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Self-consistent analysis of doping effect for magnetic ordering in stacked-kagome Weyl system
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We theoretically study the carrier doping effect for magnetism in the stacked-kagome system Co3Sn2S2 based
on an effective model and the Hartree-Fock method. We show the electron filling and temperature dependencies
of the magnetic order parameter. The perpendicular ferromagnetic ordering is suppressed by hole doping,
whereas undoped Co3Sn2S2 shows a magnetic Weyl semimetal state. Additionally, in the electron-doped regime,
we find a noncollinear antiferromagnetic ordering. Especially, in the noncollinear antiferromagnetic state, by
considering a certain spin-orbit coupling, the finite orbital magnetization and the anomalous Hall conductivity
are obtained.
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I. INTRODUCTION

Magnetic kagome-lattice systems such as Mn3Sn [1–5],
Fe3Sn2 [6,7], and Co3Sn2S2 (CSS) [8–12] are attracting a
great deal of attention because of their diverse electronic and
magnetic properties. The anomalous Hall effect, originated
from the topological gapless points in momentum space called
the Weyl points [13–15], is one of the significant transport
properties in these materials. Especially, CSS possesses the
small Fermi surface with the Weyl points and is called a
Weyl semimetal [8]. In addition to the electronic properties,
these systems show different magnetic ordering, although they
commonly have kagome-lattice layers [16]. Mn3Sn shows a
noncollinear antiferromagnetic (AFM) arrangement in which
the magnetic moments of Mn are oriented at a relative angle
of 120◦ in the kagome plane [1]. Fe3Sn2 shows ferromagnetic
(FM) ordering with the in-plane magnetic anisotropy [6,7].
In CSS, although the ground state shows perpendicular FM
ordering [8,17,18], recent experiments predict a noncollinear
AFM arrangement at finite temperature [19–21]. According to
the theory of metallic magnetism [22], it has been established
that the Fermi surface structure plays an important role for
magnetic ordering. Therefore, it is expected that the magnetic
ordering is altered by tuning the Fermi level. However, theo-
retical investigations of the magnetic ordering with different
Fermi levels in stacked-kagome systems have not been well
achieved.

In this paper, based on the effective model of the magnetic
Weyl semimetal CSS [23], we study the magnetic ordering
with respect to the experimentally controllable parameters,
the filling factor of dopants and temperature. Our results for
magnetic ordering are summarized as a schematic picture in
Fig. 1. A noncollinear AFM ordering appears by electron
doping, whereas an undoped system shows the perpendicular
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ferromagnetic Weyl state. As characteristic properties in the
noncollinear AFM state, the orbital magnetization and the
anomalous Hall conductivity (AHC) become finite by consid-
ering a certain spin-orbit coupling.

II. TIGHT-BINDING HAMILTONIAN AND
HARTREE-FOCK MEAN-FIELD FORMALISM

First, we briefly introduce the effective model of CSS.
In our previous study [23], we constructed an effective two-
orbital model of CSS, by considering few orbitals. This model
reproduces the electronic band structure which is similar to
that obtained by first-principles calculations [8,9]. Figure 2(a)
shows the original crystal structure of CSS. The stacked
kagome layers consist of Co and sandwich two types of tri-
angle layers which consist of Sn and S, respectively. In the
effective model, one d orbital from Co forming kagome layers
and a p orbital from interlayer Sn are extracted as a dashed
box as shown in Fig. 2(a). All other orbitals are neglected in
the following for simplicity. The primitive translation vectors
are a1 = ( a

2 , 0, c), a2 = (− a
4 ,

√
3a
4 , c), a3 = (− a

4 ,−
√

3a
4 , c). In

the following we set c =
√

3a
2 for simplicity. The hopping term

of this model is given by

H0 = Hdp + HKM. (1)

Hdp is the spin-independent hopping term, HKM is the spin-
orbit coupling (SOC) term. First, we explain Hdp,

