode and the anode sides, respectively.

1. Thermodynamic interpretation of charge/discharge curves

An experimental standard method for characterizing the
performance of anode and cathode materials is the determi-
nation of the charge-discharge profile, i.e., the evolution of
the voltage with respect to the state of charge. While the
resulting voltage profiles are frequently used to qualitatively
describe the respective materials, the direct relation of the
charge-discharge curve to the underlying phase diagram is
not always considered. To clarify this point, the Gibbs energy
and the corresponding voltage profile for two prototypical
cases, namely phase separation and solid solution behavior,
are depicted in Fig. 6.

Indeed, the voltage profile of a cathode material is directly
related to the Gibbs free energy of the (meta-)stable phases
(with different Li concentrations) the system passes through
during discharge (or charge). Hence, the phase diagram deter-
mines which phases have to be considered and where phase
transition are to be expected. As derived in Eq. (20), the
voltage profile of a cathode material with respect to a given

anode can then be obtained from their difference in chemical
potential. For a Li metal anode the corresponding Li chemical
potential μanode

Li is constant, while the Li chemical potential at
the cathode is obtained from the derivative of its Gibbs free
energy with respect to the concentration. Hence, as is evident
from Eq. (20), this derivative directly determines the shape of
the resulting voltage profile. From Fig. 6, it becomes clear that
a slopy potential is the signature of a solid solution process,
whereas a plateau in the charge–discharge curve is directly
related to a phase separation [42]. The solid solution process,
as depicted in the left panel of Fig. 6, means that the system
can accommodate each Li concentration without significant
structural changes (phase transition). In the right panel of
Fig. 6, on the other hand, the phase separation into the two
phases α and β is depicted. The common tangent construction
in the top panel (yellow line) shows that between the two
limiting concentrations, indicated by the dashed lines, the
coexistence of the α and the β phase, with Li concentrations
xα and xβ , will always be the energetically most favorable
situation. Hence, a phase separation occurs, which results in a
voltage plateau in the charge-discharge curve, as depicted in
the bottom panel.

In the above introduced Fig. 2, experimentally determined
discharge curves for several different cathode materials have
been depicted [43]. The voltage profiles of LixCoO2 and the
different layered NMCs are prototypical examples for a solid
solution behavior, whereas the spinel and olivine type com-
pounds show the characteristic step profile with a pronounced
plateau that indicates different phases and thus phase separa-
tion. Finally, it has to be pointed out that for real electrodes
discharge and charge profile do not fall on top of each other
but are separated by a certain offset, frequently referred to as
polarization. This is a consequence of kinetic limitations due
to, for instance, increased diffusion barriers.

2. Further insights into the electrochemical potential

As already introduced in Eq. (20), for the transfer of a Li
ion (and the corresponding electron) from anode to cathode
the OCV is fully determined by the difference in the respective
Li chemical potential on the cathode and the anode side.

Starting from this expression, additional electrochemical
considerations can be made. In fact, the Li chemical potential
can be denoted as the sum of the electrochemical potentials of
a Li+ ion and the corresponding electron, as already briefly
introduced in the thermodynamic derivation of the Nernst
equation:

μLi = μ̃Li+ + μ̃e− . (21)

Now, to gain further insight, the exemplary case of two
electrodes in vacuum that are not connected will be discussed.
For this situation, the respective potentials have to be deter-
mined relative to the vacuum level, as depicted in Fig. 7. Next,
it is assumed that this anode and cathode configuration is im-
mersed in an electrolyte. Keeping in mind that the electrolyte
is able to shuttle Li+ ions between the electrodes to establish
an equilibrium distribution, the Li+ electrochemical potential
in the anode, cathode and electrolyte have to be identical.
To put it differently, if μ̃Li+ in electrode and electrolyte was
different, the Li+ ions in the electrolyte would compensate the
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FIG. 7. Chemical potential of Li as well as electrochemical potentials of Li+ and e− for anode and cathode material (a) before and (b) after
introduction of an electrolyte under open-circuit conditions. For the electrode immersed in electrolyte, it has to be noted that μ̃Li+ is equal
in anode, cathode and electrolyte. The dashed lines in the case of μ̃Li+ and μ̃e− are just a guide for the eye and should not be understood as
realistic potential curves. Partially redrawn from [31].

differences by adapting their concentration profile until μ̃Li+

becomes constant throughout the system [31]. Interestingly,
the fact that under these equilibrium conditions μ̃Li+ is the
same for anode and cathode (and electrolyte) means that, for
the electrolyte containing system, the difference in electron
electrochemical potential at the anode and cathode side deter-
mines UOCV:

UOCV = −μcathode
Li − μanode

Li

e
= − μ̃cathode

e− − μ̃anode
e−

e
. (22)

The relationship between μLi, μ̃Li+ , and μ̃e− at the anode
and cathode side in vacuum and in presence of the electrolyte
are schematically depicted in Fig 7. Considering the full
battery cell with immersed electrodes—under open-circuit
conditions—this also means that the electronic levels have
to adjust as compared to the situation in vacuum. As just
derived, this must happen in such a way that the difference
in the electron electrochemical potential corresponds to the
OCV [31], which can be inferred by comparing the schematic
drawings in Fig. 7. Of course, now the question arises how this
adjustment can be understood on a microscopic scale. A con-
vincing explanation relies on interpreting the level alignment
in terms of the electric double layer formation at the anode
and cathode side in the presence of an electrolyte. Within
the double layers, electric fields are created, which equate
the electrochemical potentials of the Li+ ions. Similarly, the
electrons are subject to the same field, but due to their opposite
charge their electron electrochemical potentials in cathode and
anode shift in such a way that the final difference amounts to
the open-circuit voltage. Consequently, with regard to their
respective positions for the single electrodes in vacuum, the
electrochemical potential of Li+ ions and electrons would
shift in opposite directions [31].

Moreover, it should be noted that in equilibrium, the poten-
tial ϕ and hence also the chemical potential μLi+ of the Li+

ions is constant throughout the bulk electrolyte. For further
clarification, the relations between the different chemical and
electrochemical potentials and their spatial dependence are
again schematically depicted in Fig. 8. Hence, for open-circuit
conditions, there are neither electric fields in the bulk of the
electrodes nor in the bulk electrolyte. Electric fields have to
be present, yet, are limited to the interfaces and result from
changes in the electrostatic potential. These changes are qual-
itatively indicated by a slope in Fig. 8, which, however, has to
be understood as a schematic illustration. The real evolution of

the double layer potential takes a more complex form that goes
even far beyond frequently used descriptions like the Stern
model [31,44].

3. Redox concepts

As already discussed in the introduction, the voltage of
a battery is determined by both anode and cathode material
(see Fig. 3). In an ideal battery the chemical potential of Li
in the anode should lie as close as possible to the potential
of the Li/Li+ couple, i.e., close to the chemical potential of
Li metal as this corresponds to the thermodynamical stable
form of solid Li. However, for Li metal anodes, Li plating
can occur, going along with the risk of dendrite growth and
battery failure [22,45]. Hence, Li metal is nowadays only
considered for solid state batteries, while standard LIBs usu-
ally rely on graphite based anodes. In a simplified picture,
the chemical potential of the cathode on the other hand is
predominantly determined by the active redox couple in the
respective compound. This means that, e.g., in a LiCoO2

cathode, the observed potential profile is a consequence of
the formal change in oxidation state of the Co3+/Co4+ redox
couple under delithiation/lithiation (charging/discharging) of
the electrode:

LiCo3+O2 � Li + Co4+O2. (23)

FIG. 8. Potential curves between anode and cathode for a battery
with liquid electrolyte at open-circuit conditions. While the linear
potential changes in the light gray areas represent the electric double
layer, it has to be noted that the indicated potential drop/increase is
a very crude approximation and only serves for illustrative purposes.
In particular, it should be kept in mind that in the bulk of anode,
cathode and electrolyte the potentials are constant. Potential changes
and hence electric fields are restricted to the double layer.
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FIG. 9. Qualitative picture of redox processes, exemplified with
respect to the electronic density of states (DOS) in a LiCoO2 cathode
under operation [47–49]. The anode Fermi level of the Li metal
anode is unchanged (left), while the cathode Fermi level shifts down
during charging (delithiation) as indicated by the red arrow between
the two dashed lines (right).

It should be noted that Eq. (23) assumes full delithiation,
a scenario which is rarely possible for realistic cathode ma-
terials. For the case of layered oxides such as LiCoO2, the
repulsion between the transition metal oxide layers is getting
strongly increased under delithiation and finally results in
a collapse of the structure. The exemplary case of LiCoO2

actually allows only for about half of its theoretical capacity
to be exploited (i.e., 0.5 Li/f.u.), before the structural integrity
is affected [46].

In Fig. 9, a schematic diagram of the electronic structure
of a LiCoO2 cathode in combination with a Li metal anode
is depicted, corresponding to the microscopic picture of the
macroscopic situation discussed in Fig. 7, with the OCV
determined by the difference in the electron electrochemical
potential. For this case, the Co 3d states are located above
the oxygen 2p states and are hence the states that are in-
volved in the redox process. Thus, when the battery is charged
(delithiated), Co is oxidized from 3+ to 4+ and consequently
electrons are removed from the 3d states.

As already mentioned above, this oxidation state picture,
however, corresponds to a simplified view. The description of
the redox process as adding (removing) electrons to (from)
unaltered Co 3d states holds only for a so-called rigid band
model, which in our case assumes that both the electronic
and the crystal structure of the LiCoO2 cathode are unaltered
by the insertion/removal of a Li atom [41]. While this de-
scription allows to gain an intuitive and qualitatively correct
picture of the underlying redox process, it is of limited validity
[41,48]. This becomes evident when comparing the schematic
figure and the DFT calculated density of states in Figs. 9
and 10. The DFT calculations yield a qualitatively similar
picture as the schematic drawing in Fig. 9, yet, the details

FIG. 10. Electronic density of states (DOS) for LiCoO2, as ob-
tained from DFT calculations that have been performed for this
review, applying the SCAN Meta-GGA exchange-correlation func-
tional. Spin-up and spin-down channels are represented by positive
and negative values. Note that the Co3+ ions are in a low-spin state,
meaning zero local magnetic moment. The partial DOS for O p and
Co d states are depicted in red and cyan, the total DOS is shown in
black.

are different. In fact, the partial DOS indicates that the Co
3d states are dominant below the Fermi level, however, there
is also some hybridization with the oxygen 2p states. Hence,
the delithiation will also affect the oxygen states as opposed
to the simplified redox picture discussed above. Furthermore,
the removal of Li atoms will also affect the details of the
crystal structure, which then will also have an impact on the
electronic structure.

