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Dynamic model of monovalent-divalent cation exchange in polyelectrolyte gels
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A multicomponent model that imposes conservation laws and constitutive relations for polymer chains,
water, and ions was investigated by determining the transient changes in a negatively charged gel exposed
to a solution containing both mono- and divalent cations. Association of ion exchange with gel volume is
achieved by imposing a linear relation between the polymer-solvent interaction parameter and concentration
of divalent cations adsorbed onto the polymer chains. Semiquantitative agreement with measurements made on
sodium polyacrylate gels is demonstrated in three aspects: (1) dynamics of gel swelling and deswelling, (2)
ion partitioning coefficient, and (3) effect of cross-link density. These results imply that the multicomponent
coarse-grained continuum modeling approach can be useful for quantitative predictions over macroscopic length
and timescales including the description of volume transitions exhibited by these systems.
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I. INTRODUCTION

Polyelectrolyte hydrogels are soft, complex media made of
charged cross-linked macromolecules, solvent, and counter-
and coions organized in clouds around the polymer chains.
The various competing forces (mechanical, electrical, os-
motic, and chemical) give rise to a rich behavior over multiple
time- and length scales [1]. A steep and reversible change
in volume can sometimes be observed in response to minute
changes of environmental conditions, such as temperature,
ionic composition, solvent quality, pH, and electric field [2].
This phenomenon was identified in living systems [3–5], and
is also widely used in various man-made applications, such as
sensors, actuators, and drug-delivery devices [6,7].

Many of these volume transitions occur at time- and length
scales that are typically larger than ∼1 millisecond and ∼1
micrometer, respectively [5,6]. Atomistic and coarse-grained
molecular dynamic (MD) models, while powerful and de-
tailed, are limited in their ability to be extended to the steady
state or equilibrium regimes needed to describe these pro-
cesses. The time- and length scales simulated by such MD
models are usually no more than ∼100 μs and ∼100 nm,
respectively, and require high-performance computing [8].
Continuum models, on the other hand, can describe such
systems over macroscopic time- and length scales with a lower
computational overhead. The mean-field simplification, how-
ever, comes at a price. Upon taking the continuum limit we
might disregard important properties or features of the system.
For instance, distinguishing the fluidlike characteristics of the
solvent vs the solidlike response of the polymer network.
Therefore, considerations must be given to the form of the
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conservation and constitutive laws that define the relationships
between and among the macroscopic variables of the system.
A promising continuum approach to model the dynamics of
gels interacting with their environment is the multicomponent
formalism, which distinctively treats the polymer network,
solvent, and ions as separate entities. These models are based
on traditional continuum-mechanics principles but maintain
certain distinct features for each component; e.g., separate
chemical potential expressions for the polymer network, sol-
vent, and ions [9–18].

In this paper we model an anionic polyelectrolyte hydro-
gel exposed to an ionic environment containing a mixture
of monovalent and divalent cations, a common situation
in multiple biological systems [5]. Many experiments have
been performed to characterize equilibrium properties of gels
exposed to different ionic environments, both in synthetic
[19–25] and biogels [26–29]. It was previously demonstrated
that the ionic environment influences multiple properties of
the system, including equilibrium gel volume [19,26], ion par-
titioning coefficient [5], electric potential difference [30,31],
elastic modulus of gel [32], mobility of solvent and ions
within the gel [33], and the mean interaction between the poly-
mer segments and solvent [20,34]. The latter implies that an
ion-dependent Flory interaction parameter plays an important
role in determining the equilibrium state of the system.

Indeed, a small change in the concentration of divalent
cations can lead to a steep transition in the equilibrium
state through the effect on the ion-dependent Flory inter-
action parameter [35,36]. However, in many applications,
including in biological systems, transient changes are just
as important as the steady-state behavior. Mucus, DNA, and
pectin are examples of negatively charged biopolymers un-
dergoing analog abrupt transitions when exposed to different
mono- and divalent cations, and their dynamic response to
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TABLE I. List of model variables and corresponding conservation laws [38].

