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Diffusion in the high-temperature bcc phase of IIIB-IVB metals such as Zr, Ti, and their alloys is observed
to be orders of magnitude higher than bcc metals of group VB-VIB, including Cr, Mo, and W. The under-
lying reason for this higher diffusion is still poorly understood. To explain this observation, we compare the
first-principles-calculated parameters of monovacancy-mediated diffusion between bcc Ti, Zr, and dilute Zr-
Sn alloys and bcc Cr, Mo, and W. Our results indicate that strongly anharmonic vibrations promote both the
vacancy concentration and the diffusive jump rate in bcc IVB metals and can explain their markedly faster
diffusion compared to bcc VIB metals. Additionally, we provide an efficient approach to calculate diffusive
jump rates according to the transition state theory (TST). The use of standard harmonic TST is impractical in
bcc IIIB/IVB metals due to the existence of ill-defined harmonic phonons, and most studies use classical or ab
initio molecular dynamics for direct simulation of diffusive jumps. Here, instead, we use a stochastically sampled
temperature-dependent phonon analysis within the transition state theory to study diffusive jumps without the
need of direct molecular dynamics simulations. We validate our first-principles diffusion coefficient predictions
with available experimental measurements and explain the underlying reasons for the promotion of diffusion in
bcc IVB metals/alloys compared to bcc VIB metals.
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I. INTRODUCTION

Diffusion in crystalline solids determines the kinetics of
many diffusion-controlled phenomena, e.g., phase transfor-
mation, precipitate growth and coarsening, and corrosion, and
understanding it is basic to predicting new materials with
desired physical and mechanical properties. Diffusion in bcc
solids is generally faster than close-packed phases of fcc and
hcp due to their more open structure. However, within the
bcc metals and their alloys, there are major differences in
diffusion coefficient values. Specifically, self- and solute dif-
fusion is orders of magnitude faster in bcc phases of IIIB-IVB
metals compared to VB-VIB metals [1–10]. For example,
self-diffusion in bcc Ti is 105 − 107 times higher than bcc
Cr despite similar mass and common lattice structure [3]. The
underlying reason for this strikingly faster diffusion is still not
fully understood. Specifically, the effect of strong anharmonic
phonons on diffusion is understudied, considering that there
is a fundamental difference between the nature of vibrations
of bcc IIIB-IVB metals and VB-VIB metals. The bcc phase of
the former group (IIIB-IVB metals and alloys) is only stable
when it reaches high enough temperatures and experiences
strongly anharmonic vibrations, i.e„ it is dynamically stabi-
lized [11–16] as opposed to the bcc phase in the latter group
(VB-VIB metals), which is stable at all temperatures. This
dynamical stabilization despite the lattice instability implies
that the Hamiltonian anharmonicity is so strong that it creates
multiple local minima around a high-symmetry maximum.
The system is stabilized by hopping among these local minima
at elevated temperatures, as shown in our earlier studies of
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thermodynamic stability of bcc Ti and ordered bcc NiTi com-
pounds [14,17]. Aside from existing gaps in understanding the
effect of phonon anharmonicity on diffusion, application of
the harmonic transition state theory (TST) becomes impos-
sible due to the existence of ill-defined harmonic phonons,
i.e., phonons with imaginary frequencies or negative thermal
energy, in dynamically stabilized phases [18–20].

Several studies have investigated the underlying reasons
for the so-called anomalously fast diffusion in bcc IIIB-IVB
metals and alloys, which we classify into three groups. The
first group has explained the enhanced diffusion by mixed va-
cancy mechanisms, the appreciable contribution of divacancy
or self-interstitial jumps to the vacancy mechanism, espe-
cially near the melting point [1,5,21–24]. For example, Vogl
et al. obtained two distinct jump frequencies for Co in bcc
Zr from their quasielastic neutron scattering and speculated
that jumps between interstitial sites might be the reason for
the fast diffusion of Co [5]. Recently, Smirnov has observed
formation of self-interstitial defects in a classical molecular
dynamics simulation based on a modified embedded atom
method (MEAM) potential model for bcc Ti, showing that
the self-interstitial jumps can contribute up to 10% to the
high-temperature diffusivity but become negligible at low
temperature ranges [24]. Other EAM-potential molecular dy-
namics (MD) studies consistently predicted the formation of
self-interstitial in bcc Ti and Zr at high temperatures [25,26].
According to these studies, self-interstitial jump contribution
can explain the upward curvature of the Arrhenius plot for
diffusion coefficients in bcc Ti and Zr at high temperature
ranges, however, the markedly higher diffusivity compared to
bcc VB-VIB, such as Cr or W, cannot be understood. Multiple
isotope effect measurements and neutron scattering studies in
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bcc IIIB-IVB metals confirmed that the vacancy mechanism
is the predominant diffusion mechanism [6–8,27–29], pre-
cluding explanations based on major contributions from other
intrinsic defects, even at temperatures close to the melting
point [29]. This led to the second group of studies, which re-
lated the anomalously fast and non-Arrhenius diffusion to soft
phonon modes or to fluctuation of bcc IIIB-IVB metals be-
tween metastable ω-phase embryos. Sanchez and de Fontaine
proposed a model which correlates the diffusivity in bcc Zr
to the formation of the metastable ω phase and uses the for-
mation free energy of the ω embryo as the diffusion activation
energy [30–32]. Herzig and Köhler explained the anomalously
fast diffusion and strong non-Arrhenius behavior in bcc IIIB-
IVB metals according to the characteristic soft phonon mode
LA 2

