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Influence of stress correlations on dislocation glide in random alloys
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Solute strengthening is an important mechanism that contributes to improving the mechanical properties
of alloys and particularly the recent generations of concentrated alloys. The stress field emerging from an
elastic model of a random solid solution displays strongly anisotropic correlations that interact differently with
dislocations of different characters. In the present paper, we investigate the depinning transition of edge and
screw dislocations evolving in such a correlated stress environment using a dislocation dynamics numerical
model. We find that edge dislocations are only weakly affected by the correlations, while screw dislocations are
strongly influenced, showing a smaller critical stress, which increases with the amplitude of the stress noise with
a larger exponent than the edge dislocation. The numerical results are compared with existing statistical models
of solute strengthening, allowing to discuss critically their assumptions.
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I. INTRODUCTION

Solid solution strengthening largely contributes to improv-
ing the mechanical properties of alloys [1]. The random
distribution of solute elements raises obstacles for disloca-
tion glide, therefore increasing the material’s yield stress.
Highly-concentrated alloys such as high entropy alloys, have
attracted an increasing attention over the past decade and take
full advantage of solute strengthening to reach exceptional
mechanical properties [2,3]. Considering the large composi-
tion space to explore, designing and optimizing these alloys
require predictive and reliable models of solute strengthen-
ing that need to rely on well-controlled assumptions [4–6].
Atomistic calculations such as molecular dynamics provide an
informative tool to investigate dislocation/solute interactions
[7–11]. However, these simulations remain limited by the
availability of reliable interatomic potentials and by intrinsic
limitations in terms of length and time scales.

Solid solution strengthening is best approached at the
mesoscale considering the glide of an effectively infinite
dislocation in a random distribution of solutes. This con-
figuration is at the basis of the historical models of solute
strengthening, which introduced a statistical treatment of
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the dislocation/solute interactions. In the Friedel-Fleischer
approach, the dislocation bows out between well-separated
obstacles [12,13], limiting the model to the dilute regime. The
Nabarro-Mott-Labusch approach, developed through a series
of articles [14–16], proposes a statistical treatment valid for
concentrated solid solutions, by summing the contribution of
all solutes interacting with a dislocation segment.

In recent contributions [17,18], the group of William
Curtin has revisited the Nabarro-Mott-Labusch statistical
treatment using the interaction energy between a straight
dislocation and solute atoms instead of the force profile con-
sidered in the original approaches. A strength of this more
recent model is that the interaction energy can be obtained
either analytically if the solutes are described as elastic in-
clusions, or numerically from atomistic calculations (either
relying on empirical potentials or ab initio) to incorporate
short-ranged nonlinear core effects in addition to the long-
range elastic interactions. This approach has been applied to
various systems and yield quantitative estimates in both the
dilute and concentrated limits [17–20].

Solid solution strengthening is also connected to the more
theoretical literature on the depinning transition [21]. In-
deed a dislocation gliding through a distribution of solute
atoms can be seen as an elastic line evolving in a random
quenched noise, a statistical physics framework that finds a
wide range of applications, such as surface growth [22], fluid
flow in porous media [23], or the propagation of a crack
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front in brittle fracture [24]. In most studies, the authors
consider a quenched noise either fully uncorrelated or with
short-ranged correlations [25–31]. Also, long-range elastic
interactions along the line are often neglected by using a
line tension approximation for the line stiffness. In such a
case, i.e., a one-dimensional interface evolving in an isotropic
and short-ranged correlated noise, a simple scaling argument
originating from Larkin [32,33] reveals a characteristic length
scale and deduce that the critical driving force to unpin the
interface is proportional to the variance of the underlying
noise elevated to the 2/3 power, a result consistent with the
Nabarro-Mott-Labusch approach that also relies on a single
characteristic length scale [15,16,18,19]. The spatial corre-
lations of the underlying noise are known to influence the
depinning transition [24,34], although they have been mostly
studied in the context of nonequilibrium surface growth phe-
nomena and kinetic roughening [35–39]. We note that the
depinning transition framework has been applied to the study
of dislocations, but using isotropically short-ranged correlated
stress environments that lack physical justification [33,40].

In previous contributions [41,42], we investigated the
statistical properties of the stress field emerging from con-

centrated random solid solutions. Atoms were represented as
dilatation and compression centers in an average isotropic
elastic medium. We point out that this elastic model only ac-
counts for atomic size mismatch and does not incorporate the
potential role of spatially varying elastic constants or chemical
interactions between species that may also contribute to so-
lute strengthening. The atomic size differences were modeled
with eigenstrains distributed around the lattice positions with
a small-scale regularization parameter a, which was found
close to 1 Å to match atomistic calculations [41]. Within the
linear elasticity theory, the variance of both the resolved shear
stress acting on a dislocation 〈τ 2

p 〉 and of the atomic displace-
ments 〈u2〉 (the so-called lattice distortion [43]), were shown
proportional to the variance of the eigenstrains defined as
〈ε2〉 = ∑

i ciε
2
i (with ci and εi, respectively the concentration

and eigenstrain of element i). This quantity reduces to the
square of the classical size mismatch parameter, δ2 [44], if
the alloy satisfies Vegard’s law: 〈τ 2

p 〉 ∼ 〈u2〉 ∼ ∑
i ciε

2
i ∼ δ2

[41]. More strikingly, we demonstrated in Ref. [42] that the
shear stress field in the glide plane of a dislocation displays
anisotropic correlations, expressed in polar coordinates as
�(d, θ ) = �L(d ) sin2(θ ) + �T (d ) cos2(θ ), where
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We note that, in contrast to the convention of Ref. [42],
�L and �T denote here normalized correlation functions, i.e.,
with �L(0) = �T (0) = 1. In the above equations, �L is the
autocorrelation of the shear stress field in the direction of the
shear, i.e., along the principal axis parallel to the dislocation
Burgers vector, while �T denotes the autocorrelation in the
transverse direction perpendicular to the Burgers vector. Both
functions, as well as the resulting two-dimensional autocorre-
lation map are shown in Fig. 1(a). Correlations are strongly
anisotropic, with the transverse correlations being uniformly
positive, while the longitudinal correlations are negative at
long range. We also note that

∫ +∞
−∞ �L(x)dx = 0, the physical

interpretation of which will be discussed. Finally, we highlight
the power-law behavior of the correlations at long distance:
for d � a, 2�T (d ) = −�L(d ) ∼ 1

d3 . This scaling is expected
for a random isotropic medium [45] but differs from the
isotropic short-ranged correlations generally assumed in the
literature as noted above.