Variable name Variable Equation description Equation number

Polymer volume fraction θn Polymer conservation of mass (S2)
Polymer velocity field vn Polymer conservation of momentum (S3)
Solvent volume fraction θs Solvent conservation of mass (S4)
Solvent velocity field vs Solvent conservation of momentum (S5)
Pressure p Volume-averaged incompressibility constraint (S6)
Concentration of adsorbed ion k bk Adsorbed ion conservation of mass (S7)
Concentration of free ion j c j Free ion conservation of mass (S8)
Electric potential field φe Electroneutrality constraint (S23)

the ionic environment is believed to play an important func-
tional role in vivo [5]. Furthermore, models with capabilities
for predicting both dynamic and equilibrium behaviors are
critical for describing the behavior of mechanochemical ac-
tuators and sensors, drug delivery systems, polymer-based
micro-electromechanical systems, and in various biomedi-
cal and tissue engineering applications [7]. However, only
few attempts have been made to connect added salt to the
polymer-solvent interaction parameter and the induced tran-
sient response of the polymer chains [37].

The purpose of this paper is to demonstrate that a relatively
simple multicomponent continuum model captures multi-
ple transient and equilibrium aspects—that are potentially
universal—of a polyelectrolyte gel model. The important fea-
ture in the model is a linear relation between the Flory interac-
tion parameter and concentration of adsorbed divalent cations
onto the polymer chains. We demonstrate that using this sim-
ple relation is sufficient to obtain semiquantitative results that
agree with measurements made on a polyelectrolyte gel model
(sodium polyacrylate). Compatibility is achieved in three as-
pects: (1) dynamics of gel swelling and deswelling, (2) ion
partitioning coefficient, and (3) effect of cross-link density.

II. MODEL DESCRIPTION

The model under consideration was originally developed
by Keener, Fogelson, and co-workers, and is described in
detail in the Supplemental Material, Sec. S1 [38] as well
as in Ref. [36]. In brief, the polyelectrolyte hydrogel is
treated as a multicomponent medium that includes the poly-
mer network, solvent, and small molecular ionic species. The
states of the polymer network and solvent are described by
their volume fraction and velocity fields, θn(�r, t ), vn(�r, t ) and
θs(�r, t ), vs(�r, t ), respectively [Eqs. (S1)–(S6)] [38] that ac-
count for the conservation of mass and momentum as well
as the volume-averaged incompressibility constraint]. A com-
mon assumption is that other particle species do not contribute
significantly to the local volume because they have a com-
paratively low concentration. The polymer building blocks
(monomers) are either neutral or negatively charged, while
the solvent is assumed to be electrically neutral. Counter- and
coions are described by concentration fields, c j (�r, t ). We use
a minimal Ansatz that includes hydrogen, hydroxide, sodium,
chloride, and calcium ions, j = H+, OH−, Na+, Cl−, Ca2+,
respectively. The interaction between the cationic species
(H+, Na+, Ca2+) and the polymer network is captured by
crudely dividing each ionic group into two subgroups: one

subgroup describing adsorbed ions that are strongly interact-
ing with charged monomers (bk , k = H, Na, Ca, C2, which
stand for HM, NaM, CaM+, CaM2, respectively, where C2
denotes the population of calcium ions paired with two ad-
sorbing monomers [39]), and the second subgroup describing
free ions that experience negligible interaction with the poly-
mer chains (c j). Although the mathematical formalism we use
(law of mass action, Eqs. (S7) and (S8) [38]) is typically asso-
ciated with chemical reaction kinetics, the adsorption process
considered here does not involve a chemical synthesis of the
ion and monomer. Rather, by adsorbed ions we mean ions
that are localized (on average) in a cloud around the polymer
chains (thickness is less than the effective Debye screening
length in the solution) [27]. Nevertheless, the mathematical
formalism of the law of mass action serves as a useful approx-
imation, which captures, for instance, the rate of exchange
between adsorbed and free ions. Variables of the system are
summarized in Table I along with the corresponding conser-
vation laws (Eqs. (S1)–(S8) and (S23) [38]).