3 〈111〉, and provided a semiempirical relation between
diffusive migration enthalpy and the square of the soft phonon
frequency [3,33,34]. Kadkhodaei and Davariashtiyani illus-
trated that including the anharmonic phonon effects obtained
from ab initio molecular dynamics to describe the activation
energy and the effective frequency for a vacancy-mediated
diffusive jump in bcc Ti and Zr can successfully reproduce the
experimentally reported anomalous high diffusion coefficients
[35]. The third group of studies related the enhanced diffusion
to concerted motion of atoms or collective diffusion mecha-
nisms [36,37]. Sangiovanni et al. observed a highly concerted
string-like atomic motion in an ab initio molecular dynamics
simulation in bcc Ti at 1800 K [36]. They predicted the dif-
fusion coefficient of bcc Ti by accounting for both vacancy
diffusivity and concerted atomic motion diffusivity obtained
form MEAM-potential MD simulations, showing that the
concerted motion diffusivity becomes non-negligible close to
the melting point and can describe the non-Arrhenius curva-
ture. Recently, MEAM-potential MD simulations in bcc and
fcc metals demonstrated that vacancy-interstitial pairs form
via a stringlike atomic motion along close-packed directions,
which becomes particularly prevalent in bcc crystal structures,
including Ti, Zr, Ta, and Nb [37]. According to these simu-
lations, concentration of vacancy-interstitial pairs in bcc Zr,
Ta, and Nb are in the same order, with bcc Ti showing ex-
ceptionally higher concentration and a strong deviation from
the Arrhenius behavior at low temperature ranges. This study
has linked the stringlike atomic motion to vacancy-interstitial
pair formation, both observed separately in previous MEAM
MD simulations [24,36]. Despite these studies, a systematic
comparison of diffusion parameters between normal bcc met-
als of VB-VIB and anomalous bcc metals of IIIB-IVB is still
lacking.

The contribution of this paper is twofold: First, we elu-
cidate the underlying reason for the so-called anomalously
faster diffusion in bcc IVB metals/alloys with a focus on
the role of strongly anharmonic vibrations. We present a
detailed comparison of diffusion parameters between me-
chanically stable bcc VIB metals and mechanically unstable
but dynamically stabilized bcc IVB metals, including first-
principle-calculated activation energies and effective vibration
frequencies along the diffusive jump direction. We explain
the role of strongly anharmonic vibrations in promoting
diffusive jumps. Second, we provide an efficient approach to
calculate the diffusion coefficient of bcc IVB metals with-
out the need of any direct simulation of diffusive jumps.

We employ temperature-dependent phonon analysis within
the TST to predict diffusive jump frequencies, where the
temperature-dependent phonons are obtained based on a
stochastic sampling of vibrations, eliminating any molecular
dynamics simulation for sampling the vibrations or diffusive
jumps.

The content of this paper is arranged in the follow-
ing manner: In Sec. II, we describe the methods used for
temperature-dependent phonon analysis and density func-
tional theory (DFT) calculations to predict the diffusion
coefficient. In Sec. III, we illustrate the calculated diffusion
parameters for bcc Cr, Mo, and W (as examples of mechan-
ically stable or so-called normal bcc metals) versus bcc Ti,
Zr, and Zr-0.46at.%Sn (as examples of dynamically stabilized
or so-called anomalous bcc metals). In Sec. IV, we interpret
the differences in diffusion parameters between normal and
anomalous bcc systems in light of anharmonic lattice vibra-
tions. Additionally, we discuss the findings of this paper in
comparison to existing studies in the literature.

