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Machine learning reveals strain-rate-dependent predictability of discrete dislocation plasticity
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Predicting the behavior of complex systems is one of the main goals of science. An important example
is plastic deformation of micron-scale crystals, a process mediated by collective dynamics of dislocations,
manifested as broadly distributed strain bursts and significant sample-to-sample variations in the response to
applied loading. Here, by combining large-scale discrete dislocation dynamics simulations and machine learning,
we study the problem of predicting the fluctuating stress-strain curves of individual small single crystals subject
to strain-controlled loading using features of the initial dislocation configurations as input. Our results reveal
an intriguing rate dependence of deformation predictability: For small strains predictability improves with
increasing strain rate, while for larger strains the predictability vs strain rate relation becomes nonmonotonic.
We show that for small strains the rate dependence of deformation predictability can be captured by considering
the fraction of dislocations moving against the direction imposed by the external stress, serving as a measure
of strain-rate-dependent complexity of the dislocation dynamics. The nonmonotonic predictability vs strain rate
relation for large strains is argued to be related to a transition from fluctuating to smooth plastic flow when strain
rate is increased.
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I. INTRODUCTION

Dislocation-mediated plasticity of crystalline solids is
characterized by size effects implying that smaller systems
tend to be “stronger” and exhibit larger fluctuations in their
stress-strain response [1,2], as well as by rate effects which
are typically manifested as larger average stresses needed to
reach a given strain for higher strain rates [3], a phenomenon
often referred to as strain rate sensitivity [4]. Understand-
ing the combined effects of these key features of dislocation
plasticity constitutes an important challenge in physics and
materials science: For instance, the strain bursts exhibited by
micropillars under compression [5] are interesting both from
the perspective of fundamentals of nonequilibrium statistical
physics [6,7] as well as in applications where the fluctua-
tions of plastic deformation result in difficulties to control
the resulting shape in plastic forming processes [8]. At the
same time, the fact that in various applications the mechanical
response of metals depends significantly on the loading rate
(e.g., during a car crash) is of great importance and calls for
novel approaches to understand the underlying fundamental
physics and to control rate dependence of dislocation plastic-
ity.

Recent years have witnessed a surge in application of arti-
ficial intelligence (AI) in general and machine learning (ML)
in particular to gain novel insights on properties of materials
and related problems in physics [9–19]. Broadly speaking,
such developments fall under the umbrella of the emerging
research field of materials informatics [20], where informat-
ics methods—including ML—are used to search for novel
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materials [21,22], establish novel structure-property relations
[13,23], etc. A closely related problem is given by quantifi-
cation of deformation predictability [24,25] of small solid
samples where the response to applied stresses (i.e., the stress-
strain curve) exhibits significant sample-to-sample variations.
The general problem statement can be formulated as follows:
Given a description of the initial microstructure (defined, e.g.,
by the arrangement of pre-existing dislocations and, if present,
other defects within the crystal) of such a sample, how well
can its subsequent sample-specific deformation dynamics be
predicted when external loading is applied? Such questions
are closely related to the more general issue of predictability
of “complex systems,” ranging from forecasting earthquakes
[26–28] to predicting volcanic eruptions [29] and beyond [30].

Such predictions tend to be difficult as the mapping from
the various features describing the initial state of the sys-
tem to its subsequent behavior or dynamics is usually highly
complicated. This complexity typically originates from the
combination of nonlinear nature of the collective dynamics
governing the behavior of the system and the high dimension-
ality of the feature set characterizing the system’s state. On
the other hand, while traditional forecasting methods struggle
with such complexity, typical ML algorithms are well suited
to address problems of this type. Our recent numerical work
based on combining ML and discrete dislocation dynamics
(DDD) simulations suggests that under quasistatic stress-
controlled loading the degree of deformation predictability of
plastically deforming crystals is controlled by the collective
nature of dislocation dynamics, manifested as inherently hard
to predict dislocation avalanches [24,25]. It is worth noting
that even in situations where the dislocation motion is gov-
erned by deterministic equations of motion, the critical-like
and possibly chaotic [31] dynamics exhibited by the system
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renders the prediction problem highly nontrivial [25]. These
works highlight the usefulness of ML in providing a metric
for deformation predictability, allowing us to also identify
the key features of the initial microstructure that determine
the mechanical properties of the sample. Yet, many outstand-
ing questions related to deformation predictability remain to
be addressed, including how rate dependence of plasticity is
manifested in predictability of the deformation process.