Obviously, in nonideal redox systems, it does not come
as a surprise that species other than the transition metals
may participate in a redox process. In this regard, anionic
redox is an often discussed scenario, offering new pathways
for increasing the capacity of cathode materials [17,50]. In
transition metal oxides, the case of anionic redox typically
occurs when the TM 3d states are located below a larger
fraction of the oxygen 2p states. In this case, the anion p band
will also be strongly involved in the redox process, which
may have negative consequences such as the formation and re-
lease of oxygen gas, hence resulting in the degradation of the
electrode [48,51,52]. On the other hand, if reversible anionic
redox is possible without deteriorating the electrode stability,
it allows for further Li extraction and therefore gives access
to additional capacity [15,17,53,54]. Thus an understanding
of anionic redox and how to exploit it is a highly interesting
question with respect to improving the capacity of cathode
materials.

For several oxide cathode materials, it has been suggested
that reversible anionic redox is only possible when the created
peroxolike (O2)n− species interact with the transition metals
through a reductive coupling mechanism. Such a scenario was
recently demonstrated by DFT studies on the oxidation of
Li2RuO3 [15,54]. In fact, the investigation of changes in the
charge distribution during delithiation in combination with a
crystal orbital overlap population (COOP) analysis of the O–O
bonding characteristics allowed to show a reductive coupling
between peroxolike (O2)n− species and the transition metal
(see Fig. 11). Extending these studies, more recently a unified
picture of anionic redox was proposed [17]. In this work,
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FIG. 11. Oxo to peroxo transformation upon delithiation of
Li2RuO3 (2O2−/(O2)n−). The computed COOPs for Ru–O and O–O
bonds are depicted. The increasing O–O COOP amplitude indicates
O–O bond formation under oxidation of Li2−xRuO3. The correspond-
ing electron densities of the bands with the strongest antibonding
O–O bonds show a polarization of the O 2p orbitals which results
in the formation of σ -type O–O bonds [15]. With permission of the
Royal Society of Chemistry.

oxygen lone pairs have been detected by evaluating the
electron localization function (ELF), finally resulting in sug-
gesting the number of created holes per oxygen as the crucial
parameter to quantify the reversibility of anionic redox, with
a critical maximum value of 1/3 holes per oxygen atom (see
Fig. 12) [17].

C. The electrochemical stability window

Before closing this first part of the review, a still existing
misconception with respect to electrolyte stability has to be
discussed. Frequently, stability criteria for electrolytes are
deduced by analyzing their HOMO and LUMO levels with

FIG. 12. Electron localization function (ELF), as obtained from
DFT calculations on Na2/3Mg1/3Mn2/3O2, showing one O 2s and one
O 2p oxygen lone pair per oxygen. For the case of Na4/7Mn6/7O2,
one and two oxygen lone pairs per oxygen occur in the Mn-rich
(orange) and Mn-poor (red) oxygen environments, respectively [17].
Reprinted from this reference with permission from Springer Nature.

FIG. 13. Schematic representation of the electrolyte stability
window with respect to the chemical potential of an electron.
HOMO and LUMO levels are shown for clarification (redrawn from
Ref. [55]).

respect to the Fermi level of anode and cathode, which is,
however, a misleading concept [55]. As will become clear
immediately, it is not correct to identify the HOMO/LUMO
gap with the stability window of the electrolyte. Instead, the
stability of the electrolyte has to be determined with respect
to the oxidation and reduction potential (i.e., the thermody-
namic stability), as indicated in Fig. 13 [55]. One of the
most prominent examples, which makes it very clear that the
HOMO/LUMO gap does not directly describe the stability
window is certainly water. Whereas the HOMO/LUMO gap
in water can be computed to extend to almost 9 eV [56],
in reasonable agreement with experimental data [57,58], the
electrochemical stability window of water is tremendously
smaller and amounts to the well-known 1.23 V. Nevertheless,
the HOMO/LUMO gap may possibly be interpreted as a kind
of descriptor for the electrolyte stability by applying appropri-
ate scaling relations [59,60].

As far as the choice of liquid electrolytes in batteries is
concerned, it should still be noted that water would be among
the ideal solvents as it is non-flammable and exhibits a high
ion mobility [61] in spite of its small electrochemical stability
window. One option to overcome this problem is to use zinc-
ion batteries [18,61] as their voltage is compatible with the
stability window of water. Another option is to significantly
increase the salt concentration in aqueous electrolyte as this
leads to a widening of the stability window [62]. Such a
“water-in-salt” concept has been introduced by Suo et al.
[63] which has been rather successful. Its commercialization
is still hampered by the fact that in these water-in-salt elec-
trolytes hydrogen and oxygen evolution can compete with ion
intercalation/deintercalation thus limiting the cycling stability
of these electrolytes [62].

Instead of using liquid electrolytes, also solid electrolytes
might be employed. They have recently attracted great interest
as they promise safer and more stable high-energy batter-
ies [64,65]. Still, their ionic conductivity is typically smaller
compared to that of their liquid counterparts. Lately, a de-
scriptor of ionic conductivity has been proposed [66] which

040302-9



REVIEW ARTICLES PHYSICAL REVIEW MATERIALS 6, 040302 (2022)

allows to correlate the conductivity across different families
of materials based on parameters that are easily accessible
for any material. It remains to be seen whether this descriptor
is instrumental for the development of solid electrolytes with
improved ion mobilities.

In a recent work by Binninger et al. [67], the
HOMO/LUMO gap has been shown to yield upper bounds
for the so-called stoichiometric stability window of solid elec-
trolytes. This is due to the fact that the stoichiometric stability
window, which is defined with respect to insertion/extraction
of the charge carrier (as a neutral atom), can formally indeed
be related to the HOMO/LUMO gap [67]. In this study,
the stoichiometric stability window of the investigated solid
electrolytes was, on the other hand, found to typically be
larger than the stability window determined by evaluating the
possible decomposition reactions [67]. To conclude, it has to
be pointed out once more that it is the stability with respect to
oxidation and reduction reactions that determines the stability
window of an electrolyte and that simplified estimates have to
be applied and justified carefully.

III. COMPUTATIONAL METHODS

In the last decades, density functional theory (DFT) has
certainly evolved to one of the most widely used tools in com-
putational material science. The increasing computer power
in combination with the efficiency of DFT calculations allows
for the accurate simulation of materials and processes on the
atomic scale. While DFT calculations are typically performed
for systems with a few 10 to 100 atoms, even simulations with
1000s of atoms are nowadays feasible with massively parallel
codes running on supercomputers. On the other hand, if pro-
cesses on much larger length scales or for long timescales are
of interest, usually more coarse grained models such as classi-
cal molecular dynamics, kinetic Monte Carlo (kMC) or cluster
expansion based Monte Carlo approaches are the method of
choice. However, often these coarse graining schemes are
also based on data from DFT calculations, such that it seems
justified to discuss the underlying principles of DFT in some
detail.

A. Density functional theory

Most quantum mechanical descriptions of nonrelativistic
systems are simply based on the time-independent many-body
Schrödinger equation:

H �({ �R}, {�r}) = E �({ �R}, {�r}). (24)

Solving this eigenvalue problem allows to determine the
ground state energy E and the corresponding wave function
�. However, the many-body wave function � depends on
the electron and core coordinates (�r and �R), thus making nu-
merical solutions quite challenging already for small system
sizes. Due to the high computational effort a joint quantum
mechanical solution for both electronic and nuclear degrees
of freedom is quickly intractable. Fortunately, electrons and
nuclei move on distinctly different timescales, such that the
electronic and nuclear degrees of freedom can be decoupled,
resulting in the famous Born–Oppenheimer approximation
[68]. This decoupling makes the nuclear coordinates { �R} en-

FIG. 14. Electron density of a C2H4 molecule. From the maxima
in the electron density, it is easy to extract the position of the carbon
and hydrogen atoms. Reprinted from Ref. [69]. With permission
from Elsevier.

ter the remaining electronic Schrödinger equation as a set
of parameters, resulting in the following expression for the
electronic Schrödinger equation:

Hel({ �R})	({�r})

= {Te + Vnn + Vne + Vee}	({�r})

=
{

− h̄2

2m
∇2 + 1

2

∑
i �= j

e2

‖�ri − �r j‖

−
∑
i,J

ZJe2

‖�ri − �RJ‖
+ 1

2

∑
I �=J

ZI ZJe2

‖ �RI − �RJ‖

}
	({�r}), (25)

with the kinetic energy Te and the potential energy terms,
corresponding to the electrostatic interaction of the involved
species, i.e., electron-electron interaction (Vee)), electron-
nuclei interaction (Vne) and nuclei-nuclei interaction (Vnn).

Although the Born-Oppenheimer approximation is a very
successful approach, it should be noted that cases may exist
for which its validity is not granted. While the remaining prob-
lem now has reduced to solving the electronic Schrödinger
equation, this unfortunately still amounts to a nontrivial task,
only being exactly solvable for the simplest situations. Con-
sequently, already for treating small system sizes, further
approximations are inevitable and this is where DFT sets in.
The underlying principle of DFT is the Hohenberg-Kohn the-
orem [70], which states that the ground state of a system can
uniquely be described by its electron density. At a first glance,
this seems surprising, however, when looking at the electron
density of a given system this correspondence agrees with
our intuition. As exemplified in Fig. 14, the electron density
of a molecule immediately allows to state where the nuclei
are located. In addition, the derivative of the electron density
contains information on the charge of a nucleus. Yet, only with
the Hohenberg-Kohn theorem the formal and very elegant
proof of such a correspondence was provided. As a conse-
quence, it is possible to express the Hamiltonian in Eq. (25)
as a functional of the electron density, which drastically re-
duces the dimensions and thus the complexity of the problem.
Now, instead of determining the complex many-body wave
function, only the electron density, being a function of the
three spatial coordinates, needs to be considered. In principle,
this problem could then be solved by determining the ground
state energy using a variational approach with respect to the
electron density, which would correspond to the so-called
orbital-free DFT. Yet, due to its complicated and strongly
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nonlocal character, broadly applicable approximations to the
kinetic energy functional Te[n] have, even up to now, remained
elusive [71]. Hence an alternative approach has evolved. For
the latter one, the ground state electron density is determined
by mapping the Hamiltonian on a system of noninteracting
electrons, which is designed in such a way that it exhibits the
same ground state electron density as the original Hamilto-
nian. In this formulation, the electron density is then simply
obtained from the single particle states of the noninteracting
system ψi(�r) via n(�r) = ∑N

i=1 |ψi(�r)|2.
Now, the expectation value E [n] of the Hamiltonian is

minimized with respect to the single particle states un-
der normalization constraint, finally yielding the Kohn-Sham
equations [72]:{

− h̄2

2m
∇2 + vext (�r) + vH(�r) + vxc(�r)

}
ψi(�r) = εiψi(�r).

