
PHYSICAL REVIEW MATERIALS 6, 023601 (2022)

Morphological evolution of grain boundaries under lateral strains
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A theory for the lateral strain-induced grain boundary instability is proposed by considering two crucial
factors, namely, the dependence of the boundary energy on coincidence sites and the differences in elastic
responses of the grain and the boundary regions. In contrast to the Asaro-Tiller-Grinfeld instability, where
strains, however small, lead to breakup of the interfaces and the amplitudes of the perturbations are only a
function of wavelength and time, we find that there exists a critical strain for the grain boundary instability
to occur which is due to the periodicity of coincidence site lattices, and the growth rate of perturbations is
dependent on the amplitude. These theoretical predictions are validated by the phase field crystal simulations in
two dimensions. In addition, the amplitude-dependent growth rate gives rise to two distinct outcomes for the late
stage evolution predicted by the proposed theory, namely, the grain boundary structural transformation and the
dislocation emission, as seen in the phase field crystal simulations. Not only is the predicted oscillatory behavior
of the growth rate observed in simulations, but also the phase diagram predicted by the theory is in quantitative
agreement with the phase field crystal simulations.
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I. INTRODUCTION

The grain boundary plays a key role in determining phys-
ical, mechanical, and chemical properties of materials [1].
Specifically, the response of grain boundaries to shear stresses
is of great practical importance. For example, it is suggested
that the grain boundary instability induced by the shear stress
can lead to superplasticity in polycrystalline materials [2,3].
Shear coupled boundary migration along with grain boundary
sliding is known to enhance ductility of metallic thin films,
making them suitable for MEMS and flexible electronic ap-
plications [4]. Therefore the instability and the morphological
changes of grain boundaries in materials subject to external
stresses are of great interest to researchers. While the grain
boundary instability induced by shear stresses has been in-
vestigated in various materials including zirconium carbide
ceramics [5], aluminum, and titanium alloys [6], whether
the grain boundary instability can be induced through lateral
stresses, especially in pure materials, remains an intriguing
question for the reasons outlined below.

A well-known surface instability named the Asaro-Tiller-
Grinfeld (ATG) instability, commonly seen in epitaxial thin
films [7,8] and self-assembled quantum dots [9–11], is
induced by lateral strains [12,13]; for this instability to
occur, the adjacent solids should be elastically inhomoge-
neous [14]. The inhomogeneity of elastic moduli of adjacent
phases makes it possible for the system to reduce its elastic
energy drastically through undulations of the boundary sur-
face. However, for grain boundaries in pure materials,
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adjacent solids share the same elastic properties; hence, the
instability would be inhibited if one only considers elasticity
of adjacent phases. Nevertheless, in this paper we show that by
considering the elasticity of the grain boundary, even without
elastic inhomogeneity of adjacent phases, the planar grain
boundary surface can become unstable as the lateral stress
exceeds a threshold value for pure materials, and the proposed
instability mechanism is validated using the phase field crystal
(PFC) simulations [15,16] in two dimensions. In addition,
we show the oscillatory amplitude-dependent growth as a
direct consequence of the underlying periodic coincidence site
lattices. Furthermore, at the late stage of evolution, the PFC
model further shows details of the structural change of the
grain boundary, nucleation of dislocations, and faceted surface
profiles that are closely associated with atomistic arrangement
of lattices.

The paper is organized as follows: In Sec. II we consider
key ingredients such as elasticity of solid grains and the grain
boundary, and the periodicity of the grain boundary energy
due to underlying lattices, to formulate a theoretical model
for the grain boundary instability subject to lateral strains.
A nonlinear evolution equation for the amplitude of the un-
dulation of the grain boundary is derived from the proposed
model to investigate the dynamics of the grain boundary in-
stability. Our theory predicts the existence of a critical strain
above which the instability occurs and an oscillatory growth
behavior during the evolution. In Sec. III we perform PFC
simulations of a bicrystal subject to lateral strains in two
dimensions. Not only are our theoretical predictions validated
by the PFC simulations, but also the PFC simulation reveals
more details of two possible outcomes predicted by the theory
at late stage evolution, namely, the grain boundary structural
transformation and the dislocation emission. Detailed analysis
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FIG. 1. The schematic plot for the grain boundary instability
under applied lateral strains. The red (blue) arrows indicate com-
pressions (expansions) of local lattices as the bicrystal is subject to a
lateral compressive strain. The arrows placed in the interface region
indicate the direction of shear strains.

of the oscillatory behavior of the growth rate and the phase
diagram is discussed, and the theory and PFC simulations are
shown to be in quantitative agreement.