Since the depinning transition is known to depend on the
correlations of the underlying structural noise, it becomes of
upmost importance to evaluate the effect on dislocation glide
of the anisotropic correlations evidenced in random alloys.
Moreover, since edge and screw dislocations lie respectively
mostly along the transverse and longitudinal directions, one
can expect a different effect of the correlations on both dis-
location characters. As illustrated in Figs. 1(b) and 1(c),
we have used an elastic model and performed dislocation
dynamics simulations for both edge and screw dislocations

in correlated random stress environments, as well as in an
isotropic uncorrelated noise as considered previously in the
literature. The simulations are performed in the limit of zero
temperature by increasing the applied stress quasistatically
and using a quenched noise. We thus assume in particular
that the diffusional time of the solutes is very large compared
to the glide time of the dislocations. We find that the edge
dislocation is not significantly affected by the correlations,
with a critical shear stress showing a 2/3-exponent indepen-
dently of whether long-range elasticity or a simple line tension
approximation are used to represent the dislocation energetics.
However, the screw dislocation follows a different behav-
ior, with a lower critical shear stress, which increases with
the noise amplitude with a larger exponent. The numerical
simulations are analyzed using both the classical force-based
model developed by Larkin [32] and the more recent energy-
based model developed in Curtin’s group [17,18]. We will see
that, while both models reproduce the 2/3 exponent of the
edge dislocation, they fail to reproduce the greater exponent
of the screw dislocation. The hypotheses and approximations
of both models are critically discussed.

II. DISLOCATION MODELING

The dislocation is represented by an L-periodic time-
dependent function h(x, t ) (x is the coordinate along the
dislocation direction and t the time) gliding in a periodic envi-
ronment of dimensions L × L (see Fig. 2). In the following, y
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FIG. 1. Anisotropy of shear stress autocorrelations: (a) 2D auto-
correlation function of the resolved shear stress acting in the glide
plane of a dislocation of Burgers vector b. The blue and red lines
represent the correlation functions along the principal axes, parallel
[�L , Eq. (1)] and perpendicular [�T , Eq. (2)] to b. (b),(c) Examples
of edge and screw dislocations relaxed in random stress fields pre-
senting the anisotropic correlations depicted in panel (a).

and z respectively denote the glide direction and the normal to
the glide plane. We describe its dynamics using a dissipative
equation of motion:

B∂t h(x, t ) = −δE [h]

δh
+ bτp(x, h(x, t )) + bτa, (3)

where B is a drag coefficient characteristic of the viscous
motion of the dislocation and b is the norm of dislocation

FIG. 2. Simulation setup for a dislocation gliding in a square
periodic cell of length L = 400 Å.

Burgers vector. The right-hand side of Eq. (3) contains the
forces acting on the dislocation: (i) the self-force, expressed as
the functional derivative of the dislocation self-energy E with
respect to the dislocation height, (ii) the pinning force due to
the random stress field, i.e., the Peach-Koehler force generated
by the shear stress due to the solutes at the dislocation position
τp(x, h(x, t )), and (iii) the Peach-Koehler force due to the
external applied stress τa. We discuss below how the forces
(i) and (ii) are computed numerically.

A. Equation of motion in Fourier space and dislocation
self-energy

The dislocation self-energy E [h] is written as a functional
of its height h and can account for long-range elastic inter-
actions characteristic of dislocations using the nonsingular
dislocation theory of Cai et al. [46]. It allows to regularize the
divergence of elastic fields at the dislocation core by spreading
the Burgers vector in space over a small distance aNS . Using
this dislocation model, it has been shown in Ref. [47] that
in the limit of small perturbation |∂xh| � 1, E [h] can be
expressed analytically as a function of the Fourier amplitudes
of h, such that, in Fourier space, Eq. (3) becomes a set of
coupled differential equations:

B∂t ĥ(k) = −	(k)k2ĥ(k) + b̂τp[h](k) + bτaδ(k), (4)

where k denotes the wave vector and f̂ (k) are the Fourier
amplitude of f (x). From this equation, we see that long-range
elasticity is simply incorporated as a k-dependent line tension
	(k), which is expressed as follows for edge and screw dislo-
cations (see Ref. [47] for details):

	e(k̄e) = 	co
e + μb2

2π (1 − ν)k̄2
e

[
−1 − νk̄2

e K0(k̄e) − k̄eK1(k̄e)

(
1 − k̄2

e (1 − ν)

2

)
+ k̄eK2(k̄e)

]
, (5)

	s(k̄s) = 	co
s + μb2

2π (1 − ν)k̄2
s

[
−2(1 − ν) + 2k̄2

s K0(k̄s) + (3 − ν)k̄sK1(k̄s) − 1 + ν

2
k̄2

s K2(k̄s)

]
, (6)
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TABLE I. Parameters used to model a Al50Mg50 alloy. The non-
singular parameters and core line tension were determined for edge
and screw dislocations in pure Al in Ref. [47]. The spreading pa-
rameter a and noise variance 〈τ 2

p 〉 were determined for Al50Mg50 in
Ref. [41].

Symbol Value Unit

ālat 4.282 Å
μ 20.7 GPa
ν 0.331
〈τ 2

p 〉 0.6114 GPa2

a 1.0355 Å
as

NS 3.34 Å
ae

NS 5.60 Å
	co

s 0.114 eV/Å
	co

e 0.053 eV/Å
	s (LT) 0.3424 eV/Å
	e (LT) 0.1296 eV/Å
�x 0.5 Å

where k̄s = kas
NS and k̄e = kae

NS are dimensionless wave vec-
tors normalized by the regularization length of the nonsingular
theory [46], which we assume character dependent. K0, K1,
and K3 are Bessel functions of the second kind and μ and
ν denote the Lamé elastic parameters of the isotropic elastic
medium. These expressions translate the fact that the edge and
screw dislocations become stiffer on longer wave lengths. For
both edge and screw dislocations, the core line tensions 	co

s
and 	co

e and the nonsingular parameters as
NS and ae

NS have been
determined from atomistic calculations in the case of pure Al
using the capillary fluctuation method [47]. Their numerical
values are given in Table I.

The dislocation model might be simplified and long-range
elasticity may be neglected by using a line tension approx-
imation. With this approximation, the self-force of Eq. (3)
reduces to − δE [h]

δh = −	 ∂2h
∂x2 . In Fourier space, this translates

into Eq. (4) where 	 is now a constant independent of the
wave vector k. To determine the specific values of the line
tension for the screw and edge characters, we use Eqs. (5) and
(6) and chose 	 = 	(k0) where k0 corresponds to a typical
wavelength of 100 Å. The corresponding values are also given
in Table I.

B. Correlated noise

To generate a correlated structural noise τp(x, y), we dis-
cretize space on a regular square grid of size N × N with
a spacing �x = L/N . In practice, all simulations were per-
formed with �x = 0.5 Å 	 a/2, which is small enough to
describe the spatial correlations of the stress field expressed
in Eqs. (1) and (2). The correlated noise is generated on the
grid using a spectral method presented in Refs. [48,49] and
outlined below.

