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Elastic response of polymer-nanoparticle composite sponges:
Microscopic model for large deformations
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We propose a minimalist coarse-grained microscopic model to investigate the mechanical response of ice-
templated polymer nanocomposite sponges with large open voids. Earlier experimental work [Rajamanickam
et al., Chem. Mater. 26, 5161 (2014)] has demonstrated that such systems show elastic recovery after being
subjected to large compressive strains exceeding 80%, despite being comprised primarily of inorganic nanopar-
ticles. Our model captures the essential features of the nonlinear mechanical response to uniaxial compression
up to strain γ = 0.8. From our simulation we identify three different regimes for the stress response: (i)
the stress increases linearly with strain at low strains up to ≈0.2; (ii) at intermediate strains, such that γ is
approximately in the range 0.2 − 0.5, we observe a plateau regime in the stress-strain data; and (iii) finally
we see a sharp increase in stress at strains >0.5. This agrees with experimental observations. The model helps
us establish a correlation between the stress-strain response and the underlying microscopic reorganization of
microstructure spanning multiple length scales, which leads to the emergence of the three regimes. The nature
of individual void deformations was statistically analysed to demonstrate the progression of void shapes as
the sponge is compressed. We also establish that nanoparticles at the interface of voids respond differently
to stress as compared to those away from the interface. Our simulation model is versatile and allows us to vary
parameters, which correspond to variations in the cross-link density and architecture of nanoparticle connectivity
in experiments.
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I. INTRODUCTION

In the recent decades, there has been increasing interest in
nanoparticle polymer composites due to their technological
applications. Typically, polymer nanocomposites refer to sys-
tems where a small fraction of nanofiller such as nanoclay
[1], carbon nanotubes [2], or graphene [3] is added to a
polymer matrix to enhance functional properties [4,5] such as
stiffness, thermal properties, permeability, etc. Another class
of polymer nanocomposites are materials where the fraction
of the rigid inorganic phase predominates, and the polymer
functions as a binder. Examples of such materials are observed
in nature, e.g., nacre [6], as well as in nature-inspired synthetic
analogues [7,8]. Given the wide technological ramifications of
polymer nanocomposites, their science and engineering have
been widely investigated by researchers drawn from different
disciplines [1–5,9–25].

We are particularly interested in the mechanical proper-
ties of porous polymer nanocomposites. Ultralight porous
aerogels that combine low nominal density with mechanical
rigidity find use in applications in industrial insulation, as
catalyst supports, as well as in aerospace components [26].
The balance of properties in such aerogels is realized by
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carefully engineering their architecture [27–31]. Porous aero-
gels whose walls are comprised of polymer nanocomposites
can be prepared using ice templating [32–35]. Such materials
show potential for several applications such as fire retardant
foams [36], sponges capable of absorbing liquids with differ-
ent polarities [37], high-surface area monoliths for catalytic
reactions [38], as flexible capacitors [39] as well as for use in
artificial tissues with biomedical relevance [40].

Recently, we have reported the preparation of porous
ice-templated polymer nanoparticle nanocomposites wherein
the polymer matrix is cross linked in the frozen state [41].
Inorganic nanoparticles (NPs), polymers, and cross-linker
molecules are dispersed in water and the dilute aqueous sys-
tem is frozen such that large ice crystals form that are several
tens of microns in size. The NPs, polymers, and cross linker
are expelled from the crystals and aggregate between domains
of ice crystals to form thin interconnected domain walls that
are microns thick. Polymers within the walls get cross linked
in the frozen state enmeshing the NPs, and subsequently when
the ice crystals are removed at higher temperatures, the NP
and polymer mixture are organized to form a self-standing
sponge. The sponge is characterized by a porous percolating
structure of the NP-polymer mesh surrounding interconnected
voids. Sponges that are centimetres in size can be readily pre-
pared using this method. We refer the reader to a schematic in
Fig. 1(a) explaining the preparation method and SEM images
of the nanocomposite sponge in Figs. 1(b) and 1(c). We can
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(a)

(b) (c)

FIG. 1. (a) A schematic description of how the inorganic sponge is prepared in the laboratory. The left box shows the polymer coated
nanoparticles (NPs), which are dispersed in water. The middle box shows the solution after it is frozen to form ice crystals such that the NP,
polymer, and cross linker are expelled from frozen crystals and occupy the gaps between ice crystals. The polymer is then cross linked to create
a mesh in which the NPs are enmeshed. The right box schematically shows that the NPs remain enmeshed in the polymeric gel when the ice
crystals are removed and form polymer-nanocomposite surfaces surrounding empty voids. (b) SEM images of the experimental system taken
from Rajamanickam et al. [41], where we can see the internal structure of the scaffolds. The scale bar is 200 μm. (c) The zoomed in (scale bar
20 μm) structures where individual NPs are visible. The subfigure also shows that the void walls consist of multiple openings and thereby the
walls form a scaffold with open voids. The computational model describing the system is shown in Fig. 2.

see the nanocomposite walls surrounding the voids, as well as
the individual NPs by zooming into the figures. The polymeric
mesh is only a few nanometer in thickness and cannot be
visualized using electron microscopy. The major component
of these sponges is the inorganic NPs, up to 90% by weight,
with the cross-linked polymer comprising the remaining 10%.
Despite the high loading of NPs, the sponges tolerate large
compressive strains (up to 90%) and recover when the com-
pressive force is released [41]. At low strains, the sponge
modulus varies linearly with the nominal density. The me-
chanical response of these sponges is nonlinear. A plateau
region is observed beyond the low-strain linear regime, and at
significantly higher strains, the stress increases rapidly. Such
flexible ice-templated nanocomposite sponges are platform
materials with wide-ranging applications [36,37,39,42].

The mechanical response of ice-templated nanocompos-
ite sponges may be attributed to their microstructure [43].
Typically, cationic amine-containing polymers are used, that
adsorb on anionic inorganic NPs in aqueous solutions. Excess
polymer and cross linker are confined to the inter-NP spaces
in the walls of ice crystals and get cross linked on holding
the system in the frozen state. Therefore, on removal of the

ice crystals, the walls of the sponge comprise of NPs that are
enmeshed in a cross-linked polymer network. The NPs are
not covalently bonded to the polymers—rather, the polymers
adsorb on the NP surface. The NPs are trapped in the cross-
linked mesh that responds when the sponge is compressed.
Therefore, these sponges are soft, with moduli ∼O(104 Pa),
despite their high inorganic NP content.

Here we propose a microscopic coarse-grained model to
describe the mechanical response of ice-templated nanocom-
posite sponges, which works remarkably well to capture
the macroscopic behavior of the system, despite many sim-
plifying assumptions. A complete molecular description of
the true hierarchical microstructure of the sponge is clearly
intractable. In one experimental realization, the ∼O(1 )-cm
porous sponge comprises 22 nm silica NPs in a cross-linked
polyethyleneimine network forming ∼O(10 μm) walls that
surround ∼O(100 μm) pores. Continuum solid mechanical
descriptions of the mechanical response of open foam struc-
tures are available [44], as are molecular models for polymer
nanocomposites [45–48]. However, researchers have previ-
ously not attempted to rationalize the macroscopic mechanical
response of an open-cell sponge starting from a microscopic
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description of the nanocomposite structure in the walls, espe-
cially because of the challenges of incorporating the physics at
multiple length scales. Thus, coming up with a viable model,
which can be handled computationally, and also effectively
captures the stress-strain response of the inorganic sponge is
the focus of the present paper.