Additional equations include constitutive relations for the
polymer network, solvent, and ions. In particular, the forces
acting on the polymer network are derived from the stress
tensor [Eq. (S9)] and from the free energy of the material.
The latter is described as a linear sum of the entropic, elas-
tic, short-range interactions, and electrostatic contributions
[Eqs. (S11)–(S15)]. The form of the entropic potential is de-
rived by a mean-field argument after counting configurations
of particles on a lattice. The original derivation of the model
[36] assumes that all particles (monomers, solvent, ions) can
be placed on the same lattice. However, even if we assume
that the monomers are of much larger size than the ions and
solvent molecules, the final entropy potential acting on the
system is unchanged [40].

The novel aspect of this model—which distinguishes it
from other multicomponent models [9–18]—is the assump-
tion that the phenomenological short-range polymer-solvent
interaction parameter, namely, the Flory parameter, is modi-
fied by adsorption of divalent cations onto the polymer chains.
An ion-dependent Flory parameter was previously demon-
strated in various polyelectrolyte gels [20,34]. However, the
detailed relation remains unclear. Following Keener, Fogel-
son, and colleagues [36,37,40] we consider the simplest,
namely, a linear dependence of Flory parameter on local con-
centration of adsorbed calcium ions:

χ (bC2) = χ0 + χ1(bC2), χ1 ∝ bC2. (1)

[See Eqs. (S17) and (S18) for more details.]
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FIG. 1. Polymer network volume fraction as a function of the 1D spatial coordinate x. (a) At initial state, the polymer charged groups are
neutralized with sodium ions and the solvent contains 40 mM NaCl, 0.3 mM CaCl2 at pH = 7. (b) Volume fraction profile of the polymer
network at a nonequilibrium instance (t/τw = 1.2). (c) Volume fraction of the polymer network profile at equilibrium (t/τw > 20). Model
parameters are listed in Sec. S3 of the Supplemental Material [38].

An elastic term was not considered in Keener and Fogel-
son’ previous works. Here we use the Flory-Rehner model,
which accounts for cross-linking between the polymer chains
to prevent infinite dilution [Eq. (S13)] [41]. The forces acting
on the solvent are described by its stress tensor [Eq. (S10)] and
entropic and short-range interaction expressions [Eq. (S20)].
Forces acting on the ions include entropy (diffusion), elec-
trostatic interactions [Eq. (S22)], and the ability of cations to
adsorb onto the polymer chains [Eqs. (S7) and (S8)].

The system of equations [Eqs. (S2)–(S8) and (S23)] is
solved in one spatial dimension using the finite-difference
numerical technique, which is described in detail in Ref. [37].
In brief, a closed container is represented by imposing no-flux
boundary conditions for all species and zero Dirichlet condi-
tions for both velocity fields. At each time step we solved the
equations in the following order:

(1) Given ionic concentrations (c j and bk , j = H+, Na+,

Ca2+, OH−, Cl− and k = H, Na, Ca, C2, electric potential
gradient (∂xφe), and volume fractions (θa, a = n, s), we eval-
uate the chemical potential gradients ∂xμa and ∂xμ j .

(2) Given the chemical potential gradients (∂xμa, ∂xμ j),
we solve the force-balance equations to determine the network
and solvent velocities (va).

(3) For the respective velocity fields, we solve the conti-
nuity equations and update the solvent and network volume
fractions (θa).

(4) The transport velocities and volume fractions (va

and θa) are used to evolve the ionic concentrations while
simultaneously solving for an electric potential gradient
(c j, bk, ∂xφe).

A dimensionless form of the equations is given in the
Supplemental Material, Sec. S2 [38], along with characteris-
tic length- and timescales, and dimensionless variables. The
23 dimensionless parameters of the model are described in
the Supplemental Material, Sec. S3 [38]. All the parameters
describe quantities that have well-defined physical meaning
and can be independently measured, in principle. They are re-
quired for a realistic treatment of a system of this complexity,
and generally appear in other multicomponent models [9–18].
The list of parameters includes diffusion coefficients for five
ionic species, adsorption and desorption rates for three types
of cations, viscosity of solvent and polymer network, drag
coefficient between the solvent and network, elastic modulus

of polymer network, average chain length, fraction of charged
sites on polymer chains, coordination number, four parame-
ters governing the short-range pairwise interaction energies,
and system size (Table S1 in the Supplemental Material [38]).