II. THEORETICAL MODEL FOR GRAIN BOUNDARY
INSTABILITY

A schematic plot illustrating the grain boundary instability
is shown in Fig. 1. Note that the grain boundary itself is an
elastic medium composed of a rather disordered and loose
atomistic structure compared to bulk solids, which suggests
an elastically softer grain boundary layer being sandwiched
by solids. Therefore one would expect the instability since the
solid phase can bulge into a softer grain boundary region, and
the elastic energy difference associated with a curved grain
boundary would force the solid to dissolve on one side and
to recrystallize on the other side of the grain boundary. To be
more specific, the peak regime of one grain has a lower elastic
energy density, since the solid can adjust its lattice spacing
into a softer grain boundary region while the trough regime is
associated with a higher elastic energy density. Therefore the
materials in trough regimes on one side of the grain boundary
would transform and recrystallize into peak regimes on the
other side, which leads to the motion of the grain boundary
and the instability.

A theoretical model for the grain boundary instability in
pure materials is proposed as follows. For simplicity we
consider a two-dimensional system composed of two semi-
infinite misoriented solid grains in contact with each other
at y = 0 that forms a symmetric tilt grain boundary. There is
not only the excess interfacial energy (i.e., the grain boundary
energy) associated with the grain boundary layer but also the
elastic energy. A homogeneous lateral strain parallel to the
grain boundary is uniformly imposed to the system, which
serves as a driving force to destabilize the planar grain bound-
ary. The elasticity of the bulk solid is assumed to be linear and
isotropic, and the elastic energy is

F S
el =

∫
S

1

2
(λεααεββ + 2μεαβεαβ ) d�r, (1)

where the subscript S denotes the integration over solid grains,
λ and μ are the Lamé constants of solids, and εαβ is the
strain field related to the displacement field uα , that is, εαβ =
1
2 ( ∂uβ

∂rα
+ ∂uα

∂rβ
). Note that the strain field εαβ is composed of the

uniform applied strain εa
αβ and the strain field εu

αβ associated
with the undulation of the grain boundary, εαβ = εa

αβ + εu
αβ .

Since we consider the grain boundary as a rather disordered
and softer phase sandwiched by solids, when nearby grains
exhibit relative motion along the grain boundary, there is a
local shear stress in the grain boundary region,

σtn = μI�ut , (2)

where μI is the effective interfacial shear modulus, the sub-
script t (n) stands for the tangent (normal) direction with
respect to the interface, and �ut is the relative motion along
the interface of two grains. The corresponding interfacial elas-
tic energy is

F I
el =

∫
I

1

2
μI�u2

t d	, (3)

where the integration is along the interface, and d	 stands for
the infinitesimal segment of the interface.

In addition to the elastic energy, the grain boundary also
possesses an excess interfacial energy. Usually, for the sake of
simplicity the grain boundary energy is treated to be indepen-
dent of interface position. However, the atomistic arrangement
at the grain boundary is not homogeneous but varies as the
grain boundary is traversed. Therefore the grain boundary
energy γ should be a function of the grain boundary position
ygb, that is,

Fint =
∫

I
γ (ygb) d	. (4)

The function γ is uniquely determined by the underlying
bicrystal structure using the coincidence site lattice (CSL)
method described in Ref. [17]. To be more specific, the pe-
riodicity of the bicrystal structure of symmetric tilt grain
boundaries leads to a periodic function γ of y, that is, γ (y) =∑∞

n=0 γn cos( 2nπy
Lcs

), where Lcs is the minimum distance in the
y direction the grain boundary has to move so that the plane
of the CSL repeats. In the following discussion, we retain
only γ0 and γ1 for γ (y), which captures the essence of the
boundary energy and the influence of CSL on the boundary
energy. Subsequently, γ (y) exhibits a washboardlike potential
along the y direction.