To render the problem tractable, we work with an ide-
alized system where the sponge walls are represented by a
network of spherical beads (representing the NPs) intercon-
nected with its neighboring beads by massless springs. The
springs represent the entropic elasticity of the polymer-gel
network that encapsulates the NPs. This bead spring network
has large voids in its midst, akin to the experimental system.
To simplify, we assume that all the voids in the as prepared
sponge are of the same size and shape (spherical). Moreover,
we try to minimize fluctuations in the mesh thickness. As
we establish in this paper, the polymer degrees of freedom
of the system can be coarse grained out to have a simpler
model. This coarse-grained model, without the explicit mod-
eling of the polymer, reproduces the stress-strain behavior of
the experimental systems. Moreover, it provides quantitative
insights into the microscopic dynamics of the NP-polymer-
gel nanocomposite sponge, which was previously unavailable.
Importantly, for the different strain regimes we can clearly
demarcate the dominant underlying microscopic phenomenol-
ogy, which results in the macroscopic stress-strain response of
the inorganic sponge.

We emphasize that such inorganic sponge prepared by ice
templating are different in morphology and elastic response
from materials with large porosity and with an underlying
network of interconnected rods or semiflexible polymers. Pre-
vious experimental studies have looked at the stress response
of a mesh of connected carbon nanotubes of 30 − 40-nm
diameter and lengths spanning several microns [49] prepared
by the chemical vapour deposition technique. These system
shows three regimes in the stress-strain response, correspond-
ing to (a) bending of nanotubes at low strains, (b) buckling
regime at intermediate strains, which shows up as a plateau in
the stress-strain curve, and (c) a sharp increase in stress with
strain due to relatively dense material with low porosity at
strains at greater than 0.6. In contrast, our system has spherical
NPs as constituents, which are not amenable to bending at
even high strains. Moreover, we show that the walls around
the pores do not bend at low strains. Instead, the walls undergo
compression maintaining the spherical shape of the voids.
However, the walls of our system undergo bending and finally
buckling as strains increase beyond 0.05.

Other theoretical models used interconnected networks
created by Poisson-Voronoi tessellations and measured stress
response by voxel-based finite element methods to show that
it effectively captures the stress response of interconnected
semi-flexible polymers such as collagen networks [50]. Our
system consist of large pores surrounded by percolating walls,
where the walls itself have a substructure made of NPs en-
meshed in polymers. The response in independent of the
composition of the NPs, as it is the response of the polymer
mesh, which dominates the elastic behavior at low strains,
unlike the systems described by Nachtrab et al. [50].

We describe the model in detail in the next section. We
present the bulk stress-strain behavior of our model system

in the Sec. III and show that it reproduces the experimental
curve to our satisfaction. The three regimes can clearly be
demarcated. We then calculate and discuss the reorganization
of micro-structure with increasing strains up to 80% as in
experiments, before closing with a summary in Sec. IV.

II. MODEL AND METHODS

The macroporous scaffolds used in the experiments
comprise walls of densely packed particles enmeshed in cross-
linked polymer gel, which surround large open voids. We use
non-equilibrium molecular dynamics (MD) as implemented
in LAMMPS [51] to realize our model system and use it
to study the stress response to applied uni-axial strain by
computer simulations. We model the inorganic sponge, i.e.,
nanoparticles (NPs) trapped in a polymer gel network with
large interconnected voids using a coarse grained approach.
We omit the polymer degrees of freedom by coarse-graining.
A brief overview of how we model the porous scaffolds is
given in Fig. 2(a) and its caption, which the reader may refer to
before going into details. Since we are modeling a dry aerogel,
we do not incorporate viscous effects or include equations for
the dynamics of trapped fluid during compression.

1. Initialization of particle and void positions: In this step,
we place 27 large spheres in a cubic lattice within a cubic
simulation box of length L and arrange NPs in an HCP lattice
in the space between the spheres. When the large spheres are
later removed, spherical open voids remain, which are of the
same size as the spheres. Furthermore, the NPs are also con-
sidered to be perfect spherical particles (beads) of diameter σ .
We chose σ = 22 nm as was used in the previously reported
experiments [41]. Refer to schematic in Fig. 2(a). The unit
of length for our simulations is σ . The excluded volume (EV)
interactions between NPs are modelled by the purely repulsive
WCA (Weeks-Chandler-Anderson) potential [53]. The WCA
potential is a modified Lennard Jones potential such that the
cut-off of the potential is chosen to be at rc = 21/6σ . The form
of the WCA potential is

V (r) = 4ε[(σ/r)12 − (σ/r)6] + Fcr − Vc,∀ r < 21/6σ, (1)

where Fc and Vc are suitably calculated constants, which
ensure that the force and the potential do not have any discon-
tinuity at rc [53]. Particles were excluded from the spherical
regions, which form the voids by suitable WCA repulsive
interactions between NPs and the large spheres, which mimic
the ice crystals. The lattice constant for the HCP lattice for the
initialization of NP positions is chosen to be 1.1σ .

The distance between the centres of adjacent voids were all
the same (Lσ/3). The “void particle” diameter is 2RV , which
is varied to achieve voids of different sizes. This enables us
to study systems with different void volume fraction φV . To
realize open connected voids, we chose the value of 2RV to
be larger than the distance between the center of voids. The
large spheres (representing ice particles) of radius RV repel
the NPs, but we do not implement WCA-repulsion between
the ice particles. Thereby the ice particles can overlap. The
values of RV , the initial box size (Lσ ), the corresponding
initial void volume fraction φV as well as the initial nominal
density ρ0 used for our study are listed in Table S1 within
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(b) (c)

(a)

FIG. 2. (a) A schematic of how the inorganic sponge is prepared in our simulation model. Left box: The NPs are initialized in a HCP
lattice surrounding 27 large (light grey) spheres arranged in a 3 × 3 × 3 cubic lattice where the grey spheres represent the ice-crystal template.
We implement excluded volume interaction between the NPs and the large grey spheres. We do not model the polymers in this step. Middle
box: The HCP lattice of NPs are melted such that they have liquid like short-range order and surround the large (grey) spheres, which remain
fixed in space. Right box: We connect the NPs by springs with neighboring NPs; the spring network mimic the mesh of cross-linked polymers,
which hold the NPs in place. Simultaneously the big spheres (which mimic the ice crystals) are removed from the simulation box such that
voids remain. The NPs connected by springs (the NPs are enmeshed by the polymer gel in experiments) remain in position surrounding the
voids, after which we do NVT and then NPT molecular dynamics simulations to prepare the system before applying uniaxial strain on the
scaffold. (b) Snapshots of our cubic box with open voids with L = 45.45σ are shown for φV = 0.55. Snapshots for φV = 0.69 are shown in
Fig. S1 of SM [52]. The color gradient is just to aid the eye to distinguish different layers of particles and clearly see the connectivity between
voids; one can identify there are 27 interconnected voids with periodic boundary condition implemented. (c) Shows only half of the box along
x̂ to clearly depict the thickness of the junctions and bridges. The range of the color gradient, from red to blue, now varies over half the box in
the x̂ direction. The plane x = Lx/2 cuts through the middle of the voids.

the Supplemental Material (SM) [52]. The quantity nNP is the
number of NPs in the simulation box.

