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Phase-field modeling of the morphological evolution of ringlike structures during growth:
Thermodynamics, kinetics, and template effects
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Understanding and controlling the morphology of crystals growing from prepatterned shapes, as in selective-
area epitaxy, is fundamental for the development of novel device architectures. Here, an in-depth analysis of
the faceted growth of ring-shaped crystal structures is presented. This is a prototypical case for assessing the
role of thermodynamic and kinetic driving forces, as they induce different faceting between the outer convex
region and the inner concave one. The well-established concepts of equilibrium crystal shape, set by surface
energy minimization, and its kinetic counterpart, determined by orientation-dependent growth rates, provide
a qualitative indication of the outcome of growth experiments. However, they are insufficient to capture the
whole evolution pathway. A phase-field growth model including deposition, incorporation, and surface diffusion
dynamics is considered, and extensive two- and three-dimensional simulations are performed. A continuum
transition in the crystal morphology is recognized by varying the magnitude of the anisotropic surface energy
vs the incorporation times. The in-depth analysis of a realistic case, mimicking experiments in the literature,
highlights the prominent role of kinetics and of material redistribution from the outer to the inner perimeter of
the ring. Finally, the templating effect of the initial pattern is investigated by considering polygonal profiles with
different orientations, showing their effect on the facet formation and evolution.
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I. INTRODUCTION

The development of next-generation devices at the micro-
and nanoscale depends on the improvements in the tech-
niques of epitaxial growth and lithography. The ability to
grow three-dimensional (3D) nanostructures of controllable
shape and size is of prime importance in the development of
new designs, beyond the conventional planar technology. To
this purpose, a convenient approach is offered by selective-
area epitaxy (SAE), which proved successful in directing
the growth of multifarious structures [1], ranging from dots
[2,3], columns and nanowires [4–6], and nanomembranes and
fins [7–12] up to micrometer-sized crystals. Recently, more
complex patterns involving intersecting slits to form crosses
[13,14] or networks [15,16] have been considered. Ringlike
structures have been grown for GaN [17–20] and InP [10].

The lithographed openings in the protective mask set the
initial shape of the growing structures, but as deposition con-
tinues and there is crystal overgrowth on top of the mask,
its morphology evolves depending on the relative stability
and growth rates of the characteristic crystallographic facets.
The final outcomes may be radically different, depending not
only on the choice of materials, but also on the orientation of
the substrate [4,19] and the alignment of the mask openings
[10,21], as well as their shape and size [10]. In some cases,
the purpose is to exploit the confinement provided by the mask
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to maximize the vertical growth and achieve high-aspect-ratio
3D structures (e.g., for nanowires or fins). Vice versa, epi-
taxial lateral overgrowth (ELO) experiments can be devised
to prominently spread the crystal out on top of the mask by
enhancing the growth of side facets, eventually filling large
areas after coalescence between different seeded regions. This
latter approach can be used to improve the crystal quality or,
recently, as a strategy to obtain wide regions of a metastable
phase favorably initiated within the windows [13].

Accurate tuning of the growth parameters is required to
achieve the desired results. First, the temperature and precur-
sor fluxes must be set in a way to ensure selective growth
within the mask windows only [11]. Then, once the range of
compatible parameters is identified, a finer tuning to balance
temperature and growth rate is needed in order to precisely
control the crystal shape and morphology.

Physically, the origin of the observed crystal faceting can
be ascribed to both thermodynamic and kinetic driving forces
[22]. The former sets the equilibrium crystal shape (ECS),
i.e., the one formed by the most stable facets returning the
minimum surface energy. The latter relates the facet exten-
sion to their relative growth rates, leading to the so-called
kinetic crystal shape (KCS), eventually dependent on the
actual growth technique and parameters, and generally dif-
ferent from the ECS. Both ECS and KCS can be traced
by the Wulff construction method [23,24], by considering
the orientation dependency of surface energy density γ and
growth velocities, respectively. Typically, SAE operates under
far-from-equilibrium conditions, so that kinetic factors are rel-
evant, and possibly dominant. Assessing the relative strength
of the kinetic and the energetic contributions is difficult, as
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FIG. 1. Growth of a ring (black) with anisotropy only in the
energetic term (a) or only in the kinetic term (b). Evolution profiles
equally spaced in time are traced in (c) and (d) on quarter systems
for the thermodynamic and kinetic evolution, respectively.

they both compete in defining the crystal morphology ob-
served in the experiments. Ideally, one could take the ECS as a
reference, known from first-principles calculations of surface
energy density or inferred experimentally by carefully exploit-
ing close-to-equilibrium processes, such as high-temperature
annealing.