Based on the microelastic model developed in
Refs. [41,42], the autocorrelation of a shear stress component
τmn (m 
= n) is expressed in Fourier space for a system of

FIG. 3. Longitudinal and transverse correlations obtained from
the spectral noise generator (symbols) and compared to the analytical
expressions of Eqs. (1) and (2) shown with continuous and dash line
respectively.

dimensions Lx, Ly, and Lz as

�̂mn(kx, ky, kz ) = 120π3/2a3

LxLyLz

k2
mk2

n

k4 e−a2k2

. (7)

The random amplitude of Fourier modes are then generated as

R̂(kx, ky, kz ) =
√

�̂mn(kx, ky, kz )

2
(Nk + iMk ), (8)

where Nk and Mk are Gaussian random variables with mean 0
and standard deviation 1. As shown in Refs. [48,49], the in-
verse Fourier transform of the above field follows a Gaussian
distribution of variance 1 and appropriate correlations in 3D.

Multiplied by
√

〈τ 2
p 〉, this field yields the quenched noise to

be used in the simulations, with values between grid points
obtained from quadratic interpolations.

A 3D field is needed with the nonsingular theory because
the dislocation core is spread in 3D (see below). We choose
the same grid spacing �x and a size Lz = 64 Å along the
z direction, which is much larger than the regularizations
parameter a and aNS , and yields correlations representative
of an infinite system along the z direction. With the line
tension approximation, only the 2D field in the dislocation
glide plane is needed. We can then either use a slab of the 3D
field at constant z or perform the inverse Fourier transform of
Eq. (7) in the z direction beforehand, considering an infinite
system in this direction [see Eq. (A3)], in order to generate
the appropriate correlations directly in 2D. The random stress
environments obtained with both 2D and 3D methods are
statistically equivalent.

Figure 3 displays the correlations of the noise generated
numerically with a comparison to the analytical expressions
of Eqs. (1) and (2). The perfect agreement demonstrates the
capability of the spectral method to generate correlated noises.
Two realizations of the 2D random stress field are shown
as illustrations in Figs. 1(b) and 1(c). The anisotropy of the
stress field, inherited from the anisotropy of the correlations,
is clearly visible in these figures with a succession of “moun-
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tains” (maxima) and “valleys” (minima) in the direction of
the Burgers vector and a general alignment of the mountains
(maxima) in the perpendicular direction. As mentioned above,
it can be expected that edge and screw dislocations, which
lie in the transverse [Fig. 1(b)] and longitudinal [Fig. 1(c)]
directions respectively, will be affected differently by this
anisotropic structural noise.

To use the nonsingular dislocation theory, the correlated
noise environment needs to be convoluted in order to account
for the fact that the dislocation Burgers vector is spread out
radially around the dislocation line. The spreading function
introduced in Ref. [46] is defined through its self-convolution:

(w ∗ w)(r) = 15a4
NS

8π [r2 + a2
NS]7/2 . (9)

The convolution of the pinning stress noise is performed
in Fourier space by simply multiplying Eq. (8) by the Fourier
transform of w(r) expressed as

ŵ(kx, ky, kz ) = aNS|k|
√

K2(aNS|k|)
2

, (10)

where K2 denotes the second modified Bessel function of the

second kind and |k| =
√

k2
x + k2

y + k2
z . After this convolution

step, the noise is obtained in real space by an inverse Fourier
transform.

C. Numerical integration and size effects

The critical shear stress is obtained using a quasistatic
algorithm where the applied stress τa is increased in small
increments of the order of 1% of the expected critical shear
stress and the system is relaxed at each increment. Equilib-
rium is found using a spectral method. The dislocation height
is first discretized in real space using the same spacing �x as
the structural noise. The dislocation is then fully described
by N

2 + 1 modes in Fourier space with wave vectors k ∈
[0, 2π

L , . . . , π
�x ] and amplitudes ĥk = 1

N

∑N−1
n=0 h(xn)e−ikxn . Af-

ter discretization, Eq. (4) reduces to a set of N
2 + 1 coupled

equations:

B∂t ĥk = −	(k)k2ĥk + b
[
̂τp[h]

]
k + bτaδk, (11)

where δk = 1 if k = 0 and 0 otherwise. Time is discretized
with a time step �t and Eq. (11) is integrated employing
a semi-implicit method, where the linear term 	(k)k2ĥk is
estimated at time t + �t while the stress τp[h] acting on the
dislocation line is computed in real space at time t before
being transposed to Fourier space. The integration scheme is
written for each k vector as

ĥt+�t
k = ĥt

k + �t
B b

([
̂τp[ht ]

]
k + τaδk

)
1 + �t

B 	(k)k2
. (12)

The different quantities are normalized using the char-
acteristic length lc = b, characteristic stress σc = 	/b2, and
characteristic time tc = Bb2/	, where 	 is the dislocation
line tension (the core line tension 	co was used with the
nonsingular theory). The time step is set to �t = 0.1tc, which
ensures the stability of the algorithm while allowing for a fast
convergence. Integration is stopped when the right-hand side

FIG. 4. Finite-size effects on the critical shear stress of an edge
dislocation as a function of the system size L for three different
noise variances 〈τ 2

p 〉. Error bars denote the uncertainty on the value
averaged over 100 realizations. Continuous lines are exponential fits.

of Eq. (11) becomes smaller than the dimensionless threshold
fth = 10−10 for all the Fourier modes.

When the applied stress is larger than the critical stress, the
semi-implicit algorithm fails to find an equilibrium and the
dislocation glides indefinitely through the periodic simulation
cell. We define the critical stress as the largest stress at which
Eq. (11) converges to an equilibrium. To reach representative
statistics, critical stresses are averaged over 100 simulations
performed with different random pinning stress fields. We
have checked that the results are converged with respect to the
grid spacing �x, the time step �t , and the threshold fth. The
other parameters used in the simulations are listed in Table I.

Calculations of critical shear stresses are known to exhibit
finite-size effects [50,51]. Using a square cell partly mitigates
these effects, but, as shown in Fig. 4, the calculated critical
stresses still depend significantly on the simulation cell size.
The dependence can be fitted as an exponential function of the
system size L. We therefore performed simulations in cells of
increasing lengths and used exponential fits to extrapolate to
infinite systems. Note that even if the convergence is exponen-
tial, the size effect is significant. For instance, using a small
cell of length L = 200 Å typical of atomistic calculations, the
critical shear stress of an edge dislocation is overestimated by
10 − 20% compared to the infinite-system limit.

III. RESULTS WITH THE NONSINGULAR DISLOCATION
MODEL

A. Dislocation relaxation in a random alloy

To assess the capability of the elastic model to describe
dislocations in concentrated alloys, we first compare its pre-
dictions with atomistic simulations performed in a binary
Al-Mg system modeled with the interatomic potential of
Ref. [52], which was already employed in our previous papers
[41,42].
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FIG. 5. Left column: Power spectra obtained from atomistic cal-
culations (symbols) and with the elastic model relying on different
assumptions concerning the nature of the underlying noise (uncorre-
lated or correlated) and the dislocation model (long-range elasticity
or line tension approximation). Right column: Atomistic simulations
of relaxed edge and screw dislocations in Al50M50 alloy (only de-
fected atoms belonging to the dislocation cores are shown).