Hdp = −
∑
i jσ

[
ti jd

†
iσ d jσ + tdp

i j (d†
iσ p jσ + p†

iσ d jσ )
]

+ εp

∑
iσ

p†
iσ piσ . (2)

diσ and piσ are the annihilation operators of the d orbital on
the kagome lattice and p orbital on the triangle lattice, re-
spectively. ti j includes the first- and second-nearest-neighbor
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FIG. 1. Possible phases in doped Co3Sn2S2. In undoped
Co3Sn2S2, Weyl semimetal phase with perpendicular ferromagnetic
ordering appears. In hole-doped Co3Sn2S2, the ferromagnetic or-
dering is suppressed and the system becomes paramagnetic. In
electron-doped Co3Sn2S2, a noncollinear antiferromagnetic ordering
appears.

hopping, t1 and t2, in the intra-kagome-layer, inter-kagome-
layer hopping tz. tdp

i j indicates d p hybridization between the d
orbital of Co and p orbital of Sn. εp is the on-site potential of
the p orbital on Sn. HKM describes the Kane-Mele type SOC
term [24,25] on the intra-kagome-layer given as follows,

HKM = −itKM

∑
〈〈i j〉〉σσ ′

νi j · d†
iσ σ z

σσ ′d jσ ′ . (3)

tKM is the hopping strength and the summation 〈〈i j〉〉 is about
intralayer second-nearest-neighbor sites. The sign is νi j =
+1 (−1), when the electron moves counterclockwise (clock-
wise) to get to the second-nearest-neighbor site on the kagome
plane [24,25]. Spin-orbit coupling plays a role in obtaining the
Weyl points [8,23].

Next, we construct the mean-field Hamiltonian by using
the Hartree-Fock approximation. In order to discuss the itin-
erant magnetism due to the electron correlation, we introduce

the on-site Coulomb interaction term. The on-site Coulomb
interaction terms for d orbital HU

dd and p orbital HU
pp are re-

spectively given by

HU
dd = Udd

∑
i

∑
α

d†
iα↑d†

iα↓diα↓diα↑, (4)

HU
pp = Upp

∑
i

p†
i↑ p†

i↓ pi↓ pi↑. (5)

Udd and Upp are the bare on-site Coulomb interaction strengths
of the d orbital on Co and of the p orbital on Sn, respectively.
i and α = A, B, or C indicate the position of the unit cell
and the sublattice index of Co, respectively. We assume that
the fluctuation of the magnetic moment is small. Thus we
introduce the Hartree-Fock approximation HU

dd ∼ HHF
dd , HU

pp ∼
HHF

pp for the two-body operators in Eqs. (4) and (5) as

HHF
dd = Udd

∑
iα

[〈niα↑〉niα↓ + 〈niα↓〉niα↑ − 〈niα↑〉〈niα↓〉

− 〈d†
iα↑diα↓〉d†

iα↓diα↑ − 〈d†
iα↓diα↑〉d†

iα↑diα↓

+ 〈d†
iα↑diα↓〉〈d†

iα↓diα↑〉], (6)

HHF
pp = Upp

∑
i

[〈nip↑〉nip↓ + 〈nip↓〉nip↑ − 〈nip↑〉〈nip↓〉]. (7)

niασ = d†
iασ diασ and nipσ = p†

iσ piσ are the particle number
operators of Co and Sn, with spin σ on the ith unit cell, respec-
tively. We neglect the in-plane component of magnetization on
the Sn site for simplicity. The total mean-field Hamiltonian
HMF is given by

HMF = H0 + HHF
dd + HHF

pp . (8)

To simplify the mean-field analysis, we assume that the
translational symmetry of the crystal structure remains even
in the magnetically ordered phase. Additionally, we are