The simulation box size L, as well as values of RV

were simultaneously adjusted to maintain two objectives (i)
maintain the number density of the NPs in the bridges and
junctions as marked in Fig. 2(b), and (ii) maintain the min-
imum bridge thickness |�/σ | with approximately the same
number of particles in each bridge, where � is the min-
imum bridge thickness between two consecutive junctions.
The bridge thickness � is shown schematically in Fig. 2(a).
The junctions are relatively large aggregates of NPs, and the
bridges of NPs connect adjacent junctions. Snapshots from
the simulation (after equilibration as described in next step)
can be seen in Figs. 2(b) and 2(c) and compared with the
SEM images of the experimental system in Fig. 1. In experi-
ments, these clusters of NPs and bridges of NPs at the domain
walls are formed during the crystallization of ice crystals and

subsequent cross linking. The large junctions in our model
system are a consequence of choosing the spherical voids
to be arranged on a lattice for simplicity, while maintaining
a minimum value of �. In the experimental system we ob-
serve the formation of polydisperse voids, whose centers are
randomly arranged in space. Therefore, the maximum void
fractions of φV = 0.69 that we explore in these simulations is
less than the experimental void fractions, which can be as high
as φV = 0.9.

2. Melting the lattice of NPs: We melt the HCP-lattice
of NPs before we connect the particles by springs. In this
step, we update the position and velocities of NPs in the
NVT-ensemble for 50 000 MD steps to melt the lattice. The
large spheres play a role similar to that of the ice crys-
tals in experiments. The temperature was chosen to be TR =
300 K and thus the unit of energy chosen for these sim-
ulations is kBTR = 1. The mass M of each NP is chosen
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such that the mass density of particles matched that of sil-
ica. Thus, M = 14.8 × 10−21 kg for 22-nm beads. The unit
of time τ for the MD simulations is thus given by τ =√

Mσ 2/kBTR = 4.15 × 10−7 s. The time step for integration
was chosen to be 5 picoseconds (ps), which is 1.2 × 10−5τ .
At the end of this step, we obtain random liquid like packing
of NPs between “void particles”, as they diffuse relatively
small distances from their initial positions over 50000 MD
steps.

The void-volume fraction φV for the 27 voids in the sim-
ulation box is calculated as φV = 27VV /(Lσ )3, where VV is
the volume of the void. To calculate VV the simulation box
can consider to be made up of 27 individual smaller cubes of
length Lσ/3, each having a spherical void. Since the diameter
of the void is larger than the cube, a part of the sphere overlaps
with the adjacent boxes, leading to the connecting voids as ob-
served in the experiment [41]. The void volume is calculated
by subtracting the volume of the section outside the smaller
cubic box from the volume of the sphere. The list of different
values of L used and the radius RV of bigger spheres, which
eventually gives void volume VV is listed in Table S1 within
the SM [52].

3. Creation of NP mesh: In this step, the spheres of radius
RV were removed and all NPs whose centers were within
the cutoff-distance distance RCL = 1.5σ from each other were
connected by harmonic springs. The the spring potential is
VH (r) = κCL(r − r0

i j )
2, where r0

i j is the distance between two
neighboring NPs i and j at the end of step 2. Each spring
represents the effects of cross-linked polymers, which trap the
NPs within the mesh of the polymer gel and prevent the NPs
from diffusing away [schematically shown in Fig. 2(c)]. In
our model, the soft springs maintain the positional constraints
effected by the polymer mesh, but at the same time allow the
NPs some freedom to move around its mean position. The
equilibrium length r0

i j of the springs is different for each pair
of particles but the spring constant κCL = 100kBT/σ 2 was
chosen to be the same for all springs. The system is then
equilibrated in an NVT ensemble.

By altering the value of RCL we can change the mean num-
ber of springs NS in the system. Since a single spring connects
two NPs, the number of springs per particle is (2NS )/nNP.
It must be noted that the NPs at the interface of the void
have different number of springs attached to a particle (NI ) on
average, compared to the mean number of springs per particle
(NB) for bulk particles. We identify the particles, which are
at the interface by listing the NPs whose centers lie within a
spherical shell of radii RV and RV + σ drawn from the void
center. The total number of NPs located at the interface of
voids are nI

P. Table S2 within the SM [52] lists various system
characteristics, including the calculated values of NI , NB and
nI

P for systems with different values of void fractions to enable
the reader to easily compare properties of different systems.
We have also carried out calculations with RCL = 1.25σ and
RCL = 1.75σ for the system with φV = 0.55, respectively, for
which the mean number of spring-connections with its neigh-
bors were NB = 6.53 and NB = 13.8 per NP, respectively.
The quantity γT in Table S2 within the SM [52] represents
the value of strain, which the stress-strain graph transitions
to the plateau region; the calculation of this quantity is dis-
cussed in the Sec. III.

In Table S2 within the SM [52], we see that as the void
fraction φV increases, the ratio of number of NPs at the in-
terface to the ratio of number of NPs in the junction region
changes. While changing φV , we ensure that � remains un-
changed, hence we change the box size L as we go to higher
φV . However, this results in larger number of particles at
the junctions. Hence the ratio of the number of particles at
interface compared to total number of NPs nI

P/nNP changes
nonmonotonically with φV .

4. Equilibration in NPT ensemble: Before measuring the
stress response by applying strain in the x direction, we first
equilibrated the system using an NV T -ensemble calculation
and calculated the equilibrium pressure P1 of the system for
105 iterations. Then fixing the equilibrium pressure to the
value P1, the system was equilibrated in a NPT ensemble.

5. Applying Strain: Thereafter, we started applying con-
trolled strain γ in the x̂ direction by gradually decreasing the
value of Lx, and calculated the σxx values in the NPT ensem-
ble. The pressure was maintained at P1 in y, z directions using
a Nose-Hoover barostat, such that Ly, Lz could adjust itself at
each strain, refer Fig. S2 within SM [52]. The simulation box
does not remain cubic any more on compression, and we can
calculate the volume of box V (γ ) = Lx × Ly × Lz as strain
is applied, and use V (γ ) to calculate ρ(γ ) = MnNP/V (γ ),
which we use later in our analysis. The pressure is calculated
using the virial expression for the stress tensor σαβ for pair of
interacting particles i, j, which are separated by �ri j with force
�f i j is acting between them, viz.,

σαβ = 1

V

(
m

∑
i

vi
αvi

β

)
+ 1

2V

∑
i, j;i �= j

ri j
α f i j

β (2)

where v is the velocity and the second summation should
remind the reader that the summation is over values of particle
pairs i, j when i �= j. The indices α, β take the values (x, y, z).