(26)
In the above expression, vH(�r) represents the Hartree po-

tential corresponding to the classical electrostatic interaction
within an electron cloud, whereas vext (�r) stands for the ex-
ternal potential that is determined by the nuclei. Finally, the
so-called exchange-correlation potential, vxc(�r), then accounts
for all quantum-mechanical many-body effects. The Kohn-
Sham equations correspond to eigenvalue equations that need
to be solved self-consistently, as the solutions also (re)enter
the Hamiltonian via the Hartree and the exchange-correlation
potential. The total energy of the electronic Hamiltonian is
then finally obtained from the following expression:

Eel =
N∑

i=1

εi + Exc[n] −
∫

vxc(�r)n(�r) d�r − VH[n]. (27)

At this point, it is interesting to note that neglecting
the exchange-correlation functional Exc[n] and its functional
derivative vxc[n] would simply result in the Hartree ap-
proximation. Note furthermore that the eigenvalues of the
Kohn-Sham equation εi are typically interpreted as single
particle energies, which has proven to be often a reasonable
approximation, as evidenced by comparison with experimen-
tal data. It has been shown that quasiparticle corrections based
on more advanced methods such as the GW method hardly
change the shape and dispersion of DFT band energies, they
mainly correct the size of the band gap [73]. However, in
principle, the physical meaning of the εi is not a priori clear,
as they originally correspond to Lagrangian multipliers in
the variational approach used to determine the ground state
energy of the Hamiltonian.

Indeed, as can be inferred from Eq. (27), the exchange-
correlation term crucially contributes to the total energy of
the system which necessitates a suitable approximation of
this unknown term. With the advent of DFT, the exchange
correlation was originally described within the so-called local
density approximation (LDA), which is based on the electron
density and the corresponding exchange-correlation energy of
the homogeneous electron gas [72]. This means that within a
LDA calculation only the local electron density is taken into
account, which makes LDA a local functional:

ELDA
xc [n] =

∫
d3�r n(�r) εLDA

xc (n(�r)). (28)

The standard approach in material science is based on
the generalized gradient approximation (GGA) [74–76], for
which the Perdew-Burke-Ernzerhof (PBE) functional is the
by far most frequently used implementation [77]. The GGA
formalism describes the exchange-correlation as functional of
the local electron density and the gradient of the latter one,
meaning that εLDA

xc is replaced by εGGA
xc (n(�r), |∇n(�r)|). This

type of functional is called semilocal, as the consideration of
the density gradient indirectly accounts for the nearby elec-
tron density. While GGA calculations certainly have yielded
satisfactory results in many applications, there remain short-
comings of this approximations, which may become rather
severe, depending on the system. In particular, the treatment
of systems with localized electrons, such as the d electrons in
transition metals, is prone to errors in GGA based calculations
since this functional tends to unrealistically smear out the
electron density [78]. This is a consequence of the so-called
self-interaction error that can be shown to result in an artificial
delocalization of electrons for semilocal functionals. Going
along with this fact, GGA calculations are not able to correctly
reproduce the band gaps of semiconductors and insulators.

However, these shortcomings can be corrected in a simple
and efficient way by applying the GGA+U approach. This
means that the more localized character of electrons can sim-
ply be accounted for by a Hubbard-model like correction [79].
Here, often the rotationally invariant form as introduced by
Dudarev is applied [80]. While GGA+U in principle is simple
and efficient, it relies on a parameter (the U parameter) that
has to be supplied to the calculation either as an empirical
value or can be obtained via a linear response calculation for
the given system. In practice, often empirical U parameters
are used, which, however, in a way makes the calculations lose
their predictive power. For Li-ion batteries, benchmark stud-
ies have been conducted that were able to predict a reliable
set of U parameters in particular for the treatment of oxide
materials [81]. Still, the search for improved descriptions of
the exchange-correlation has been an ongoing task and meth-
ods beyond GGA and GGA+U have been developed. The
conceptually next step is to include not only the gradient of
the electron density but also higher order terms, such as the
Laplacian or the kinetic energy density, for the description of
the exchange correlation [82–84]. Again, there exist different
implementations of these so-called meta-GGA functionals.
Here, the rather recently developed SCAN functional seems to
be a highly promising variant which describes many situations
correctly at the expense of much lower computational cost
than calculations for instance based on hybrid functionals
[85]. The latter ones are constructed by including a specific
amount of exact exchange, meaning that a certain portion
of the wave-function based Hartree-Fock exchange is con-
sidered, making this type of calculations significantly more
expensive. Again there exist different implementations such
as HSE, B3LYP, or PBE0, which mostly differ by the amount
of exact-exchange that is considered [86–89].

Finally, it has to be pointed out that most functionals are
error-prone with respect to systems with strong van der Waals
interactions, which for instance is crucial for the adsorption of
molecules or the interlayer interaction in graphite. Hence, the
correct modeling of van der Waals interactions may also be
of importance for certain systems in battery research. There
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exist various approaches to include dispersion forces, one
of them being the Grimme D3 method [90]. It provides a
simple correction scheme that is computationally essentially
free of cost. Indeed, the D3 correction simply uses a set of
parameters that has been determined for particular molecules
to describe the van der Waals interaction. Despite the con-
ceptually simple approach, there are many cases, where this
scheme has proven to be quite accurate [91]. For surfaces,
additional improvement has been obtained when in com-
bination with the dispersion correction the modified RPBE
functional is used, which is an adapted version of the PBE
functional [92,93]. A different way to treat van der Waals
interactions is by taking the nonlocal nature of van der Waals
forces into account, applying a nonlocal functional. While
this approach has also been successfully applied for bat-
tery materials, it comes at somewhat increased computational
cost [94].

A further functional alternative that has to be mentioned in
this context is the BEEF-vdW functional (Bayesian error es-
timation functional). It is a semilocal functional that includes
a nonlocal correction term and was designed as a general pur-
pose exchange-correlation functional. The BEEF functional is
obtained from a machine learning inspired approach and has
to be understood as a compromise to best describe the differ-
ent kinds of physical and chemical interactions, particularly
suited for catalysis and surface science [95]. Moreover, the
BEEF functional allows for an uncertainty quantification at
minimal computational cost by determining the total energy
for an ensemble of functionals (with a defined distribution of
different model parameters) [95].

Finally, the search for an improved description of the
exchange-correlation functional is still an ongoing task,
ideally striving for achieving chemical accuracy, which is
typically defined as ≈0.04 eV per atom (1 kcal/mol). When
referring to the development of more accurate functionals
that are able to describe different types of problems, often
the picture of the Jacob’s ladder as introduced by Perdew
is evoked [96]. This ladder simply symbolizes that a more
accurate description of the exchange-correlation functional,
meaning amongst others the fulfillment of more mathematical
constraints, is desirable and also accessible with increasing
computer power (see Fig. 15). However, it has to be pointed
out that there is no straight-forward and systematic way of
improvement, which is maybe a bit misleadingly suggested
by this picture of a ladder. In fact, for a particular problem it
may be possible that a simple description in terms of the most
widely used PBE functional is more successful than a highly
expensive hybrid functional calculation. This is, for instance,
true for metals, where the inclusion of exact exchange may
lead to artifacts in the density of states [97].

To exemplify the quantitative impact of different exchange-
correlation functionals, the calculated insertion voltages in
LixCoO2 are depicted for selected functionals and as a func-
tion of the U parameter (see Fig. 16). While the results clearly
show quantitative differences, it has to be pointed out that
qualitative trends are often the same. Hence, it should be
emphasized that the best suited functional indeed depends on
the exact problem and therefore has to be chosen with care,
both with respect to a suitable description of the system under
investigation and reasonable computational cost.

FIG. 15. Jacobs ladder schematically picturing the evolution of
exchange-correlation functionals to reach an increasing accuracy
[96]. The blue dashed lines indicate van der Waals type corrections
for the respective levels.

In practice, any DFT approach starts with the structural
optimization of the investigated compound. After determin-
ing the minimum energy configuration, the conceptually next
step is to determine the properties one is interested in. Apart
from energetic stability with respect to competing phases, the
electronic band structure, optical, mechanical, vibrational and
many more material properties can be obtained. This means
that DFT on the one hand has a high predictive power and on
the other is a versatile tool to interpret experimental results
by a full analysis of the structure-property relationships of a
given compound.

1. Electronic structure

As discussed above, the eigenvalues of the Kohn-Sham
equations correspond to the eigenenergies of the respective
single electron wave functions. While it is not obvious that
these eigenenergies have a physical meaning, in practice,

FIG. 16. Insertion voltages for LixCoO2 as obtained by applying
different exchange-correlation functionals as function of the U pa-
rameter. Reprinted with permission from Isaacs et al. [98]. Copyright
(2020) American Physical Society.
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FIG. 17. Density of states for LiTMO2 (TM = Ni, Co, Mn), as
obtained from DFT calculation applying the PBE, PBE+U, or SCAN
functionals. From Chakraborty et al. [99]. This article is licensed
under a Creative Commons Attribution 4.0 International License.

these single electron states are used to determine the band
structure and the electronic density of states (DOS) of com-
pounds under investigation. The such obtained band structure
and DOS are usually successfully interpreted as physical
quantities and may be used to gain insight into bonding char-
acter and electronic stability of the investigated material. This
can be justified by the fact that in many cases the one-particle
energies determined by more advanced schemes such as the
GW approximation only differ by an approximately constant
shift from the Kohn-Sham eigenvalues [73] so that the shape
of the band structure is hardly affected except for the band
gap.

A projection of the eigenstates on atom-centered orbitals
furthermore allows a detailed analysis of the bonding situation
with respect to s-, p-, d-, and f -type features. In Fig. 17,
the DOS of different Li-intercalated layered oxides and the
projections on oxygen 2p and TM 3d states is depicted,
emphasizing differences originating from the selected TM
species, but also illustrating once more the impact of the ap-
plied exchange-correlation functional. In addition, advanced
analysis schemes to distinguish, e.g., bonding from nonbond-
ing and antibonding contributions do exist, such as the crystal
overlap orbital population (COOP) and electron localization
function (ELF) [100,101]. These quantities have already been
briefly introduced during the discussion of anionic redox pro-
cesses (see Figs. 11 and 12).