1. Elastic model

For the elastic model, we used the parameters listed in
Table I, which correspond to an Al50Mg50 random alloy. We
considered both correlated and uncorrelated noises and used
both the nonsingular dislocation theory and the line tension
approximation. Initially straight dislocations were relaxed in
random noises with no applied stress and Fourier transforms
were performed to obtain the power spectra of the equilibrium
dislocation shapes, which were averaged over 100 realiza-
tions.

The result is shown in Fig. 5, which compares the power
spectra of edge and screw dislocations obtained with differ-
ent approximations: (i) uncorrelated noise and line tension
approximation (grey lines), (ii) correlated noise and line ten-
sion approximation (black lines), and (iii) correlated noise
and long-range elasticity accounted for in the nonsingular
theory (red and blue lines). We see that both noise correlation
and long-range elasticity influence significantly the results. In
particular, both effects contribute to change the slope of the
power spectra. Correlations increase the amplitude of the long
wavelength modes of both the edge and screw dislocations.
Long-range elasticity also increases the amplitude of these
modes for the edge dislocation, while it has a weaker effect
on the screw character. We note that the convolution of the
pinning stress with the spreading function of the nonsingular
theory averages locally the noise and modifies its correlations
in a nontrivial way that depends on the ratio a/aNS between
the spreading lengths. This effect, added up to the change of
dislocation line tension with k embedded in Eqs. (5) and (6),
explains the difference between the black and colored lines
in Fig. 5. Note that without applied stress, all power spectra
tend to converge to a constant value for small wave vectors,
an effect that will be clarified in Sec. V B.

FIG. 6. Critical shear stress of edge and screw dislocations mod-
eled with the nonsingular dislocation theory in correlated noises of
varying amplitude. The dashed lines represent fits to power laws
with different exponents (see text). Open symbols were obtained
from atomistic calculations. Green stars represent experimental data
obtained at T < 10 K on monocystalline Al-Mg alloys of concentra-
tions cMg = 3.78%, 5.52%, and 9% [54].

2. Comparison with atomistic calculations

In the atomistic calculations, a dislocation is introduced in
a random Al50Mg50 alloy. The atomistic cells have dimensions
523.6 × 485.2 × 250.4 Å3 and 478.0 × 311.8 × 195.5 Å3 for
the edge and screw characters, respectively. To overcome the
small Peierls barriers against dislocation motion in this alloy
and allow the dislocation to relax to a stable minimum, the
system is thermalized at 300 K for 10 ps before quenching. All
atomistic calculations are performed with the Lammps soft-
ware [53] and the dislocation position h(x) is extracted from
the atomic configurations by averaging the position of stack-
ing fault atoms detected by the common neighbor analysis
tool of Lammps. Averaged power spectra are obtained from 50
independent configurations and are shown with open symbols
in Fig. 5. The vertical dashed lines represent the characteristic
wave vector kth = 2π/d0 corresponding to the dissociation
distance d0 between Shockley partials. Above this threshold,
the elastic model is expected to fail to reproduce atomistic
results since it does not incorporate dissociated dislocation
cores. Below kth on the other hand, Fig. 5 shows that the
elastic model reproduces the atomistic results fairly well if
a correlated noise and the nonsingular dislocation description
are used (red and blue lines). It is worth highlighting that this
agreement is obtained without any adjustable parameter.

B. Critical shear stress

1. Elastic model

We then use the elastic model to compute the critical shear
stress of edge and screw dislocations for various strengths
of the pinning field, thus corresponding to solid solutions of
different eigenstrain variances. Figure 6 shows in a log-log
plot the values of the critical shear stress (extrapolated to
infinite systems as explained in Sec. II C) as a function of the
variance of the pinning field 〈τ 2

p 〉. For reference, experimen-
tal data obtained for Al-Mg alloys of various concentrations
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are shown as green stars; the amplitude of 〈τ 2
p 〉 is deduced

from the concentrations using our elastic model [41]. More
generally, the range of amplitudes typical of face-centered
cubic concentrated alloys is represented with a yellow arrow
in Fig. 6. This range is deduced from the values of the misfit
parameter and elastic constants measured in various alloys
[19,41,55].

The critical stress of both screw and edge dislocations
tends to follow power laws with different exponents. Numer-
ical fits (τc ∼ 〈τ 2

p 〉α) shown as dashed lines in Fig. 6 yield
exponents αe = 0.601 ± 0.007 and αs = 1.21 ± 0.013 for the
edge and screw dislocations respectively. For the edge case,
the exponent is close to 2/3, as obtained in previous works
using a line tension approximation and an uncorrelated noise
(see Refs. [21,33,40] and Sec. IV B). The numerical results
show a slight deviation from the power-law behavior at high
values of 〈τ 2

p 〉, which could be due to the long-range elas-
ticity or the stress correlations. The screw dislocation has a
significantly lower critical stress but an exponent about twice
that of the edge dislocation. Screw dislocations are known to
interact with substitutional solutes less than edge dislocations.
A limiting case is an infinite straight screw dislocation, which
has zero elastic interaction with dilatational solutes [56].
Within the present approach, this property is embedded in the
statistical properties of the stress noise through the fact that∫

�L(x)dx = 0 (see Sec. V). At low pinning amplitudes, the
screw dislocation remains almost perfectly straight and has
thus a negligible critical stress. However, as the pinning stress
amplitude increases, the dislocation bows out increasingly to
avoid stress peaks, thus acquiring locally a nonscrew character
that interacts with the solute field. As a result, the critical shear
stress increases rapidly with the pinning amplitude, with an
apparent exponent greater than the edge dislocation that has a
finite critical stress even when perfectly straight.

2. Comparison with atomistic and experimental results

Results from quasistatic atomistic calculations are shown
as black symbols in Fig. 6. The composition range explored
here is 5% − 15% because simulations with higher Mg con-
tents led to significant core effects such as local constrictions
and cross slip of screw segments as observed in high-entropy
alloys [57]. The critical shear stress was averaged over 50
realizations and the Peierls stress of pure Al was subtracted
as it is not incorporated in the elastic model.

The critical shear stress obtained for the edge dislocation
agrees well with the elastic model at 5% and 10%, which
correspond respectively to 〈τ 2

p 〉 = 0.16 and 0.32 GPa2. At
15% (i.e., 〈τ 2

p 〉 = 0.43 GPa2), core effects start to affect the
critical stress and the atomistic data is larger than with the
elastic model. For the screw dislocation, the atomistic simula-
tions systematically overestimate the elastic model. The main
reason is probably that in atomistic simulations, the disloca-
tion core is dissociated into partials with an edge component,
which interact more strongly with the solutes than the single
screw core assumed in the elastic model. Also, the anelastic
interactions of the solutes with the dislocation core and stack-
ing fault that are neglected in the elastic model may contribute
to solute strengthening in the atomistic calculations. We note
however that, although the atomistic data span less than a

decade in 〈τ 2
p 〉, the atomistic screw critical stress displays an

exponent larger than 2/3, in agreement with the elastic model.
These results can also be compared to the atomistic cal-

culations of Patinet and Proville [9] performed in Al-Mg but
with a different interatomic potential. They found that the crit-
ical shear stress of the edge dislocation follows approximately
a 2/3-exponent as observed here. For the screw dislocation,
they also found a lower critical stress and a larger exponent,
although the exponent found in their study is close to 1 and
thus slightly smaller than the one evidenced by numerical
results in Fig. 6.