II. METHOD

We obtain the macroscopic diffusion coefficient, D, of self-
diffusion or solute diffusion by a monovacancy mechanism in
a bcc lattice according to the microscopic parameters in the
following equation:

D = Cvd2�, (1)

where d is the vacancy (or atom) jump distance, Cv is the
equilibrium concentration of vacancy or vacancy-solute pair,
and � is the successful vacancy jump rate [20]. Vacancy
jump distance in bcc is equal to the nearest-neighbor distance
or

√
3

2 a0, where a0 is the lattice constant. The vacancy or
vacancy-solute pair concentration at temperature T is given
by Cv = exp( �S f

kB
) exp(−�Hf

kBT ), where �Hf and �S f are the
formation enthalpy and entropy of vacancy or vacancy-solute
pairs, respectively, and kB is the Boltzmann constant. The
vacancy jump rate � is obtained from the migration enthalpy
�Hm and the effective vibration frequency along the migra-
tion path ν∗ by � = ν∗ exp( −�Hm

kBT ). According to the TST, the
effective vibration frequency, ν∗, is the ratio of the product of
normal vibration frequencies (or harmonic phonon frequen-
cies) of the initial state of atomic migration, νi, to that of the
nonimaginary normal frequencies of the transition state, ν ′

j ,

i.e., ν∗ =
∏3N−3

i=1 νi
∏3N−4

j=1 ν ′
j

[19].

We calculate the microscopic parameters of diffusion, in-
cluding �Hf , �S f , �Hm, and ν∗, in different ways for the
normal and anomalous bcc systems: For normal bcc metals,
including Cr, Mo, and W, we employ the standard approach
[20] based on DFT total energy calculations, the climbing
image nudged elastic band (c-NEB) method for locating the
transition state [38], and the frozen phonon method for har-
monic phonon analysis [39]. For anomalous bcc metals, we
provide an approach that uses a stochastic sampling of the
canonical ensemble to describe vacancy formation enthalpy
and entropy, vacancy migration enthalpy, and effective vibra-
tion frequency. Details of each approach are explained in the
following.

023803-2



UNDERSTANDING THE ROLE OF ANHARMONIC PHONONS … PHYSICAL REVIEW MATERIALS 6, 023803 (2022)

FIG. 1. The evolution of the NEB to optimize the initial energy profile to the final minimum energy path for bcc Mo versus bcc Zr. The
initial band consists of five images interpolated along the 1

2 [111] nearest-neighbor vacancy jump (or diffusive jump) direction. (a), (d) The
energy evolution on each image throughout the NEB optimization for bcc Mo and bcc Zr, respectively. (b), (e) The force evolution on each
image for bcc Mo and bcc Zr, respectively. (c), (f) The maximum force on the climbing image at each NEB iteration for bcc Mo and bcc Zr,
respectively

For Cr, Mo, and W, the equilibrium lattice constant, a0,
is calculated by finding the minimum DFT energy for five
different volumes incremented by 2% lattice constant expan-
sion. The vacancy formation enthalpy is calculated as the
difference of DFT total energies of the defected and bulk sys-
tems, E (N − 1) and E (N ), according to �Hv = E (N − 1) −
N−1

N E (N ), for a system of N atoms. The vacancy formation
entropy is calculated similarly according to �Sv = Svib(N −
1) − N−1

N Svib(N ). The vibration entropy, Svib, is calculated
from to the harmonic phonon density of states according
to the Supplemental Material Eq. (4) [40]. The harmonic
phonon density of states are calculated from the temperature-
independent force-constant using the frozen phonon approach
as implemented in the PHONOPY package [39]. We use the
climbing image NEB method based on DFT forces to obtain
the minimum energy path and the saddle point (or the transi-
tion state of diffusion) [38]. Figures 1(a)–1(c) shows the NEB
optimization for bcc Mo; for example. Supplemental Material
Fig. 1 [40] shows the NEB optimization for other bcc metals.
Subsequent to the transition sate optimization, we compute
the migration enthalpy, �Hm, as the difference between
the DFT total energies of the initial atomic configuration
and the activated transition state, �Hm = E activated(N − 1) −
E initial(N − 1). The effective vibration frequency ν∗ is ob-
tained by calculating the normal vibration modes for the initial

and the saddle point atomic configurations. For dynamically
stabilized bcc Ti, Zr, and Zr-0.46at.%Sn, we provide an ap-
proach that can effectively include the temperature-dependent
anharmonic vibrations into the diffusion calculation. Due to
the mechanical instability of the bcc lattice in these systems,
the formation or migration enthalpy cannot be approximated
by the total energy difference of bulk and defected or activated
supercells, considering that the DFT energy corresponds to the
free energy at absolute zero temperature, where these systems
do not even exist. An additional difficulty arising from the
lattice instability is the divergence of saddle point search
schemes based on DFT forces. As compared in Figs. 1(a) and
1(b) and 1(d) and 1(e), the NEB method can optimize an ini-
tial energy profile along the 1