Since we wanted to investigate the effect of compressing
the sponge, the strain γ was gradually increased from 0 to
0.8 over 24 million MD time steps (or more for systems with
larger void sizes). Thus a sufficiently slow strain rate (1%
strain applied in 3 × 105 time steps ≡ 3.6τ ) was applied in
the simulation to maintain the pseudo-equilibrium. In compar-
ison, note that a harmonic spring with spring constant κCL =
100kBT/σ 2 and mass M (equal to that of mass of a NP) has
a natural time period of oscillation of only 2π

√
M/κCL ∼ τ .

We measure x − x diagonal component of the stress tensor σxx

as the strain was gradually increased. The Nose-Hoover ther-
mostat was implemented to maintain the temperature of the
system and the Nose-Hoover barostat maintained the pressure
equal to P1 in the y and z direction. Thus the corresponding
dimensions of the box Ly and Lz fluctuate about its mean value
at each γ .

6. Validation: Before we commence presenting our results
and analysis, we comment on the robustness of our calcula-
tions and compare the rates of compression in our simulation
to experimental rates. In the x direction a 1000-nm sample was
compressed to 200 nm within (at least) 2.4 × 107 time steps,
where each MD time step is 5 × 10−12 s. Thus a compression
of 0.8 microns was achieved in 1.2 × 10−4 s. This corresponds
to a compression rate of ∼1 cm/s, which is just ten times
faster than the experimental rates. To establish that the system
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FIG. 3. (a) Response of the system to applied strain by plotting σxx vs γ for the seven different values of the nominal density ρ0, in units
of g/cc. A decrease in the nominal density corresponds to an increase in the void fraction φV (at γ = 0), refer to Table S1 within the SM [52].
We denote ρ0 = 0.49 g/cc as ρ∗

0 as we use it later for further analysis. (b) The value of the strain γT (at which the transition from the linear to
the plateau region occurs) is plotted against the the nominal density ρ0. The y axis on the right side of the figure shows the void fraction φV ,
which is plotted (red symbols) vs ρ0 on the x axis. Data is for the systems with RCL = 1.5 σ . (c) The linear modulus Y is calculated from the
stress-strain plots at low strains (γ → 0) of (a). Y increases monotonically with the nominal density ρ0.

is always close to equilibrium during our compression, we
compare the σxx − γ curve at two other compression rates,
viz., three times faster and three times slower than the rate
mentioned above. The σxx versus γ data remain unchanged,
independent of this ninefold difference in compression rates,
refer the Fig. S3(a) within the SM [52] for the data.

In addition, we created five independent but statistically
equivalent systems, to ensure the stress-strain response from
straining the five systems are equivalent. Figure S3(b) within
the SM [52] shows that the five independent runs yield nearly
identical values of stress at each value of strain. The five
independent systems are prepared by initializing the velocity
by random number generators using different seeds in step
1. This ensures that the NPs are in a different (liquid-like)
microstate before the cross linking occurs in step 2. Fig-
ures S4, S5, and S6 show snapshots of the void deformations
from three independent runs, respectively, for φV = 0.55. The
reader can confirm that the void deformation is statistically
equivalent, and that 27 interconnected open voids are enough
to model the system. However, a 3 × 3 lattice of voids are
minimally required in a system with periodic boundary condi-
tions. A 2 × 2 lattice of voids cannot ensure that each bridge
is connected with another independent (nonidentical) bridge
of NPs in all directions during deformation.

To show that our system is fully recoverable, we also con-
ducted a compression and expansion study shown in Fig. S3c
within the SM [52]. In the compression stage, σxx increase
with increase in γ from 0 to 0.8. We compare this with the
stress response when the strain is decreased from 0.8 to 0,
during expansion. We do not have viscous dissipation in our
modeling of aerogel consequently the stress response during
compression and expansion of the system is nearly the same.
In reality, one can expect energy loss due to dissipation in
the polymers mesh as the NPs move past each other during
compression and its release. The small difference in σxx values
at strains beyond γ = 0.5 is because of the the readjustment
of particles over time to minimize energy and release local

constraints in the packed state. Thus σxx has lower values
during expansion. All these additional cross checks give us
confidence to present the results from the simulations.

III. RESULTS AND DISCUSSION

In Fig. 3(a) we plot the σxx component of the pressure
tensor as a function of the strain γ for different values of
the nominal density ρ0, or equivalently the void fractions φV .
We can identify three regions in the plot of σxx versus γ , as
strain increases from 0 to 0.8. Before identifying the three
regimes in the stress-strain curve and elucidating the physics
in detail, we summarize the microscopic picture and origin of
the three regimes. In regime-I, the springs connecting the NPs
respond to the compression, and the stress increases linearly
with strain. In regime-II, the stress enters the plateau regime
such that it increases very gradually with strain γ . In this
regime the voids get deformed and start collapsing and the
box size remains nearly unchanged along ŷ, ẑ, i.e., perpen-
dicular to the direction of compression. During deformation
of voids and as the NPs enter the void and reorganize them-
selves, some of the springs (representing polymer elasticity)
get stretched whereas other get compressed, though the sys-
tem gets compressed overall. In regime-III, i.e., for γ > 0.5,
the stress increases rapidly with strain as the voids are filled
with particles, and increase of strain leads to large deviation in
the lengths of springs. Excluded volume interactions between
NPs as they touch each other also contribute significantly
towards stress.

A. Stress-strain response

Regime-I: In Fig. 3(a), one first observes a (nearly) linear
increase in σxx with γ for γ � 0.2. The extent of the linear
region increases with the value of the nominal density ρ0 =
MnNP/(Lσ )3; ρ0 calculated at γ = 0 for a cubic box, i.e.,
before the start of compression. The linear increase of σxx with
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γ can be seen in greater detail in the inset of the Fig. 3(a) and
we clearly see that the increase in σxx plateaus off at higher
values of γ . In the inset of Fig. 3(a), one can clearly identify
the transition from the linear regime (regime-I) to regime-II,
which we label as the plateau regime. The value of the strain
γT at the point of transition from regime-I to regime-II is
plotted versus ρ0 in Fig. 3(b) and tabulated in Table S2 within
the SM [52]. To calculate γT , we first fit a straight line to the
σxx − γ curve for γ > 0 in regime-I. We also fit a straight line
to the σxx − γ curve in the plateau regime. The intersection
of the two straight lines is identified as the transition strain
γT , for each value of ρ0. The transition point γT increases
monotonically with ρ0. In Fig. 3(b), we also plot the values
of the void fraction φV as we change ρ0 so that we can clearly
correlate the decrease in γT with increase in φV .

From the initial slope (linear regime) of the stress-strain
curve shown in Fig. 3(a) we estimate the linear modulus Y
of the nanocomposite sponges, which is plotted as a function
of ρ0 in Fig. 3(c). It is known that Y increases linearly with
ρ0 when the dominant elastic response of a porous mate-
rial is through compaction of the pore walls [41,54]. The
porous structure could also respond to stress by bending of
the bridges rather than effective compaction of the micro-
constituents and in that scenario Y ∼ ρ2

0 . Thus the functional
dependence of Y on ρ0 can inform us about the microscopic
response of the porous scaffold [44].