Interestingly, results from both the elastic model and atom-
istic simulations are qualitatively consistent with experimental
measurements taken from Ref. [54] and shown as green stars
in Fig. 6: As expected, the experimental data fall between the
results obtained for the edge and the screw dislocations with
both modeling techniques.

This section demonstrates how our spectral dislocation dy-
namics method can be used to model nonsingular dislocations
in the correlated stress environment emerging from a random
solid solution. These findings however lack generality and rely
on a number of potentially interfering material and numerical
parameters, such as the a/aNS ratio. It is therefore difficult
to generalize the present findings to a larger class of alloys.
For this reason, we have also performed calculations using
a line tension approximation. As already seen in Fig. 5, this
approximation influence slightly the power spectra if a corre-
lated noise is used. Moreover, we will see in the following that
the same applies to the critical resolved shear stress. The line
tension approximation also holds the advantage of allowing
for an analytical analysis that can be compared to models from
the literature, which generally also neglect long-range elastic
interactions along the dislocation.

IV. RESULTS WITH THE LINE TENSION
APPROXIMATION

A. Numerical results

In the present framework, the line tension approximation
consists in considering 	 constant in Eq. (4). Its specific
value is unimportant because Eq. (4) can be rewritten in an
dimensionless form independent of 	, by rescaling stresses
by 	/b2 and lengths by b. Time is rescaled by b2B/	 but does
not play a physical role in the present quasistatic calculations.

Following the same methodology as described in Sec. II C,
the critical shear stresses obtained with the line tension ap-
proximation are presented in Fig. 7 with both correlated or
uncorrelated noises. In the case of an isotropic uncorrelated
noise (black-diamond symbols in Fig. 7), edge and screw
dislocations are equivalent if dimensionless stresses are used
and we recover the expected 2/3 exponent. If correlations are
accounted for, the results are comparable to those obtained
with the nonsingular dislocation theory: At low pinning stress,
the edge dislocation still follows a power-law with an expo-
nent αe = 0.6 ± 0.006 close to the expected value of 2/3. We
note however that the screw dislocation no longer follows a
single power law, but has an exponent αs = 1.367 ± 0.024 at
low pinning amplitude, which decreases towards a value close
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FIG. 7. Critical shear stress of edge and screw dislocations mod-
eled with a line tension approximation. Numerical simulations are
shown as symbols for correlated stresses corresponding to edge (�)
and screw (©) dislocations and for an uncorrelated stress field (♦).
Dashed lines are predictions Eqs. (15)–(17) of the force-based model.

to 2/3 at higher pinning amplitudes, similar to the edge and
uncorrelated cases.

We thus see that the line tension approximation recovers at
least qualitatively the same results obtained with the nonsin-
gular dislocation model. It allows for an analytical treatment
described below.

B. Force-based model

The above numerical results can be rationalized by extend-
ing the statistical treatment first proposed by Larkin [32] and
Labusch [15] and widely used in the literature [21,33,40].
The central assumption is that dislocation unpinning is con-
trolled by a single characteristic length-scale λc (the so-called
Larkin or Labusch length) that marks the transition between
a regime dominated by the random stress field (λ > λc) and
a regime dominated by the line-tension contribution (λ < λc).
The shape of the dislocation is then assimilated to a periodic
function of the form h(x) = w sin(πx/λc). Upon relaxation,
the dislocation moves in the glide direction until it finds a fa-
vorable local stress environment that balances the line tension.
At equilibrium, the amplitude w is therefore associated with
the characteristic length scale of the quenched noise in the
glide direction [21,40]. We assume here that w corresponds
to the distance where the correlation functions drop below
1/2. From Eqs. (1) and (2), we found we = 1.3898a and
ws = 2.6969a for the edge and screw dislocations and we set
wu = 0.5�x for the uncorrelated noise.

To determine λc, we first integrate Eq. (3) with no applied
stress over a distance λc (see inset in Fig. 7). This pinning
force from the random stress environment should at equilib-
rium be compensated by the line tension force, yielding the
condition:

2π	w

λc
= b

∫ λc

0
τp(x, h(x)) dx, (13)

where
∫ λc

0 τp(x, h(x)) dx is a random variable that can be
replaced by its standard deviation στ (λc). As a first approx-

imation, we neglect the decay of the stress correlation in
the glide direction between h = 0 and h = w, allowing to
compute στ (λc) along an unrelaxed straight dislocation:

στ (λc) =
√∫ λc

0

∫ λc

0
〈τp(x, 0)τp(x′, 0)〉dxdx′

=
√

〈τ 2
p 〉

∫ λc

0

∫ λc

0
�(x − x′)dxdx′, (14)

where �(x − x′) is the shear stress autocorrelation function
along the straight dislocation line. It thus corresponds to the
correlation functions introduced in Sec. I and depends on the
dislocation character: �L(x − x′) from Eq. (1) for a screw
dislocation and �T (x − x′) from Eq. (2) for an edge dislo-
cation. In the uncorrelated case, σ u

τ (λc) is obtained from the
central-limit theorem. The standard deviations for the edge
(σ e

τ ) and the screw (σ s
τ ) cases can be integrated analytically

from Eqs. (1) and (2), yielding in the relevant limit λc � a:

σ u
τ (λc) =

λc�a

√
�xλc〈τ 2

p 〉 (15)

σ e
τ (λc) =

λc�a

√
15

√
π

4
aλc〈τ 2

p 〉 (16)

σ s
τ (λc) =

λc�a

√
20a2〈τ 2

p 〉 (17)

With these expressions, Eq. (13) can be solved to obtain
the characteristic length λc for the three cases. Note that in the
screw case, σ s

τ is nonzero because the double integral involved
in Eq. (17) is computed in a finite nonperiodic domain. Had
we assumed a λ-periodic stress environment as in Ref. [18],
the double integral would have been zero. This translates
within the force-based model the fact that an infinite straight
dislocation does not interact with dilatational solutes.