Moreover, the charge density, especially when visualized
as a charge density difference plot, can also provide viable
information on the bonding situation in a given material. With
respect to redox concepts it is, on the other hand, often de-
sirable to assign a certain charge to a given atom. For this
purpose, different charge partitioning schemes are available,
such as Mulliken charges, Bader charges or the density de-
rived electrostatic and chemical (DDEC) approach [102–104].
These methods use certain criteria to assign the charge dis-
tribution between the atoms to one atom or the other. While

these approaches usually yield the same trends, the absolute
numbers may differ strongly. In particular, these methods will
typically not yield integer numbers such that there is no one
to one correspondence between the DFT computed charge
and the assigned oxidation state. Nevertheless, these charge
partitioning schemes are extremely useful to track down
changes in the charge distribution, e.g., under de/lithiation of
a compound.

2. Lattice dynamics

Determining phase diagrams of solids with respect to tem-
perature in principle means that the free energy has to be
evaluated. However, in most cases, temperature dependent
contributions are neglected and hence phase diagrams often
are determined without taking vibrational degrees of freedom
into account. This is mostly due to the fact that these contribu-
tions are rather small and that accessing vibrational properties
results in additional computational costs. On the other hand,
for a detailed investigation of a compound the vibrational
properties may be of great interest, as they contain viable
information and can, moreover, be an extremely sensitive
measure for the accuracy of the model description. Exper-
imentally, Raman spectroscopy and in particular operando
Raman studies on electrodes, have become an important labo-
ratory scale tool for the analysis of battery materials. The fact
that Raman spectroscopy is a local probe makes it a comple-
mentary technique to standard characterization tools such as
x-ray diffraction. In principle, a Raman measurement simply
gives access to the atomic vibrations or phonons at the � point,
which are directly accessible by means of DFT calculations
and can therefore be used to characterize the occurring phases
during charge/discharge. Computationally, this means that the
phonon modes at � point have to be determined, which then
can be classified as Raman active depending on their underly-
ing symmetry. By means of perturbation theory, it is then also
possible to obtain the Raman intensity of a given mode. In
general, phonons are calculated within the harmonic approx-
imation, assuming that the associated vibrations correspond
to small displacements of the atoms out of their equilibrium.
For this case, the energy landscape can be approximated by a
harmonic potential.

From a generalized point of view, the theoretical treatment
starts from the following Hamiltonian:

H = Tnucl + VBO({ �RI}). (29)

This formulation corresponds to describing the lattice vibra-
tions as atomic motions on the Born-Oppenheimer potential
energy surface, VBO({ �RI}), with Tnucl denoting the kinetic en-
ergy of the nuclei. Expressing the displacement out of the
equilibrium position �R0

I by a displacement vector �uI ( �R0
I ), the

potential energy can be expanded in a Taylor series with
respect to the equilibrium, thus yielding

VBO
({ �RI

}) = Eel({ �R0
I }) + 1

2

∑
I,J

∑
μ,ν

∂2Eel
({ �R0

I

})
∂uμ

I ∂uν
J

uμ
I uν

J + . . .

(30)
As the Taylor expansion is constructed around the equilib-
rium positions, there are no forces acting on the atoms and
therefore the terms containing the first derivatives have to dis-
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appear. Treating the kinetic energy as classical quantity, one
finally obtains an expression for the system Hamiltonian that
corresponds to a set of coupled harmonic oscillators:

H =
∑

I

MI

2
�̇u2

I + Eel
({ �R0

I

}) + 1

2

∑
I,J

∑
μ,ν

�μν

( �R0
I , �R0

J

)
uμ

I uν
J ,

(31)
with the harmonic force constants

�μν

( �R0
I , �R0

J

) = ∂2Eel
({ �R0

I

})
∂uμ

I ∂uν
J

, (32)

as obtained from the Taylor expansion in Eq. (30). The cor-
responding equation of motion can be solved by imposing
periodic boundary conditions and using a plane wave ansatz
for the displacements, which finally reduces to the eigenvalue
equation ∑

J,ν

Dμν
IJ (�q)εν

J (�q) = ω2 ε
μ
J (�q), (33)

with the dynamical matrix Dμν
IJ :

Dμν
IJ = 1√

MI MJ

∑
n

�
μν
IJ ( �Rn)ei �q· �RnI . (34)

By solving this eigenvalue problem for a distinct wave
vector �q, the corresponding phonon frequencies can directly
be obtained. Hence, the main task is to determine the dynam-
ical matrix, which can be achieved by different approaches.
First, there are density functional perturbation theory (DFPT)
[105] calculations and second there is the finite displace-
ment approach, which is often referred to as direct method
[106,107]. The first approach has the advantage that it can
be performed on the unit cell of the system, however, the
DFPT calculation then has to be conducted for each desired
�q point, separately. The direct method typically uses finite
displacements of symmetry-nonequivalent atoms to determine
the force constants. Here, a supercell has to be used, to make
sure that the dynamics of the system is captured correctly,
since otherwise spurious self-interactions may occur. How-
ever, usually a supercell size below 8–10 Å has proven to be
sufficient.

As the vibrational frequencies depend on the specific wave
vector for which the dynamical matrix is solved, one typi-
cally determines solutions along a certain path in reciprocal
space. This yields the phonon dispersion curves, which are
conceptually closely related to the electronic band structure.
In Fig. 18, the dispersion curves for LiC6 and NaC6 are

FIG. 18. Phonon dispersion curves for LiC6 and NaC6, projected
to the reciprocal lattice of graphite. The yellow circle at � point
indicates the position of the Raman active G band [108,109].

depicted [108,109], clearly showing that differences between
Li- and Na-intercalation compounds are imprinted in their
vibrational spectra. The yellow circle indicates the so-called
G-band–a characteristic Raman signature of graphitic com-
pounds, which is observed to shift towards lower frequencies
under Li/Na insertion. This has lead to identifying the shift-
ing G-band position as signature of the intercalation process
[108,109]. On the other hand, instead of investigating distinct
directions, a sampling of reciprocal space may be of interest.
This gives access to the vibrational density of states, which
determines quantities such as the specific heat.

An important side note with respect to the computational
treatment of lattice vibrations is, moreover, that in polar
materials a nonanalytical correction has to be considered to
correctly account for the energy difference between longitu-
dinal and transverse optical phonon modes at the zone center
(LO/TO splitting). For this purpose, the additional term

Dμν,NA
IJ = 1√

MI MJ

4πe2

N�

(�q · Z∗
μ)I (�q · Z∗

ν )J

�q · ε∞ · �q ×
∑

n

ei �q· �Rn ,

(35)
with ε∞ and Z∗

μ being the dielectric and the Born effec-
tive charge tensor, has to be added to the dynamical matrix
[105,110,111]. However, the quantities contained in Eq. (35)
can in principle easily be determined by density functional
perturbation theory [110,112].

Before concluding this paragraph, it has once more to be
pointed out that, apart from being a sensitive probe for gaining
insight into structure and dynamics of a material, phonons are
contributing to the free energy of a compound. With respect to
free energy calculations, the theoretical treatment rarely goes
beyond the limits of the just introduced harmonic approxima-
tion, meaning that anharmonic effects are typically neglected.
Nevertheless, anharmonicities, i.e., deviations of the potential
landscape from a quadratic form–may become important, in
particular with increasing temperature. They are, apart from
resulting in frequency shifts and a broadening of the vibra-
tional spectra, also of interest for macroscopic properties, as
anharmonicities are for instance responsible for the finite lat-
tice thermal conductivity or the thermal expansion of solids. In
principle, there are different ways of handling the anharmonic
contributions to the free energy with respect to temperature
and volume. The first, rather obvious and computationally
least expensive way is the frequently applied quasiharmonic
approximation (QHA). For this approach, harmonic calcula-
tions are performed at different cell volumes, thus allowing
to assess the quasiharmonic contribution to the free energy
Fqha(V,T). Yet, extensions beyond the QHA exist that are
based on the determination and perturbative treatment of
higher order force constants, thus giving access to temperature
dependent frequency renormalizations. Such frequency renor-
malizations can be achieved within the self-consistent phonon
(SCP) theory or its extension, the improved self-consistent
(ISC) theory [113–115]. In principle, ab inito MD may also be
applied to determine dispersion curves or the phonon density
of states through the use of the Fourier transform of the veloc-
ity autocorrelation function [116]. This approach implicitly
accounts for anharmonic effects. However, it requires long
simulation runs and rather large supercells to obtain suitable
resolution in energy and reciprocal space. Finally, there exist
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advanced methods to determine the anharmonic corrections to
the free energy without explicit consideration of higher order
force constants, one of them being thermodynamic integration
[117–119].

3. Disorder

Despite the fact that the computer power has been largely
increased, the treatment of disorder still easily exceeds the
feasibility of DFT standard calculations, as they rely on
relatively small periodically repeated unit cells. A compu-
tationally less expensive way of handling disorder in lattice
based materials is the use of cluster expansion methods that
describe the interaction in solids in terms of adjusted one-
particle and truncated many-particle interactions. This enables
to map the disorder on large and hence rather realistic simula-
tion cells. On the other hand, developing a cluster expansion
for a given compound is also a nontrivial task and may come
with the drawback of describing certain situations less accu-
rate than in a DFT calculation. To bridge this gap, a different
and rather elegant way to handle disorder was introduced
by Zunger [121]. This so-called special quasirandom struc-
ture (SQS) approach allows to create rather small supercells,
which aim at fulfilling the mathematical constraints charac-
teristic for a random alloy. The underlying idea is to alter the
occupation of the lattice sites that exhibit disorder until the
resulting multisite correlation functions (pairs, triplets etc.)
match those in the random limit as close as possible. Hence,
the disorder can be mimicked with comparatively small cell
sizes by matching these correlations. Mathematically, this
simply means that the corresponding correlation functions
�̄k,m have to be calculated. Here k and m define geomet-
ric figures, which have k vertices and extend up to the mth
nearest neighbor, i.e., single sites, pairs, triplets, and so on
are considered. Then, similar to the below discussed cluster
expansion approach, pseudo spin variables are assigned to
the respective atom types [122]. Finally, the product of these
pseudospin variables for all sites of a figure is calculated,
and subsequently the average over equivalent figures is taken,
finally yielding the correlation functions �̄k,m [122]. In the
SQS approach, a Monte Carlo algorithm is then applied to
match the analytical value of the correlation function of a ran-
dom alloy as close as possible, i.e., (�̄k,m)SQS

∼= 〈�̄k,m〉R [122].
Indeed, this methodology has been shown to work reliably for
various types of systems [120,123–125]. The great advantage
of this approach is the fact that it allows a quick construction
of representative, moderate sized random structures that can
be evaluated by DFT as for instance exploited in a screening
study by Urban et al. [126]. In this work, the energy dif-
ference between SQS structures and the most stable ordered
arrangements has been used for the assessment of disordering
tendencies in Li-TM oxides with LiA0.5B0.5O2 stoichiometry
(see Fig. 19). However, while a cluster expansion approach
will also be able to detect local ordering, the SQS approach
is based on the assumption of a complete random alloy and
is hence not suited to treat systems that show short-range
ordering. Therefore, if short-range order is to be investigated
or, e.g., order-disorder phase transitions are of interest, cluster
expansion methods are the way to go.