2 [111] nearest-neighbor vacancy
jump direction to the final minimum energy path and therefore
can locate the transition state in bcc Mo, while it fails to
locate the transition state in bcc Zr based on DFT forces.
Figure 1(f) shows that the maximum force on the climbing
image diverges for bcc Zr (see Supplemental Material Fig. 1
for bcc Ti [40]), whereas Fig. 1(c) shows the convergence
of the maximum force on the climbing image in bcc Mo
(see Supplemental Material Fig. 1 for bcc Cr and W [40]).
To overcome these challenge, we generate three different
canonical ensembles for each anomalous bcc metal. One for
the defect-free or bulk supercell, one for the defected super-
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FIG. 2. Stochastic sampling of the canonical ensemble for dynamically stabilized bcc systems. (a) Enthalpy at 1400 K for all the stochastic
snapshots of the defect-free bcc Zr (blue) and defected bcc Zr with a monovacancy (orange). (b) Enthalpy at 1400 K for all the stochastic
snapshots of the defected bcc Zr with a monovacancy (blue) and the activated defected bcc Zr with the diffusing atom halfway between
neighboring bcc lattice sites (orange). The horizontal lines represent averages over all the snapshots. (c) Static atomic configurations, i.e.,
atoms sitting at the lattice sites without any momentum, around the vacancy for the initial, transition (or activated), and final states of diffusion.
Diffusing Zr atom is shown by a different color. The static transition state is approximated by an atomic configuration where the diffusing atom
sits between two vacant neighboring lattice sites.

cell (including a monovacany or a vacancy-solute pair) and
one for the activated transition state. The canonical ensem-
bles are generated using the Maxwell-Boltzmann statistics
according to the stochastic temperature-dependent effective
potential (or s-TDEP) method [41–45]. The atomic positions
and velocities are generated using the harmonic normal-mode
transformation, as detailed in Supplemental Material Note 1
and Supplemental Material Eqs. (2) and (3) [40], resulting in
uncorrelated excited states (or snapshots) for each ensemble.
Unlike the bulk and equilibrium defected states, the acti-
vated transition state is a semiequilibrium state, for which
the canonical ensemble is obtained by generating multiple
atomic snapshots with stochastic positions and velocities, ex-
cept for the diffusing atom which has a fixed position at
halfway along the 1

2 [111] diffusive jump direction but has
a stochastic velocity. This construct assumes that the saddle
point on an effective temperature-dependent energy surface
coincides with the atomic configuration with diffusing atom at
1
4 [111] lattice point [see Fig. 2(c)]. We use DFT to calculate
atomic forces, total energy, and pressure for each stochastic
snapshot in the ensembles. For the canonical ensemble at
1400 K, we calculate the Helmholtz free energy from the
stochastic snapshots (as described below) for six different
volumes incremented by 0.02a0 and select the volume with
the lowest free energy as the equilibrium volume for the
canonical ensemble (same method used in Ref. [45]). We
use the same volume for supercells at other temperatures.
The enthalpy values are obtained by averaging the total en-
ergy (sum of the ion-electron and the kinetic energies), 〈U 〉,
and the pressure-volume term, 〈p〉V , over the snapshots for
each ensemble according to H = 〈U 〉 + 〈p〉V , as shown in
Fig. 2. The vacancy formation and migration enthalpy values

are then obtained according to �Hv = H (N − 1) − N−1
N H (N )

and �Hm = H activated(N − 1) − H initial(N − 1), respectively.
We confirmed that the average total energy obtained from
the stochastic snapshots agrees well with the average total
energy obtained from a canonical ab initio molecular dynam-
ics simulation. More details are provided in Supplemental
Material Fig. 2 [40]. For all the bcc metals, we incorporate
the intrinsic surface correction terms to the vacancy forma-
tion and migration enthalpy values as shown in Supplemental
Material Table 1 [40]. These correction terms are calculated
based on the method proposed in Ref. [46] and compensate
for the underestimation of DFT generalized gradient approxi-
mations (GGA) in calculating the intrinsic surface energy that
is formed around a vacancy.

For bcc Ti, Zr, and Zr-Sn systems, phonons at elevated
temperatures are calculated from the effective (or converged)
temperature-dependent second-order force-constant accord-
ing to the TDEP method [41–43]. The displacements and
forces on stochastic atomic snapshots are recorded, and the
force constant is obtained via a least-squares fitting of an
effective harmonic potential model of Supplemental Mate-
rial Eq. (1) [40] to the displacement-force data set. The
force constant is converged through a self-consistent pro-
cess with respect to the number of snapshots and iterations.
At each temperature, 50 stochastic snapshots are generated
initially using a model force-constant that emulates the De-
bye temperature (as explained in Ref. [44]). The calculated
force constant at each iteration is then used to generate a
new set of stochastic snapshots for the next iteration (see
Supplemental Material Eqs. (2) and (3) [40]). The number
of snapshots is increased as the iteration continues to ensure
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FIG. 3. Iterative temperature-dependent phonon analysis for the defect-free bcc Zr. (a) Phonon dispersion and density of states evolution
during the s-TDEP iterations at 1400 K. (b) Phonon free energy evolution during the s-TDEP iterations for bcc Zr at different temperatures.