Here, we combine large-scale strain-controlled DDD sim-
ulations [32] and ML to study how the imposed strain rate
and the stiffness of the specimen-machine system affect defor-
mation predictability of small single crystals. By employing
ML models including linear regression, fully connected neural
networks and convolutional neural networks, trained using
data from our extensive 2D DDD simulations, we find that
the ability of all these rather different ML models to predict
the stress-strain curve using features of the initial dislo-
cation configuration as input, quantified by the correlation
between predicted and actual stress at a given strain, exhibits
a similar dependence on the imposed strain rate. Hence, by
employing the definition of deformation predictability used
in Refs. [24,25], we conclude that deformation predictabil-
ity of the 2D DDD model we study is rate dependent. For
small strains, predictability improves with increasing strain
rate, while for large strains the predictability vs strain rate
relation becomes nonmonotonic. Interestingly, especially for
small strains, we demonstrate a clear link between defor-
mation predictability and the mean fraction of dislocations
moving against the direction where the applied stress is driv-
ing them, such that deformation predictability improves when
a smaller fraction of the dislocations move against the di-
rection set by the applied stress. This fraction increases with
decreasing strain rate, is a measure of how “interaction domi-
nated” the dislocation dynamics is, and relates to the sizes and
complexity of the multipolar dislocation structures moving
collectively during the deformation process. Specifically, our
results suggest that the more complex dislocation dynamics
for low strain rates results in a larger prediction error of the
ML models. We also discuss the effect of varying the stiffness
of the specimen-machine system, as well as the role of the
various features characterizing the initial dislocation config-
uration in determining the stress-strain response, including
how these give rise to the nonmonotonic predictability vs
strain rate relation for large strains. The latter feature is also
demonstrated to be linked to a transition from fluctuating to
smooth stress-strain curves upon increasing the imposed strain
rate: At the transition point the stress-strain curve is typically
dominated by an individual large intrinsically hard-to-predict
dislocation avalanche, resulting in a larger prediction error of
the ML models.

The paper is organized as follows: We start by going
through the methods employed (Sec. II), including the DDD
simulations in Sec. II A, input features used for the ML
models in Sec II B, and the ML models considered (linear
regression, fully connected neural networks and convolutional
neural networks in Secs. II C, II D, and II E, respectively). This
is then followed by presentation of our results in Sec. III, in-
cluding details about dataset generation in Sec. III A, machine
learning results in Sec. III B, and an account on how these
are related to the rate-dependent complexity of dislocation

dynamics in Secs. III C and III D. The paper is finished with
discussion and conclusions in Sec. IV.

II. METHODS

A. DDD simulations

The 2D DDD model we use is similar to the models studied
in a number of previous works [6,7,32,33]. The dynamics
of straight parallel edge dislocation lines oriented along the
z direction (represented here by points in the xy plane) and
moving within a single slip geometry along the x direction
is taken to follow overdamped equations of motion where
the dislocation velocities are proportional to the total Peach-
Koehler force acting on them,

ẋi

Mb
= sib

[
N∑

j �=i

s jσdisl(ri − r j ) + σext

]
, (1)

where N is the total number of dislocations in the system,
ri = (xi, yi ) is the position of the dislocation i, M is the dis-
location mobility, b is the length of the Burgers vector, and
si = ±1 is its sign. Each dislocation moves in response to both
the externally applied shear stress σext and the internal shear
stress produced by the other dislocations in the system, given
by a sum over the other dislocations of σdisl(r) = σdisl(x, y) =
Dbx(x2 − y2)/(x2 + y2)2, where D = μ/2π (1 − ν), with μ

and ν the shear modulus and Poisson ratio, respectively. Ad-
ditionally, during the simulation two dislocations of opposite
sign annihilate if the distance between them becomes smaller
than b and periodic boundary conditions are implemented. In
the simulations all lengths, times, and stresses are measured
in units of b, (MDb)−1 and D, respectively.

Creating a dataset proceeds by generating configurations
containing a certain number of randomly distributed dislo-
cations within a square simulation box, and subsequently
relaxing them into a metastable state by running the DDD
simulation (i.e., numerically integrating Eq. (1) for all the dis-
locations) at zero external shear stress, i.e., σext = 0. Because
of the aforementioned annihilation processes the number of
dislocations in the final state is always smaller than in the
unrelaxed configuration. The relaxed state is then used as
the initial state for the subsequent strain-controlled loading,
during which σext is applied according to the protocol

σext = k[ε̇at − ε(t )], (2)

where ε(t ) = b/L2 ∑N
i=1 si�xi(t ) is the strain at time t , with

�xi(t ) denoting the displacement of the ith dislocation, ε̇a is
the applied strain rate, and k is the spring stiffness, modeling
the combined stiffness of the specimen-machine system [32].
Varying k could mean that stiffness of the loading machine
or the shear modulus of the sample changes, or both of them
change simultaneously. Taking the liberty of adjusting k al-
lows us to study its influence on deformation predictability.
The above relation means that during the simulation the exter-
nal stress σext is adjusted in such a way that the true plastic
strain rate ε̇(t ) = b/L2 ∑N

i=1 siẋi(t ) approaches the applied
one, ε̇a, in the long-time limit, and thereafter fluctuates in its
vicinity. The stiffness k measures how strongly σext reacts to
deviations of ε̇(t ) from the applied strain rate ε̇a. Thus, higher
values of k help to approach the applied strain rate sooner
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FIG. 1. Schematic of the DDD model with strain-controlled loading and examples of the resulting stress-strain curves. (a) Strain-controlled
loading of a crystal containing dislocations with positive (red) and negative (blue) Burgers vectors, with the applied strain rate ε̇a and the
stiffness of the specimen-machine system, modelled with a spring of stiffness k. (b) Stress-strain curves for a few samples for k = 1 and two
different values of ε̇a plotted with thin lines in linear scale, with the thick line representing the average over all the samples and the grey area
indicating their standard deviation. (c) The same curves in the logarithmic scale, with the vertical dashed lines representing the values of strain
for which the predictive algorithms used in the work are trained.