Since the mechanical relaxation of displacement fields is
much faster than mass diffusion, the system reaches mechan-
ical equilibrium at all times over the diffusion timescale. The
elastic fields within the bulk solid simply follow the me-
chanical equilibrium condition, ∂σαβ/∂rβ = 0. Together with
Eq. (2), one readily obtains the strain fields in solids for a
given profile of grain boundary interface. For an undulating
grain boundary of a sinusoidal profile, ygb(x) = A eikx + c.c.,
the strain fields in solids are

εxx(x, y±) = εa
xx ± 2εa

xxkA

1+4μI/(Ek)

[
1∓

(
1 + ν

2
ky±

)]
e∓ky±eikx

+ c.c., (5)
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where c.c. represents the complex conjugate, y+ and y− are
the y coordinate in solids above and below the grain boundary,
respectively. εa

xx is the lateral applied strain; ν and E are the
Poisson’s ratio and the Young’s modulus, which are related
to the Lamé constants of solids by ν = λ/(2μ + λ) and E =
4μ(μ + λ)/(2μ + λ) for two-dimensional (2D) isotropic ma-
terials. The detail derivation of the strain fields is shown in
Appendix A. The strain fields result in a free energy difference
across the boundary (y = 0),

� fel � −σ a
xx�εxx = − 4E εa

xx
2 kA

1 + 4μI/(Ek)
eikx + c.c., (6)

which serves as a driving force to destabilize the flat boundary.
We can now determine the stability of a planar grain boundary
by considering both the elastic and surfaces energies. The
migration of the grain boundary is driven by the local free
energy difference, namely,

∂ygb

∂t
� −

(
� fel + δFint

δygb

)
, (7)

where  is the mobility of the grain boundary, and
δFint/δygb � −γ y′′

gb + ∂γ /∂ygb(1 + y′
gb

2
/2) when |A|k � 1.

For a sinusoidal grain boundary interface assumed above, the
resulting evolution equation for A is

∂A

∂t
� −

{
− 4E εa

xx
2 k

1 + 4μI/(Ek)
+ [γ0 + γ1J0(η)]k2

− γ1

(
2π

Lcs

)2

[J0(η) + J2(η)]

}
A, (8)

where J0 and J2 are Bessel functions, and η ≡ 4π |A|/Lcs; see
the Appendix B for the detailed derivation. The first term on
the right-hand side comes from the local elastic energy differ-
ence across the interface as described above. The second term
is the surface energy that tends to flatten the interface. The
third term is closely related to the additional energy cost or
reduction when the atomistic arrangement of lattices changes
as the grain boundary migrates. The instantaneous growth rate
of the instability σ is then composed of a part depending
on the wave number, σk , and a part only depending on the
amplitude, σA. That is,

σk = 

[
4E εa

xx
2 k

1 + 4μI/(Ek)
− γ̄ k2

]
, σA = σ0[J0(η) + J2(η)],

(9)

where γ̄ ≡ γ0 + γ1J0(η), and σ0 ≡ γ1(2π/Lcs)2. In the early
stage of the instability where |A| � Lcs, σA is approximately
σ0. Therefore the perturbed grain boundary would either be
inhibited or become more unstable, depending not only on σk

but also on the sign of σ0, which is determined by the relative
position of the grain boundary and the underlying bicrystal
structure. Furthermore, there exists a critical applied lateral
strain εc above which the instability occurs. For example,
if one assumes that γ1 is negligible for simplicity, then the
instability can only occur when the wave number k is smaller
than a critical value kc. That is, by requiring σk = 0, one ob-
tains kc = 4E εa

xx
2/γ0 − 4μI/E . Since kc > 0, one obtains the

critical lateral strain to be εc =
√

μIγ0/E2. This instability is
different from the ATG instability in which any finite applied

strain would induce instability as long as the adjacent solids
are elastically inhomogeneous. In addition, as the amplitude
of the surface profile keeps increasing so that |A| is compara-
ble to Lcs, the growth rate would exhibit oscillatory behavior
as a function of the amplitude. The oscillatory nature as a
result of the periodicity of the coincidence site lattice would
disappear at the late stage of the evolution where |A| 	 Lcs,
since the grain boundary interface goes across repeated CSL
planes frequently and the discrete effect due to the atomistic
arrangement of atoms averages out, and the growth rate is
reduced to σk .