Important length scales are the averaged particle size, ν1/3

(ν is the particle volume), the size of the gel, � � ν1/3, and
the total size of the system (gel+bath), L. Relevant timescales
include the characteristic time of diffusion of the solvent,
τw = �2

Dw
, the characteristic time of ion adsorption τk+

j
= 1

k+
j c j

,

and characteristic time of ion desorption τk−
j

= 1
k−

j
. Here, Dw

is the solvent diffusion coefficient, and k+
j and k−

j are the
adsorption and desorption coefficients of ion j to the polymer
chain, respectively.

III. RESULTS AND DISCUSSION

To illustrate the competition between mono- and divalent
cations and how their relative concentrations affect the dy-
namics of gel swelling, we numerically solve the dimension-
less model equations [Eqs. (S29)–(S32), (S41)–(S44) [38])
for a one-dimensional partially dry gel immersed in a solution
containing sodium, calcium, and chloride ions with a specific
pH. Figure 1(a) shows the initial profile of the polymer net-
work volume fraction as a function of the spatial coordinate
x normalized by the length of the total domain, L. The region
with appreciable network fraction (θn = 0.5) at the left side of
the domain (x/L < 0.15) represents the initial gel region. The
rest of the domain (0.15 < x/L) is the external bath solution,
containing 0.3 mM CaCl2, 40 mM NaCl, and pH = 7.

As time evolves, solvent and ions diffuse in and out of
the gel, leading to gel swelling. Figure 2(b) depicts a typical
profile of θn at an intermediate time when the system is not
in equilibrium with its environment. For a 1-μm gel size,
τW ∼ 0.1−1 s, while for a 1-mm gel size τW ∼10−100 min.
After sufficient time ( t

τW
> 20) the system effectively reaches

equilibrium. An equilibrium profile of θn is shown in Fig. 1(c).
Movie S1 shows the development of θn(x, t ) from initial
state until an equilibrium is reached. It should be noted
that although the movie shows oscillations at the gel-solvent
interface, these are not physical oscillations. Rather, this
is a well-known numerical artifact, arising from using a
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FIG. 2. (a) Degree of swelling as a function of time for different initial CaCl2 concentrations in the solution. Model parameters are listed
in Sec. S3 of the Supplemental Material [38]. (b) Calculation of the equilibrium degree of swelling as a function of initial CaCl2 in the salt
solution. Gray area indicates the region of volume transition. (c) Measured data showing the degree of swelling of NaPA gels as a function of
dimensionless time. (d) Equilibrium degree of swelling of NaPA gels measured after 5 days ( t

τw
= 360).

Lax-Wendroff second-order discretization of advection on
problems that exhibit sharp interfaces [42].

The degree of swelling of the gel is defined as the ratio of
the instantaneous gel volume to its volume in the dry state. For
a 1D system we approximate the gel volume by calculating its
cubed size at each instance of time, an approximation based on
length-scale argument. Since the left edge of the cell is fixed
at x = 0, the gel size is calculated by identifying its right edge,
xedge(t ); i.e., the point where θn decreases below a certain
value of choice (denoted as θ crit

n ). Here, we use the condition
θ crit

n = 0.1 to estimate the right edge of the gel. For instance,
in Fig. 1(a) the right edge of the gel is found at xedge/L = 0.15,
while in Fig. 1(c) it is located at xedge/L ≈ 0.42. The gel vol-
ume in the dry state is estimated by calculating its boundary
if the entire volume of gel was at volume fraction 1. For the
scenario considered in Fig. 1, xdry

edge/L = 0.075. Accordingly,
the instantaneous degree of swelling of the gel is calculated
using the relation:

V

V0
≈

[
xedge(t )

xdry
edge

]3

. (2)

Figure 2(a) shows the estimated degree of swelling of
the gel as a function of time for different values of initial
CaCl2 concentration in the external bath solution. Below a
certain calcium concentration, cinit

Ca � c0 (≈ 0.5 mM in the
given example) the gel swells until it reaches equilibrium.
Gel swelling results from the balance of forces, which favors
network expansion at low adsorbed calcium concentration.
The characteristic timescale of gel swelling is τw.