A special case is that of crystal structures including both
convex and concave regions, such as rings. If the faceting is
driven by thermodynamics, the same low-energy facets are
observed in both regions, as exemplified in Fig. 1(a). Vice
versa, under kinetic growth conditions, the appearance and
extent of each facet are determined by its relative growth
velocity (proportional to the local deposition rate � and in-
versely to the adatom-incorporation time τ ) with respect to
the neighboring ones with an opposite result in convex and
concave regions, as shown in Fig. 1(b). In the former case, the
slow-growing facets dominate as the profile is expanding. In
the latter, fast-growing orientations develop as the profile is
contracting. This is a purely geometric effect, codified by the
Borgstrom construction [25,26]. For this reason, in ringlike
structures it is possible to distinguish whether the faceting
results from thermodynamic or kinetic driving forces, by
checking whether or not the facets in the convex and concave
regions are the same. In Ref. [10] the morphology of InP rings
grown by SAE is investigated: {101̄0} and {112̄0} facets are
found in the outer perimeter, while the inner one is bounded by
12 intermediate high-index planes. According to the previous
analysis, we can infer that kinetic effects are playing a key
role during growth, as it is expected that the intermediate
orientations are not energetically convenient, but appear be-
cause of their high growth rate. Similar considerations were
drawn for SAE of GaN structures in Refs. [17–20]. The same

behavior was also found for growth and etching experiments
on graphene, a 2D structure, with respect to the edge kinetics
[27] recently demonstrated at the atomistic scale by kinetic
Monte Carlo simulations [28].

While the widely used concepts of ECS and KCS are
helpful for qualitative considerations, they are insufficient
to inspect the evolution of the crystal morphology during
growth, as it stems from a complex interplay of material
deposition, facet-dependent incorporation of adatoms, and re-
distribution via surface diffusion dynamics, making the crystal
morphology dependent on the actual growth conditions. In
this paper, we investigate this dynamical behavior for ringlike
structures, by exploiting a phase-field growth model [29,30]
accounting for both anisotropic surface energy density and
facet-dependent adatom kinetics to inspect their relative role
and provide a comprehensive characterization of the facet
competition between convex and concave regions.

The paper is organized as follows. First, in Sec. II we
review the key features of the model and the parameter
set considered for the simulations. Then, in Sec. III A we
systematically analyze the variation in the crystal faceting
when changing the relative strength of surface energy, ki-
netic incorporation times, and deposition, and characterize
the mixed behavior in between ECS and KCS. An in-depth
characterization of the faceting of ringlike structures mimick-
ing experiments is then considered in Sec. III B. Finally, in
Sec. III C the possibility of controlling the growth morphology
by templating it through a suitable shaping and alignment of
the mask windows is discussed.

II. METHODS

The phase-field model detailed in Ref. [30] is exploited
for simulating the evolution of the crystal morphology during
growth. Here, we summarize its key aspects while referring
the reader to a previous work [30] for an in-depth description
and more technical details.

The system geometry is represented implicitly by an order
parameter, i.e., the phase-field function ϕ, set equal to 1 in the
solid phase and 0 in the surrounding gas or liquid phase. The
crystal surface is identified by a diffuse interface with a finite
thickness ∼ε between the two bulk phases. In the following
we will identify the nominal surface profile as the ϕ = 0.5
isoline.

The advancing of the growth front, implicitly described by
the temporal variation of the phase field ∂ϕ/∂t , is determined
by the combined effect of material deposition, arriving at
the surface with a local flux �, and its redistribution over
the surface (bulk diffusion is assumed to be negligible at the
growth temperature). According to the Onsager linear law, the
diffusion current is proportional to the local gradient of the
chemical potential μ. Following Ref. [31], μ comprises both
an equilibrium term, given by definition as the variation in
free energy F , and a kinetic term, proportional to the profile
velocity via a coefficient τ accounting for the (facet depen-
dent) adatom-incorporation time. This simplified description
presumes a nucleationless growth process thus restricting the
range of applicability to conditions returning nonsingular, ki-
netically rough facets which look appropriate for a large part
of SAE experiments.
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The resulting set of partial differential equations (PDEs)
reads ⎧⎪⎪⎨

⎪⎪⎩
∂ϕ

∂t
= ∇ · [M(ϕ)∇μ] + �(n̂)|∇ϕ|

g(ϕ)μ = δF

δϕ
+ ετ (n̂)

∂ϕ

∂t
,

(1)

where n̂ is the outward-pointing surface normal, g(ϕ) =
30ϕ2(1 − ϕ)2 is a stabilizing function [32–34], and M(ϕ) =
M0(36/ε)ϕ2(1 − ϕ)2 is the mobility function restricted to the
surface, with M0 being a scaling factor.

Here, the system free energy F consists only of
(anisotropic) surface energy, as a function of the surface en-
ergy density γ . Then, μ takes the well-known Gibbs-Thomson
form [29], as a product of the local curvature and the sur-
face stiffness (in 2D, γ + d2γ /dθ2 with θ being the surface
orientation). In the formalism of the phase-field model, and
introducing the Willmore corner-regularization term [29,35]
to deal with strong-anisotropy conditions, we get

δF

δϕ
= −ε∇ · [γ (n̂)∇ϕ] + 1

ε
γ (n̂)W ′(ϕ)

− ∇ ·
[(

ε

2
|∇ϕ|2 + 1

ε
W (ϕ)

)
∇∇ϕγ (n̂)

]

+ β

[
−∇2κ + 1

ε2
W ′′(ϕ)κ

]
, (2)

with W (ϕ) = 18ϕ2(1 − ϕ)2 being a double-well potential,
κ = −ε∇2ϕ + (1/ε)W ′(ϕ) being the curvature, and β being
a coefficient setting the strength of the corner rounding (here,
β = 0.01).