The oscillatory behavior of σ gives rise to two interesting
scenarios at the late stage of the grain boundary evolution.
First, for smaller strains, the growth rate could drop across
zero since σk is small and σA turns negative as |A| gets larger.
Once σ reaches zero, the grain boundary stops evolving and
a static curved grain boundary is expected. Second, for larger
strains, σk is large enough so that σ = σk + σA remains posi-
tive during the oscillation regardless of the amplitude. In this
case, the amplitude of the undulation of the grain boundary
increases at the late stage until the stress at the trough exceeds
a critical value, and dislocations are expected to form and to
travel into the grains to reduce the elastic energy, as seen in
the ATG instability of SiGe films [18] and 4He films [19].

III. THE PFC SIMULATIONS AND RESULTS

The PFC simulation is employed to validate the proposed
model. The PFC model is an atomistic continuum model that
is capable of resolving the atomistic structure of the lattice
and the grain boundary [20–28] and describing the elasticity
and dislocations of solids [29–34], which are key ingredi-
ents of the proposed model. We use the PFC formulation
in Refs. [15,16] to investigate the grain boundary instability
in a 2D hexagonal lattice. Specifically, we employ ε = 0.1
and ψ̄s = −0.19 in the PFC simulations. The misorienta-
tion of the bicrystal is chosen to be �θ � 21.8◦, and the
minimum size of a rectangle that accommodates the corre-
sponding strain-free misoriented grain in the PFC simulation
is (	x, 	y) = (19.20, 33.26) [35]. The key parameter Lcs in the
proposed theory is then 	y/2. The periodic boundary condition
is employed in the simulation, and the system dimension is
set to be (Lx, Ly) = (99	x, 111	y ), with the normal of the
grain boundary aligned in the y direction. The extended y
dimension is designed to avoid possible grain boundary in-
teractions. The simulation grid size is 4096 × 4096, which
provides us adequate spatial resolution of 8 × 8 grid points
per atom. The applied lateral strain εa

xx is implemented by
adjusting the mesh size �x → (1 + εa

xx )�x. In addition, the
stress in the y direction induced by the imposed lateral strain
is relaxed by adjusting the mesh size �y → (1 − νεa

xx )�y.
The 2D hexagonal PFC lattice is elastically isotropic, and its
Poisson’s ratio ν is simply 1/3 due to the sixfold symmetry
and the Young’s modulus is E = 0.0307 [16,36]. For the PFC
parameters employed here, the relaxation of elastic fields is
much faster than the mass diffusion, which ensures that the
system is always at mechanical equilibrium [37].

The dispersion relation is readily obtained by initiating
the PFC simulation with the profile of the grain boundary a
sinusoidal function of wave number k and small amplitude,
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FIG. 2. Dispersion curves for various applied strains εa
xx in the

limit of η � 1. The PFC simulations are shown in symbols. Crosses
and circles represent simulation results for the compressive and
tensile applied strains, respectively. The dash-dotted lines are the
corresponding theoretical predictions. The inset shows σ0 measured
from PFC simulations as a function of εa

xx .

and tracking the evolution of the amplitude. The simulation
results are shown in Fig. 2, and dispersion curves measured
for various applied strains are in good agreement with the
proposed model in the limit where η � 1. The least-squares
fitting gives the following physical quantities for the PFC sim-

ulation: γ0 + γ1 = 1.79 × 10−3,  = 267, and μI = 1.04 ×
10−5. The planar grain boundary is shown to be more unstable
when a greater lateral strain is applied. For large strains, the
dispersion curves are slightly asymmetric for compressive and
tensile strains in PFC simulations. This asymmetry naturally
arises from the asymmetric nonlinear elasticity of the PFC lat-
tice as discussed in Ref. [37]. More importantly, in contrast to
the ATG instability, there exists a critical applied strain, εc �
0.445%, above which σk > 0, as the proposed model predicts.
Furthermore, we discover that σ0 is dependent on the applied
strain εa

xx as shown in the inset of Fig. 2. At small strains σ0 is
negative, which indicates a stable atomistic structure of a flat
grain boundary, and its sign changes around |εa

xx| � 0.545%,
which suggests that the stable atomistic structure changes due
to large strains. Therefore, when the amplitude is small, the
grain boundary instability only occurs as its overall growth
rate is positive, σ � σk + σ0 > 0.