A significantly different swelling response is observed
when the initial CaCl2 concentration in the external bath so-

lution exceeds c0. In this case, after a transient time of gel
swelling the gel gradually deswells until reaching an equi-
librium state. For intermediate values, c0 < cinit

Ca < c1 (c1 =
1.5 mM in the above example), the equilibrium state of
the deswollen gel is not fully collapsed, and for c1 � cinit

Ca
the gel expels most of the water and collapses almost com-
pletely (degree of swelling lower than 5). This is shown
in Fig. 2(a) and Movie S2. For high calcium concentration
(1.9 mM � cinit

Ca in the above example) we were unable to
reach equilibrium because the solvent fraction within the gel
approached 0. In such a scenario, the equations of motion
become nearly singular. Small amounts of numerical error can
lead to θs<0, which causes a severe numerical instability. This
is a well-known limitation of Eulerian numerical treatments of
two-phase models [43]. Furthermore, the apparent unphysical
decrease in polymer volume fraction at x = 0 arises because
the simulation is not resolving the large potential gradients
between the first few grid points near the boundary. Because
of the no-flux boundary condition at the left, the collapse
forces at the gel interior (two grid points from the boundary)
pull the network from the grid point immediately next to
the boundary into the second grid point. More sophisticated
numerical treatments could potentially avoid these issues.

The deswelling process is attributed to the adsorption of
calcium ions onto the polyelectrolyte chains which modifies
the Flory interaction parameter. The rate of this process de-
pends on the adsorption coefficient k+

Ca, associated with a
characteristic timescale τCa = 1

k+
Cacinit

Ca
. Indeed, the duration of

the deswelling process decreases as the initial concentration
of calcium ions in the solution increases [Fig. 2(a)]. In the
present work τCa∼(1−10)τW .
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FIG. 3. (a) Transient change of the Flory-like interaction parameter averaged within the gel interior (x/L<0.0125) as a function of time for
multiple values of the initial calcium ion concentration in the external bath solution, cCa. (b) Equilibrium values of the interaction parameter
as a function of cCa. Gray region indicates the region of volume transition. Dashed black line is a linear fit to data: χ̄ = 2.9[CaCl2]2 +
2.34[CaCl2]−11.48.

The equilibrium degree of swelling was calculated at t
τW

=
300, and is shown as a function of the initial CaCl2 concentra-
tion in Fig. 2(b). A gradual decrease in the degree of swelling
is obtained for cinit

Ca < c0. Between c0 < cinit
Ca < c1, a steeper

decrease in the degree of swelling is found. At c1 < cinit
Ca the

gel is fully collapsed.
Figure 2(c) shows swelling measurements made on cubic

sodium polyacrylate (NaPA) gels starting from an initial dry
state with an edge size of 1–1.5 mm3. Gel preparation and
measurement process are described in detail in Ref. [24]. The
gel was immersed in a solution containing 40 mM NaCl, a
varying amount of CaCl2, and pH = 5.5. Here, q is estimated
by measuring the gel mass normalized by the mass of the dry
gel, which is approximately the degree of swelling of the gel,
V/V0. Time axis is normalized using τW = 20 min, estimated
from the initial gel size and water diffusion coefficient. The
resemblance of Figs. 2(a) and 2(c) is evident by the qualitative
gel response (significant swelling followed by deswelling),
and the similarity of the order of magnitudes of both the
degree of swelling and time. Figure 2(d) shows the equi-
librium value of NaPA gels measured after 5 d ( t

τW
= 360).

The volume transition model calculation resembles the exper-
imental data in both shape and scale. Comparable equilibrium
response was found also in biogels made of DNA chains
[28]. This is an indication that qualitatively similar structural
features can be identified in various polymer systems despite
important differences, such as chain flexibility and chemical
composition.