In order to define the anisotropy for γ (n̂), τ (n̂), and �(n̂)
we use the definition of Ref. [36]:

f (n̂) = f0

[
1 +

∑
i

fi(n̂ · m̂i)
w�(n̂ · m̂i)

]
, (3)

where f stands for either γ , τ , or �; {m̂i} is the set of
orientations corresponding to the extremal points (minima or
maxima) of the function; w is a parameter inversely propor-
tional to the width of each peak; and � is the Heaviside step
function.

Here, we simulate the evolution of a profile mimicking the
one emerging over the dielectric mask from an arbitrary ring-
shaped slit as in SAE, extending both laterally and vertically
during deposition. Physically, two sources of material supply
are to be considered: the direct impingement from the gas or
liquid phase, with a distribution of precursors depending on
the growth technique [e.g., molecular beam epitaxy (MBE)
or metal organic chemical vapor deposition (MOCVD)]; and
the lateral flow of material collected on the dielectric mask
and diffusing along it before desorption. Generally, these
processes may differ from one facet to another thus leading
to anisotropic net deposition rates �(n̂) being expected to
play a major role at low temperatures (i.e., slow diffusion)
or under reaction-limited growth conditions. Additional non-
local effects, such as directionality in the gas supply or flux
shielding effects between nearby structures can make the flux
highly nonuniform. These will not be taken into account in

the following as they are specific to the experimental setup
and pattern geometry.

For the sake of convenience, we take the case of wurtzite
(WZ) InP reported in Ref. [10] as a reference for defining the
set of facets, even though all considerations remain valid in
general. This choice has the neat advantage of reducing the
system geometry to a nearly two-dimensional (2D) one since,
by taking the (0001) c plane as the substrate, the characteristic
facets {101̄0} (m planes) and {112̄0} (a planes) are exactly
perpendicular to it. Then, in a first approximation we can
decouple the profile evolution in the (0001) basal plane while
neglecting the height increment of the top facet, moving along
the third direction. This justifies the effective use of 2D sim-
ulations, which will be extensively considered in this paper
thanks to their low computational cost. Full three-dimensional
(3D) simulations will be exploited for a more comprehensive
description and for a validation of the 2D simulations. It
will be shown in Sec. III B that a better reproduction of the
actual behavior of 3D rings by 2D simulations is possible by
admitting a larger flux on the inner side, �in > �out.

Zero-flux Neumann boundary conditions are considered in
all cases. Since 3D simulations explicitly include the substrate
surface as the bottom boundary of the simulation cell, a Neu-
mann boundary condition is there imposed as in Ref. [37], so
as to enforce a nonwetting boundary condition, mimicking the
effect of the dielectric mask. An arbitrary large contact angle
of 150◦ is here taken.

Growth simulations are performed by numerical integra-
tion of the PDE system of Eqs. (1) and (2) using the finite-
element-method toolbox Adaptive Multidimensional Simu-
lations (AMDiS) [38,39]. A semi-implicit time-integration
scheme and adaptive mesh refinement are exploited to min-
imize the computational cost. The system size is physically
set in nanometer units, so that simulations tackle the physical
size of ring structures in experiments (up to a few microme-
ters in diameter), using ε = 10 nm and a mesh resolution of
1 nm in 2D and 2.5 nm in 3D. The time unit is left arbitrary
for the sake of generality. For the simulation of the more
realistic cases in Secs. III B and III C, we set γ0/τ0 = 1 arb.
units and �in/M0 = 0.03 arb. units, �out/M0 = 0.11 arb. units
(�/M0 = 0.1 arb. units elsewhere) in 2D, and γ0/τ0 = 0.5
arb. units and �/M0 = 8 arb. units in 3D.

III. RESULTS AND DISCUSSION

A. Thermodynamic versus kinetic faceting

ECS and KCS can be considered as the reference cases
toward which a growing crystal tends according to thermo-
dynamics and kinetics, respectively. In Figs. 1(a) and 1(b),
we sketch their difference for a ring structure. In Fig. 1(a)
we consider anisotropic γ traced in the polar plot, with six
equivalent minima, identified for convenience as the m planes
of the WZ structure. The resulting ECS is given by the expo-
sure of six such facets both in the inner and outer perimeter of
the ring, as this corresponds to the lowest-energy morphology.
In Fig. 1(b), facet-dependent growth velocities are considered
by taking the six m planes as slow-growing facets and the
six a planes at intermediate angles as fast-growing facets.
These can be enforced either by anisotropic deposition flux
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� or by considering anisotropy in the incorporation time τ

as chosen in the figure (maxima in τ correspond to minima
in facet velocity). The resulting KCS is characterized by an
opposite faceting of the outer convex perimeter, set by the
slow m planes, with respect to the inner concave perimeter,
set by the fast a planes.