If the instability does occur, when the amplitude is com-
parable to the lattice parameter, according to the proposed
theory, one expects that the grain boundary experiences a
washboard potential landscape arising from the repeated
structure of the coincidence site lattice, which leads to an os-
cillatory growth rate. Figure 3 plots the instantaneous growth
rate for different wave numbers k observed in PFC simula-
tions with εa

xx = −1.2%, which shows the oscillatory behavior
at the early stage of the evolution as predicted. To further
examine quantitative agreement between our theory and PFC
simulations, we compute the strain fields in the PFC simu-
lation by pinpointing accurately the location of each atom
and evaluating the corresponding displacement field for each
atom. Figure 4 plots the inhomogeneous strain fields induced

FIG. 3. The instantaneous growth rate for different wave numbers k observed in PFC simulations with εa
xx = −1.2%. (a) The growth rate

σ oscillates with the amplitude A. The oscillatory behavior predicted by Eq. (9) is represented by the black dotted curve. The black crosses
indicate the moment at which DE happens. (b) With the rescaled amplitude, the occurrences of DE for different k′s collapse. The occurrence
of DE is close to k|A| � 2√

3π
, as indicated with a dashed line, at which the grain boundary forms a faceted triangular wave with the slope of

1/
√

3.
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FIG. 4. (a) The inhomogeneous strain field εxx (x, y) measured in the PFC simulation with εa
xx = −1.2% induced by the undulating grain

boundary of which |A| � 5.264 and k � 8.3 × 10−3. Regions subject to compressive and tensile strains are plotted in blue and red, respectively.
The region marked by white color indicates the disordered region of the grain boundary, where the strain fields are ill-defined. (b) The Fourier
component of εxx from PFC simulations with the grain boundary undulations of different wave numbers k. The applied strain is εa

xx = −1.2%.
Note that ε̃xx (y) = k

2π

∫ 2π/k
0 εxx (x, y)e−ikxdx. Dots represent the simulation results and solid curves are the theoretical prediction of Eq. (5).

by the undulating grain boundary of PFC simulations, and the
numerical results are in good agreement with the theoretical
prediction of Eq. (5).

Two different outcomes at the later stage of evolution, as
suggested by the proposed theory, are observed in the PFC
simulations. First, as the amplitude of the grain boundary
grows, it could eventually saturate to form a steady curved
boundary; see first three curves with the wave number above
7.0 × 10−3 of PFC simulations in Fig. 3. The growth rate
would eventually drop to zero and form a steady curved
boundary. Second, the amplitude of the grain boundary could
keep growing, and eventually dislocations are nucleated at
cusps of the boundary and emit into grains; see curves with the
wave number below 7.0 × 10−3 of PFC simulations in Fig. 3.

The former case occurs for smaller strains and σ0 > 0. In
the early stage of evolution, the positive growth rate drives the
instability. As the amplitudes grows, the positive growth rate
reduces since σA drops significantly with the amplitude. The
amplitudes stop evolving when σ = σk + σA becomes zero.
As shown in the PFC simulations, the atomistic structure of
the grain boundary changes for the steady curved boundary,
since a positive σ0 suggests the atomistic structure of the
original planar grain boundary is unstable. This outcome is
named the grain boundary structural transformation (GBST).
In Fig. 5, an example from the PFC simulations shows that the
grain boundary structure undergoes GBST from symmetric
kite units to asymmetric zigzag units. The kite units corre-
spond to one of the CSL planes, along which the atomic
structures of two misoriented grains match each other. In
comparison, the zigzag units do not correspond to perfect
CSL planes but approximate CSL planes, along which certain
atomic rearrangements are required to match two misoriented
grains. Although the zigzag units are energetically unfavor-

able compared to the kite units in an unstrained system, the
zigzag units can be the energetically stable state when applied
strain is present.