FIG. 19. Predicted tendency to form a disordered rock-salt com-
pound as determined from comparison between fully ordered and
SQS structures of LiA0.5B0.5O2 stoichiometry. The size of the cir-
cle represents the ordering strength (small circles indicate strong
ordering tendencies, whereas large ones indicate compounds that
are likely to be disordered). The color of the circles quantifies the
thermodynamic stability with respect to competing phases (bright
colors represent an increased stability). Used with permission from
Urban et al. [120]. Copyright (2016) Wiley-VCH.

4. Defects

Structural defects are an inherent material property and
every realistic material contains a certain amount thereof, such
as vacancies, interstitials, or antisite defects, already simply
for entropic reasons. While crystals have to be charge-neutral
on a macroscopic scale, these microscopic defects can be
positively or negatively charged. To assess the respective sta-
bility of charged and uncharged defects, the defect formation
energies have to be determined. At this point, it is important
to note that periodic calculations are only able to treat charge
neutral systems, which means that charged defects have to be
compensated within the unit cell in periodic DFT calculations.
This can be achieved by introducing a uniform background
charge, which results in a certain error that has to be accounted
for in the expression for the defect formation energy [127]:

E f [X q] = Etot[X
q] − Etot[bulk] −

∑
i

niμi + qEF + Ecorr.

(36)
Here, Etot[bulk] and Etot[X q] correspond to the DFT total en-
ergies of the defect free case and a defect containing supercell.
The charge of the defect is denoted by q, while μi and ni are
chemical potential and number of species i. EF corresponds
to the Fermi level which in band gap systems can be tuned by,
e.g., doping and is therefore treated as a variable with respect
to the valence band maximum. Finally, the correction term
Ecorr is added, accounting for the error due to the uniform
background charge.

While charged defects are an important topic by them-
selves and extensive reviews on their theoretical treatment
exist [127], they may also be crucial when battery materials
are investigated. In particular, solid electrolytes need to be
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FIG. 20. Unit cell of ZnF2, highlighting the available diffusion
channels along the c axis (left). Defect formation energy as a function
of the Fermi energy for different types of defects such as vacancies,
interstitials and antisite defects (right). Reprinted with permission
from Han et al. [129]. Copyright (2021) American Chemical Society.

bad electronic conductors, meaning that charged defects may
become important for the ion conduction in these materials.
Such a scenario is discussed for the case of ZnF2, a compound
which recently has been suggested as coating material for Zn
metal anodes [128] and therefore needs to allow for Zn-ion
diffusion. Interestingly, the insertion of Zn metal into the
empty channels of the ZnF2 structure is energetically unfavor-
able, such that neutral Zn atoms cannot be expected to enter
these channels. However, the calculated defect formation en-
ergies show that the formation of Zn2+ interstitials is favorable
for a broad range of Fermi energies (see Fig. 20 [129]). Hence,
under certain electrochemical conditions interstitial Zn2+ ions
can exist in the empty channels of ZnF2, whereas neutral Zn
atoms are thermodynamically largely unstable in the ZnF2

matrix. This type of considerations may be of particular in-
terest when solid electrolytes are considered. To discuss the
possibility of a certain conduction mechanism, it is important
to investigate the stability also with respect to the insertion of
charged ions. As already stated above, macroscopically a crys-
tal needs to be charge neutral, consequently indicating that the
insertion of a positive ion in a solid electrolyte will have to be
balanced in the electrode/electrolyte interface region.

5. Diffusion

To enable fast charging of a battery, good kinetics is of
particular importance. On an atomistic scale this means that
fast migration of the diffusing ions from one lattice site to the
other has to be possible. The activation barriers that have to
be overcome for such a migration process correspond to free
energy differences. With some basic knowledge about the dif-
fusion mechanism—often intuitive and based on geometrical
reasoning—individual diffusion events can be investigated.
To connect atomistic diffusion barriers to a macroscopic dif-
fusivity, transition state theory (TST) [130] is often used.
Following a nonrigorous thermodynamic quasiequilibrium
approach, the rate constant of a migration process can be re-
lated to the difference in Gibbs free energy between the initial
state and the transition state, as expressed in the frequently
applied Eyring equation [131,132]:

kTST = κkBT

h
e

−�G
kBT , (37)

with temperature T , Boltzmann constant kB, Planck constant
h, and transmission coefficient κ . The latter one can be under-
stood as the probability of a diffusion process taking place,
once the diffusing ion has reached the transition state.

In a more general theoretical treatment, Vineyard was able
to derive the rate constants by using a phase space approach
[133]. Under the assumption of classical dynamics, the rate
at which a certain event takes place then finally depends on
the probability of reaching the transition state multiplied by
the rate of crossing the latter one. The probability of reaching
the transition state is obtained from the ratio of the configura-
tional partition functions of initial and transition state, while
the rate of crossing is obtained from the average velocity for
crossing the transition state, yielding the following expression
[133]:

kTST =
√

kBT

2π

∫
S e−�/kBT dS∫

V e−�/kBT dV
. (38)

Here, � denotes the potential energy as a function of gener-
alized coordinates, while the integrals enclose the phase space
volume V surrounding the initial state and the dividing surface
S, which passes through a saddle point and has to be crossed to
reach the final state configurations. A frequently used formu-
lation of TST is the harmonic transition state theory (HTST),
which additionally assumes a harmonic shape of the potential
energy surface in the vicinity of the initial and the transition
state. After expanding the potential energy � in Eq. (38) into
a Taylor series up to second order, the harmonic terms can
be expressed with respect to the vibrational normal modes
of energy hν. These assumptions are justified for hν � kBT ,
finally resulting in the following equation for the rate constant
[133]:

kHTST =

3N∏
i=1

νi

3N−1∏
i=1

νTS
i

e−�EA/kBT = ν∗e−�EA/kBT . (39)

�EA corresponds to the activation energy and refers to
the energy difference between initial and transition state. The
term in front of the exponential corresponds to the product of
the 3N normal mode frequencies of the initial state divided
by the 3N − 1 normal mode frequencies at the transition state
and is usually expressed as an effective frequency ν∗. Note
that the transition state corresponds to a saddle point in the
potential energy landscape, such that along the reaction co-
ordinate a vibrational mode with imaginary frequency would
be observed. Consequently, there are only 3N − 1 normal
mode frequencies to be considered for the transition state. In
practice, ν∗ is typically referred to as pre-exponential factor
or attempt frequency. Notably, this frequency term does not
correspond to a simple vibrational frequency of the system—a
claim which is often falsely made. In fact, only if the vi-
brational spectra are essentially unaffected (i.e., they differ
only in the additional mode present in the initial state) such
an assumption is valid. By comparing Eqs. (37) and (39), a
similar exponential form is observed and both formulations
can be shown to be essentially equivalent.
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FIG. 21. Tracer diffusion (D∗), jump diffusion (DJ ), and chemi-
cal diffusion (D) coefficients of layered LixTiS2 with respect to the Li
content, as obtained from kinetic Monte Carlo simulations. Reprinted
with permission from van der Ven et al. [137]. Copyright (2021)
American Chemical Society.

On the macroscopic scale, diffusion processes are typically
described by Fick’s law:

�J = −D∇c, (40)

which relates the particle flux �J to the concentration gradient
∇c via the chemical diffusion coefficient D. The latter is
closely related to the jump diffusion coefficient DJ , which can
be expressed with respect to the displacements of the diffusing
particles throughout time [42,134]:

D = θDJ = lim
t→∞ θ

1

2d

1
N

〈( N∑
I=1

�RI (t ) − �RI (0)
)2〉

t
, (41)

with d the dimensionality of the diffusion process and �RI (t )
the position of particle I at time t . The angle brackets 〈〉 repre-
sent an ensemble average, meaning that in principle different
trajectories should be investigated, as will again be discussed
for the example presented below. While DJ corresponds to the
jump diffusion coefficient, the additional thermodynamical
factor θ accounts for the fact that strictly speaking the driving
force for diffusion is the gradient in chemical potential and
not in concentration [42,134–136].

Assuming no cross-correlations between displacements of
different particles, the time average in Eq. (41) simplifies
to the mean square displacement of the individual particles.
Moreover, in the dilute limit the chemical potential can be
assumed to correspond to that one of an ideal solution, thus
resulting in θ being equal to one [42,134]. The remaining
expression then corresponds to the well-known case of tracer
diffusion:

D∗ = lim
t→∞

1

2d

1
N

N∑
I=1

〈(
�RI (t ) − �RI (0)

)2〉
t

. (42)

Hence, in the dilute limit (θ ≈ 1) and for vanishing cross-
correlations D and D∗ are identical. To emphasize this point,
the concentration dependence of tracer diffusion (D∗), jump
diffusion (DJ ) and chemical diffusion (D) coefficient for
the case of Li diffusion in LixTiS2 are depicted in Fig. 21.
While all three show the qualitatively same behavior, only for

FIG. 22. Schematic representation of a NEB chain of so-called
images on the corresponding potential energy surface (a). The min-
imum energy path (MEP), red curved trajectory, is obtained by a
constrained optimization of the initial chain that corresponds to a
linear interpolation between initial and final states. Kinetically re-
solved diffusion barrier (EKRA) and its construction from initial, final,
and transition state energy (b). Reprinted from Euchner et al. [141].
Published by The Royal Society of Chemistry.

vanishing Li-concentration, i.e., in the dilute limit, the same
value is approached. Finally, under the assumption of a ran-
dom walk on a given lattice, the diffusivity of dilute charge
carriers can directly be related to the above discussed rate
constants, via [134,138]

D = α2gf xDν∗e− �EA
kBT . (43)

Here, α is the hop distance, g the geometry factor, which
is related to the underlying lattice, and f a correlation factor
(for Markovian motion f is equal to 1). Finally, xD is the
diffusion mediating defect concentration. These prefactors
have to be multiplied by the above derived rate constant,
consisting of attempt frequency times rate of success. Often,
the pre-exponential factor ν∗ can be assumed to be constant
with respect to temperature, which makes the diffusivity obey
an Arrhenius law. In practice, the pre-exponential factor is
often crudely approximated to be of the order of 1013 s−1.