FIG. 2. (a) Crystal structure of Co3Sn2S2. Co forms the kagome lattice network and sandwiches two layers of triangle lattice formed by
Sn and S, respectively. (b) Anticipated electronic structures of undoped Co3Sn2S2. A dashed box indicates the limited orbitals in our effective
model. The total electron number per unit cell is ne = 3. (c) Electronic structure when the total electron number is ne = 2. In experimental
situation, one hole is doped by substituting Co with Fe, in each unit cell. (d) Electronic structure when the total electron number per unit cell
is ne = 4. In experimental situation, one electron is doped by substituting Co with Ni, in each unit cell.
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motivated by AFM ordering discussed in the previous ex-
periment [19]. The mean-field Hamiltonian in momentum
space can be obtained by using the Fourier transforma-
tion diασ = 1√

N

∑
k eik·Ri dkασ , piσ = 1√

N

∑
k eik·Ri pkσ . Here

k is the crystal momentum and N is the number of unit
cells. The Bloch Hamiltonian matrix HMF(k) can be writ-
ten in the form HMF = ∑

k,σ C†
kσ
HMF(k)Ckσ , where C†

kσ
=

(d†
kAσ

, d†
kBσ

, d†
kCσ

, p†
kσ

) and HMF(k) is given by an 8 × 8
matrix,

HMF(k) = H0(k) + Hexc + HE , (9)

in momentum space. Hexc is the exchange term which de-
scribes coupling between the mean-field parameter and spins
of electrons as

Hexc = −Udd

2
diag[σ · 〈mA〉, σ · 〈mB〉, σ · 〈mC〉, 0]

− Upp

2
diag[0, 0, 0, σz〈mz

S〉]. (10)

σ is the vector of Pauli matrices which corresponds to
the spin of electron. 〈mα〉 and 〈mz

S〉 are the mean-field
parameters on the α sublattice of Co and Sn, respectively.
In this mean-field Hamiltonian Eq. (9), the z component of
magnetization and particle number on each site are computed
as 〈mz

γ 〉 = 〈nγ↑〉 − 〈nγ↓〉, 〈nγ 〉 = 〈nγ↑〉 + 〈nγ↓〉. Here, we
use the simplified sublattice index as γ ∈ α, S, and 〈nγ σ 〉 =
1
N

∑
λ,k〈λ, k|Pγ

σ |λ, k〉 f (Eλk − μ). In-plane components can

be obtained as 〈mx
α〉 = 2Re〈d†

α↑dα↓〉, 〈my
α〉 = 2Im〈d†

α↑dα↓〉,
where 〈d†

α↑dα↓〉 = 1
N

∑
λ,k〈λ, k|Pασ+|λ, k〉 f (Eλk − μ).

f (Eλk) is the Fermi-Dirac distribution function. μ is the
chemical potential and discussed in detail in the next section.
Pγ are the projection operators for the γ site with spin σ . σ+
is given by σ+ = σx + iσy. The third term HE is given by

HE = Udd

4
diag[EA, EB, EC, 0] + Upp

4
diag[0, 0, 0, ES]

+ Udd

2
diag[〈nA〉, 〈nB〉, 〈nC〉, 0]

+ Upp

2
diag[0, 0, 0, 〈nS〉]. (11)

Eα = 〈mα〉2 − 〈nα〉2 and ES = 〈mz
S〉2 − 〈nS〉2. For each k,

the Bloch state is given as an eight-component vector |λ, k〉,
where λ is the band index. Eλk is the eigenvalue of |λ, k〉. The
eigenvector |λ, k〉 and order parameters 〈mα〉 can be obtained
by diagonalizing HMF(k) so that Eq. (9) should be calcu-
lated self-consistently. In the following, we set t1 as a unit
of energy, t2 = 0.6t1, t d p = 2.35t1, tz = −1.2t1, εp = −8.5t1,
tKM = 0.2t1, Udd = 7.0t1, and Upp = 5.5t1. These parameters
are chosen to fit the band structure to the result obtained by
first-principles calculations [8,26,27]. Additionally, if we set
t1 being t1 ∼ 0.15 eV, the strength of the Coulomb interaction
can be estimated as Udd ∼ 1.05 eV and Upp ∼ 0.83 eV.