The latter case occurs for larger strains where not only
σk + σ0 > 0 but also σ > 0 at all times. Hence the growth rate
oscillates with the amplitude, but it remains positive regard-
less of the amplitude. The strain in the grain increases with the
amplitude, and dislocations form as the local strain exceeds a
threshold; see the PFC simulations shown in Fig. 5. We name
this outcome the dislocation emission (DE). Interestingly, in
the PFC simulations a morphological change of a curved
grain boundary to a faceted one is observed. We see that the
grain boundary forms a triangular wave with the slope around
30◦ as its amplitude becomes pronounced. The faceted grain
boundary with a tile angle of 30◦ corresponds to one of CSL
planes as shown in Fig. 5; therefore a planar grain boundary is
favored, as the strain is released effectively through nucleation
of dislocations at the cusp.

For both cases, the amplitude-dependent growth rates
obtained from PFC simulations are in quantitatively good
agreement with the proposed theory, as shown in the inset of
Fig. 6. Furthermore, the proposed theory can predict the phase
boundary between three phases, namely, the stable planar
grain boundary, GBST, and DE as follows. The phase bound-
ary between the stable planar grain boundary and the GBST
is determined by solving σ (k, εa

xx ) = 0 in the limit of η � 1.
On the other hand, the phase boundary between the GBST and
the DE is determined by requiring min (σ (η)) = 0. A good
approximation for estimating the phase boundary between the
GBST and the DE is to look for σ = 0 in the limit of η 	 1.
The predicted phase boundaries are shown in Fig. 6, and the
PFC simulations agree quantitatively well with the theoretical
predictions.
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FIG. 5. (a) Kite and (b) zigzag units are observed before and after GBST. The reddish color indicates the grain boundary regions. (c) The
triangular grain boundary profile is discovered during the DE phase. The dislocations highlighted with blue circles are emitted from the cusps.
The inset shows the dichromatic CSL of the bicrystal structure of our interest, and planes of the CSL are shown in lines.

IV. CONCLUSIONS

In summary, we have proposed a theoretical framework for
the morphological evolution of a grain boundary subject to
applied lateral strains. There is not only the grain boundary
energy but also an elastic energy associated with grain bound-
aries. The elastically softer grain boundary enables lattice
relaxations of nearby grains, which promotes the instability.
In addition, the inclusion of the washboard-type potential due
to the atomistic details of the CSL gives rise to two interesting
outcomes of the grain boundary evolution. The proposed the-
ory is validated by PFC simulations. Not only is the dispersion
relation in good agreement with the proposed theory, but also
two possible phases, namely, the GBST and DE, are observed
in PFC simulations.

FIG. 6. Phase diagram for the grain boundary instability. Theo-
retical predictions for the stable regime, the GBST regime, and the
DE regime in the (εa

xx, k) parameter space are shown in white, green,
and red, respectively. PFC simulation results are shown in crosses
for the stable regime, empty circles for the GBST regime, and solid
circles for the DE regime. The inset shows the amplitude-dependent
growth rate for GBST and DE from the PFC simulations (solid lines).
The corresponding theoretical predictions based on the washboard
potential due to the CSL are plotted in dashed lines.

The study of grain boundaries under stresses is an active
area of research; for example, to name just a few recent
efforts, there have been attempts to understand shear strain
relaxation at the grain boundary [38], lattice transformation
in grain boundary migration [39], and diffusional relaxations
at the grain boundaries [40]. Such an understanding of the
response of grain boundaries to applied stresses is important to
understand the high-temperature deformation behavior such
as creep and to understand the deformation mechanisms in
nanomaterials at lower temperatures. In this context, the cur-
rent model and PFC simulations which study the transverse
loading of grain boundaries are important, and the simulations
have the potential to be extended to more practical geometries
such as triple junctions and other systems such as grain bound-
aries with impurity segregation.
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APPENDIX A: INHOMOGENEOUS STRAIN FIELDS
INDUCED BY A GRAIN BOUNDARY OF A SINUSOIDAL