and result in σext exhibiting larger fluctuations. Concurrently,
larger k values lead to smaller fluctuations of ε̇ around ε̇a.
Hence, the finite stiffness k of the specimen-machine system
implies that we consider an intermediate case between “hard”
(strain controlled with an infinitely stiff machine) and “soft”
(stress-controlled) driving [32]. Figure 1(a) shows a schematic
of the simulation setup, with examples of stress-strain curves
obtained from the simulations in Figs. 1(b) and 1(c) for two
different ε̇a values.

B. Input features for machine learning

In this work three different ML algorithms are used to
predict the stress-strain curve based on the initial relaxed
dislocation configuration and the parameters of the strain-
controlled loading (strain rate ε̇a and the spring stiffness k).
These algorithms are linear regression, fully connected neu-
ral network (NN), and convolutional neural network (CNN).
The first two require manually defined descriptors that char-
acterize the initial state. Those are chosen as the statistical
features of fields defined on the configurations: density of
dislocations ρ(x, y), density of geometrically necessary dislo-
cations (GND) ρGND(x, y), defined as the difference between
the density of positive and negative dislocations, and the in-
ternal stress field due to all the dislocations in the system,
σint(x, y) = ∑

i siσdisl(r − ri). ρ(x, y) and ρGND(x, y) are sam-
pled over 25 slices in both directions and σint(x, y) over 300
slices. Because the number of positive and negative disloca-
tions in the system is equal, the GND density is obviously
zero globally, however, due to the dislocation density fluc-
tuations, it has nonzero values on the local scale. Since the
stress field diverges to infinity at the dislocation core, the
limit |σint| < 2.0 is imposed for any r. Fig. 2 shows exam-
ples of these fields. For the visualization purpose the limit
|σint| < 0.2 was chosen because most of the values are within
this range.

The following features are extracted from the fields: the
first Fourier coefficient in the x and y directions ( fx1 and

fy1), and the mixed coefficient fxy defined for the field A(x, y)
as

fx1 =
n∑

j=0

m∑
k=0

A( j, k) exp

[
− 2π i

(
j

n + 1

)]
, (3)

fy1 =
n∑

j=0

m∑
k=0

A( j, k) exp

[
−2π i

(
k

m + 1

)]
, (4)

fxy =
n∑

j=0

m∑
k=0

A( j, k) exp

[
− 2π i

(
j

n + 1

)]

× exp

[
−2π i

(
k

m + 1

)]
, (5)

where the summation is done over all the slices in both di-
rections, as well as the average, kurtosis and skewness. Since
the Fourier coefficients are in general complex numbers, their
absolute values are used as the input. The other features are
determined both on the original field and its absolute value
with the exception of the dislocation density field ρ(x, y),
which is non-negative by definition. Moreover, since the av-
erages of the GND density and stress field are by definition
equal to 0, only the features defined on the absolute values of
those fields are chosen. In total Nin = 22 descriptors are used,
with all of them listed in Table I.

C. Linear regression

Linear regression is the simplest model employed in this
work. It assumes that the external stress is a linear function
of all the Nin descriptors of the values xi, that is, σext =
a0 + ∑Nin

i=1 aixi, where the parameters ai are optimized using
the least squares method in such a way that the loss function
is as small as possible. The loss function is defined as the sum
of the squares of the differences between the predicted and
the true external stress value. 80% of the configurations were
used as the training set and 20% as the test set. Moreover, L2
regularization is utilized, in which a penalty term λ

∑Nin
i=1 a2

i ,

023602-3
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FIG. 2. Fields used as input for linear regression and fully connected neural networks. (a) An example initial configuration of the
dislocations, (b) the corresponding density field of dislocations ρ(x, y), (c) density of geometrically necessary dislocations ρGND(x, y), and
(d) the internal stress field σint(x, y) produced by the dislocations. Various features derived from these fields (see Methods) are used as input
for linear regression and fully connected neural networks.

where the factor λ = 0.001, is added to the loss function,
however, in this work it does not change the final results.

D. Fully connected neural network

A fully connected neural network (NN) employs a series of
hidden layers inserted between the input and the output layer.
The value of the mth node in the nth layer, denoted as yn

m, is in
general a nonlinear function of values of all the nodes in the
(n − 1)th layer in the following way:

yn
m = f n−1

a

(
wn−1

0m +
Nn−1∑
i=1

wn−1
im yn−1

i

)
, (6)

where f n−1
a is the activation function between the layers n − 1

and n, Nn−1 is the number of nodes in the layer n − 1, and
wn−1

im are parameters of the NN. For i �= 0 they are called
weights and they multiply the values of the nodes in the
previous layer, and for i = 0 they are called biases, which are
added to the argument of the activation function.