Our data suggests that Y ∼ ρ, consistent with experiments
[41]. However, we note that in our simulations, ρ0 is varied
over a relatively small range, viz., ρ0 = 0.35 − 0.56, preclud-
ing unambiguous confirmation of this scaling. Later in this
paper (Sec. III D), we establish by explicitly calculating other
microscopic quantities that a linear relation between Y and
ρ0 is reasonable. Contrary to normal expectations, studies at
lower densities have higher computational costs, as we must
increase the value of L along with RV to keep the bridge
thickness � unchanged. Therefore, a larger box has larger
number of NPs, which occupy the junctions.

Regime-II (The Plateau regime): Beyond this linear regime,
the σxx versus γ curve in Fig. 3(a) enters the plateau region.
Here σxx increases relatively at a much slower rate with in-
crease in γ than in regime-I, as expected for systems with
ρ0 > 0.3 [44]. The relative contributions to the total energy
from springs and EV interactions as we compress the system
is shown in Fig. S4 within the SM [52]. We establish later
in the paper, that in the plateau regime the NPs start entering
and occupying the void and the void starts getting deformed.
Furthermore, the positions of the NPs get reorganized with
respect to each other as they fill up the void. The rate of
increase in σxx with γ is lower for systems with lower ρ0. This
is expected as systems with lower ρ0 have a larger fraction
of particles at the interface of voids and is energetically easy
to deform the voids. This plateau regime in the stress-strain
curve is consistent with the experimentally observed response
seen for the ice-templated sponges [41]. We have observed
that the values of Ly and Lz remains relatively unchanged in
this regime and start increasing only at strains of larger than
0.5 as the system enters regime-III, refer to Fig. S2 [52]. We
also provide simulation movies of the compression mentioned
at the beginning of SM [52], which shows the dynamics of
void deformation, where we can visually confirm that the

cross-sectional area Ly × Lz starts changing only later in the
simulation (when γ > 0.5).

Regime-III: As one further increases the compression, the
void gets filled with NPs and thereafter, the stress sharply
increases with increase in γ . This marks the beginning of
the third regime as seen in Fig. 3(a). Systems with lower
ρ0 enter regime-III at higher strains. Measures of box sizes
in the transverse direction, Ly, Lz start increasing beyond a
certain value of γ , marking the start of regime-III, refer to
Fig. S2 within the SM [52]. This implies systems with larger
voids can be compressed more before voids get filled up with
particles. Figures S4, S5, and S6 within the SM [52] show
the void shapes at different values of γ from three indepen-
dent runs for ρ0 = 0.49 g/cc. We also show snapshots for
φV = 0.69 system in Fig. S7, confirming that voids fill up at
strains γ � 0.5. In Fig. S3(b) within the SM [52], we also
show for ρ0 = 0.49 g/cc that σxx − γ data from 5 independent
runs (starting with statistically equivalent but different initial
configurations) completely overlap, confirming that the error
bars in the value of σxx are small at the scale of the figures.
From the data of σxx − γ , it is not possible to unambiguously
identify the transition point between the second regime to the
third regime.

However, the sharp increase in stress only starts for γ >

0.6 for system with ρ0 = 0.49 g/cc, also because of the sig-
nificant contributions from the EV repulsion between NPs. At
lower values of γ , the contribution to the stress comes pri-
marily from the compression (or elongation) of the harmonic
springs connecting NPs, refer to Fig. S8 within the SM [52].
Though the transition point cannot be demarcated clearly from
the σxx − γ curve, the existence of two different regimes is
beyond doubt and is reconfirmed by different behaviours of
microscopic quantities in the two regimes. As we show next,
the peak of the pair correlation function g(r) decreases with
increase of γ in regime-I and regime-II, but height of peak
starts increasing beyond γ = 0.5 for ρ0 = 0.49 g/cc.

B. Microscopic response to applied strain

In Fig. 4(a) we show the pair correlation function g(r)
versus distance r between NPs, as we compress along the x̂
direction for the system with φV = 0.55 (i.e., ρ0 = 0.49 g/cc).
The position of the first peak in the pair correlation function
shows the highest probability in finding the nearest neighbors
of a NP at the corresponding value of r, and the second peak
denotes the most probable position to find the next-nearest
neighbors from the center of any NP. While the first peak is
rather well defined for all values of γ , the second peak of g(r)
becomes broader with increasing values of γ . Furthermore,
the position of the first peak shifts to smaller values of r with
increasing γ ; this corresponds to a decrease in the distance
between the nearest-neighbor particles.

However, the height of the first peak decreases with
increasing γ till γ < 0.5, after which the peak height again in-
creases as the system enters regime-III, refer inset of Fig. 4(a).
This initial decrease corresponds to a wider distribution of
distances between a particle and its nearest neighbors, as
they occupy the void. For γ > 0.5, the peaks move further
to the left, but the peak height starts to increase as the system
becomes more packed. As γ increases from 0 to 0.8 with a
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FIG. 4. (a) The pair correlation function g(r) vs distance r from a NP at different values of strains as given in legend, for a system of
void fraction φV = 0.55 (i.e. ρ0 = 0.49 g/cc) with RCL = 1.5 σ . The inset shows the zoomed in g(r) so that the change in the position of the
peaks of g(r) can be easily identified. (b) An estimate of the mean distance of the nearest neighbors of a NP rmean (refer to text for calculation
details) as function of the strain γ is shown for different ρ0. (c) Probability distribution P(δr) of the deviation of bonds from its mean length
vs the deviation δr is shown. The three vertical dashed line at δr = −0.1, 0, and 0.1 are drawn to help the eye discern the asymmetry in the
distribution. On an average the bonds are more extended than compressed. The distributions are normalized: wider distributions also have
larger bin size.

volume change of nearly 80% in the sponge, the peak position
of g(r) shifts from 1.1σ (24.2 nm) to ≈σ (22 nm), i.e., a
change of only ∼10%.

Moreover, the second peak of g(r) becomes broader and
shifts to the left, as the springs of equilibrium length ≈1.4 −
1.5 σ get stretched or compressed. The flattening of the sec-
ond and third peaks with the increase in values of strain γ ,
points to a loss in long-range correlations in the positions of
NPs as they rearrange positions under strain.

Figure 4(b) shows rmean versus γ for different ρ0 values,
where rmean is the mean distance of the nearest neighbors from
the center of a NP. The quantity rmean is calculated by first
identifying the k neighbors of a given NP by selecting those
particles, which are at distances rk � r[g(r)min]. The quantity
r[g(r)min] is the position of the first minimum of g(r). We
calculate rmean by summing over the values of rk (for rk <

r[g(r)min]), weighted by the probability of finding a particle
at rk , and then normalize by the area under the curve of the
first peak. The area under the peak gives the total number of
nearest neighbors surrounding a certain NP. Thus, the quantity
rmean gives the mean distance of the nearest-neighbor particles
around a NP.

As we see in Fig. 4(b), the rmean value keeps decreasing
monotonically with increase in γ ; this is further substantiated
by the increasing values of harmonic energy term in Fig. S8
[52]. We thus expect that the springs are getting compressed.
However, we also observe that as the system transitions from
regime-I to regime-II, the rate of decrease of rmean with γ

shows an unexpected small upturn beyond γ = 0.2, especially
for systems with lower values of ρ0. Furthermore, at γ = 0,
we observe that the value of rmean decreases with increasing
φV though we have carefully maintained equivalent densities
of NPs in the junctions and bridges before cross linking.