PROFILE

For a grain boundary of a sinusoidal profile, ygb(x) =
A eikx + c.c., the strain fields in nearby solids at mechanical
equilibrium consist of the uniform applied strain field εa

αβ and
an inhomogeneous strain field of the corresponding k mode,

εαβ (x, y) = εa
αβ + [ε̃αβ (y)eikx + c.c.], (A1)

where the uniform applied strain field follows εa
yy = −νεa

xx
and εa

xy = 0 for a given Poisson ratio ν. Consequently, the
mechanical equilibrium conditions are given by

−∂̃ασ̃αβ (y) = 0, within solid grains (A2)

�σ̃yy = 0, along the interface at y = 0 (A3)
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σ̃xy − ikAσ̄xx = μb�ũx, along the interface at y = 0,

(A4)

where σ̄xx = Eεa
xx, ∂̃α ≡ (ik, d

dy ), and σ̄αβ and σ̃αβ denote
the homogeneous mode and the k mode of σαβ , respec-
tively. By substituting the constitutive equation of isotropic
materials, σαβ = λεξξ δαβ + 2μεαβ , into Eq. (A2) and the re-
lation between strain and displacement, εαβ = 1

2 ( ∂uβ

∂rα
+ ∂uα

∂rβ
),

the equations for the displacement field ũα are obtained
accordingly,

(λ + μ)∂̃β ∂̃ξ ũξ + μ∂̃α∂̃α ũβ = 0, (A5)

which leads to the Laplace equation of bulk strain, ∂̃α∂̃αε̃B =
0, where ε̃B ≡ ε̃αα .

Because the influence due to a curved grain boundary is
negligible at a long distance, we can readily derive the for-
malism of ε̃B,

ε̃B(y±) = B±e∓ky± , (A6)

where B± are constants depending on boundary condition, and
y+ and y− are the y coordinates in solids above and below the
grain boundary, respectively. The analytical form of ε̃B allows
us to simplify Eq. (A5),

(λ + μ)∂̃β (B±e∓ky± ) + μ

[(
−k2 + d2

dy2±

)
ũβ (y±)

]
= 0.

(A7)

The resulting equations lead to

ũβ (y±) =
[
ṽ±

β ±
(

λ + μ

2μ

)
B±k−1q±

β y±

]
e∓ky± , (A8)

where ṽ±
β are constants which are determined by boundary

conditions and q±
β = (ik,∓k). Note that due to the symmetry

of a sinusoidal profile (x, y) → (x + π/k,−y), one expects
that ṽ+

x = −ṽ−
x and ṽ+

y = ṽ−
y . By comparing Eq. (A8) with

Eq. (A6), we can express B± in terms of q±
α and ṽ±

α ,

B± =
(

2μ

λ + 3μ

)
q±

α ṽ±
α = ±

(
2μ

λ + 3μ

)
(ikṽ+

x − kṽ+
y ),

(A9)

so one obtains B+ = −B−.
The stress σ̃yy at the interface y± = 0 can be readily ex-

pressed in terms of ṽ+
α ,

σ̃yy(y± = 0) = ±λB+ ∓ 2μ

[
kṽ+

y +
(

λ + μ

2μ

)
B+

]
. (A10)

Then, by substituting the equation above into Eq. (A3), one
obtains that

ṽ+
y = −

(
μ

λ + 2μ

)
iṽ+

x . (A11)

Also, the shear stress at the interface is

σ̃xy(y± = 0) = −2μ

(
λ + μ

λ + 2μ

)
kṽ+

x = −1

2
Ekṽ+

x . (A12)

ṽ+
x can be solved readily by substituting the above equation

into Eq. (A4), where we get

− 1
2 Ekṽ+

x − ikAEεa
xx = 2μbṽ+

x , (A13)

and

ṽ+
x = −2iAεa

xx

1 + 4μb/Ek
. (A14)

Finally, we arrive at the analytical formalism of the stress field
as shown in Eq. (5),

εxx(y±) = εa
xx ±

(
2kAεa

xx

1 + 4μb/Ek

)[
1 ∓

(
E

4μ

)
ky±

]
e∓ky±eikx

+ c.c., (A15)

which is then used to compute the free energy density differ-
ence across the grain boundary and the corresponding growth
rate of perturbation.