TABLE I. List of all the features used for training linear regres-
sion and NN.

Field Features

ρGND | fx1|, | fy1|, | fxy|, kurtosis, skewness
|ρGND| average, kurtosis, skewness
ρ | fx1|, | fy1|, | fxy|, average, kurtosis, skewness
σint | fx1|, | fy1|, | fxy|, kurtosis, skewness
|σint| average, kurtosis, skewness

The schematic representation of the NN used in this work is
shown in Fig. 3. It consists of three hidden layers contains five
neurons each. The rectifier function is chosen as the activation
function, except for the output layer, where the linear function
is used.

The NN training is performed in Python using the Keras
library with the Adam optimizer with the learning rate set to
0.001. During each epoch the parameters of the NN, weights
and biases, are updated. 80% of the configurations constitute
the training set, and the rest is divided equally into the test
and validation set. The validation set is used as the stopping
criterion for the training. The value of the loss function is

FIG. 3. Schematic representation of the fully connected neural
network. The input values are passed to the neurons in the hidden
layers through the activation function to get the external stress value
as the final result.
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FIG. 4. Schematic representation of the convolutional neural network. On the left the image representing the dislocation configuration is
shown. It is subsequently transformed by the convolutional and the pooling layer. Those two operations are performed seven times, after which
the array is flattened and passed to the fully connected neural network on the right. The final result is the external stress value.

determined on that set at each epoch and if it increases con-
tinuously for over 500 epochs, the training is stopped and
the parameters for the lowest loss so far are used. Again, L2
regularization is applied on every layer with λ = 0.001.

E. Convolutional neural network

On the other hand, CNN takes an image of the relaxed
configuration as the input, which is later processed by the
filters in the convolutional layers. The image is prepared from
the field J defined as a sum of Gaussian functions centered at
the dislocations [25],

J (r) =
N∑

i=1

si√
2π

exp

(
−|r − ri|2

2

)
. (7)

The architecture of the CNN implemented in this work within
the Keras framework as the sequential model is shown in
Fig. 4. First the input is passed in a form of an array of the
size 128 × 128, corresponding to the chosen resolution of the
J field. Then it is converted using a convolution layer with 16
filters of the size 3 × 3 and stride equal to 1. In order to take
into account the periodicity of the system, periodic padding
is chosen. Since that padding is not one of the available types
of padding in Keras, in this work it is implemented manually.
A function which extends the array periodically in all direc-
tions is created and then a separate Keras layer that executes
that function is defined and added before each convolutional
layer in the CNN. In that way the output of the convolutional
layer has the same size as the input. The convoluted array
is subsequently passed into a maximum pooling layer with
a kernel 2 × 2 and stride 2, which reduces the size of the
array by 2. There are in total seven sequences of convolutional
and pooling layers, after which the size of the array becomes
1 × 1 × 16. Finally, after the flattening procedure a fully con-
nected layer with the linear activation function is inserted to
obtain a single value as the output. The detailed structure of
the CNN with all the layers listed is shown in Table II. As with
the previous methods, the CNN training is also performed
with L2 regularization with λ = 0.001.

III. RESULTS

A. Dataset generation: Strain-controlled DDD simulations

In order to generate the training data for the machine learn-
ing models, we fix the initial number of dislocations to be 900
within a square simulation box of linear size of L = 150 sim-
ulation units and consider a wide range of driving parameter
values, i.e., k = 0.1, 1, and 10, and ε̇a varying from 10−5 to

TABLE II. Detailed structure of the CNN with all the layers
listed together with the shape of their output and the number of the
parameters that are updated during the training.

Number of
Shape of trainable

Layer the output parameters

periodic_padding_layer_1 130 × 130 × 1 0
conv2d_1 128 × 128 × 16 160
max_pooling_1 64 × 64 × 16 0
periodic_padding_layer_2 66 × 66 × 16 0
conv2d_2 64 × 64 × 16 2320
max_pooling_2 32 × 32 × 16 0
periodic_padding_layer_3 34 × 34 × 16 0
conv2d_3 32 × 32 × 16 2320
max_pooling_3 16 × 16 × 16 0
periodic_padding_layer_4 18 × 18 × 16 0
conv2d_4 16 × 16 × 16 2320
max_pooling_4 8 × 8 × 16 0
periodic_padding_layer_5 10 × 10 × 16 0
conv2d_5 8 × 8 × 16 2320
max_pooling_5 4 × 4 × 16 0
periodic_padding_layer_6 6 × 6 × 16 0
conv2d_6 4 × 4 × 16 2320
max_pooling_6 2 × 2 × 16 0
periodic_padding_layer_7 4 × 4 × 16 0
conv2d_7 2 × 2 × 16 2320
max_pooling_7 1 × 1 × 16 0
flatten_1 16 0
dense_1 1 17
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10−2. For all combinations of values of k and ε̇a we study
deformation predictability for three values of strain ε, i.e., ε =
0.001, 0.01, and 0.1. A dataset consisting of 10 000 relaxed
initial dislocation configurations was created by initializing
the systems with 900 randomly positioned dislocations with
an equal number of dislocations with positive and negative
Burgers vectors, which were then allowed to relax in zero
external stress to a metastable state. During the initial relax-
ation and subsequent loading stage a significant fraction of
the dislocations gets annihilated such that after deformation a
typical sample contains roughly half of the initial number of
dislocations.