The formation of the ECS and KCS for a crystal with a dif-
ferent initial shape, imposed in SAE by the window geometry,
is a dynamical process resulting from the balance between
the supply of material by deposition and its redistribution
by diffusion. As both processes have their own timescale,
the faceting transition only occurs after a certain thickness
is grown, as detailed in Ref. [30]. Notably, the faceting in-
duced by γ and τ anisotropy results from surface diffusion
dynamics, while the faceting due to flux anisotropy is not.
Low �-to-M ratios favor energetic-driven faceting, while in-
creasing the ratio enhances the role of incorporation kinetic
anisotropy. Still, by further increasing the �-to-M ratio, flux
anisotropy effects become dominant, outruling any diffusion
effect.

In Figs. 1(c) and 1(d) the profile evolution of a circular
slit during growth by isotropic deposition is traced for the
two limiting cases of a fully thermodynamic regime [i.e.,
anisotropic γ and τ = 0 in Eq. (1)] and a fully kinetic regime
(i.e., anisotropic τ and isotropic γ ). The simulation offers
insight into the diffusion-driven kinetic pathway resulting, in
the long run, in the expected ECS and KCS morphologies.
In particular, in the early stages of the evolution in Fig. 1(c),
short {112̄0} facets appear even though excluded from the
ECS. This comes from the definition of the γ (n̂) function,
where small local minima [1/10 of those along the 〈101̄0〉
directions, barely visible in the polar plot of Fig. 1(a)] were
defined along the 〈112̄0〉 directions, accounting for the fact
that a planes could be stable facets even if ruled out by m
planes in the present case. With the current definition, a planes
are thermodynamically more convenient than the nearby ori-
entations in the initial circular profile, so they develop locally
at first but soon disappear because of the competition with the
more favorable neighboring m planes.

From a general point of view, thermodynamic and kinetic
contributions are expected to coexist and compete during the
growth [30]. In Fig. 2(a), we enable both anisotropy in γ (n̂)
and anisotropy in τ (n̂), as set in the previous cases of Fig. 1,
and inspect the change in the crystal morphology when chang-
ing their relative strength, by a variation in the scaling factor
τ0, while keeping constant γ0. As expected, the faceting in
the outer convex perimeter remains the same, because {101̄0}
m planes are set by construction as minima of γ as well as
maxima of τ . Conversely, a transition in the faceting of the
inner region is observed, going from a fully thermodynamic
{101̄0} faceting for the smallest τ0 (0.1) to a mostly kinetic
{112̄0} faceting for the largest (1.0).

In the former case, the need of exposing low-energy facets
is so strong that it hinders the advancing of the fast {112̄0}
fronts. In the latter, the incorporation on {112̄0} is so fast that
it suppresses any redistribution driven by energetics, thus forc-
ing the exposure of the unfavorable facets. Interestingly, the
length ratio between a and m planes decreases as the growth
proceeds, i.e., as the inner region is filled and the perimeter
shrinks. This is particularly evident in the case of τ0 = 0.2,

which is characterized at first by larger {112̄0} segments,
vanishing in the last stages as they are replaced by the most
stable {101̄0} planes.

Deeper insight into the dynamical process responsible for
the observed faceting can be achieved by monitoring the tem-
poral evolution of the chemical potential μ along the surface
profile. The plots in Fig. 2(b) report the behavior of μ along
the inner ring profile, for each of the four cases of τ0 discussed
above, at two representative growth stages, one representative
of the initial faceting of the circular ring and the other show-
ing the competition between the established facets at later
stages. Profiting from the 12-fold symmetry of the anisotropic
function, only the periodic sector between 〈101̄0〉 and 〈112̄0〉
directions is considered, and the actual values of μ are taken
as the average of the equivalent points along the simulated
profile to filter out the imperfect symmetry due to the mesh
discretization. In all cases the chemical potential is continuous
throughout the whole profile, with a smooth transition from
one facet to another. Correspondingly, a continuous material
flow J ∼ −∇μ is established along the surface, directed from
the center of facets at higher μ towards adjacent facets at
lower μ, altering their relative growth rates while still preserv-
ing the sharply faceted morphology at all evolution stages.

At the earliest time (0.5 arb. units), right after the quick
reshaping of the initially circular ring profile by both m and
a planes, a net material transfer is established between them,
so that one extends at the expense of the other. For τ0 = 0.1,
i.e., the case where thermodynamics is stronger, the current
flows from the unfavored {112̄0} kinetic facet toward the
minimum-γ {101̄0} ones, which grow larger from the begin-
ning thanks to this additional flux. Vice versa, in all the three
other cases (τ0 = 0.2, 0.4, and 1.0) the flow happens in the
opposite direction since the {112̄0} kinetic facets are favored
over the most stable {101̄0} ones by the increased τ0 values.
The greater is τ0, the stronger is the material current enhancing
the relative growth rate of the {112̄0} facets, which therefore
grow larger.