While in the case of tracer diffusion the relationship be-
tween diffusivity and rate constant is given by Eq. (43), for
more complicated situations that include cross-correlations,
nondilute concentrations or locally varying diffusion barriers,
these quantities can be linked by performing kinetic Monte
Carlo (kMC) simulations.

Now, to gain insight into the diffusion kinetics of a given
material via transition state theory, Eq. (39) has to be eval-
uated. For this purpose, the activation energy �EA, i.e., the
energy difference between transition and initial state, has to
be determined. One way to achieve this in the framework
of DFT is the application of the nudged elastic band (NEB)
method. The NEB approach determines the diffusion path
with the lowest energy cost and gives access to the corre-
sponding migration barrier. For this purpose, the initial and
the final states of a diffusion process must be known. Hence,
one must already have some idea about the occurring migra-
tion processes. For the determination of the minimum energy
path, the initial and final states are then simply connected
by a number of linearly interpolated intermediate configura-
tions, so-called images, that are formally connected by virtual
springs (see Fig. 22). This initial chain of images is then
optimized [139,140] involving force projections of both the
true forces and the spring forces, such that ideally the path
with the lowest energy cost, connecting initial and final states
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is obtained, as schematically depicted for the curved line in
Fig. 22. However, it needs to be emphasized that the NEB
method does not guarantee that the lowest diffusion barrier
will be found.

At this stage, it has to be noted that for percolating diffu-
sion pathways in crystalline materials ion migration between
nonequivalent sites is rather likely to occur. For such a sce-
nario, it may be of use to separate the barrier in kinetic and
static contribution as is achieved by introducing so-called
kinetically resolved diffusion barriers

EKRA = ETS − 1
2 (Efinal + Einitial ). (44)

Here ETS is the transition state energy, while Efinal and Einitial

are the initial and final state energies of the diffusion path.
This is exemplified in Fig. 22 [134], where initial and final
state have different site energies, e.g., due to differing local
environments. Hence, the barrier depends on the direction in
which it is to be overcome. The resulting kinetically resolved
barriers can be understood as direction independent barriers
that describe the kinetics of the diffusion process. Apart from
quantifying the kinetic contributions, the kinetically resolved
barriers may be used in stochastic approaches to systems
that show a distribution of site energies (see, e.g., the cluster
expansion study of van der Ven et al. [137]).

A different way to computationally access diffusion prop-
erties of a given material by DFT relies on ab initio molecular
dynamics (AIMD). Here, the most prominent approach is to
solve the classical equation of motion for the nuclei, while
ab initio forces are acting on the latter ones. In short, for
a given configuration the forces are determined by solving
the electronic Hamiltonian making use of the Hellmann-
Feynman theorem. With these forces and an appropriate time
step (typically in the order of one femtosecond) the classical
equations of motion are solved and the atoms are moved
accordingly, as in the case of a classical MD simulation
(see below). From the resulting MD trajectories, dynamical
quantities can be determined. As already discussed above, the
diffusivity can be extracted by analyzing the atomic displace-
ments. Here, it has to be noted that the ensemble average in
Eqs. (41) and (42), is, in practice, often replaced by a time
average, assuming ergodicity. However, a combination of such
a time average with an additional averaging over different tra-
jectories yields even more reliable results. The corresponding
activation barriers can then be derived from the diffusivities
obtained at different temperatures, by assuming an Arrhenius
type behavior with a diffusion mechanism that is independent
of temperature [142].

Before concluding this paragraph, an example that com-
pares the NEB and the AIMD approach for the case of Li
diffusion in Li3YBr6 (LYB) will be discussed. In Fig. 23, the
diffusion pathway connecting two octahedral sites through a
tetrahedral site (O-T-O) is depicted, with the corresponding
NEB barriers shown in panel (b). In panel (d), results of
the corresponding AIMD simulations are shown, with the
diffusivity as a function of temperature, depicted in loga-
rithmic scale. In this representation, it is nicely visible that
the diffusivity follows an Arrhenius type behavior, such that
the corresponding diffusion barrier can directly be extracted.
The agreement between both approaches is excellent, how-
ever, it should be noted that deviations may be observed. This

FIG. 23. (a) Crystal structures and (c) Li-ion migration pathways
in Li3YBr6 (LYB), with the red and blue polyhedrons representing
octahedral and tetrahedral interstitial. (b) shows the NEB migration
barriers for a single Li ion in the fixed fcc anion lattice of LYB,
whereas (d) shows an Arrhenius plot of the Li+ diffusivity in LYB
as obtained from AIMD simulations. Adapted with permission from
Wang et al. [143]. Copyright (2015) Wiley-VCH.

might for instance be due to a slight temperature dependence
of the diffusion barriers.

AIMD calculations are computationally rather expensive,
however, they can be accelerated by conducting simulations at
elevated temperatures. This results in more frequently occur-
ring diffusion events and better statistics, therefore, allowing
for shorter simulation times. As compared to a NEB calcula-
tion, AIMD simulations are more computationally demanding
and are therefore rather applied if complex mechanism are at
play that cannot easily be projected on a NEB trajectory (e.g.,
concerted motion of several atoms).

B. Classical molecular dynamics

If large systems are to be investigated, classical molecular
dynamics (MD) is a viable alternative to the above discussed
DFT and AIMD approaches. In a classical MD simulation,
atoms are treated as pointlike particles that interact via an ef-
fective interaction potential or force field. For these particles,
Newton’s equation of motion is iteratively solved, meaning
that from the knowledge of positions, forces and velocities at
a certain time t0 these quantities can be obtained at a later time
t0 + dt . The exact way of integrating the equation of motion is
determined by the chosen algorithm (e.g., the frequently used
velocity Verlet algorithm [144]).

The numerical integration of the equation of motion al-
lows for the extraction of the respective particle trajectories
throughout time [144]. Obviously, a classical MD simula-
tion cannot provide information on the electronic structure,
but still offers access to many material properties such as
phase stability, lattice dynamics or diffusion constants. These
quantities can often be determined by evaluating correlation
functions, as already discussed for the case of diffusion.
This approach allows to explicitly investigate temperature ef-
fects such as, for instance, temperature dependent diffusion
constants or anharmonicity induced changes in vibrational
frequencies. Classical MD simulations can be conducted for
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FIG. 24. Discharge profile for a Li-S battery as obtained from
experiment and from calculations using a reactive force field.
Reprinted from Islam et al. [149]. Published by The Royal Society
of Chemistry.

much larger system sizes (106 particles and beyond are easily
possible), such that realistic microstructures can be addressed.
However, the main factor that decides about the validity of
a MD simulation is the quality of the effective interaction
potential. If this potential captures the essential features of
the interatomic interaction, an accurate simulation will be
possible. Here, as in the case of the exchange-correlation func-
tional in DFT, a plethora of different realizations of physically
motivated potentials have been developed. As far as metals are
concerned, pair potentials have often proven to be sufficient,
starting from as simple potential forms as the Lennard-Jones
potential, over oscillating pair potentials to more elaborate
embedded atom method (EAM) and modified embedded atom
method (MEAM) potentials [145–148].

For the description of covalent bonds, three-body interac-
tions are important and therefore real three-body potentials
like the Tersoff potential or pseudo three-body interactions
like angular dependent potentials (ADP) have been success-
fully applied in the past [150,151]. For liquid electrolytes, the
presence of ions leads to strong local electric fields and often
necessitates the use of so-called polarizable force fields which,
however, make the MD simulation typically three to ten times
slower than corresponding non-polarizable simulations [152].
On the other hand, bond breaking and bond creating pro-
cesses are particularly difficult to describe, thus resulting in
the emergence of reactive force fields (ReaxFF), which have
also been successfully applied in the field of batteries [153].
These potentials correspond to bond-order type potentials
that are particularly trained to describe bond-breaking and
bond-making events as they occur during chemical reactions.
An example for a reactive force field study is depicted in
Fig. 24, where phase evolution and discharge profile for a Li-S
cathode have been studied. The MD approach allows here to
investigate large system sizes with varying composition and
is indeed able to yield excellent agreement with experimental
data. Furthermore, there exists a variety of force fields that
are especially trained and used for organic molecules, for
instance CHARMM, AMBER, or GROMOS [154–156]. All
just described potential types have in common that they are

based on physical and chemical insights in the materials that
shall be investigated, which typically goes along with limited
flexibility as far as the description of a broad class of materials
is concerned.

Recently, with the advent of machine learning techniques,
a new class of potentials has evolved that are not built on
physical models but instead rely on complex functions to
describe the potential energy landscape, in principle, allow-
ing to even reach DFT accuracy [157–162]. Fundamentally,
machine learning (ML) potentials can be regarded as a so-
phisticated way to parametrize potential energy surfaces given
by some suitable input set [163], for example, created by
first-principles calculations. An important ingredient for an ef-
ficient ML potential is the encoding of the data sets in suitable
representations called features or descriptors [158,163], which
reflect symmetries, regularities, and patterns of the underlying
chemical system. On the one hand, ML models should be
rather flexible to allow to reproduce arbitrary potentials. On
the other hand, typical ML models are not based on any chem-
ical insights. Thus typically large input data sets are required
to obtain a suitable representation of the modelled system.

For the mathematical description of these potential mod-
els, artificial neural network potentials (ANN), Gaussian
approximated potentials (GAP), or spectral neighbor analysis
potentials (SNAP) are popular representatives [158]. ANNs
are based on neural networks with two or more hidden layers,
often using atom centered symmetry functions (ACSFs) as
underlying descriptor of the atomic structure. GAPs rely on
a Gaussian process kernel, where the kernel may be seen
as a similarity measure of atomic environments. As descrip-
tor of these atomic environments, bispectrum components
or smoothly overlapping atomic positions (SOAP) are often
used to encode the information on the local atomic structure.
SNAP potentials, on the other hand, use a linear fitting of the
bispectrum components and can in principle be understood as
linear version of the GAP model [158,164–166].

In Fig. 25, a schematic representation of the underlying
idea and a graphical representation of the just mentioned
potential types is depicted. Clearly, the efficient description
of atomistic interactions by ML potentials enables highly
accurate investigations on larger length and timescales. This
is exemplified in Fig. 26 for the case of the Li-C system.
The ML derived GAP potential is able to accurately repro-
duce DFT data such as adsorption energies and diffusion
barriers. Moreover, the distribution of interatomic distances
during a GAP MD run also matches almost perfectly with
results from AIMD. Hence, this potential allows to study
complex geometries—such as those observed in hard carbon
anodes—and may be used to access the impact of the nano-
and microstructure with almost DFT accuracy.