Stress-strain curves were then generated from all of these
initial configurations for each combination of the driving
parameters ε̇a and k by simulating the DDD model. See
Fig. 1 for an example of a dislocation configuration, and
ensemble-averaged as well as individual stress-strain curves
corresponding to different initial states and strain rates. One
may note that each sample has its own unique fluctuating
stress-strain curve, consisting of a sequence of stress drops
(due to the instantaneous strain rate ε̇ exceeding the exter-
nally applied strain rate ε̇a) separated by segments where σext

increases which happens when ε̇ < ε̇a [see Fig. 1(b)]. At the
beginning of the deformation the dislocations are still very
close to their local minima in the relaxed configuration, there-
fore the harmonic approximation is valid, which results in the
linear dependence of σext on ε. The system is then deformed
elastically and returns to the initial state if the stress is re-
moved. For slightly higher strains the system enters the plastic
regime, which is characterized by the collective dislocation
dynamics. A key feature of that regime is that for small strains
the average of the applied stress σext exhibits a power-law
dependence on ε [Fig. 1(c)]; Supplemental Fig. S1 [34] shows
that the related power-law exponent depends on k and ε̇a. No-
tice also the clear rate effect in the stress-strain curves (Fig. 1):
Higher ε̇a implies a larger average stress σext at a given strain
ε [32]. The resulting dataset, consisting of the relaxed initial
dislocation configurations and the corresponding stress-strain
curves for different values of ε̇a and k, was then used to train
the ML algorithms to infer the link between the features of
the initial relaxed dislocation configurations and the stress-
strain curves for all combinations of the ε̇a and k values
considered.

B. Machine learning rate-dependent dislocation dynamics

Predicting the shape of the stress-strain curve by means of
ML algorithms with and without user-defined features allows
us to assess how much the results depend on the choice of
a specific ML model and if it is possible to improve the
predictions by extending the feature set beyond the obvious
one motivated by physical intuition. As described in Sec. II B,
in this work those features were extracted from three fields
defined on a configuration. They should in principle provide
a full description of the system, however, in practice we
consider mainly large-scale statistical quantities derived from
these fields, leaving some room for improvement if local de-
tails and correlations turn out to be important. The coefficients
of the linear correlation between the selected features of the
fields and the corresponding values of the external stress σext

at a given strain ε are defined as

r2 = 1 −
∑

i

[
σext(i) − σ

f it
ext (i)

]2∑
i[σext(i) − 〈σext(i)〉]2

, (8)

where the sums are performed over all the configurations and
σ

f it
ext (i) is the value of the fitted linear function of the given

feature. They are shown in Fig. 5 for the GND density field
and in Supplemental Figs. S2 and S3 [34] for the other two
fields. Depending on the driving parameters (ε̇a and k) and
the value of ε considered, different features were found to
be important. Generally, at small ε and high ε̇a the average
of the absolute value of the GND density, 〈|ρGND|〉, corre-
lates strongly with σext, while at large ε and low ε̇a the first
Fourier coefficient of ρGND in the y direction (i.e., fy1(ρGND),
see also Ref. [24]) is more important. As seen in the insets,
both of those features correlate negatively with σext, however,
for other features, for instance the skewness of |ρGND|, the
correlation can be positive.

In contrast to linear regression and NN, CNN does not
require any manually defined features. Instead, a pixelated im-
age of the dislocation configuration is passed as the input. In
principle, all the relevant features to the given problem can be
extracted from those images by the CNN without user input,
and hence CNN has the potential to do better at predicting
the deformation dynamics than the other two models using
user-defined features as input. Here images of the resolution
of 128 × 128 were used as input for the CNN (see an example
input image in Fig. 4), chosen in order to be able to resolve
individual dislocations while at the same time minimizing the
size of the image.

The ML models were trained with five different random
seeds, which determine how the dataset is split into the train-
ing, test, and validation set at their fixed ratio of 80:10:10%
(80:20:0% for linear regression). Our main result, i.e., the
predictability scores defined analogously to the linear corre-
lation coefficient, Eq. (8), determined for the test set of all
the ML models and averaged over all the seeds are plotted in
Fig. 6. Scores for all sets (training, test, and validation) are
shown in Supplemental Fig. S4 for linear regression and in
Supplemental Fig. S5 [34] for NN. For CNN, we consider
also the dependence of the results on the dataset size: The
CNN scores for different sizes of the dataset are shown in
Supplemental Figs. S6–S11, with the average gap between the
training and test set as a function of the dataset size shown
in Supplemental Fig. S12 [34]. These results show that the
training of linear regression and NN have converged well
for the size of the dataset at hand (10 000 samples) in that
the scores for the training and test sets are almost equal (no
overfitting). On the other hand, CNN could use more data to
fully close the gap between the training and test set: Linear
extrapolation in Supplemental Fig. S12 [34] suggests that a
dataset size of approximately 17 000 would be needed for that.