However, this behavior reverts later on as indicated by the
plots at time 2 arb. units. There, the minimum and maxi-
mum of μ are exchanged between the two facets thus driving
material currents in the opposite direction. This is well evi-
dent in the cases for τ0 = 0.2, 0.4, and 1.0, where material
is transferred from {112̄0} facets onto the energetically fa-
vored {101̄0} ones, reflecting the increment in the strength
of the thermodynamic contribution, proportional to the local
curvature given by the Gibbs-Thomson relation, within the
definition of the local μ. The reversal in the current causes
an increment in the growth rate, and hence in size, of the ther-
modynamic {101̄0} facets, resulting in the observed reduction
of the a-plane-to-m-plane length ratio. A slightly different
situation concerns the case for τ0 = 0.1, where the kinetic
{112̄0} facets are no longer present, replaced by slightly
rounded corners that receive material by surface diffusion in
order to coherently follow the advancing of the {101̄0} facets.
An analogous material flow toward facet edges is observed in
the outer region (see Fig. S1 of the Supplemental Material
[40]), where the corners between the {101̄0} facets corre-
spond to local minima of the chemical potential attracting
some material to keep the pace of the advancing faceted
front.
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FIG. 2. (a) Evolution of a circular ring (black) during growth by a isotropic deposition flux in the presence of both anisotropic γ and τ ,
defined as in the polar plot and scaled according to the factor τ0 (for fixed γ0 = 1). Profiles are equally spaced in time except for the first
(dashed lines), which corresponds to a half time interval. Regions are colored according to the thermodynamic (red), kinetic (blue), or mixed
(yellow) driving force for the local faceting. Only a quarter of the ring is shown. (b) Plots of the chemical potential along the inner surface for
the first and third growth profiles (growth time of 0.5 and 2 arb. units, respectively) in (a). Data are averaged in the periodic sectors between
consecutive 〈101̄0〉 and 〈112̄0〉 directions, and the respective facets are distinguished by colors. (c)–(e) Same as the case for τ0 = 0.2 in (a) but
including anisotropic deposition flux � with minima along both 〈101̄0〉 and 〈102̄0〉 (c), only along 〈101̄0〉 (d), and only along 〈112̄0〉 (e), as
reported by the polar plots. Surface mobility is reduced by a factor of 20 to enhance the role of deposition with respect to diffusion. Regions
are colored as in (a), and in green are indicated those affected by the deposition flux anisotropy alone (solid green regions) or combined with
other driving forces (alternating bands).

Following this, it is worth noting how the current flow is
again different between the outer convex profile and the inner
concave one depending on the dominant driving force. In a
thermodynamic regime, material flows from stable to unstable
orientations in the convex region and in the opposite direction
in the concave one. Once the equilibrium shape is established,
the profile remains self-similar by pushing the required ma-
terials to the corners. In the kinetic regime, in contrast, the
direction of material currents is the same for the convex and
concave region, from those with slow incorporation dynam-
ics to those where growth is faster, so that the former will
extend on the outer perimeter due to their slow advancing
while the latter will expand on the inner one as it is moving
fast.

While the analysis here reported has been conducted by
directly varying the kinetics-energetics balance by controlling
the τ -to-γ ratio, rather similar effects (see Fig. S2 of the
Supplemental Material [40]) can be achieved by tuning the
flux-mobility (�/M) balance. It is indeed possible to see from
Eq. (1) how an increment in the deposition rate returns a shift
in μ from the equilibrium value and a consequent imbalance
in favor of kinetic effects. This becomes even more important
when the flux � is itself anisotropic thus entering the compe-
tition for the faceting by biasing the local supply of adatoms
in each facet without involving any diffusion dynamics and
irrespective of the local μ. In Figs. 2(c)–2(e) the very same
case shown in Fig. 2(a) for τ0 = 0.2 is taken as a reference;
however, the mobility M0 is reduced by a factor of 20, and
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FIG. 3. (a)–(e) Simulation profiles of the evolution of a circular ring (black) during growth for different values of γ〈112̄0〉. Profiles are
equally spaced in time, and regions are colored according to the thermodynamic (red), kinetic (blue), or mixed (yellow) driving force for the
local faceting. Only a quarter of the ring is shown.

an anisotropic flux �(n̂) is considered, for the three most
representative cases.

In Fig. 2(c), both {101̄0} and {112̄0} facets are assumed
as identical minima of �, with the same magnitude as the
reference flux �0 used in the isotropic cases of Fig. 2(a),
while the intermediate orientations are maxima. The obtained
profile evolution is barely distinguishable from the one in
Fig. 2(a) and practically the same if using the same mobility
in the isotropic case (see Fig. S3 of the Supplemental Material
[40]). This is due to the choice of flux anisotropy that does
not produce any bias between the two facets, which is still
enforced, and hence controlled in the relative extensions, by
the anisotropy in γ and τ . More precisely, in the outer convex
profile the reduced flux along the 〈101̄0〉 and 〈112̄0〉 directions
favors the formation of both facets in the same way, while in
the concave region it opposes their formation but is outruled
by the other terms.