With λc known from Eq. (13), it is assumed that the force
bστ (λc) is the characteristic resistance due to the pinning
stress field, which must be overcome by the applied stress,
i.e., τcbλc = bστ (λc), which yields for all three cases:

τ u
c =

(
�x√
2π

)2/3( b

	wu

)1/3〈
τ 2

p

〉2/3
, (18)

τ e
c =

(
15a

4
√

2

)2/3( b

	we

)1/3〈
τ 2

p

〉2/3
, (19)

τ s
c = 10a2b

	πws

〈
τ 2

p

〉
. (20)

The predictions of these equations are shown as dashed
lines in Fig. 7. Note that no parameter was adjusted to obtain
these results. For the uncorrelated noise, the analytical model
predicts the expected 2/3 exponent known from the literature
[21,33,40] and yields a quantitative prediction of the critical
stress, very close to the numerical calculations. The same very
good agreement is obtained with the edge dislocation. Eq. (19)
predicts in particular that the edge dislocation should display
the same 2/3 exponent as the uncorrelated case, in agreement
with the numerical calculations. The mathematical reason
is that the standard deviation σ e

τ in Eq. (16) has the same
square-root dependence on λc as σ u

τ . Because the long-range
correlations acting along the edge dislocation, i.e., �T , are
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positive and integrable, the resulting noise is effectively equiv-
alent to an uncorrelated noise defined on a grid of spacing
�x = 15a

√
π/4. In contrast, the force-based model predicts

a different exponent for the screw dislocation. The negative
correlations acting on the screw dislocation lead to a constant
σ s

τ independent of λc and in turn to a linear scaling τc ∼ 〈τ 2
p 〉.

The analytical model therefore predicts a lower exponent than
the numerical calculations and fails to predict the variation of
this exponent with pinning amplitudes.

At this point, it is valuable to convert the scaling obtained
as function of the stress amplitude to a scaling as function
of the alloy composition. The main parameter controlling
the variance of the random noise 〈τ 2

p 〉 is 〈ε2〉 = ∑
α cαε2

α

[41]. If the alloy follows Vergard’s law, its lattice spacing
evolves linearly with composition: ā = ∑

α cαaα , and 〈ε2〉 =∑
α cα ( aα−ā

ā )2 evolves linearly with the compositions cα in the
dilute alloy limit cα � 1. Therefore, within these simplifying
assumptions, the critical stress of the edge dislocation follows
τp ∼ [

∑
α cα ( aα−ā

ā )2]2/3; we thus recover the scaling predicted
by the Nabarro-Mott-Labusch approach [14–16], which is
reassuring considering the similarities between this model
and Larkin’s model. Nevertheless, this scaling is rarely found
in real alloys because of (i) deviations from Vegard’s law,
(ii) varying elastic constants with composition, and (iii) the
prevalence of chemical interactions and/or elastic constants
heterogeneities over the size mismatch effect [58].

V. DISCUSSION

We have seen that accounting for the spatial correlations
emerging from a random solid solution does not strongly
affect an edge dislocation, whose critical stress follows a
scaling law with the same 2/3 exponent as for an uncorrelated
noise. Screw dislocations on the other hand are much more
affected because the stress noise encodes through the prop-
erty

∫
�L(x)dx = 0 that a straight infinite screw dislocation

does not interact with a field of dilatational solutes. Indeed,
the absence of interaction implies that

∫
τp(x, 0)dx = 0 for a

screw dislocation and thus
∫

�L(x)dx = ∫ 〈τp(0)τp(x)〉dx =
〈τp(0)

∫
τp(x, 0)dx〉 = 0. The fact that �L is negative at long

distance while �T remains positive therefore results from the
fact that a straight screw dislocation does not interact with
dilatational solutes while an edge dislocation does.

We have attempted to rationalize the simulation results
using a classical force-based model. While the model applies
well to the edge dislocation and correctly reproduces the fact
that the screw dislocation has a lower critical stress, it fails to
predict the correct exponent for the screw dislocation, even
at low pinning amplitudes where the dislocation is mostly
straight. This can be due to different simplifying assumptions
of the force-based model that are listed below:

(i) The amplitude of the dislocation perturbation w is de-
termined from ad-hoc considerations and is assumed small
enough that the stress along the dislocation does not depend
on the perturbation h(x).

(ii) The critical stress is controlled by a single length scale
λc while the dislocation shape involves all length scales (see
Fig. 5).

(iii) The critical length scale λc is considered the same at
0 applied stress and at τc while the dislocation significantly
roughens between these two states.

To try to improve the model predictions, we have first con-
sidered point (i) and used the energy-based model developed
in Curtin’s group [17,18], which allows to predict the value
of the amplitude of the dislocation perturbation w. This will
be addressed in Sec. V A. In Sec. V B, assumptions (ii) and
(iii)—that are central to both force-based and energy-based
models—are discussed in light of the power spectra of the
dislocations that evolve significantly between 0 stress and the
critical shear stress τc due to roughening.

A. Comparison with an energy-based model

One weakness of the force-based model presented above
is that the amplitude of the dislocation perturbation w is not
predicted by the model but needs to be set a priori. In Sec. IV,
we used the distance over which the stress correlations de-
crease by a factor 1/2 but other choices are possible. One
advantage of the energy-based model developed in Curtin’s
group [17,18] is to determine w from a minimization condi-
tion. We will thus compare in the following the predictions of
the force-base model with Curtin’s model in the case where
the interaction energy between the dislocation and the solute
atoms are elastic, as considered in Ref. [18]. We note that one
assumption of the model is to consider a dislocation of length
λ in a λ-periodic stress noise, resulting in a zero interaction
energy with screw dislocations. Below we will thus only con-
sider the case of an edge dislocation.

The link between the force- and energy-based models is
that the energy variation of a dislocation segment of length
λ gliding a distance w can be expressed from the work of the
Peack-Koehler force in the glide plane due to the solute atoms:

�Ep = −
∫ w

0
dy

∫ λ

0
dx bτp(x, y). (21)

This quantity is a random variable with 0 mean and variance:

〈�E2
p〉 = b2

〈
τ 2

p

〉 ∫ w

0
dy

∫ w

0
dy′

∫ λ

0
dx

∫ λ

0
dx′�(x − x′, y − y′). (22)

Assuming a λ-periodic medium along x and infinite along
y and z directions as in Ref. [18], we can obtain the following
analytical expression for this variance (see Appendix A for
details):

〈
�E2

p

〉 = b2〈τ 2
p 〉λ30a3√π

[
− 1 + 4a2

w2

(
1 − e− w2

4a2

)

− Ei

(
− w2

4a2

)
+ ln

(
w2

4a2

)
+ γe

]
,

= b2〈τ 2
p 〉λa3F (w), (23)

where Ei(x) = ∫ x
−∞

eu

u du and F (w) is a dimensionless func-
tion. We recover here the fact that 〈�E2

p〉 is proportional to

λ as obtained in Refs. [17,18]. The term
√

〈�E2
p〉/λ is the

continuous equivalent of the quantity defined by Eq. (4) of
Ref. [18].