The scores for linear regression and NN are always very
close to each other, even though the latter method allows
for nonlinear relations between the input and output data,
suggesting that their performance reflects the set of input
features provided rather than differences in the ML models.
On the other hand, even if its training did not fully converge
using the available dataset, CNN almost always outperforms

023602-6



MACHINE LEARNING REVEALS STRAIN-RATE- … PHYSICAL REVIEW MATERIALS 6, 023602 (2022)

FIG. 5. Correlation of ρGND(x, y) with the stress-strain response. Coefficients of linear correlation r2 between various properties of the
geometrically necessary dislocations field ρGND(x, y) and the values of the external stress σext obtained at given strain ε, stiffness k, and applied
strain rate ε. Only the features exhibiting significant correlation are shown. The insets show example fits of the chosen properties at the points
indicated by the arrow. Corresponding figures showing the r2 ′s for the dislocation density field ρ(x, y) and internal stress field σint are included
as Supplemental Figs. S2 and S3 [34], respectively.

the other two methods, indicating that it is able to extract
additional relevant features not included in the manually engi-
neered features used for linear regression and NN. Hence, in
what follows, we take the CNN score to be the best available
estimate of how well the stress-strain curves can be predicted
using information of the initial dislocation configurations as
input. Notably, in most cases the resulting deformation pre-
dictability increases with the strain rate, especially at lower
strains. However, at the highest strain studied, i.e., for ε = 0.1,
this relation becomes nonmonotonic. Especially for the largest
k considered, the predictability score r2 starts at a relatively

high value followed by a decrease, reaching the minimum at
an intermediate strain rate, and finally r2 increases again for
the highest strain rate considered. It is worth noting that for
small strains and high strain rates, deformation predictability
is almost perfect (r2 close to 1), and the large-rate r2 exceeds
0.8 even for the largest ε of 0.1 largely independently of the
ML model. Decreasing ε̇a results in general in a significant
reduction of r2 and CNN outperforming the other predictive
models. These observations are generally consistent with the
values of linear correlation coefficients for the selected fea-
tures (see Fig. 5 and Supplemental Figs. S2 and S3) [34]:
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FIG. 6. Rate-dependent deformation predictability revealed by machine learning. Comparison of test set predictability scores averaged
over five random seeds for the three different ML methods considered. Notice how predictability improves with increasing ε̇a for small ε and
exhibits nonmonotonic dependence on ε̇a for large ε. Note also how linear regression and NN results are almost indistinguishable, while CNN
generally outperforms the other two predictive models.

For most of those features the correlation increases with the
strain rate. The ML models, combining information from all
of these features into a single prediction, are in most cases able
to do significantly better than just considering the correlation
of σext(ε) with the individual features.

C. Rate-dependent complexity of dislocation dynamics
controls deformation predictability for small strains

The evolution of deformation predictability with ε̇a should
be related to changes in the fundamental nature of dislocation
dynamics as the strain rate is changed. One can expect that
at higher strain rates the dynamics becomes simpler—and

hence easier to predict—because it is dominated by the strong
external stress, due to the rate effect discussed above implying
higher average σext at a given ε as ε̇a is increased. Therefore
the internal stresses σint due to the other dislocations are in
relative terms less important compared to σext for high ε̇a.
This implies that for high ε̇a most dislocations move in the
direction set by σext largely independently of the other dislo-
cations. On the other hand, for low ε̇a, σext is typically smaller
and dislocation-dislocation interaction stresses are in relative
terms more important, implying complex (and hence likely
harder-to-predict) dislocation dynamics where large multipo-
lar dislocation structures slowly drift in the direction set by
their net Burgers vector [33]. Hence, for low ε̇a, a significant
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FIG. 7. Rate-dependent complexity of dislocation dynamics controls deformation predictability. Fraction of dislocations moving in the
direction opposite to the one set by the applied external stress, N−/N , as a function of ε for (a) k = 0.1, (b) k = 1, and (c) k = 10, averaged
over 100 configurations. (d) shows the correlation between the r2 of the CNN test set and N−/N at the values of ε equal to 0.001, 0.01, and
additionally 0.1 in the inset. Error bars are standard error of the mean (SEM).

fraction of the dislocations, being part of such collectively
moving complex multipolar dislocation structures, is expected
to move against the direction set by σext, with strain accumu-
lating due to only a small majority of the dislocations moving
in the direction set by external loading. To quantify the rate
dependence of this effect, we consider in Figs. 7(a)–7(c) the
ratio of the dislocations moving against the external stress
N− and the total number of dislocations N as a function of
ε̇a for different values of k. All the curves start from zero at
ε = 0 (linear response of dislocations in a metastable config-
uration to a small σext) and plateau at a certain value that is
higher for lower ε̇a, implying gradual buildup of dislocation
structures of increasing size moving collectively in a direction
set by their net Burgers vector. The exception is the curve
for the highest strain rate ε̇a = 0.01 considered, which after
reaching a maximum starts to drop significantly, implying that
the collectively moving dislocation structures formed during
the early stages of loading break up as σext increases with
increasing ε. The effect becomes stronger for larger values
of k, for which the system is stiffer and the strain rate is more

accurately controlled by larger fluctuations of σext as indicated
by Eq. (2). As a consequence, for higher k fewer dislocations
move against the external stress, especially for larger values
of ε̇a.