III. CONDITION OF TOTAL NUMBER OF ELECTRONS
IN UNIT CELL

Next, we discuss the chemical potential in our theoretical
model. In the following, we assume that the doping effect

is considered as only a change of the number of electrons
per unit cell, and the randomness due to the impurities is
neglected. As mentioned in the previous section, we extracted
one orbital from five d orbitals of each Co and one orbital from
p orbitals of interlayer Sn, and neglected all other orbitals as
shown in Fig. 2(a). Therefore, the unit cell has (3 + 1) × 2 =
8 states including the spin degrees of freedom in our model.
To determine μ appropriately, we discuss the electronic orbital
configurations in the doped CSS. As discussed in our previous
paper [23], in the undoped CSS, we assume that one of three
sites of Co is occupied by one electron, and the interlayer Sn
site is occupied by two electrons. Thus the total number of
electrons in limited orbitals is ne = 3 per unit cell as shown
in Fig. 2(a). This configuration is consistent with the mag-
netization per unit cell mz ∼ 1.0 as obtained by experiment
[8]. In this work, we study the doping effect to the undoped
CSS. To clearly characterize the filling factor of dopants, we
use �ne as the deviation from ne = 3 in the following results.
Therefore, ne = 3 is equivalent to �ne = 0. When one Co
in each unit cell is substituted with one Fe, the anticipated
electronic orbital configuration is shown in Fig. 2(c). In this
case, the total number of electrons per unit cell is ne = 2 so
�ne = −1. Presumably, even if Sn is substituted with In, in-
stead of substituting Co with Fe, the total number of electrons
per unit cell is the same as that in Fig. 2(c). This is because
one electron at the Co orbital is expected to move to the In
orbital, which is assumed to be energetically low. On the other
hand, when one Co site in each unit cell is substituted with one
Ni, the anticipated electronic orbital configuration is shown
in Fig. 2(d). In this case, the total number of electrons per
unit cell is ne = 4 so �ne = +1. The chemical potential μ is
numerically determined to satisfy the following equation,

ne =
∫ ∞

−∞
dερ(ε) f (ε − μ, T ). (12)

Here, ρ(ε) is the density of states per unit cell, kB is the
Boltzman constant, and T is temperature. According to the
above argument, we can determine the chemical potential μ

using Eq. (12).

IV. MAGNETIC ORDERING

Next, we investigate the magnetic ordering with respect
to the filling factor of dopants �ne and temperature T . In
Fig. 3, the �ne-T dependence of (a) the z component of
magnetization mz = ∑

γ 〈mz
γ 〉, (b) the in-plane component of

magnetization m// = ∑
α

√〈mx
α〉2 + 〈my

α〉2 (α = A, B, and C),
and (c) the z component of the vector spin chirality [28]
(K )z = (SA × SB + SB × SC + SC × SA)z are shown. Addi-
tionally, in Fig. 3, the band structure and the density of
states at (d) �ne = −1, (e) �ne = 0, and (f) �ne = +1 are
shown. First, we study the FM ordering with the perpendic-
ular anisotropy in undoped CSS (�ne = 0). Figures 3(a) and
3(b) show, at low temperature, mz ∼ 0.9 and m// ∼ 0 in the
undoped case (�ne = 0), indicating FM ordering with the
perpendicular anisotropy. The value mz ∼ 0.9 is consistent
with results obtained by first-principles calculations [8] and
experiment [8,29]. We find the critical temperature in the
undoped case being T0 = 0.4t1/kB. The band structure and
the density of states in the undoped case (�ne = 0) obtained
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FIG. 3. Color maps for (a) z component of magnetization mz per unit cell in units of μB, (b) in-plane component of magnetization, and (c) z
component of vector spin chirality with respect to the filling factor of dopants and temperature. In case �ne ∼ 0.0, (a) ferromagnetic ordering
with mz ∼ 0.9 appears. mz decreases as �ne deviates from �ne ∼ 0. When �ne ∼ +1.0, (a) z component of magnetization diminishes,
while (b) in-plane component of magnetization and (c) z component of the vector spin chirality become finite, indicating noncollinear
antiferromagnetic state. Electronic band structures of (d) paramagnetic state, (e) perpendicular ferromagnetic state, and (f) noncollinear
antiferromagnetic state obtained by the Hartree-Fock method. In (d) �ne = −1, system is paramagnetic and the chemical potential is close to
the band gap. In (e) �ne = 0, system is ferromagnetic, the chemical potential is located near the local minimum of the spin majority band,
corresponding to the Weyl points, and near the gap of the spin minority band. In (f) noncollinear antiferromagnetic state, the electronic band
dispersion around the L point remains almost unchanged, compared to that in the ferromagnetic state.