Our attempts to understand these observations led us to
unexpected results. Firstly, we plot the probability distribution

p(δr) of the fluctuation of the spring length δr about its mean
position in Fig. 4(c). We observe that the distribution is asym-
metric about δr = 0, and that a larger fraction of springs are
stretched rather than compressed at even γ = 0. We quantify
this by calculating the first moment of this distribution, i.e.,
δrMean. For purposes of calculation, the quantity δr is consid-
ered positive for stretched springs and considered negative for
compressed springs. Moreover, we separately calculate δrMean

for NPs in bulk (B) and for NPs at the interface (I) of voids.
We find δrMean for both to be positive.

The quantity δrMean versus γ is plotted in Fig. 5(a).
In a bulk system without voids, we expect δrMean = 0 for
γ = 0. Moreover, δrMean initially decreases with increase in
γ , reaches a minima at the end of regime-I, and then in-
creases with further increase in γ . This indicates that the
springs get more stretched on an average in regime-II, on
compressing the system. In regime-II the springs at the in-
terface (on an average) are more stretched than springs at
bulk as δrMean(I ) > δrMean(B). Lastly, the difference between
in response of springs at the interface and those at bulk (as
measured by δrMean) increases for systems with larger φV .

Such observations indicate that the material at the interface
of voids are softer and deform more easily on compression
as compared to the material in the junctions (bulk of the
material). The interface NPs have fewer neighbors (and spring
connections) on the side of the void. Hence, at γ = 0, the
interface springs can have larger length fluctuations into the
void. We suggest that the interface particles can also easily
stretch out and extend into the void due to applied strain,
rather than move into the bulk of the material. This creates an
asymmetry in the probability distribution of δr, resulting in
positive values of δrMean at all γ values. As seen in Fig. 5(a),
systems with lower ρ0 (corresponding to systems with larger
voids and more particles at the interface) exhibit higher values
of δrMean at γ = 0. We also observe the small differences in
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FIG. 5. (a) The mean deviation of the springs from their equi-
librium positions δrMean is calculated from the probability density
distribution of the deviation of springs from their mean position
δr (refer to Fig. S9 within the SM [52]) and plotted separately
for particles are interface of void (I) and for particles in the bulk
(B) against strain γ for two values of ρ0. In (b), we compare the
probability densities of length fluctuations of interface springs for
φV = 0.55 (filled symbols) and 0.69 (open symbols). The insets are
zoomed version of the main figure, for only those data sets, which
are indistinguishable in the main plots. The vertical lines at δr = 0
are guides to the eye.

p(δr) for the NPs, which are at the interface and for those.
which are in the bulk, in Fig. 5(b) and Fig. S9 within the SM
[52].

These small differences in the fluctuations of interface and
bulk NPs has consequences for the more discernible differ-
ences in the values of rMean(γ = 0) in Fig. 4(c). The behavior
of δrMean at small γ before the minima and the corresponding
change in probability distributions p(δr)/δr as strain changes
from γ = 0 to γ = 0.1 confirms effective compression of the
springs in regime-I, and confirms conclusion from Fig. 3(c)

that there is a compaction of pore walls at smaller strains.
The minima appear at lower strains for systems with lower
ρ0, as the interface can be more easily deformed. Moreover,
in Fig. 5(a) we see that δrMean(I ) > δrMean(B) for γ > 0.2
in regime-II, confirming the softness of the interface. Finally,
as we see in Fig. 5(b) and Fig. S9 within the SM [52], the
populations of springs with large |δr| (both compression and
stretch) increase in regime-II, though δrMean remains positive.
This increase in δrMean in regime-II explains the small upturn
in the rate of fall of rmean beyond γ > 0.2, which is more
discernible for systems with larger voids in Fig. 4.

At the end, we would like to emphasize to the reader, that
this system with large open voids is intrinsically very differ-
ent from a solid system with NPs connected by springs and
without any voids, or a solid with very small pores. We would
like to emphasise the point that in our system with large open
voids, the interfacial particles play a major role in the stress
distribution, which leads to these three distinct regimes. In
case of a solid system, all particles behave like bulk particles
and the number of springs per unit volume are much higher
than the porous system. Moreover, the nominal density of
the solid system is 1.36 g/cc. The porous system reaches
such high density in regime-III at high strain (γ ∼ 0.8). This
drastically changes the system response and the results.

However, we believe the system without voids is also quite
different from regime-III of the system with voids. The reason
is that in the system with voids, there is rearrangement of
NPs as the voids collapse as seen in the movies and snap-
shots of void collapse. Thereby we see that some springs get
stretched while others get compressed as the whole system is
compressed as a whole. Hence, in regime-III the system with
voids will have contributions to the stress from both excluded
volume interactions and due contributions from the change in
the length of springs. However, on compressing a solid system
without voids, there cannot be any major rearrangement of the
NP positions with respect to each other in the solid system
due to lack of space, and as a consequence, the springs will be
primarily compressed as the whole system is compressed, and
there is likely negligible contributions from excluded volume
interactions to the stress.

Further, we note that effective medium theories [55], in the
spirit of Maxwell, cannot capture such functional dependence
of the mechanical response of the monolith. Later in the paper
(Sec. III D), we show that the response of the nanocomposite
sponges can be largely attributed to the NPs at the interface
of the voids. This clearly suggests why the response of these
sponges cannot be modelled using effective medium theories
applicable to random heterogeneous media.

C. Systems with different κ and RCL

We have also studied σxx versus γ behavior with stiffer
(κ = 300kBT/σ 2) and softer (κ = 33kBT/σ 2) springs, as well
as systems with more spring connections per NP (with RCL =
1.75σ ) or fewer (RCL = 1.25σ ). The stress response to ap-
plied strain in the x direction for the two cases are plotted
in Figs. S10 and S11 within the SM [52], respectively. The
corresponding rmean/σ versus γ is also shown to enable the
reader to decipher the corresponding changes in microscopic
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rearrangement of nearest neighbors as a function of the ap-
plied strain. The behavior of rmean versus γ shows behavior
consistent with what is described above: Softer systems show
a larger upturn of rmean beyond γ ≈ 0.2. Moreover, systems
with higher κ or with larger number of spring connections NB

per particle show higher values of σxx than other systems at
the same value of γ , as would be expected. We also have
data at different values of ρ0 at different values of κ and
RCL. An increase in κ corresponds to experimental systems
where the length of polymer segments between cross links
is decreased. Increase in RCL mimics the effect of different
cross-link architectures such that there is now a more multiply
connected polymer mesh. The effect is more subtle than just
an increase in cross-link densities between the polymers, as
a simple increase in cross-link density would lead to smaller
lengths of polymers (lower κ) between cross links.

We also establish that stress-strain response of the system
remains qualitatively unchanged if we introduce smaller voids
in the regions, which we refer to as junctions of the sponge.
The detail of the effect due to smaller void is described in
Sec. III F. However, the transition from regime-I to regime-
II shifts to lower values of strain and the transition does not
remain as distinct as in systems with voids of uniform size.