Concerning the application of ML-based potential for the
investigation of battery electrodes and solid electrolytes, there
is a number of recent studies [18,159,160,162,168]. For exam-
ple, the efficiency of molecular dynamics simulations using
ML potentials has been used to screen several materials with
intermediate-rate ion conduction that can serve as coating
materials in solid state batteries, finally resulting in the iden-
tification of two promising coating materials [161].

The computational efficiency and reliability of ML poten-
tials might make them also ideal candidates for the atomistic
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FIG. 25. Schematic picture of the creation of a machine learn-
ing potential (top) and characteristic features of three widely used
families of machine learning potentials (bottom): (artificial) neural
networks (NN), nonlinear kernel function based methods such as
Gaussian approximation potentials (GAP), and linearized spectral
neighbor analysis potentials (SNAP). Reprinted from Deringer et al.
[167]. This article is licensed under a Creative Commons Attribution
4.0 International License.

description of, e.g., the solid-electrolyte interphase (SEI)—a
strongly debated topic in battery research—which typically
has been modelled by force-field methods [169]. Still, as
recently discussed [170], the complexity of the SEI requires
ML potentials to reproduce polarization effects and long-
range anisotropic electrostatic interactions and polarization.
Furthermore, a SEI might contain structures that are far from
equilibrium and thus might not be present in data sets used
to train the ML potential. Hence, so far the ML modeling of

FIG. 26. Comparison of DFT and GAP based results for the Li-C
system. (a) and (b) show a comparison for Li adsorption and Li
diffusion on graphene. (c) depicts the GAP MD trajectory of Li in
a graphitic network at a temperature of 1000 K (Li atoms are shown
in purple and are repeatedly plotted throughout time, while only the
initial framework configuration is shown). Finally, the radial distribu-
tion as obtained from AIMD and from machine learning based MD
are compared in (d). Reproduced from Fujikake et al. [173], with the
permission of AIP Publishing.

electrolyte/electrode interfaces has been mainly restricted to
solid-water interfaces [168,171].

As mentioned above, the training of such potentials typi-
cally needs huge data sets (thousands of DFT calculations),
making it a time and resource consuming task [157]. On
the other hand, schemes have evolved for, e.g., doing an on
the fly creation of machine learning potentials during AIMD
runs, which thus enables accelerated simulations with high
accuracy for smaller system sizes [172]. Generally speaking,
MD studies with machine learning potentials are a strongly
growing field of research that is also of great interest for the
investigation of the complex processes in battery materials.
In fact, it seems likely that ML derived potentials will soon
dominate newly emerging MD studies, while in many areas
of battery research they may even compete with standard DFT
approaches. Still, they can not fully replace quantum chemical
simulations as ML potentials do not yield information on the
underlying electronic structure which is often critical for a
deeper understanding of the materials properties.

C. Cluster expansion

As already stated at several occasions throughout this re-
view, the method of choice to reliably study battery materials
from a theoretical point of view is, in principle, DFT, when-
ever this is possible. However, there exist many situations
where for instance large system sizes or statistical sampling
are of interest, which even exceeds the capabilities of MD.
For such situations, a coarse graining of the system under
investigation may be beneficial, as it can largely reduce the
computational cost. In this context, a frequently applied solu-
tion are cluster expansion schemes in combination with Monte
Carlo methods. For a cluster expansion, the atoms in a system
are assumed to occupy a grid of lattice sites with fixed topol-
ogy, while the species on the respective lattice sites are subject
to variations and can be represented by pseudo-spin variables
σi. In the case of a binary system (for instance, the Li-vacancy
arrangement in a layered oxide), σi may be described by −1
or 1, while for the ternary case (e.g., the arrangement of Ni,
Mn and Co on the transition metal sublattice of a NMC) σi

could be chosen as −1, 0, 1, etc. Hence, a certain configu-
ration can simply be described by the corresponding vector
�σ = {σ1, . . . , σn}.

To describe the energetics of such a system, the way how
the different species interact with each other needs to be de-
termined. For instance, one might ask if a certain atom prefers
to have its own kind or a different atom type as a nearest
neighbor, next nearest neighbor, and so on. The underlying
interactions can then be formulated with respect to structural
motives or clusters (points, pairs, triplets,...), thus allowing to
cast the quantum mechanical problem into an effective Hamil-
tonian. For this purpose, single site basis functions θn(σi)
have to be selected [174–176]. In practice, often Chebyshev
polynomials are used for this purpose as they form a complete
orthogonal basis. With this basis the so-called cluster func-
tions �α (�σ ) = ∏

i θni (σi ) can be constructed for each cluster
motive, finally yielding the following effective Hamiltonian
[174,177,178]:

E =
∑

α

Vα�α (�σ ). (45)

040302-20



REVIEW ARTICLES PHYSICAL REVIEW MATERIALS 6, 040302 (2022)

FIG. 27. 3D representation of different types of structural mo-
tives that can be used for constructing a cluster expansion for a bcc
lattice. Reprinted from Chang et al. [176]. This article is licensed un-
der a Creative Commons Attribution 3.0 International License.©IOP
Publishing.

The coefficients Vα parametrize the effective cluster interac-
tions (ECI) for the different structural motives, as illustrated
in Fig. 27. Typically, such an expansion is stopped at a triple
or quadruple level, where it has to be noted that often not
all interactions are important and hence some of them can be
disregarded.

For the case of the above mentioned Li-vacancy binary sys-
tem, the single site basis functions correspond to θ0(σi ) = 1
and θ1(σi ) = σi, such that cluster functions reduce to products
of the pseudo spin variables, σi, σiσ j, σiσ jσk, . . . , with the
indices i, j, k, . . . running over all lattice sites. The cluster
expansion Hamiltonian can then be formulated as

E = V0 +
∑

i

Viσi +
∑

i j

Vi jσiσ j +
∑
i jk

Vi jkσiσ jσk + . . . ,

(46)

with the expansion coefficients Vi,Vi j,Vi jk, . . . representing
the ECIs. Note that V0 is a configuration independent term
that represents an empty cluster.

The ECIs as a set of parameters are then usually determined
by ordinary least square (OLS) fitting—often amended by a
regularization term to prevent overfitting—to a set of refer-
ence data [176]. Typically, these reference data are obtained
from DFT calculations. In general, the choice of the structural
motives that are included is crucial for the quality of the clus-
ter expansion. Indeed, too few motives will yield an inaccurate
description of the system, whereas too many may result in
overfitting and noise. A way to find the best compromise is
the minimization of the so-called cross validation (CV) score.
The CV score allows to select the important motives that
are significant for the description of the system and can be
understood as an unbiased measure to determine the quality
of the cluster expansion with respect to its predictive power
towards unknown structures [179].

With such a cluster expansion scheme at hand, the deter-
mination of the energy of a given configuration can easily
be achieved for large system sizes. In general, thermody-
namic properties of a system are determined by the respective

microstates through an average thereof. While a cluster expan-
sion enables fast access to the energy of a given configuration,
completely accounting for all microstates becomes intractable
already for rather small systems. Therefore, in a Monte Carlo
simulation, the phase space has to be sampled, typically ap-
plying so-called importance sampling techniques. In practice,
frequently the well-known METROPOLIS algorithm is invoked
[180], following a general scheme that samples states ac-
cording to the underlying thermostatistic distribution function,
usually corresponding to a canonical or grand canonical en-
semble.

In the case of a canonical ensemble, the METROPOLIS algo-
rithm formally starts with the determination of the energy of
a given configuration by evaluating Eq. (45). As a next step
a different configuration is created, e.g., by exchanging two
particles. Now, if the energy of this new configuration is lower
than that of the previous one it will always be accepted. On the
other hand, if the energy is higher than for the previous state,
the new configuration is only accepted by a certain probability.
For the METROPOLIS algorithm, this probability is then given
by e−(Enew−Eold )/kBT , such that the new configuration is accepted
if this value is smaller than a random number in the range
(0,1]. In this way, a distribution of states corresponding to
the statistical distribution of states of a canonical ensemble
is created (i.e., a Boltzmann distribution). By including the
chemical potential in the acceptance probability, this approach
can easily be adapted for the grand canonical ensemble as
well. While the METROPOLIS algorithm certainly is the most
famous MC algorithm, it has to be noted that for a given prob-
lem better suited (faster) algorithms may exist. In particular,
at low temperature the METROPOLIS algorithm is characterized
by a high rejection rate, such that different algorithm may
result in a considerable speed-up [181].

In practice, cluster expansion based MC simulations can
then be applied to determine structural peculiarities, such
as ordered superstructures or local short-range ordering
[182–184], making this approach particularly valuable for the
investigation of certain battery materials. The question for the
most favorable arrangement of alkali metal ions and vacancies
in a layered oxide cathode at a given state of charge may for
instance be tackled with such a setup. Moreover, the temper-
ature dependent stability of different configurations can be
investigated, thus among others enabling the determination of
concentration-temperature phase diagrams [176,184].

As already discussed, MC simulations allow for a correct
thermodynamic sampling and hence are able to give access to
thermodynamic properties. While the evaluation of Eq. (45)
yields the internal energy of the system, the configurational
entropy can be obtained by determining the specific heat and
integrating it with respect to temperature. This then allows
for the calculation of the corresponding free energy. With the
applied thermodynamic sampling, an investigation of phase
transitions with respect to temperature becomes directly pos-
sible, as exemplified in Fig. 28. There, the order/disorder
transition of two different layered oxides to the corresponding
disordered rock-salt (DRS) oxides—a recently intensively in-
vestigated class of promising cathode materials—is depicted.
For the selected compounds—LiNiO2 and LiCrO2—the clus-
ter expansion based MC simulations nicely show the signature
of a first and a second order phase transition, clearly visible
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FIG. 28. (a) Energy and (b) specific heat of LiCrO2 (orange) and
LiNiO2 (black) as obtained from cluster expansion based MC sim-
ulations, with the dashed vertical lines yielding the phase transition
temperature from the layered to the DRS phase. The arrows indicate
the impact of short-range order as compared to a fully random cation
distribution. Used with permission from Urban et al. [120]. Copy-
right (2016) Wiley-VCH.

when plotting energy and specific heat versus temperature
[120].