the convergence of the phonon free energy, with the last
iteration consisting of 300 stochastic snapshots. Throughout
the s-TDEP iterations, the phonon free energy is calculated
using Supplemental Material Eq. (4) [40]. Convergence is
achieved when the phonon free energy difference between
consecutive iterations falls below 3 meV per atom. Figure 3
shows the evolution of the phonon dispersion, phonon den-
sity of states, and phonon free energy through the s-TDEP
iterations for the defect-free bcc Zr. The vacancy formation
entropy, �S f , is calculated based on the difference of the
vibration entropy for the defected and bulk systems, each
calculated from the temperature-dependent phonon density of
states (e.g., see Fig. 4 and Supplemental Material Fig. 3 [40])
according to Supplemental Material Eq. (4) [40]. The effec-
tive prefactor frequency along the diffusive jump direction,

ν∗, is approximated as the temperature-dependent phonon
frequency at 2

3 along the L〈ξξξ 〉 or �-H-P branch for the
defected system. The atomic distortion for this phonon mode
coincides with the vacancy jump direction for the bcc phase.
Figure 4 shows the temperature-dependent phonon dispersion
and density of states calculated at 1400 K for defected bcc
Zr and Zr-0.46at.%Sn. For defected systems, ν∗ or phonon
frequency at 2

3 L〈111〉 is obtained from the unfolded phonon
dispersion. For phonon band unfolding, we use the method of
Ref. [47] by imposing the bcc unit cell symmetry path of �,
H, P, �, and N to the defected supercell (see Fig. 4).

Details of the DFT and NEB calculations are as follows:
For Cr, Mo, and W, a 5 × 5 × 5 supercell of conventional
bcc unit cell with 250 atoms is used for the bulk system. For
bcc Ti, Zr, and Zr-Sn, a 6 × 6 × 6 supercell containing 216

FIG. 4. The temperature-dependent phonon dispersion and density of states for (a) the defected bcc Zr at 1400 K and (b) the defected bcc
Zr-0.46at.%Sn at 1400 K. The folded dispersion is shown by gray and the unfolded dispersion is shown by a color map that indicates the
spectral function of the unfolding. The atomic configuration of (c) the defected bcc Zr around the isolated vacancy and (d) the defected bcc
Zr-0.46at.%Sn around the vacancy-solute pair.
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FIG. 5. Microscopic diffusion parameters for mechanically stable bcc metals (left column) and dynamically stabilized bcc systems (right
column). (a), (b) Vacancy formation enthalpy, �Hf . (c), (d) Vacancy migration enthalpy, �Hm. (e), (f) Vacancy formation entropy, �Sf . (g), (i)
Effective prefactor frequency, ν∗. Error bars indicate the standard deviation of the stochastic snapshots at each temperature (for each canonical
ensemble).

atoms is used for the bulk state and the defected supercell
consists of 215 atoms. We use the projector-augmented-wave
method as implemented in the highly efficient VIENNA AB

INITIO SIMULATION PACKAGE [48–51]. For Cr, Mo, and W,
we use a Monkhorst-Pack k-point mesh of 3 × 3 × 3 and an
energy cutoff of 350 and 320 and 300, respectively, within the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional. For Zr, Ti, and Zr-Sn, a 1 × 1 × 1 Monkhorst-Pack
k-point grid, and a plane-wave energy cutoff of 350 eV within
the PBE exchange-correlation functional [52]. We use the
spring constant of 5.0 eV/Å2 for all the NEB calculations and
convergence is assumed when the maximum atomic force on
all the images falls below 0.01 eV/Å.

III. RESULTS

We calculate the individual microscopic diffusion parame-
ters, namely, the vacancy formation enthalpy, �Hf , vacancy
migration enthalpy, �Hm, vacancy formation entropy, �S f ,
and effective prefactor frequency, ν∗, for the mechanically

stable versus dynamically stabilized bcc systems as explained
in Sec. II. As shown in Fig. 5, diffusion parameters for the
mechanically stable bcc metals (Cr, Mo, and W) are tem-
perature independent because the formation and migration
enthalpies are calculated from DFT total energies of bulk
and defected atomic configurations and formation entropy and
effective prefactor frequency are calculated from the harmonic
phonon density of states and harmonic TST. On the other
hand, diffusion parameters for dynamically stabilized bcc Ti,
Zr, and Zr-0.46at.%Sn show temperature dependence as ex-
pected when calculated from stochastically sampled canonical
ensembles and temperature-dependent phonon analysis.