In Fig. 2(d), the flux along the 〈101̄0〉 directions is re-
duced to 1/2 of that along the 〈112̄0〉 ones, kept at the same
magnitude as �0. In this case, the reduction in the adatom
supply on the {101̄0} facets adds to their already assumed
stability (lower γ ) and slow incorporation by τ anisotropy
thus further enforcing their dominance in the outer convex
perimeter, which now advances at 1/2 of the velocity of the
isotropic case. Also in the inner concave region the behavior
remains quite similar to the case of isotropic flux as the rela-
tive extension of {101̄0} and {112̄0} results from the relative
strength of the kinetic contribution, here resulting from the
combined effect of deposition and incorporation anisotropy,
favoring the fast {112̄0} front, and the thermodynamic driving
force from surface energy, favoring the most stable {101̄0}
facets and becoming dominant only at small radii. The overall
velocity of the inner growth front is also reduced, with a
progressive slowdown as the relative extension of the {101̄0}
facets increases.

A different faceting can instead be obtained when consid-
ering the opposite case of minimum flux � in the 〈112̄0〉
directions, reported in Fig. 2(e). In such a case, the flux

anisotropy is opposite to the kinetic faceting by τ anisotropy,
so that the slow arrival of material on {112̄0} facets can
compensate their fast incorporation capacity thus resulting in
a significant slowdown of their motion compared with the
case of isotropic deposition. For this reason, {112̄0} facets can
persist, and eventually prevail for thicker growth, on the outer
perimeter as it is kinetically stabilized. Symmetrically, in the
concave region the higher flux on {101̄0} facets adds to the
thermodynamic contribution by γ in driving their expansion
against the {112̄0} ones. A decrease in radial velocity is still
observable on both sides but less pronounced as the growth
proceeds since a larger part of the exposed facets correspond
to the ones with maximum �.

It must be, however, pointed out that the actual impact of
the flux anisotropy on the crystal faceting is directly controlled
by the surface mobility. In the cases reported in Figs. 2(c)–
2(e), the surface diffusion has been significantly quenched by
setting a low mobility so as to limit the redistribution of the
deposited material according to the nonuniform μ and obtain
facet growth rates mainly defined by the different local supply.
If the mobility is increased (see Fig. S3 of the Supplemental
Material [40]), the effects of an uneven supply of material
by anisotropic flux � become less and less important as
adatoms redistribute along the surface profile following the μ

gradients. In the following we will focus on the latter regime,
assuming that, for the typical conditions of the experimental
cases here considered, the diffusion is fast enough to neglect
the possible, reasonably small, anisotropy in the deposition
flux.

In Fig. 3 we investigate the effect of changing the energet-
ics of the {112̄0} a planes, while leaving the incorporation
time τ unchanged, for the intermediate regime of τ0 = 0.2
in Fig. 2(a), here repeated for convenience in Fig. 3(b). In
the case shown in Fig. 3(a), minima as deep as the {101̄0}
ones are considered, so that the ECS is a regular dodecagon.
However, the adatom kinetics introduces a bias between the
two facet families: In the outer perimeter, the slower {101̄0}
facets dominate, and in the inner one the fast {112̄0} facets
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FIG. 4. Growth of a ring with multiple facet families defined in
the kinetic term. (a) The initial ring is colored black, and growth
profiles equally spaced in time are drawn. The chemical potential
is mapped independently for each profile in the concave region.
Four facet families with different growth velocities are distinguished.
(b) Polar plot of the kinetic term. The same facet families are high-
lighted. (c) Ratio of the lengths of facets A and C plotted against the
ratio of the respective incorporation times. Only the first two growth
profiles are considered. In order to reduce the error, the average
length over each facet family at the respective time frame was used.

grow larger. In Fig. 3(e), the opposite situation is defined, with
maxima of γ along the 〈112̄0〉 directions, resulting in {101̄0}
hexagonal profiles in both the inner and outer perimeters.
While both thermodynamic and kinetic contributions push
the system in this same direction in the outer profile, in the
concave part the faceting is enforced by the energetic term,
opposing the exposure of the highest-energy {112̄0} planes
despite their fast incorporation rate. The intermediate case
shown in Fig. 3(c) with constant value of γ along the 〈112̄0〉
directions results, in the early growth stages, in the coexis-
tence of {101̄0} planes, energetically favored because they are
minima in γ , and {112̄0} planes, which are characterized by a
lower incorporation time τ with respect to nearby orientations
at the same energy. As already seen in Fig. 2(a), as the perime-
ter shrinks, thermodynamic effects prevail, as highlighted by
the reversal of the μ gradients along the profile, so that at the
latest growth stages the profile reduces to the energetically
favored {101̄0} facets. Finally, the cases in Figs. 3(b) and
3(d) show the effect of setting shallow minima or maxima,

respectively, along the 〈112̄0〉 directions, as small as 1/10
of the absolute minima along 〈101̄0〉. The behavior is quite
similar to the behavior with constant γ in Fig. 3(c), but a
difference is observed in the relative extension of the {112̄0}
facets, longer in Fig. 3(b) than in Fig. 3(d), and, in turn, in the
deposited thickness at which they disappear.