APPENDIX B: NONLINEAR EQUATION OF AMPLITUDE
EVOLUTION

To derive the evolution equation of amplitude A, we first
make a Fourier transform of Eq. (7),

dA

dt
= 1

Lx

∫ Lx

0

(
∂ygb

∂t

)
e−ikx dx

= − 

Lx

∫ Lx

0

(
� fel + δFint

δygb

)
e−ikx dx, (B1)

where Lx = 2π/k. The integral of the first term is readily
obtained as discussed in Appendix A. A more compact form
of the integral of the second term is obtained by employing
the assumed sinusoidal profile of the grain boundary, ygb(x) =
Aeikx + c.c.:

1

Lx

∫ Lx

0

(
δFint

δygb

)
e−ikx dx

= 1

Lx

∫ Lx

0

[
∂ fint

∂ygb
− ∂

∂x

(
∂ fint

∂y′
gb

)]
e−ikx dx

= 1

Lx

∫ Lx

0

[
∂ fint

∂ygb
+ ik

(
∂ fint

∂y′
gb

)]
e−ikx dx

= 1

Lx

∫ Lx

0

[(
∂ fint

∂ygb

)(
∂ygb

∂A∗

)
+

(
∂ fint

∂y′
gb

)(
∂y′

gb

∂A∗

)]
dx

= ∂

∂A∗

[
1

Lx

∫ Lx

0
fint dx

]

= ∂ f̄int (A, A∗)

∂A∗ , (B2)
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where A∗ is the complex conjugate of A, fint =
γ (ygb)

√
1 + (y′

gb)2 , and f̄int = 1
Lx

∫ Lx

0 fint dx. For the assumed
interfacial energy γ (ygb) = γ0 + γ1 cos (2πygb/Lcs), the
analytical form of averaged interfacial energy is determined:

f̄int = 1

Lx

∫ Lx

0

{
γ0 + γ1 cos

[
4π |A|

Lcs
cos (kx + φ)

]}√
1 + 4k2|A|2 sin2(kx + φ) dx

= 1

2π

∫ 2π

0

[
γ0 + γ1 cos

(
4π |A|

Lcs
cos z

)]
(1 + 2k2|A|2 sin2 z) dz + O(k|A|)4

� γ0(1 + k2|A|2) + γ1J0(η) − γ1k2|A|
(

Lcs

2π

)
J ′

0(η), (B3)

where A = |A|eiφ , z = kx + φ, η = 4π |A|/Lcs, and J0(x) is the zeroth-order Bessel function. The derivative of f̄int with respect
to A∗ is readily solved:

∂ f̄int

∂A∗ = 1

2
eiφ

(
d f̄int

d|A|
)

= eiφ

{
γ0k2|A| + γ1

(
2π

Lcs

)
J ′

0(η) − γ1k2

(
Lcs

4π

)[
J ′

0(η) +
(

4π |A|
Lcs

)
J ′′

0 (η)

]}

=
{
γ0k2 + γ1

(
2π

Lcs

)2[2J ′
0(η)

η

]
− γ1k2

[
J ′

0(η)

η
+ J ′′

0 (η)

]}
|A|eiφ

=
[
γ0k2 − γ1

(
2π

Lcs

)2

[J0(η) + J2(η)] + γ1k2J0(η)

]
A, (B4)

where we use the Bessel differential equation, x2J ′′
0 (x) + xJ ′′

0 (x) + x2J0(x) = 0, and the recurrence relation of Bessel functions,
2J ′

0(x) = J−1(x) − J1(x) = −2J1(x) and 2J1(x)/x = −[J0(x) + J2(x)], to simplify the calculation. Combining Eqs. (6), (B1),
(B2), and (B4), we obtain the nonlinear evolution equation for the amplitude of the grain boundary:

dA

dt
� −

{
− 4E εa

xx
2 k

1 + 4μI/Ek
+ [γ0 + γ1J0(η)]k2 − γ1

(
2π

Lcs

)2

[J0(η) + J2(η)]

}
A. (B5)
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