The formation and migration enthalpies for dynamically
stabilized bcc phases are lower than their mechanically stable
counterparts, as illustrated in Figs. 5(a)–5(d). For example,
�Hf (or �Hm) is 2.73 eV (or 0.948 eV) for bcc Cr compared
to 1.242 eV (or 0.43 eV) at 1400 K for bcc Ti with a similar
atomic size or it is 3.152 eV (or 1.34 eV) for bcc Mo compared
to 1.225 eV (or 0.498 eV) at 1400 K for bcc Zr (read from
Table I). Among mechanically stable bcc metals, formation
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TABLE I. Diffusion Parameters of bcc Mo, W, Cr, Zr, Ti, and Zr-Sn. The following superscripts are used: ∗∗: Calculated value at 1400 K
in this paper,.a: DFT simulation with AM05 functional [53]. b: DFT Simulation with PBE functional [54]. c: DFT Simulation with PBE
functional [55]. d: Experimental value from modulation measurements of specific heat [56]. f : From static lattice Green’s function, which is
directly calculated from experimental phonon density of states [57]. g: From force-constants fitted to the measured phonon dispersion curves
[57]. h: Values at 0 K from quenched molecular dynamics [23].

Mo W Cr Ti Zr Zr-Sn(0.46at%)

a0 (Å) This paper 3.135 3.185 2.84 3.28∗∗ 3.59∗∗ 3.59∗∗

Reference 3.134a 3.186b 2.84c 3.25c

�Hf (eV) This paper 3.152 3.6 2.73 1.242∗∗ 1.225∗∗ 0.578∗∗

Reference 3.1a-3.07c 3.51c 3.05c 1.55d 1.75d -1.53h

�Sf (kB) This paper 2.28 1.99 2.25 0.57∗∗ 0.56∗∗ 0.56∗∗

Reference 2.3a 1.8g 1.8g 2.4g(1293 K) 2.58g(1483 K) - 0.5h

�Hm (eV) This paper 1.34 1.78 0.948 0.43∗∗ 0.498∗∗ 1.057∗∗

Reference 1.3a 1.78b 0.95c 0.31 f (1293 K) 0.324 f (1483 K)-0.32h

ν∗ (THz) This paper 2.4 2.1 2.01 3.63∗∗ 2.38∗∗ 2.31∗∗

Cv This paper 6.90E-11∗∗ 8.02E-13∗∗ 1.409E-09∗∗ 5.97E-05∗∗ 6.81E-05∗∗ 1.34E-2∗∗

�(Hz) This paper 3.6E+07∗∗ 8.21E+05∗∗ 1.15E+09∗∗ 1.02E+11∗∗ 3.5E+10∗∗ 3.61E+08∗∗

and migration enthalpies increase by atomic size, lowest for
Cr and largest for W [see Figs. 5(a), 5(c) and 6]. However, in
between dynamically stabilized systems, the atomic size has
a reduced significance. As shown in Figs. 5(b) and 5(d), the
formation enthalpy values for bcc Ti and Zr are almost the
same and the migration enthalpy for Ti is only slightly higher
than Zr. However, �Hf for Zr-Sn is largely decreased com-
pared to Ti and Zr while �Hm exhibits a large increase. This
is because of the large binding energy between tin solute and

FIG. 6. DFT energy versus distance percentage along the va-
cancy diffusion pathway. For Mo, W, and Cr, the energy profile is
optimized using the c-NEB. For Ti and Zr, the represented energy
barrier is the DFT energy between the static atomic configurations of
the initial and transition state, approximated by fixing the diffusing
atom at the 1

4 [111] position. The calculated migration barrier for
bcc Ti and Zr are calculated from average enthalpies over canonical
stochastic snapshots instead of static configurations (see Fig. 2).

vacancy (1.225 eV–0.56 eV = 0.66 eV at 1400 K, read from
Table I). The attractive nature of the binding decreases the for-
mation energy and subsequently increases the vacancy-solute
concentration (as reported in Table I). On the other hand, the
attractive binding energy resists the solute-vacancy exchange
or migration and increases �Hm compared to the monova-
cancy migration in Zr or Ti. The relative lower activation
enthalpies (formation + migration) of bcc Ti, Zr, and Zr-Sn
is due to the dynamically stabilized nature of these phases. In
fact, they reside on high-energy regions of the potential energy
surface as opposed to a deep well (or low-energy local min-
imum) in mechanically stable bcc metals. This implies a flat
energy profile along the migration pathway (see Fig. 6), which
relatively reduces �Hm and a shallow well of residence which
relatively reduces �Hf . The shallow nature of the residing
well implies the existence of soft bonds or phonons with lower
frequencies for dynamically stabilized bcc phases, leading to
�S f of about three to four times lower than mechanically sta-
ble bcc systems with the more pronounced vacancy-induced
softening effect [see Figs. 5(e) and 5(f)]. ν∗ for dynamically
stabilized bcc metals is only slightly higher than their mechan-
ically stable counterparts [see Figs. 5(g), 5(h) and Table I].