To gain a deeper understanding of the swelling process,
we investigate the dynamic behavior of the Flory interac-
tion parameter. The dimensionless parameter χ (x, t ) describes
the degree of segregation between the polymer network and
solvent and depends linearly on the local concentration of ad-
sorbed calcium ions, bC2(x, t ) [Eq. (S17)] [36,37]. To analyze
its dynamics during the swelling/deswelling processes, we
calculate the mean value of the interaction parameter within
the gel, χ̄ = 〈χ〉 x

L <0.0125 = 1
0.0125L

∫ 0.0125L
0 χdx. Figure 3(a)

shows the evolution of χ̄ over time for different values of the
initial calcium concentration in the external bath solution. For
cinit

Ca < c1, the interaction parameter remains smaller than the
mean-field prediction of the theta solvent (χθ = 1

2 ) through
the entire gel swelling process. By adsorbing calcium ions

onto the polymer network the effective interaction parameter
increases, leading to gel deswelling. Once 1

2 < χ̄ , the effective
interactions between the gel segments are as if they are in poor
solvent conditions, leading to phase separation between the
polymer network and solvent. This expected behavior matches
the results of Fig. 2(a) when c1 < cinit

Ca . At high concentration
of calcium in the external bath solution (1.9 mM � cinit

Ca ) the
calculation did not reach an equilibrium value of χ̄ because of
the numerical instability arising when θs approaches 0.

Figure 3(b) plots the equilibrium value of the aver-
age interaction parameter as a function of cinit

Ca (plotted
for cinit

Ca < 1.9 mM). A quadratic fit to data [dashed black
line in Fig. 3(b)] yields χ̄ = A2(cinit

Ca )2 + A1cinit
Ca + A0 =

2.9(cinit
Ca )2 + 2.34cinit

Ca − 11.48. The fit excludes results at high
calcium concentration that did not reach equilibrium. The
observed increase of interaction parameter is consistent with
previous measurements reported for NaPA gels, where anal-
ysis of osmotic pressure measurements indicated that the
Flory-Huggins interaction parameter exhibits a continuous
increase with increasing calcium concentration in the external
bath solution [24]. An analogy may be drawn from the typ-
ical dependence of the interaction parameter on temperature,
χ = A

T + B, where calcium ion concentration replaces the role
of inverse temperature [25].

We now turn to the analysis of the ion partitioning coeffi-
cient of the gel in the multicomponent fluid model. The ion
partitioning coefficient is defined as the ratio of ion concen-
trations within the gel interior to the external bath solution

Pj = cgel
j

csol
j

. (3)

We define the calcium ion concentration within the gel to
be a spatial average over its entire domain (cgel

Ca = 〈cCa〉x<xedge ).
Similarly, we estimate the calcium concentration within the
solvent by averaging over a region well away from the gel
(csol

Ca = 〈cCa〉0.99< x
L
). The calcium ion partition function is

calculated and plotted as a function of time in Fig. 4(a)
for different values of initial calcium concentration in the
external bath solution. Color code follows the legend of
Fig. 3(a). Interestingly, the calcium partition reaches an
equilibrium value later than the degree of swelling. For

035602-5



MUSSEL, LEWIS, BASSER, AND HORKAY PHYSICAL REVIEW MATERIALS 6, 035602 (2022)

FIG. 4. (a) Partition of calcium ions as a function of time for
different values of initial concentration of calcium in the external
bath solution [color code similar to Figs. 2(a) and 3(a)]. (b) Calcium

ion partition as a function of KCa(= k−
Ca

k+
Ca

) upon starting with 0.5 mM

CaCl2 in the external bath solution (other parameters are similar
to previous graphs). (c) Calcium (circles) and sodium (triangles)
partition at last time step of calculation (approximately “equilib-
rium”). (d) Ion partition coefficient measured for NaPA gels brought
in equilibrium with an aqueous solution at pH = 5.5, containing 40
mM NaCl, and different concentrations of CaCl2 [5].

example, at cinit
Ca � 0.9 mM the adsorption of calcium equi-

librates at (80–100)t/τW while the degree of swelling
equilibrates already at 10–20 t/τW . For higher calcium ion
concentrations (1.1 mM < cinit

Ca ) longer time is needed. This
observation may be explained by the slower kinetic process of
calcium ion adsorption as compared to solvent diffusion.