D. Characterizing deformation of voids

We now quantify the deformation of the voids as a function
of γ . In particular, we investigate whether different voids start
deforming and then collapse in a sequential manner, or all
of the voids start deforming simultaneously. Furthermore, we
can characterize the nature of deformation of the voids in the
plateau region. e.g., we can investigate whether with increase
in γ , the voids become smaller while maintaining an average
spherical shape, or if their shape changes gradually by stretch-
ing out in a particular direction while getting compressed in
the other directions.

To this end, we calculate geometrical quantities that pro-
vide us information about the deformation behavior of the 27
different voids with increase in γ . Firstly, we identify the par-
ticles, which make up the void surface by listing all the NPs at
the interface. The position of these particles forms a spherical
shell with pores (at the points where adjacent voids connect
with each other to form open voids) on the surface of each
of the shells: refer to Fig. 2 for visualization. We follow the
positions of these interface NPs as we strain the systems with
different φV , and we analyze the void deformation character-
istics by calculating suitable geometric quantities using the
positions of these sets of NP. In particular, we calculate the
gyration tensor using the positions of interface particles as γ

increases as

Gx,y = 1

N

∑
i

ri
xri

y, (3)

where �ri is the position of the ith NP from the center of
mass of the interface particles for a particular void. Then we
diagonalize the matrix to obtain the square root of the ratio
of the largest and smallest eigenvalues I1/I3. The quantities
(I1)2, (I2)2, (I3)2 are 3 eigenvalues of the gyration tensor ma-
trix G. We calculate these quantities for each of the 27 voids
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FIG. 6. The ratio of the largest and the smallest eigenvalues I1/I3

of the radius of gyration matrix defined for each of the 27 voids
and plotted vs increasing strain γ for (a) φV = 0.55 corresponding
to ρ0 = 0.49 g/cc and (b) φV = 0.69 corresponding to ρ0 = 0.348
g/cc.

separately, and then plot them versus γ to investigate the
deformation behavior of each shell.

We follow these quantities only up to γ = 0.3. Beyond this
value of γ , we have observed in simulation movies of the de-
formation (refer to SM [52]) that the voids interpenetrate and
it is no longer meaningful to calculate the above mentioned
quantities using NPs, which identify the interface. We present
I1/I3 for each of the 27 different voids for the system for two
different values of φv , viz φv = 55% and φV = 69% for the
RCL = 1.5 σ system in Fig. 6.

The major conclusions from Fig. 6 for two values of ρ (or
equivalently φV ) can be summarized as follows:

(i) Up to a strain of nearly 3% (or less), the ratio I1/I3

remains very close to 1 for all of the voids, indicating that
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there is no substantial change in shape of the voids in the
entire scaffold. This basically corresponds to the first linear
regime in the stress strain curve. All the increase in stress in
primarily due to the compression of springs but the NPs have
moved only slightly from their equilibrium positions and scaf-
fold maintains its shape. This is consistent with our assertion
that the initial linear response of the system is obtained by
compression of the sponge walls, and thus Y ∼ ρ. We further
calculate and show the quantity asphericity As in Fig. S12
within the SM [52], which is a measure of the deviation in
shape from the perfect sphere. One can notice that even at
γ = 0, some of the voids have nonzero values of asphericity,
which in turn depends on the arrangement and identification
of interface particles around the open voids. The quantity As

remains close to zero for small deformations.
(ii) At higher strains, i.e., 4 − 12%, there is mild defor-

mation of the scaffold structure, such that I1/I3 increases to
around 2 at the end of the range of γ mentioned. There is
also a slight spread in the values of I1/I3, which indicates that
each void deforms a bit differently though the basic shape
of the voids is still maintained. However, we know that the
deformation is nonaffine, as we know that the NPs readjust
their positions such that some springs are stretched while
others are more compressed with respect to their equilibrium
lengths.

(iii) As the system enters the plateau region of the stress
strain curve, each void deforms in its own different manner.
Some of the voids stretch out to take highly asymmetrical
shapes. Some other voids deform significantly at intermedi-
ate values of γ to become asymmetrical, but at still higher
deformations I1/I3 again becomes ≈1 as the void fills up.
This can be confirmed in the simulation movies listed in SM
[52]. This could be because all the eight junctions surrounding
a particular void close in on the void as the neighboring
voids deform, and thereby the NPs in junctions rearrange
their positions with respect to each other. Also, the values
of I1/I3 change in a arbitrary manner, such that some values
increase significantly, some stay close to value 2, and others
first increase and then decrease (or stay constant). Finally at
28% strain, one has the entire range of all possible values from
1 to 16 for both φV = 0.55 and φV = 0.69. Thus for γ > 0.12
each void simultaneously undergoes large deformations, and
each deformation in shape follows a stochastic path.

E. Scaling with density change �ρ

At γ = 0, we expect the stress σxx(γ = 0), with dimen-
sions of energy density, to depend on the number of particles
in the simulation box as well as the number of spring-
connections per particle as determined by RCL. As we increase
φV , ρ0 decreases as does the number density of springs, lead-
ing to proportional decrease in the energy density. The number
density of springs in the bulk (regions without voids) should
increase as ρ2

NP, where ρNP is the number density of NPs. This
is because the number of springs in a certain volume will in-
crease as one increases the number of particles in the volume,
as well as number of neighbors of the particles in the volume.
However, the number of particles at the interface increases as
a consequence the lowering of ρ0 and since interface particles
have fewer connections, the energy density (at zero strain) will

decrease as ∼(ρ0)n with n > 1. Increase in interface area can
also affect the stress response at finite strains as we know that
interface particles deviate more from their mean position as
compared to NPs away from it.

As the sample is compressed, γ increases and correspond-
ingly, σxx increases. The increase in γ results in a change in
the box volume. We define the instantaneous average nominal
density of the simulation box as ρ(γ ) = ρ = MNNP/V [γ ].
With increase in γ , there is an increase in ρ, starting from ρ0 at
γ = 0. In the plateau regime, the Ly and Lz remain unchanged
to keep Poisson ratio very close to zero, and thus density ργ

increases linearly with γ . We define the instantaneous (strain
dependent) increase in monolith nominal density above that of
the prepared state as �ρ = ρ − ρ0. With compression, there
is an increase in �ρ and in σxx.

In elastic foams, the transition to the plateau region is
associated with the onset of buckling and ingress of the walls
into the voids, while the increase in stress at high strain is
associated with impingement of pore walls. We conjecture
that the stress developed during compression after the transi-
tion to the plateau region would depend on the instantaneous
increase in monolith nominal density �ρ. We observe that
the stress (after the transition to the plateau and, scaled by
an arbitrary multiplicative factor, Fρ0σxx) appears to have a
universal response as a function of �ρ as seen Fig. 7(a) for
monoliths at 6 different values of ρ0. Such universal scaling is
observed for each of the three values of κ as seen in Fig. 7(a).