So far we have focused on variations in the faceting due to
the competition between facets differently favored by thermo-
dynamics and kinetics. We now turn our attention to the case
where more than one facet family can appear in the kinetic
regime. More precisely, here we investigate how the morphol-
ogy of the crystal changes in both the inner and outer region
when considering different maxima and minima for the facets.
An exemplifying case is illustrated in Fig. 4, where, to keep
the analysis as simple as possible, we still consider the same
geometry as before but we assume two different maximum
values for the incorporation time of alternating {101̄0} planes,
labeled A and C, with τA > τC , and two minimum values for
the {112̄0} planes, labeled B and D, with τB > τD. The polar
plot of τ (n̂) is shown in Fig. 4(b). The overall criterion of KCS
still holds: In the convex outer perimeter the slowest-growing
facet, i.e., the C facet, prevails, while in the concave inner
profile it is the fastest one, i.e., the B facet, that dominates.
However, the evolution proceeds through intermediate stages
where the relative facet extension changes continuously, on
a timescale determined by the diffusion-to-growth ratio and
controlled by the difference in the incorporation times. In
Fig. 4(c) the variation in the ratio of the facet lengths 
 for
the two families A and B as a function of the ratio in their
incorporation times is plotted for two simulation stages, cor-
responding to the first and second profiles in Fig. 4(a). As
expected, for the same incorporation time, both facets coex-
ist with the same extension, producing a hexagonal profile.
The larger the difference between the incorporation times, the
stronger the driving force for the facet transition, correspond-
ing to a difference in the chemical potential, higher for facet
A and lower for facet B. This kinetic effect would cause a
triangle with A facets only to form in the concave region.
However, the kinetic faceting is once again found to produce
sharp facets only for a sufficiently large radius. When the
inner perimeter shrinks, as made evident in the latest stages
of Fig. 4(a), the chemical potential at the corners increases
due to the their high curvature energy cost, thus driving a
local rounding that, in the end, results in a nearly circular
morphology right before the full closure of the hole.

B. Simulation of realistic ringlike structures

Since all of the previous analysis considered a 2D geom-
etry, questions may arise as to how it applies to realistic 3D
structures. Two major difference are to be taken into account.
First, the inner and outer regions are no longer fully decoupled
as the crystal top facet connects them. Second, the explicit
representation of the lateral growth on top of the substrate
requires us to introduce an appropriate boundary condition to
enforce the nonwetting contact angle on the dielectric mask.
In Fig. 5 we consider a fully 3D simulation with incorporation
anisotropy only, mimicking the experimental behavior of the
ring structures in Ref. [10]. To this purpose, both m and a
planes, observed in the outer profile, are to be considered
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FIG. 5. (a) 3D simulation growth stages of a ring geometry with an external diameter of 800 nm. Color maps represent the value of τ ,
whose angular variation is schematized in the inset. (b) Profile sequences for two cross sections, namely, on the (0001) and {101̄0} planes, and
color map for the surface chemical potential μ for the last stage of (a), sketching the current of material J. (c) Variation with time of the lateral
and vertical growth of the structure. Each line reports the evolution in the corresponding direction identified by the arrows in (b).

as maxima of τ while leaving all 12 intermediate directions,
angled at 15◦ with respect to 〈101̄0〉 and 〈112̄0〉, as identical
minima, so that they develop equally in the concave region.
A satisfactory agreement with the experimental observations
is achieved by taking τ101̄0 : τ112̄0 : τ0001 : τ0 = 6 : 5 : 1 : 1, as
sketched in the figure inset. The growth progress is illustrated
in Fig. 5(a), where consecutive simulation stages are reported,
starting from the initial circular ring on the left. A more in-
depth analysis of the evolution of the growth front is reported

FIG. 6. (a) Comparison between the simulations (sim.) of growth
of a ring in 3D (green) and 2D (blue). The initial ring is colored black,
and growth profiles equally spaced in time are traced up until the
closure of the cavity. (b) Comparison between the scanning electron
microscopy (SEM) view of an InP ring from Ref. [10] and the
corresponding 2D growth simulation. (SEM image is adapted with
permission. Copyright 2021 American Chemical Society.) Simulated
profiles are drawn equally spaced in time up to matching the experi-
mental one.

in Fig. 5(b), where the sequence of growth profiles is traced
for both a vertical {112̄0} cross section and in a (0001) top
view. These highlight a major effect that could not be taken
into account by a simple 2D model: The concave region grows
much faster than the convex one. This is the consequence of a
large material transfer driven by the difference in μ between
the outer and the inner region, as seen in the color map in
Fig. 5(b), from the slow-growing front in the outer perimeter
(where τ and μ are maxima), onto the (0001) top facet, and
then toward the fast-growing 15◦ facets on the concave side,
where τ and μ are minima. More quantitatively, the different
advancings of the growth front at the inner and outer perimeter
and at the crystal top are plotted in Fig. 5(c).