Following the same considerations as in Ref. [18], we can
use our continuous approach of the stress noise to express
the energy gain for a dislocation of length L adopting a
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wavy shape with characteristic wavelength λ and amplitude
w (equivalent to Eq. (5) of Ref. [18]):

�Etot (λ,w) =
(

	w2

2λ
− b

√
λ〈τ 2

p 〉a3F (w)

)
L

2λ
. (24)

The characteristic wavelength λc and amplitude wc are
then obtained at equilibrium by minimizing �Etot (λ,w) with
respect to λ and w, yielding

λc(w) =
(

4	2w4

b2a3〈τ 2
p 〉F (w)

)1/3

(25)

and wc solution of

wcF ′(wc) = F (wc). (26)

This last equation can be solved numerically to obtain
wc = 5.5138a. We find here that, as assumed a priori in the
force-based model, wc is a constant independent of the noise
amplitude and the line tension. Numerically, this value is
however about 4 times larger than assumed in the force-based
model (we = 1.3898a) and is close to the minimum of the
stress correlation (see Fig. 3).

Still following the same steps as in Ref. [18], we can obtain
a closed-formed expression for the critical shear stress of an
edge dislocation:

τ energy
c = 1.7294

(
ab

	

)1/3

〈τ 2
p 〉2/3, (27)

which can be directly compared to the prediction of the force-
based model in Eq. (19). After numerical application using
we = 1.3898a, the latter gives

τ f orce
c = 1.7167

(
ab

	

)1/3

〈τ 2
p 〉2/3. (28)

The almost perfect numerical agreement between both ex-
pressions is fortuitous given the differences between both
approaches: While the force-based model assumes a sine-
shaped dislocation and performs statistics on the forces along
the dislocation, the energy-based model assumes a trapezoidal
bow-out and performs statistics on the energy gained by the
dislocation by bowing out, resulting in different values of both
wc, as noted above, and λc. It is however not surprising to
find the same scaling, which can be seen as a consequence of
Betti’s reciprocal theorem [59]: It is equivalent (i) to look at
the dislocation interacting with the stress field of the solutes
as done in the force-based model and (ii) to look at the solutes
interacting with the dislocation stress field as done in the
energy-based model.

Determining wc from energy considerations therefore does
not modify drastically the predictions of the analytical model.
However, both force- and energy-based models predict λc at
equilibrium in absence of applied stress, while we will see
in the following section that the dislocation evolves largely
up to the critical stress. Also both models consider a constant
value of wc, independent of the dislocation line tension and
amplitude of the stress noise, which is counter intuitive.

FIG. 8. Roughening of the dislocation shape between zero ap-
plied stress and the critical shear stress. The tree lines correspond
respectively to the uncorrelated case [(a),(b)], the edge case [(c),(d)]
and the screw case [(e),(f)]. Panels (a), (c), and (e) show examples
of the dislocation shape obtained at τa = 0 (blue line) and at τc

(red line) (for clarity reasons, the average position of both lines are
arbitrarily set to y = 0 and y = 50b respectively.). Panels (b), (d), and
(f) represent power spectra of the dislocation line also at 0 stress (blue
circles) and at τc (red squares), compared to the theoretical estimate
of Eq. (29).

B. Dislocation shape and roughening

Both force- and energy-based models presented above rely
on a single length scale λc that is defined at zero applied stress.
However, it is well recognized that the dislocation becomes
rough under applied stress with a shape that involves all length
scales [10,21]. The aim of this section is to investigate further
the roughening of the dislocation under an applied stress, and
to discuss the role of stress correlations on the dislocation
shape. The line tension approximation is used in this section.

In Fig. 8, examples of dislocation lines are shown in the
first column for the uncorrelated, edge and screw cases at
zero applied stress (blue curves) and at the critical stress (red
curves). As demonstrated in these pictures, the dislocation
undergoes a significant roughening that seems to depend on
the underlying noise environment.

To better analyze the dislocation shape, we present in the
second column the power spectra averaged over 100 realiza-
tions again at zero applied stress and at the critical shear stress.
With no applied stress, the dislocation simply relaxes to a
local minimum and the power spectra show a characteristic
wave vector marking the limit between two regimes. At large
k vectors, i.e., small wavelengths, the dislocation fluctuations
are small and controlled by the dislocation stiffness. By way
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of contrast, at small k vectors, i.e., long wavelengths, the
dislocation can bow out significantly as the effect of the stiff-
ness is reduced. Eventually, the amplitude reaches a value (of
the order of w) where the dislocation encounters a different
stress environment than for h(x) = 0, which balances the line
tension contribution. This translates into a saturation of the
power spectra at small wave vectors visible in Figs. 8(b), 8(d),
and 8(f). The position of the cross over between these two
regimes can be associated with a characteristic length scale,
which is however different from λc defined either through
Eq. (13) or Eq. (25). Note that in the literature, λc is of-
ten defined through the roughness of the dislocation shape
[10,21,40], which yields yet another potential definition of a
characteristic length scale, physically and numerically differ-
ent from the other definitions. Under an applied stress, the
dislocations roughen progressively, resulting in an increase
of the power spectra at small wave vectors in Fig. 8. For
the uncorrelated case [Fig. 8(a)], the power spectra converge
towards a power-law behavior at the critical shear stress. This
scale invariance is well documented in the framework of the
depinning transition theory, with the slope of the power spec-
tra directly related to the roughness exponent of the elastic line
[21,33]. The situation is different for edge and screw cases
[Figs. 8(b) and 8(c)] where the power spectra do not converge
to a power law and remain concave at large wave vectors,

a direct consequence of the positive correlations at short
distances.

To clarify this point and further analyze the dislocation
shape, one can try to derive an analytical expression for the
power spectra. In the general case, this is a difficult task since
the noise along the dislocation depends on both x and h(x)
and the final shape of the dislocation at the critical shear
stress depends on the previous configurations. As a crude
approximation, one can consider that the pinning stress does
not depend on h(x) as done in Sec. IV [see e.g., Eq. (14)]. With
this assumption, considering Eq. (4) at equilibrium yields for
any k > 0:

〈|̂h(k)|2〉 = b2〈|̂τp(k)|2〉
	2k4

, (29)

with

〈|̂τp(k)|2〉 = 1

L2

∫ L

0

∫ L

0
〈τp(x)τp(x′)〉eik(x−x′ )dxdx′

= 〈
τ 2

p

〉
�̂(k), (30)

where �̂(k) is the Fourier transform of the correlation func-
tion along the dislocation direction. Considering a system L
periodic along the dislocation direction and infinite along the
other directions, Eq. (7) can be integrated along the latter to
obtain in the different cases:

uncorrelated: �̂U (k) = �x

L
, (31)

edge: �̂T (k) = 15a
√

π

4L
a2k2

(
e−a2k2

(
1 + 1

a2k2

)
+ (2 + a2k2)Ei(−a2k2)

)
, (32)

screw: �̂L(k) = 15a
√

π

L
a2k2

(−e−a2k2 − (1 + a2k2)Ei(−a2k2)
)
, (33)

where again Ei(x) = ∫ x
−∞

eu

u du. With the uncorrelated noise, �̂U (k) does not depend on the wave vector and the resulting power
spectrum scales as 1/k4. This estimate is shown as a dashed line in Fig. 8(b) and matches well the numerical power spectra
obtained at τc. The reason is that since the noise is uncorrelated in any directions, τp(x, h(x)) can be replaced by τp(x, 0) in
Eq. (3) if the history dependence is neglected.