In Table I, we compare the calculated diffusion parame-
ters with available values in the literature. For bcc Cr, Mo,
and W, our predictions of a0, �Hf , �Hm, and �S f are in
perfect agreement with other DFT predictions [53–55], with
the only exception of �Hf for bcc Cr being lower than the
DFT study in Ref. [55]. For bcc Ti and Zr, DFT data are
few due to computational difficulties associated with the lat-
tice instability. Therefore, we compare our predictions with
available data that are directly measured or calculated from
other measurements (more details are provided in Table I).
Our �Hf for bcc Ti and Zr are relatively lower than the
formation enthalpies evaluated from the nonlinear increase in
specific heat via modulation measurements in Ref. [56] but
show the same trend between Ti and Zr. Our �Hm values for
bcc Ti and Zr are slightly higher than the values evaluated
from measured phonon density of states in Ref. [57] but
�Hm for bcc Zr closely match the prediction from a quench
molecular dynamics study [23]. Our �S f for bcc Ti and Zr
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FIG. 7. Self- and solute diffusion coefficients versus temperature in bcc IVB and VIB metals. The predictions in this paper are from
first-principles calculations, compared against experimental measurements of Ref. [3] for pure systems and Ref. [58] for the Zr-Sn alloy.

are lower than the evaluations from Born-von Karman fits
to the measured phonon dispersion curves [57] (see Table I),
however, they closely match predictions from 0 K calculations
of quenched molecular dynamic snapshots of Ref. [23], as
reported in Table I. Our �S f for bcc Cr and W, on the other
hand, are in better agreement with values of Ref. [57]. The
evaluated parameters of Ref. [57] only provides estimates
and should not be considered as quantitative, especially in
cases of strong anharmonictiy of phonons (see Sec. 6.3. in
Ref. [57]).

In addition to microscopic diffusion parameters, we report
the vacancy (or vacancy-tin pair) concentration and the suc-
cessful vacancy jump rate, Cv and �, as defined in Sec. II.
Cv and � for dynamically stabilized bcc systems are both
orders of magnitude higher than their mechanically stable
counterparts (see reported values at 1400 K in Table I). For
example, Cv at 1400 K is 6.8E-05 for bcc Zr compared to
6.90E-11 for bcc Mo (almost 106 times higher) or 5.97E-05
for bcc Ti compared to 1.409E-09 for bcc Cr (more than
40 000 times higher). Similarly, � at 1400 K is 3.5E+10 Hz
for bcc Zr compared to 3.6E+07 Hz for bcc Mo (around
850 times higher) or it is 1.02E+11 Hz for bcc Ti com-
pared to 1.15E+09 Hz for bcc Cr (around 100 times higher).
The markedly higher vacancy concentration and successful
diffusive jump rate both contribute to the strikingly higher
diffusivity in dynamically stabilized bcc phases compared to
the mechanically stable ones (see Fig. 7). Among mechan-
ically stable bcc phases, Cv exhibits a strong dependence
on the atomic size, similar to �Hf as expected, with the
highest vacancy concentration in Cr and lowest in W. Un-
like mechanically stable bcc metals, Cv is less sensitive to
atomic size in dynamically stabilized bcc systems, similar

to the weak dependence of �Hf on atomic size in these
phases.