Movies S3 and S4 display the time evolution of free and
adsorbed sodium and calcium ions in the system upon starting
with initial conditions of 0.3 and 1.7 mM CaCl2 in the external
bath solution, respectively. To capture the weak attraction of
monovalent cations to the polymer chains, we use relatively
high desorption rate of the sodium ions and relatively low ad-
sorption rate. Therefore, as solvent diffuses into the polymer
network sodium ions are freed from the polymer attraction
almost instantaneously (normalized timescale used in the sim-

ulation is τ−
Na
τw

∼10−4). Subsequently only the calcium ions are
adsorbed onto the polymer chains at a rate determined by the
calcium adsorption coefficient. Electroneutrality is, of course,
always satisfied.

The ion partition value is strongly influenced by the
equilibrium adsorption coefficient Kj = k−

j /k+
j . Figure 4(b)

demonstrates a linear dependence between KCa and cgel
Ca

csol
Ca

. Thus,
we may be able to estimate the value of the equilibrium
adsorption coefficient by measuring the partitioning response
of the gel. Figure 4(c) compares the calcium (circles) and
sodium (triangles) partitions at the final time step of calcu-
lation, which represents the equilibrium state for the swollen
gels. Both cations’ partitioning coefficients increase monoton-
ically upon increasing the concentration of calcium ions in

FIG. 5. (a) Model calculation of the degree of swelling as a func-
tion of initial calcium ion concentration in the external bath solution
for different values of the elastic modulus G0. k−

Ca = 10−2 was used.
Other parameters are the same as in Fig. 2. (b) Measurement of
the degree of swelling as a function of calcium ion concentration
in NaPA gels prepared with different cross-link densities. Average
number of monomer units per cross-linker is 160, 320, 800, and
1600, respectively.

the external bath solution. Sodium ion partitioning ranges be-
tween 1 and 10, while calcium ion partitioning ranges between
101 and 103. Figure 4(d) shows the ion partitioning measured
for NaPA gels [5]. The trend of monotonic increase and order
of magnitude are captured by the model calculation. For larger
concentration of calcium ions (larger than c1), the calcium
partitioning seems to saturate or decrease slightly. Unfortu-
nately, using the model we were unable to obtain equilibrium
values for the collapsed phase in the regime of high calcium
concentration. Thus, we can only conjecture that this behavior
might be explained by competing trends between the capacity
of the gel to adsorb calcium ions and increasing the calcium
concentration in the external bath solution (the denominator
of PCa).

As a final demonstration of the model capabilities, we
study the effect of increasing the elastic modulus on the equi-
librium degree of swelling. This is an example how the model
may be used to predict effects of different internal and en-
vironmental parameters. Figure 5(a) indicates that increasing
the elastic modulus causes a monotonic decrease in the degree
of swelling of gels that are not completely collapsed (cCa �
c1), with no observable effect on the transition region, namely,
the values of c0 and c1. Figure 5(b) shows measurements made
on NaPA gels prepared with different cross-link densities [25].
According to the classical rubber elasticity theory the elastic
constant, G0, is linearly proportional to the cross-link density
[44]. The effect of the elastic modifications on the equilibrium
degree of swelling according to the model is qualitatively
comparable to the measurements.

IV. CONCLUSIONS

We have numerically investigated the predictions of a mul-
ticomponent fluid model describing the transient response of
an anionic (i.e., negatively charged) polyelectrolyte hydrogel
exposed to an ionic environment consisting of monovalent
and divalent cations. This model is based on principles that
have a fundamental physical interpretation, including the
conservation of mass and momentum, electroneutrality, Flory-
Rehner theory of mixing cross-linked polymers and solvent
molecules, Nernst-Planck model, and the law of mass action
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[36]. Our investigation sheds light on the coupled dynam-
ics of the system components in a realistic nonequilibrium
scenario, which is closely connected and complements exper-
imental work made on NaPA gels. For example, it is difficult
to observe the dynamics of ion competition and adsorption
onto the polymer chains with even the most sensitive detec-
tors. However, the ionic behavior and its effect on the gel
system—particularly on the Flory interaction parameter—can
be described in detail in computational simulation.