At this stage, it has to be pointed out that vibrational
entropy is usually not considered in cluster expansion based
MC simulations, as the relative impact for phases with
the same stoichiometry can often be assumed to be rather
small [120,179]. The configurational entropy differences for
order/disorder transitions of a binary alloys are less than
kB ln 2 per atom (≈0.7kB/atom), while typical values for the
vibrational entropy differences are of the order of ≈0.2 kB per
atom [179]. Of course, this nevertheless means that there are
cases for which the vibrational contribution indeed becomes
important. Furthermore, MC studies typically also do not con-
sider electronic contributions to the configurational entropy,
which may originate from localized electrons. While this is
usually justified, there exist cases where this contribution can
be crucial for the determination of the phase stability, as, e.g.,
in the case of the LixFePO4 phase diagram [185].

D. Kinetic Monte Carlo

While the above discussed MC methods correspond to
a coarse graining of the system of interest and are able to
provide information on thermodynamic properties, the un-
derlying kinetics, i.e., its time evolution, is not considered.
However, as outlined in detail before, often the kinetics of
a electrode material is of great interest and coarse grained
approaches to the diffusion properties—in space and time—
are desirable.

For systems that exhibit a dynamics that is too slow to
be captured by AIMD or even classical MD—meaning that
a huge number of time steps would be necessary to capture
the events of interest and to obtain a sufficiently accurate
statistics–such coarse graining schemes have to be applied.
For this purposes, the so-called kinetic Monte Carlo method
has been developed. Considering systems with slow dynam-
ics means that one is dealing with what is called rare event
dynamics. In practice, such systems are assumed to typically
oscillate for a long time span around a certain configuration
until finally such a rare event (e.g., a diffusion process) takes
place. This can then in principle be understood as a separation
of timescales of equilibrium oscillations and actual diffusion
event (see Fig. 29) [186]. For a diffusing atom, this means

FIG. 29. (a) Potential energy surface (PES) with different local
minima and a MD trajectory on this surface. (b) Representation of
the MD trajectory on a suited lattice. (c) Transformation of the MD
trajectory in a series of discrete jumps between local minima of the
PES. Reprinted from Andersen et al. [188]. ©2019 Frontiers Media
SA. All Rights Reserved.

that it is oscillating for some time around a local minimum of
the potential energy (or Born-Oppenheimer) surface, before
moving to an adjacent one.

A prerequisite for a possible mapping on a kMC simulation
is that the investigated diffusion process is a stochastic process
with no correlation between successive events. Formally, this
means that the investigated process is of Markovian type, such
that the system has no memory on how it arrived in a certain
state. This is typically true for diffusion in solids, where a
diffusing atom usually vibrates around its equilibrium position
until it finally jumps to a neighboring energy minimum. For
this situation, the dynamics of the system is contained in the
corresponding rate constants. These rate constants are then the
kinetic parameters that determine the kMC simulation and can
be obtained from DFT calculations. In particular, harmonic
transition state theory is frequently applied for the determi-
nation of rate constants, as discussed earlier. To describe the
dynamics of a certain system, all processes for leaving (ac-
cessing) a given configuration as well as the corresponding
rates ki j need to be determined. The rate ki j then corresponds
to the probability per unit time that the system moves from a
state i to state j. Now, a stochastic description of the kinetics
of the whole system in terms of the time evolution of the
probabilities is possible and results in the so-called Master
equation [186–188]:

dPi

dt
= −

∑
i �= j

ki jPi(t ) +
∑
i �= j

k jiPj (t ). (47)

Here, the change in probability Pi of finding a certain state i is
determined by the probabilities of leaving that state towards a
new configuration j, as well as by the probabilities that a state
j ends up in configuration i. Due to the typically large number
of states an analytic solution of the Master equation is usually
not possible, however, kMC provides an efficient stochastic
approach to quantify the kinetics of the system.

The above equation makes it obvious that the kinetics is
governed by the rate constants of the respective processes. As
long as these rate constants are accurately determined and the
processes are not correlated, diffusion constants that are deter-
mined from kMC simulations in principle will yield the same
result as a much more demanding MD simulation. In a kMC
simulation, the trajectory of a particle then simply consists of
a series of discrete hops from one local minimum to the next
(see Fig. 29). The random selection of a given hop and the
time span between the hops is governed by the probabilities

040302-22



REVIEW ARTICLES PHYSICAL REVIEW MATERIALS 6, 040302 (2022)

which have to obey the Master equation [186–188]. Moreover,
the detailed balance criterion is imposed to ensure that the
system can attain thermal equilibrium [189].

With the system not memorizing its configuration, the
probability of leaving a state in a certain time interval is
the same as in any previous time interval. This results in
the probability for the system having not yet escaped from a
given state corresponding to an exponential decay [187]—the
survival probability:

ps(t ) = e−ktott . (48)

With this expression, the probability p(t ) of a hop occuring at
a certain time can easily be derived from the time derivative
of 1 − ps(t ), actually corresponding to a Poisson process with
[186,187,189]:

p(t ) = ktote
−ktott . (49)

Typically a system can leave a state by different
pathways—for a state i there will exist several states j the sys-
tem can move to—which are characterized by their individual
rate constants ki j and an analogous escape probability pi j (t ) =
ki je−ki j t , with the rates of the single processes ki j summing
up to the total rate ktot = ∑

j
ki j [187]. This agrees with the

fact that an ensemble of independent Poisson processes can
be reformulated as one Poisson process [see Eq. (49)] [189].
Now, instead of using the average time of escape of a process
(τ = ∫

t pi j (t )dt) as kMC time step, a properly weighted
stochastic escape time �tescape has to be selected to guarantee
a correct time evolution of the system. This can be achieved
by reverting Eq. (48) and replacing ps(t ) by a random number
ρ ∈ (0, 1] [186–188]:

�tescape = − ln(ρ)

ktot
. (50)

To run a kMC simulation, one has to determine all N
processes that are possible for a given configuration of the
system with the corresponding rates. Subsequently these rates
are summed up to yield the overall rate ktot. Next, to select
the process that will be executed, we plot the total escape rate
as a bar of length ktot, consisting of the bars representing the
respective single rates (see Fig. 30). By multiplying ktot with
a random number ρ1, lying in the range (0,1], we end up in a
certain bar, which then corresponds to the process that will be
selected

q∑
i=1

kp � ρ1ktot <

q−1∑
i=1

kp. (51)

Finally, the simulation time is updated, i.e., t = t + �t . For
this purpose, the escape time �t = − ln(ρ2)/ktot is obtained
by choosing a second random number ρ2. As discussed above,
the choice of this time interval ensures a proper stochas-
tic weighting of the time steps. Then the whole procedure
restarts. This rejection free algorithm is often referred to as
the N-fold way and was originally designed to speed up
Monte Carlo simulations, while it was only later used for
kMC [181,191]. With such a kMC approach, an efficient
computational tool for the investigation of system dynamics is
available. In particular, complex dynamics can be understood

FIG. 30. Schematic representation of a kMC simulation. In the
top, the different options for the system to leave a given state with
the corresponding rates are depicted. Below, the kMC algorithm is
graphically illustrated. By random number selection a value between
0 and ktot is generated, subsequently determining which process is
chosen.

with respect to the underlying atomistic processes by apply-
ing kMC simulations. This is exemplified for a study on the
morphology evolution of different facets of Mg surfaces by
Lautar and co-workers [190]. While Li metal anodes are prone
to shortcircuiting due to dendrite growth, this is typically not
observed in Mg batteries [45]. Therefore studies on the factors
that influence the metal deposition are of great interest. This
study points out that it is not sufficient to only investigate
the most stable surface of a metal anode, since this surface
typically does not account for the largest fraction of the overall
surface area of a crystallite. Moreover, their nucleation theory
based kMC studies show that different surfaces can exhibit
distinctly different growth modes. In Fig. 31, the evolution on

FIG. 31. (a) Potential energy landscape of two different Mg sur-
faces. Non-negligible interaction energies exist between adatom A
and an additional adatom marked with a number. Red (pale pink)
dotted lines represent hopping across lower (higher) energy barriers.
(b) and (c) show the initial random arrangement and a quasirelaxed
configuration that is obtained during a KMC simulation for Mg
(0001) and the Mg (1011) surface after the denoted simulation time.
Reproduced from Lautar et al. [190]. With permission of the Royal
Society of Chemistry.
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the most stable surface and the surface with the largest area
fraction in the Wulff construction are depicted, which corre-
spond to the Mg (0001) and Mg (1011) surfaces, respectively.
The differences in their growth behavior is nicely visible,
with the Mg (0001) surface showing island growth, whereas
the formation of lines is observed in case of the Mg (1011)
surface.

In general, kMC studies are well-suited to model growth,
diffusion and intercalation processes in batteries. They allow
to use rate constants that are derived from barrier heights
obtained in first-principles electronic structure calculations, so
that this information can be used to model atomistic processes
up to macroscopic timescales. Such kMC simulations have
been used to address the morphology of dendrites grown on
metal electrodes [192,193], to study cation diffusion in spinel-
based electrodes [194] and solid electrolytes [195], and to
elucidate details of the ion intercalation in electrode nanocrys-
tals [196], and in graphite [197] or silicon anodes [198], just
to name a few.

IV. CONCLUSION

In the first part of this review, we have given a concise
overview on the basic concepts of a functioning battery, in-
cluding the underlying electrochemical processes in cathode,
anode and electrolyte. The second part on the other hand has
focused on the most prominent computational approaches that
are available to model battery components on an atomistic
scale. Here, a large part of the review was spent on DFT,
a method which has become the work horse in many areas
of material science. As a significant part of today’s battery
research is concerned with the search for improved materi-
als, it is evident that DFT is an important tool for battery

research. Combining high accuracy with efficient computa-
tion make DFT well-suited for large scale screening studies
as well as for in depth investigations of particular systems,
such that the importance of DFT is likely to even further
increase. On the other hand, for thermodynamic information
DFT methods (including AIMD) are often still not capable
to treat the relevant length and timescales. For such prob-
lems, more coarse-grained methods like cluster expansion
based Monte Carlo or kinetic Monte Carlo approaches have
been discussed. While these methods are built on different
grounds, they are usually also based on input data from DFT.
Finally, classical molecular dynamics simulations based on
machine learning potentials have gained significance in re-
cent years. Such potentials, again based on DFT data, will
allow to study many problems that currently have not yet
been addressed in sufficient detail. For instance, fundamental
questions such as composition and formation of the famous
solid electrolyte interface (SEI) may be addressed by such an
approach. Consequently, a drastic increase of machine learn-
ing based molecular dynamics studies has to be expected, as
a combination of DFT and machine learning may be used to
study a large variety of otherwise intractable problems.
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