by the Hartree-Fock method are shown in Fig. 3(e). We set
kBT/t1 = 0.01. E1/t1 = 0 is set as the chemical potential μ

obtained by Eq. (12). We do not depict the lower two bands
because they are energetically apart from μ. As the right
panel of Fig. 3(e) shows, near μ, the spin-up band has a
relatively small density of states corresponding to the Weyl
points, whereas the spin-down band is close to the band gap.
This describes the spin-polarized Weyl semimetallic state in
undoped CSS.

Next, we show the suppression of the FM ordering in the
hole-doped regime. Figure 3(a) shows that the FM transition
temperature decreases when �ne < 0. This suppression of
FM ordering by hole doping is consistent with experiment
in Co3−xFexSn2S2 [30–33] and first-principles calculations
and experiment for Co3InxSn2−xS2 [27,34]. The nonmagnetic
band structure and the density of states in the hole-doped CSS
when �ne = −1 are shown in Fig. 3(d). We note that the small
density of states around μ comes from the states away from
the high-symmetry lines. In this situation, μ is close to the
band gap, indicating a paramagnetic state with small carriers.

Then, we study the electron-doped regime. This situ-
ation could be realized experimentally in Co3−xNixSn2S2

[35,36]. As shown in Fig. 3(a), mz decreases as �ne

increases from �ne = 0. As Fig. 3(c) shows, the z com-
ponent of vector spin chirality becomes positive as �ne

increases, while mz vanishes. Especially, when �ne =
+1, we find that the spin configuration becomes as
mA = m(1, 0, 0), mB = m( cos (2π/3), sin (2π/3), 0), mC =
m( cos (4π/3), sin (4π/3), 0), where m ∼ 0.5μB. These re-
sults indicate that the noncollinear AFM ordering appears
within the restricted order parameter space of our model.
In Fig. 3(f), the electronic band structure and the density
of states in the noncollinear AFM state are shown. Around
the L point, the band dispersion near μ remains almost un-
changed from that in the FM state [Fig. 3(e)]. In Fig. 3(c),
the noncollinear AFM ordering is sustained up to T/T0 ∼ 2.3.
However, we note that the magnetic transition temperature
is overestimated due to the use of the Hartree-Fock method
[37]. On the other hand, at low temperature the appearance of
magnetic ordering is reliable. The origin of noncollinear AFM
ordering might be understood as follows. When �ne = +1,
the limited eight orbitals are occupied by four electrons so
that the system corresponds to a half-filled multiorbital Hub-
bard model. Therefore, each magnetic moment on the Co site
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interacts antiferromagnetically on the kagome lattice and then
the noncollinear AFM state is stabilized. The tendency of the
AFM ordering in the half-filled Hubbard model has been well
studied in, for example [38].