Furthermore, if we vary the number of spring connections
per particle by changing RCL, then we again see universal
behavior as seen in Fig. 7(b) shows data for NB = 6.53, 10.2,
and 13.8. In the insets in Fig. 7, we plot the vertical scale
factor Fρ0 as a function of ρ0 and observe that Fρ0 decreases
with ρ0. The values of Fρ0 used is also listed in Tables of S3
and S4 within the SM [52]. We present this as an interesting
observation that holds for our model, even when the spring
constant is changed, or the interaction range is varied. A priori,
we did not expect to find universal behavior, especially since
the different stress-strain regimes correspond to different un-
derlying physics. However, data suggests that the number of
spring connections at zero strain at a particular ρ0 determines
the sponges stress-strain behavior over the entire range of γ

considered. A better understanding of the physical origin of
the scale factor, and its dependence on ρ0 needs further study.

F. Different lattice structure of voids

To ensure that a polydispersity in the size of voids does
not significantly modify the basic conclusions of our paper,
we have also done a preliminary study of the stress-strain
response of a system with voids of two different sizes. To that
end, we have added additional data for the stress-strain re-
sponse in a modified system, where we introduce small voids
of radius 3.5σ in the regions, which we labeled junctions
in the (previous) φV = 0.55 system. Thus, the arrangement
of the voids now BCC lattice structure (or more accurately
called the CsCl lattice structure as the newly created voids in
the junctions are smaller in size than the other voids), and the
void fraction in the modified system is φV = 0.606. Snapshots
of this modified system can be seen in Fig. S13 within the SM
[52]. The snapshots show the system before strain is applied.
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FIG. 7. (a) The scaled stress Fρ0σxx vs the strain dependent in-
crease in nominal density �ρ = (ρ[γ ] − ρ0 ). We calculate ρ(γ ) by
calculating the ratio of the mass of all the particles MNNP and the
volume of the box at different values of strain γ . Box volume V [γ ]
adjusts itself with increasing γ as Lx × Ly × Lzσ

3. Data for different
values of ρ0 overlaps perfectly for (a) each of the 3 different values
of κ and (b) each of the 3 different values of NB. In each subfigure,
the inset shows the vertical scale factor Fρ0 as a function of ρ0. In
the inset, the scaling factor Fρ0 is plotted versus ρ0 with the log
scale on both axes: symbols indicated in red, blue, and grey symbols
correspond to (a) κ = 33kBT/σ 2, 100kBT/σ 2 and 300kBT/σ 2 and
(b) NB = 6.53, 10.2, and 13.8, respectively. The slope of the line is
−2. We have a rather small range of ρ0 considered, thereby we do
not claim a scaling law of Fρ0 ∼ (ρ0)2. In the insets, some symbols
overlap and hence appear invisible. Values of Fρ0 are given in Tables
S3 and S4 within the SM [52].

In Fig. S14, we see a broad qualitative similarity of the
stress-strain data in this modified system with the counterpart
system with voids arranged in cubic lattice. We have plotted
the data of the unmodified system along with the stress-strain
response of the system with BCC lattice of voids, to enable
direct comparison of data. But, if we investigate in detail, we
observe the nature of three regimes gets altered due to the
introduction of a secondary void with different size. Firstly,
we see a much more gradual transition between regime-I and
regime-II. Upon further investigation we find that the smaller
voids start deforming much at much lower values of γ , as
compared to the larger voids. We can see this in the data of
I1/I3 and the asphericity, presented in Fig. S14 comparing the
deformation in larger and smaller voids of the BCC system.
Due to smaller bridge thickness (�) around the small void,
γT is less for BCC system. Such behavior is also observed for
experimental system with polydisperse void size and systems
with anisotropic void shape. Also, the smaller void diameter
leads to faster collapse of the entire void, which leads to
sharper upturn in regime-III.

However, a systematic analysis of polydisperse voids, or
voids arranged in different lattice structures, e.g., FCC, hexag-
onal or other lattice, will be reported in the future.

IV. SUMMARY

The elastic stress-strain response of an ice-templated poly-
mer nanocomposite aerogel is well represented by our coarse
grained model system where the cross-linked polymer matrix
enmeshing the NPs is represented as springs connecting the
nanoparticles. This model for a monolith with open, intercon-
nected voids qualitatively reproduces the experimental results
reported in the literature. Since we do not know the length of
polymer segments between cross links as well as the distribu-
tion of lengths between cross links, we use an identical of κ

for all springs connecting the NPs. We establish that choice
of different κ values do not qualitatively change the stress
strain response of the system. In our simulations, the system
modulus is primarily determined by stretching or compression
of the springs connecting the nanoparticles.

From the deformation analysis of the voids, we observe
that the voids remain nearly spherical till ≈12% strain. Be-
yond this, each of the voids get deformed in a stochastic
manner. Our simulations are consistent with experimental
observations that the low-strain linear response arises from
compression of the pore walls.

Over and above establishing that a simple coarse-grained
microscopic approach is able to reproduce the elastic response
of such a multiscale system, we have been able to provide new
insights:

(i) As the void collapse, some of the springs get stretched,
though others are compressed during compression of the
porous system.

(ii) At zero strain, the distribution of deviations from the
mean length of springs is asymmetric. On an average the
springs stretch out due to thermal fluctuations rather than get
compressed. The fluctuation of interface springs are quantita-
tively different from those situated at the junctions.

(iii) When the system is compressed, the springs at the
interface tend to show larger deviations from mean length

025604-12



ELASTIC RESPONSE OF POLYMER-NANOPARTICLE … PHYSICAL REVIEW MATERIALS 6, 025604 (2022)

as compared to springs, which are located away from the
interface. The quantitative difference increases for systems
with larger void fractions.

(iv) Our results indicate that interface properties signifi-
cantly affect the transition to the plateau regime.

(v) We report an unexpected collapse of the stress σxx

versus �ρ when σxx is scaled a factor Fρ0 , which decreases
with the increase in nominal density. This data collapse on
scaling by factor Fρ0 holds true for the entire range of nominal
densities studied for different values of κ and RCL. An unam-
biguous understanding of this collapse is lacking at this time.

Thus, we conclude that the coarse-grained microscopic
model is able to reproduce the elastic response of inorganic
sponges as seen experimentally, in spite of the simplification
of replacing cross-linked polymers by springs. In addition, we
obtained insights from the microscopic model, which we hope
will spawn further studies and analysis in future.

This study can be extended in many directions, some
of which we plan to carry out in the future. In particular
we have ignored the stochasticity in the size of voids and
considered all spring to be harmonic springs. Furthermore,

we have considered a cubic lattice of spherical voids. While
a study with voids in a CsCl lattice, reminiscent of a BCC
lattice, seem to indicate that the qualitative response remains
similar as that with cubic lattice, we expect that cuboid voids
with very many particles at the interface could show signif-
icant differences with the current study. In addition, if one
had semiflexible polymers instead of the flexible polymers
considered here, it is not obvious that we can replace the effect
of cross links between semiflexible polymers by harmonic
springs. Furthermore, for liquid filled sponges the hydrody-
namic effects of squeezing out fluid have not incorporated as
of yet [56]. We plan to first extend this study by replacing the
spherical nanoparticles by rod like particles, and considering
nonspherical voids in the recent future.
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