Remarkably, Fig. 7(d) shows that the CNN predictabil-
ity score r2 exhibits a very clear negative correlation with
N−/N for low strains. Notice how the data points correspond-
ing to different values of ε̇a and k fall on the same curve
independently of whether ε = 0.001 or 0.01 is considered.
This supports the idea that dislocation dynamics becomes
more complex and hence harder to predict when smaller
ε̇a and k values are considered. This correlation is weaker
for the largest strain value considered, i.e., ε = 0.1 [inset of
Fig. 7(d)], and hence we need to consider other measures of
complexity of the dislocation dynamics in that case.

D. Nonmonotonic predictability for large strains

In order to account for the nonmonotonic dependence of r2

on ε̇a for large ε, we start by considering the role of different
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FIG. 8. Stress-strain curves and distribution of stress drops as a function of their magnitude. (a) k = 0.1, (b) k = 1, and (c) k = 10.
(d) shows the integrated over the whole stress-strain curves of all the samples distribution of stress drops during the loading as a function
of their magnitude for k = 10. The curves represent the power law distribution with an exponential cutoff as expressed by Eq. (9) fitted to
the data.

features to understand the origin of the nonmonotonic evolu-
tion of deformation predictability with ε̇a in that case. As seen
in Fig. 5, the first Fourier coefficient of ρGND in the y direction,
fy1(ρGND), exhibits for ε = 0.1 a large r2 for small ε̇a, which
then decreases towards zero with increasing ε̇a. fy1(ρGND) is
conserved during the dynamics, and hence it is natural that
it becomes relevant for large ε [24]. At the same time, for
many other features [notably for 〈|ρGND|〉 (see Fig. 5), 〈ρ〉
(Supplemental Fig. S2), and several features of the σint field
(Supplemental Fig. S3)] [34], r2 increases with ε̇a, such that
they become important when fy1(ρGND) ceases to be relevant
for large ε̇a, naturally resulting in nonmonotonic dependence
of the overall r2 on ε̇a for the ML models using these features
as input.

In order to understand the nonmonotonic dependence of
r2 on ε̇a at high ε more qualitatively one can analyze the
evolution of the corresponding stress-strain curves, keeping
in mind that individual critical-like dislocation avalanches are
typically understood to be inherently hard-to-predict [25]. In
Figs. 8(a)–8(c) example stress-strain curves are shown for

k = 0.1, 1, and 10, respectively, for the four largest strain rates
studied. Generally, the curves become more regular for larger
values of ε̇a. Those for ε̇a = 10−2 contain no significant stress
drops, therefore, they are the easiest to predict by the ML
algorithm since the stress increases monotonically with the
strain without any hard-to-predict stress drops. On the other
hand, the stress-strain curves for the lowest strain rates tend to
be very irregular and exhibit a large number of stress drops.
In such cases predicting the stress value requires estimating
the number and magnitude of those events occurring prior to
the given strain value. However, it is easier to perform when
those events are more frequent because their occurrences are
then closer to some averaged distribution described by a cer-
tain function. It is also expected that recent observations of
correlations between subsequent avalanche events driving the
individual curves towards the mean ones [35] might play a
role here. In Fig. 8(d) the distributions of stress drops as a
function of their magnitude are shown for different ε̇a in the
case of k = 10, i.e., the k value for which the nonmonotonic
behavior of r2 is most pronounced. The fitted curves (shown as
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lines) represent the power law distribution with an exponential
cutoff [32],

PINT(�σ ) = a(�σ )−τσ,INT exp(−�σ/�σ0), (9)

where a, τσ,INT, and �σ0 are fitting parameters. The largest
drops occur for ε̇a = 10−3, for which r2 has the minimum.
However, there are also fewer small drops than for ε̇a = 10−4.
Generally, one can expect that strain drops that occur rarely,
that is, much less often than once per configuration, do not
have a significant detrimental effect on the predictability. On
the other hand, the number of events that occur very fre-
quently can also be predicted relatively easily because the
estimation error becomes smaller. The hardest to predict are
stress-strain curves with events that occur on average once
per stress-strain curve: For accurate estimation of the stress
at a given strain which is in that case largely controlled by the
occurrence of an individual stress drop, the algorithm must
predict whether the event will occur before or after a certain
value of strain and what the magnitude of that event will be.
Since for ε̇a = 10−3 the stress drops are rare, and as seen in
Fig. 8(d) their distribution has a larger cutoff than for the other
strain rates, the corresponding stress-strain curves are also the
most difficult to predict. Interestingly, the minimum of r2 (or
the maximum of the prediction error) thus appears to coincide
with a transition from fluctuating to smooth plastic flow upon
increasing ε̇a.