The situation is different for the edge and screw dislocations because of the noise correlations. First, the k-dependent behavior
of Eqs. (32) and (33) translates into different behaviors for the power spectra as seen in Figs. 8(d) and 8(f). In particular, in the
limit of small wave vector ka � 1, we can use Taylor expansions of Eqs. (32) and (33) to show that

〈|̂he(k)|2〉 =
ka�1

15a5b2
〈
τ 2

p

〉√
π

	2
e L

[
1

4a4k4
− log(1/a2k2) − γe

4a2k2

]
, (34)

〈|̂hs(k)|2〉 =
ka�1

15a5b2〈τ 2
p 〉√π

	2
s L

[−1 + log(1/a2k2) − γe

a2k2
+ (2 + log(1/a2k2) − γe)

]
. (35)

The theoretical power spectra of the edge dislocation re-
covers the 1/k4 power-law scaling asymptotically. It is due to
the fact that on large wavelengths, the effect of the correlations
along the edge dislocation are identical to an uncorrelated
noise defined with a spacing �x = 15a

√
π/4 as discussed

in Sec. IV. The situation is significantly different for the
screw dislocation: In the limit of small wave vectors, Eq. (35)
follows a log(1/a2k2)/(a2k2) asymptotic behavior.

In contrast to the uncorrelated case, the numerical power
spectra of the edge and screw dislocations do not converge

towards the theoretical power spectra obtained above, as seen
in Fig. 8. When the dislocation roughens and bends out of a
straight line, it becomes sensitive to the 2D correlations repre-
sented in Fig. 1(a). For the edge case, the correlation spectrum
is maximum along the line direction and the dislocation, after
roughening away from a straight line is subjected to lower
stress correlations, which explains why the theoretical power
spectrum overestimates the numerical one at τc [see Fig. 8(d)].
The situation is reversed for the screw dislocation, where the
correlation spectrum is minimal along the dislocation line,
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resulting in an underestimation of the numerical power spec-
trum by the theoretical spectrum at τc [see Fig. 8(f)].

Therefore, at the critical shear stress, the power spectra
are influenced by the anisotropic character of the stress cor-
relations and do not follow a simple power law at small
wave vectors in contrast with the general assumption in the
depinning transition framework [21,33]. In addition, while
the power spectra in absence of stress reveal a characteristic
wavelength, roughening under the applied stress erases this
characteristic wavelength. This result seems to contradict as-
sumptions (ii) and (iii) listed in Sec. IV, as discussed in a
recent contribution [10].

VI. CONCLUSION

In the present paper, we have used a dislocation dynam-
ics model to investigate the interactions of screw and edge
dislocations with stress fields representative of random solid
solutions. This was made possible thanks to the charac-
terization of the statistical properties (variance and spatial
correlations) of the shear stress field emerging from a random
solid solution of dilatational solutes [41,42]. These numerical
results have been compared to the prediction of statistical
models that assume that the depinning transition is controlled
by a unique length scale [15,17,18,32,33]. While this type of
approach reproduces the 2/3 exponent evidenced for the edge
dislocation, they fail to predict the power-law exponent evi-
denced for the screw dislocation. Deriving a statistical model
able to predict this exponent remains an important prospect of
this paper.

In addition, we have studied here the extreme cases of edge
and screw dislocations. The same methodology can be applied
to mixed dislocations but we expect a gradual evolution with
the dislocation character due to the continuous variation of
the stress correlations between the transverse and longitudinal
directions.

We focused here on the prediction of the critical shear
stress at 0 K, without any contribution of the temperature,
while most of the theories discussed above enable to derive the
critical shear stress as a function of temperature [15,17,18].
Therefore, incorporating the role of temperature by replac-
ing Eq. (3) with a Lanvegin dynamics constitutes a natural
extension of this study that would enable to clarify the role
of thermally-activated processes in dislocation motion. Note
that at high temperature, solute diffusion is thermally acti-

vated and may lead to dynamical strain aging. This effect
would however require a different approach than discussed
here since the solutes are no longer distributed at random
but segregate at the dislocation. Another limitation of our
approach is the assumption of a compact core that glides
with no Peierls stress. It would be valuable to incorporate
dislocation dissociation by following Ref. [60] in order to
investigate the role of interacting partials, the effect of their
mixed character as well as the potential interference effects
between the dissociation distance and the stress correlations,
of the type discussed in Ref. [61]. Another perspective of
this paper consists in adding a periodic Peierls stress profile
in order to investigate its interplay with solute strengthening.
Such model would enable to discuss further the assumptions
used in recent statistical models applied to dislocations in
body-centered cubic concentrated alloys [62,63].
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APPENDIX: COMPUTING THE VARIANCE 〈�E2
p〉

Let us consider an edge dislocation oriented along the
direction x and gliding in direction y. Direction z denotes the
glide plane normal. As assumed in Ref. [18], we consider that
the system is λ periodic along direction x such that Eq. (22)
can be written as〈

�E2
p

〉 = b2〈τ 2
p

〉
λ

∫ w

0
dy

∫ w

0
dy′

∫ λ

0
dx�(x, y − y′). (A1)

If we consider an infinite system along the y and z direc-
tions, the correlations of the resolved shear stress τyz acting on
the edge dislocation can be expressed in Fourier space as [see
Eq. (7)]:

�̂(kx, ky, kz ) = 120π3/2a3

(2π )2λ

k2
y k2

z

k4 e−a2k2

. (A2)

To obtain the correlations in the plane z = 0, we first inte-
grate Eq. (A2) along the kz direction, which yields

�̂(kx, ky) =
∫ +∞

−∞
�̂(kx, ky, kz )dkz

= 60a3√π

2πλ
k2

y

⎡⎣−a
√

πe−a2(k2
x +k2

y ) +
π (1 + 2a2(k2

x + k2
y ))erfc

(
a
√

k2
x + k2

y

)
2
√

k2
x + k2

y

⎤⎦. (A3)
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The inner integral of Eq. (A1) can be expressed as an inverse Fourier transform of Eq. (A3) along the y direction:∫ λ

0
�(x, y)dx = λ

∫ +∞

−∞
�̂(kx = 0, ky)dkye−ikyy (A4)

= 60a3√π

2π

∫ +∞

−∞
dkyk2

y

[
−a

√
πe−a2k2

y + π (1 + 2a2k2
y )erfc(a|ky|)

2|ky|
]

e−ikyy (A5)

= 30a
√

π
a2

y2

[
−1 + 12a2

y2
− e−y2/4a2

(
2 + 12a2

y2

)]
. (A6)

Finally, we can deduce an analytical expression for the variance 〈�E2
p〉 by computing the double integral along the y direction

of Eq. (A1), yielding Eq. (23).
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