In turn, the experimental system provides crucial data (e.g.,
state diagrams), which are needed to keep the simulation as
close as possible to reality. For example, in this work we used
the simplest dependence of the interaction parameter χ on
local concentration of adsorbed calcium ions. However, based
on past experimental work the ionic dependence is believed to
be more complex [24,34]. The modular nature of the model
allows replacing a particular expression [e.g., Eqs. (S17) and
(S18)] with a more accurate one, e.g., as extracted from
measurements. Thus, the model can become more precise by
improving our understanding of certain constitutive relations.
In particular, the Flory interaction parameter is modified by all
types of ions (including monovalent cations) and not only by
calcium ions [45]. Testing the constitutive model, namely, the
linear dependence of the Flory parameter on the concentration
of absorbed ions, is crucial. Although it is difficult to directly
probe this behavior, molecular dynamics simulations may be
useful in predicting a more realistic relation between adsorbed
ion concentration and the Flory interaction parameter [46].

While a continuum model of polymer-solvent-ion inter-
actions does not provide the atomic or molecular specificity
of an MD model, these are limited to describing processes
occurring over nanometer length scales and at timescales
ranging from picoseconds to nanoseconds. Their utility is lim-
ited when modeling processes like swelling and deswelling,
which can occur over macroscopic length scales and over
timescales ranging from milliseconds to hours to days. Us-
ing well-established polymer science concepts and explicitly
imposing conservation laws leads to a satisfying compromise
that is grounded in physics and polymer chemistry, but well
suited to modeling water-ion-gel behavior at relevant scales.
Of particular interest is the application of polymer science to
biological polyelectrolytes at physiological ionic conditions,
which is often not considered.

In the present work we focused on two important charac-
teristic timescales: water diffusion and calcium ion adsorption
onto the anionic polymer chains. While the former is well
known, experimental data are scarce regarding the latter. Our
estimation that at physiological conditions the adsorption rate
of calcium ions acts at similar order of magnitude as the
water diffusion leads to the prediction that partially dry gels
swell significantly when exposed to solution containing a

high concentration of divalent ions, and only subsequently
collapse due to the divalent cation adsorption ([Fig. 1(a)]. This
counterintuitive response is indeed validated experimentally
[Fig. 2(c)].

Another important characteristic timescale—which was
not the focus of this work—is the adsorption of hydrogen (or
hydronium) ions onto the polymer chains. Hydrogen ions play
an interesting role when competing with calcium ions—both
are prone for adsorption and charge screening, e.g., in gas-
tric mucus [37]—that would be worth studying in the future.
Another important timescale determines the reorganization of
ions due to the electrical force and leads to electroneutrality.
This characteristic time is determined from Ampère’s and
Gauss’s laws and is ∼10 ns; i.e., the ions are very quickly
equilibrating in response to structural changes of the polymer
chains, and as long as we are not modeling behaviors in the
MHz regime, this approximation is expected to hold.

Despite the simplifying assumptions associated with the
mean-field limit, the model requires the specification of four
physical values [Eq. (S24)] and 23 dimensionless parameters
(Table S1). While some of the model parameters are either
known (ion diffusion coefficient) or can be reasonably esti-
mated (average length of chains, fluid viscosity), the value
of several parameters is generally not known a priori (e.g.,
solvent-network drag coefficient, ion adsorption and desorp-
tion coefficients). Thus, comparison of the model predictions
to both kinetic and equilibrium swelling data can provide
a good test to estimate the model parameters. For example,
using a realistic value of the elastic modulus (≈ 10–100 kPa
for NaPA gels) swollen gels fill the entire simulated space
(L). Chain hydrophobicity, chain flexibility, chemical details
(including specific interactions), etc., are critically impor-
tant factors defining the interaction between polyelectrolyte
chains, ions, and solvent molecules. These properties also
affect the value of the elastic modulus [35]. Unfortunately,
existing polyelectrolyte theories do not provide a reasonable
estimate of the relative contributions of the above factors.
It is likely that using more accurate values of other model
parameters would resolve this apparent discrepancy.
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