Figure 7 shows the calculated diffusion coefficients from
the diffusion parameters according to Eq. (1) for all bcc
systems compared against available experimental values. Dy-
namically stabilized bcc systems, Ti, Zr, and Zr-Sn, show
around 105 − 106 times higher diffusion coefficients com-
pared to mechanically stable bcc metals, Cr, Mo, and W. The
markedly higher diffusivity is more pronounced at lower tem-
peratures, as expected based on the Arrhenius D-T relation.
Another remarkable difference is that diffusion coefficients
of bcc Ti, Zr, and Zr-Sn only span over a narrow range
(10−11 − 10−13 m2/s) while diffusivities of bcc Cr, Mo, and
W span over a wider range (10−14 − 10−20 m2/s). This is
because of the lower downward slope of the D-T curves in the
former group arising from lower activation enthalpies. Among
bcc Ti, Zr, and Zr-Sn, D values are very close, unlike bcc Cr,
Mo, and W, where diffusivities are distinctly different with a
strong dependence on the size of diffusing atom, lowest for W
and highest for Cr. Among anomalous bcc systems, the order
of self- or solute diffusion from high to low is Ti, Zr-Sn, Zr.
The slightly higher diffusivity of Ti compared to Zr can be
attributed to higher vacancy jump frequency (e.g., 3.34 times
higher in Ti compared to Zr at 1400 K) while vacancy con-
centration of Ti and Zr are almost the same (compare values
in Table I). The slight higher diffusivity of Zr-Sn compared to
Zr, on the other hand, arises from the trade-off between the
increased vacancy concentration in Zr-Sn (≈200 times higher
than Zr at 1400 K) and the reduced vacancy jump frequency
(≈0.01 times lower than Zr at 1400 K). This is because of
the large attractive binding between tin solute and vacancy,
which significantly favors vacancy-solute pair formation but
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FIG. 8. Self-diffusion in bcc Ti (top) and bcc Zr (bottom) versus
temperature. The references to experimental results are Murdock
et al. [1], Vogl et al. [6], Köhler and Herzig [33], Kidson and McGurn
[59], Herzig and Eckseler [60], and Federer and Lundy [61]

it increases the migration enthalpy. As shown in Fig. 7,
our first-principles predictions of diffusion coefficient are in
good agreement with experimental measurements [3,58]. For
self-diffusion in bcc Ti and Zr, a more detailed comparison
of our diffusivity predictions with several experimental mea-
surements [1,6,33,59–61] is shown in Fig. 8. Our calculated
diffusion coefficients agree well with all measured values and
show a slight curvature in the Arrhenius plots. In Supple-
mental Material Figure 4 [40], we evaluate the dependence
of the curvature of Arrhenius plots on the temperature-
dependence of different diffusion parameters in bcc Ti
and Zr.

IV. DISCUSSION

Our first-principles calculations indicate that the anoma-
lously higher diffusivity in dynamically stabilized bcc phases
stems from both the increased vacancy concentration and suc-
cessful diffusive (or vacancy) jump rate. Both increases are a
direct result of the strongly anharmonic nature of vibrations
in these phases: (1) Monovacany formation is significantly
promoted in these phases because of the nature of the free
energy surface, which corresponds to a shallow well. In fact,

the bcc lattice instability is so strong that it creates mul-
tiple local minima on the energy surface around the bcc
structure associated with local lattice distortions, and the sys-
tem is effectively residing on a high-energy shallow well by
hopping among the local structural distortions. (2) Monova-
cany diffusive jump rate is significantly promoted due to the
coincidental softening of restoring forces along the 1

2 [111]
diffusive jumps, a direct result of strong anharmonicity of
phonons (or phonon softening) along this direction (compare
the phonon dispersion curves for bcc Zr, Zr-Sn, and Ti with
those for bcc Cr, Mo, W in Fig. 4 and Supplemental Material
Fig. 5 [40]).

We incorporate the strongly anharmonic vibration effects
in the description of diffusion parameters, which enable us
to predict the individual parameters of vacancy concentration
and vacancy jump rate. This elucidates the role of strong
phonon anharmonicity in anomalously fast diffusion in terms
of two separate effects: (1) an effective shallow well of res-
idence and (2) directional lattice softening along [111], both
arising from strong lattice anharmonicity. Interestingly, these
two effects are also the underlying reason for the heterophase
fluctuations in anomalous bcc systems, i.e., the vibration-
induced fluctuations between bcc and ω, which is studied
extensively in the literature [31,62]. The earlier model by
Sanchez and de Fontaine has effectively intertwined these two
effects by relating the heterophase fluctuation to the anoma-
lous diffusion. They assumed that the formation free energy of
the ω phase is the diffusive activation barrier [30] based on the
fact that the softening in L 2

3 〈111〉 phonon mode is associated
with the low-frequency large-amplitude vibration that results
in heterophase fluctuations in the same direction as diffusive
hops in the bcc lattice.

The good agreement of available experimental diffusion
coefficients with our first-principles predictions based on the
monovacancy jump mechanism supports the dominant role of
monovacancy diffusion in bcc metals, consistent with earlier
incoherent quasielastic neutron-scattering experiments [29].
Our calculations suggest that the contribution of other dif-
fusion mechanisms to macroscopic diffusivity is secondary
but can become important, especially at high temperatures.
Based on the presented calculations, we speculate that the
secondary diffusion mechanisms are necessary for a more
accurate prediction of the observed non-Arrhenius curvature
in anomalous bcc systems. The temperature dependence of
activation enthalpy and the prefactor frequency only result in
a small curvature in the Arrhenius plots. Secondary mecha-
nisms of diffusion are extensively discussed in the literature,
e.g., crowdionlike mechanism [23], interstitialcy mechansim
[24], or stringlike collective mechanisms [36].
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