V. ORBITAL MAGNETIZATION IN
ANTIFERROMAGNETIC STATE

In the previous section, we showed that the noncollinear
AFM ordering appears in the electron-doped regime. Here, we
discuss the orbital magnetization and the AHC, characterizing
the noncollinear AFM state. Considering a certain additional
SOC, the orbital magnetization and the AHC become finite
in the noncollinear AFM state. We note that, by considering
only the intralayer Kane-Mele SOC given by Eq. (3), both of
these values vanish. As an additional interaction, we introduce
the interlayer Kane-Mele type SOC due to the honeycomb
structure,

Hz
KM = −it z

KM

∑
〈〈i j〉〉σσ ′

ηi j · d†
iσ σσσ ′d jσ ′ . (13)

Here, ηi j are given by ηCA = a1
2 × a3

2 , ηAB = a2
2 × a1

2 , and
ηBC = a3

2 × a2
2 . Although the magnetic ordering remains

mostly unchanged by this additional SOC Eq. (13), this term
makes the orbital magnetization and the AHC finite in the
noncollinear AFM state.

We study the spin-moment angle dependencies of the
orbital magnetization. The orbital magnetization can be ob-
tained by the formula [4,39–41]

Morb
α = e

2h̄

∑
λ

∫
BZ

d3k

(2π )3
fλkεαβγ

× Im
∑
λ′ �=λ

〈λ, k|h̄vβ |λ′, k〉〈λ′, k|h̄vγ |λ, k〉
(Eλ′k − Eλk)2

× (Eλ′k + Eλk − 2EF). (14)

Here, vi (i = x, y, z) is the velocity operator given by vi =
1
h̄

∂H (k)
∂ki

. The eigenstates |λ, k〉 are obtained by diagonalizing
H0(k) + Hexc with Eq. (13). Figure 4(a) shows Morb

z as a
function of the angle of magnetic moment on the kagome
lattice for t z

KM = 0.0, 0.1t1, and 0.2t1. Each magnetic moment
is rotated with an equivalent relative angle as shown in an
inset of Fig. 4(a). EF in Eq. (14) is obtained by the �ne = +1
condition and the magnetic order parameters on each site
are obtained by the Hartree-Fock method. Morb

z is finite and
changes like a cos θ function. We note that Morb

x = Morb
y = 0.

These results indicate that our model in the noncollinear AFM
state shows a finite orbital magnetization although the net
magnetization vanishes. The direction of the spin moments
can be changed by an external magnetic field as similarly
discussed in Ref. [4]. In the presence of an external magnetic
field pointing in the z direction Bz, the orbital magnetization
Morb

z couples as −Morb
z Bz. When the external magnetic field

points in the +z direction, the spin angle θ = 0 is energetically
favored. On the other hand, when the external magnetic field
points in the −z direction, the spin angle θ = π is energet-
ically favored. The change of the spin direction is related
to the anomalous Hall effect. The intrinsic AHC σxy can be

FIG. 4. (a) Orbital magnetizations and (b) anomalous Hall
conductivity for t z

KM = 0.0, 0.1t1, and 0.2t1, as a function of mag-
netization angle θ depicted in the inset of (a).

calculated by the formula [42] given by

σxy = e2 h̄
∑

λ

∫
BZ

d3k

(2π )3
fλk

× Im
∑
λ′ �=λ

〈λ, k|vx|λ′, k〉〈λ′, k|vy|λ, k〉
(Eλ′k − Eλk)2

. (15)

As shown in Fig. 4(b), the angle dependence of the AHC
is similar to that of the orbital magnetization in Fig. 4(a).
Therefore, the sign of the AHC changes when the direction
of spin moments is changed by an external magnetic field.
Although the AHC in �ne = +1 is smaller than that in the
ferromagnetic Weyl state (�ne = 0) [23], the change of the
direction of spin moments in the noncollinear AFM state
might be detected by applying a uniform magnetic field. In
the noncollinear AFM state with finite t z

KM, we find some
Weyl points which may contribute to the AHC and orbital
magnetization.

VI. CONCLUSION

In this paper, we investigated the magnetic ordering in an
effective model of the stacked-kagome lattice system CSS,
based on the Hartree-Fock method. We showed the suppres-
sion of the perpendicular ferromagnetic ordering by hole
doping. The noncollinear AFM phase appears in electron-
doped regimes and possesses finite orbital magnetization and
the AHC, obtained by considering the interlayer SOC.
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