IV. DISCUSSION AND CONCLUSIONS

To conclude, we have established that predictability of
strain-controlled deformation of plastically deforming single
crystals is rate dependent. While the predictability scores of
CNN, using images of the configurations as input without ex-
plicit feature engineering by the user, are generally higher than
those of linear regression and NN using manually engineered
input features, all the algorithms exhibit very similar trends
of r2 as a function of ε̇a, ε, and k: Better deformation pre-
dictability (i.e., lower prediction error of the ML models) with
increasing ε̇a at low ε and nonmonotonic relation between
predictability and ε̇a for high ε, especially for large driving
spring stiffness k. These results suggest that deformation pre-
dictability as measured by the ML models is related at least
partially to some intrinsic aspects of the dislocation system
and the deformation process studied. Indeed, we showed that
at lower strains a linear correlation between the predictability
and the fraction of dislocations moving against the external
stress, which we chose as a measure of the complexity of
the deformation process, exists. Since for high ε̇a σext is also
high, most dislocations move in the direction of the applied
stress, and the dislocation dynamics is “simple,” and as our
results suggest, easier to predict. On the other hand, for lower
strain rates the dislocations are more free to follow the sys-
tem’s internal dynamics, governed mostly by the interactions
between the dislocations. Since fy1(ρGND) does not change
during the dynamics and hence encodes some constant prop-
erty of the large-scale distribution of the dislocations, it may
be relevant for describing those interactions. Indeed, we found
that fy1(ρGND) is strongly correlated with σext(ε) for large ε

and small ε̇a, something that together with the correlations
exhibited by the other features (which generally increase with

increasing ε̇a) allows us to understand the nonmonotonic de-
pendence of deformation predictability on ε̇a for large ε. On
the other hand, this nonmonotonic dependence of r2 on ε̇a

for large ε was also argued to be linked to a transition from
fluctuating to smooth plastic flow, such that at the transition
point the large-strain part of the stress-strain curve is largely
controlled by a single hard-to-predict stress drop. In addition
to deformation predictability, the degree of complexity of the
deformation process evolving with the strain rate outlined
above could have more general implications in understanding
rate effects in plasticity.

We emphasize that even if the DDD model we have studied
obeys deterministic equations of motion, the complex and
possibly chaotic nature of the dislocation dynamics implies
that perfect predictability (i.e., r2 = 1) is not reachable in
practice, i.e., the prediction error of any real ML model
remains finite. One could of course in theory envisage a hy-
pothetical ML model that would be exactly equivalent to a
numerical integration algorithm of the equations of motion
of the dislocations and would use the initial dislocation po-
sitions given with infinite precision as input, and obviously
such a model would result in r2 = 1. However, as soon as
there is any deviation from perfect accuracy, e.g., in the initial
positions of the dislocations, or if the model does not know
the equations of motion perfectly, the perfect predictability
is expected to break down. When considering the prospect
of studying deformation predictability experimentally, e.g.,
by extracting descriptors of the initial dislocation microstruc-
ture by means of x-ray measurement techniques [36–38], the
interesting question is to what extent a characterization of
the initial state with a finite accuracy is suitable for making
predictions of the subsequent deformation dynamics. Our re-
sults suggest that the answer to this question depends on the
strain rate, and it would be interesting to verify this prediction
experimentally.

These results could be generalized to three-dimensional
systems with flexible, curved dislocation lines with arbitrary
Burgers vectors [39]. While the dynamics would be more
complex and dislocations would have more degrees of free-
dom, one can expect that the same effect of predictability
increasing with strain rate could be observed. That is because
(as in the 2D system considered here) the complexity of the
dislocation dynamics would be expected to decrease at higher
strain rates such that the dislocations are increasingly forced
by the external stress to move in a given direction. On the
other hand, it would be interesting to study what happens at
low strain rates in such systems and if the nonmonotonic re-
lation between strain rate and predictability at high strain still
exists. While fy1(ρGND) would no longer be conserved during
the dynamics in a multislip system, there may exist other
features that would control the dynamics at low strain rates
and large strains. In particular, one could consider dynamics in
the presence of pinning centers [40], whose distribution would
be an intrinsic feature of the system, which may increase the
predictability at larger strains [25]. The above-described ex-
tension to 3D DDD would of course be computationally quite
demanding, due to increased computational cost of generating
the training data set as well as increased complexity of the
required ML models. As dislocations would be able to form
more complex structures, in the ML models one would need to
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incorporate additional features related to existence of disloca-
tion junctions, locks, etc. Analogously to the two-dimensional
model, one could prepare a three-dimensional voxelized rep-
resentation of the dislocation configuration to train a CNN
model. Another natural extension of the study would be to
consider polycrystals containing several crystal grains. This
would imply incorporating additional fundamental features to
the ML models such as crystal structure, presence of grain
boundaries, and point defects, etc. Finally, it would also be of

interest to consider possible rate effects in the predictability
of deformation of amorphous solids [41,42].
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