Despite the qualitative resemblance of the simulation with
the experimental images, the scale of the latter, about 4
μm in diameter, cannot be matched easily due to the high
computational cost of 3D modeling. A one-to-one size re-
production could be achieved effortlessly by 2D simulations,
provided that they properly approximate the evolution of the
3D system mapped in the substrate plane. As we just rec-
ognized that the advancing of the growth front is strongly
asymmetric, a correcting factor is to be included in the 2D
simulations in order to assign a different effective flux �

on the two sides of the ring. Based on the measurements
in Fig. 5(c), we set the flux ratio to �in : �out = 11 : 3.
With this change, 2D results are found to reproduce well
the cross-sectional evolution of 3D simulations, as shown in
Fig. 6(a) for a small ring with diameter 400 nm, as well
as for the profiles of the 800-nm ring considered in Fig. 5
(not shown). The good correspondence certifies the possibility
of exploiting 2D as a quick and reasonably approximated
description of the profile evolution, with the neat advantage
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FIG. 7. (a)–(e) Growth simulations starting from a hexagonal pattern (black) at different angles. Growth profiles equally spaced in time are
traced up until the closure of the cavity.

of tracking the evolution for much longer times and, even
more critically, for much larger sizes, comparable to experi-
mental ones. This is represented in Fig. 6(b), where a direct
comparison between 2D simulation profiles and the experi-
mental structure of Ref. [10] is shown to achieve substantial
agreement.

C. Template effect

As the faceting process is essentially bounded to the finite
timescale of the surface diffusion process, the crystal mor-
phology can be controlled by engineering the shape of the
initial profile, i.e., the geometry of the underlying slit for the
SAE growth. In the previous analysis the most neutral profile
possible, a circular unfaceted slit, has been considered, in
order to let facets develop spontaneously. On the other hand,
by exploiting a polygonal profile with a given orientation on
the substrate plane, it is possible to introduce a bias in the
facet formation, favoring those already present or closer to the
initial profile. This is made evident, in 2D, in Fig. 7, where
the initial profile is shaped like a hexagon with sides aligned

FIG. 8. Growth sequences for two different orientations of the
initial squared ring. (left) The sides of the initial square are made of
two {101̄0} and {112̄0} facets. (right) Same initial shape as in the left
column, but rotated 45◦ on the (0001) substrate. The external side of
the initial shape is 800 nm long.

along different directions, ranging from 〈112̄0〉 in Fig. 7(a)
to 〈101̄0〉 in Fig. 7(e). In Fig. 7(a), the outer profile grows
conformally as the preset {101̄0} planes correspond to the
absolute maxima of τ , so that they are the most favored by
kinetics, while in the inner region the dodecagonal profile set
by the 15◦ facets is seen until the closure of the cavity. In the
case shown in Fig. 7(e), the evolution is quite similar, but,
since the preset {112̄0} planes are only relative maxima of
τ , they get slowly replaced by the most convenient {101̄0}
facets developing from the corners of the initial hexagon. The
very same templating effect, but referred to the inner region, is
observed in the case shown in Fig. 7(c), where the sides of the
initial hexagon are aligned with the 15◦ fast-growing facets.
In this case, only six such orientations, out of the 12 existing
ones, are observed, and the growth is conformal until the full
closure of the cavity. On the other hand, the initial orientation
does not match any of the favorable m or a planes on the outer
side, so that a rapid, complete rearrangement in the profile is
observed, leading to the exposure of both favorable families.
As the hexagon sides are exactly in the middle between the
two, the {101̄0} facets tend to grow slightly larger than the
{112̄0} ones, in the same way as the circular slit of Fig. 6.
Finally, in Figs. 7(b) and 7(d) the initial profile is not aligned
with any favorable orientations, either for the convex or for
the concave profile. In this case, the profile undergoes an
initial realignment to the 〈112̄0〉 and 〈101̄0〉 directions in the
outer region and to the 15◦ intermediate facet in the inner one.
During this process, the facets which are closest to the initial
hexagon sides tend to prevail, so that in Fig. 7(b) the {101̄0}
facets extend the most, while in Fig. 7(d), which is rotated
closer to the 〈101̄0〉 direction, the profile is first dominated by
the {112̄0} facets, with the most favorable {101̄0} emerging
later. Looking at the inner region, in both Figs. 7(b) and
7(d) the initial hexagon profile favors only six intermediate
facets, while the others appear initially at the corners but are
consumed before the closure of the cavity, thus returning a
hexagonal perimeter. Notably, this indicates that the KCS will
be eventually reached in all cases in the convex region, but the
timescale required to do so is affected strongly by variations in
the initial orientation of the pattern. This may be more critical
in the inner region, as in principle the cavity may close before
a steady state is reached.

The possibility of controlling the patterning with high pre-
cision offered by the current lithographic techniques allows
for arbitrary slit shapes, not necessarily reflecting the substrate
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symmetry. In Fig. 8 a squared ring is considered, and its
evolution during growth is investigated by 3D simulations for
two different orientations. In the case shown on the left in
Fig. 8, the sides of the square are aligned two by two with
{101̄0} and {112̄0} facets, so that the outer profile remains
quite the same except for the nucleation of the four missing
{101̄0} facets at the square corners. In the inner region, the
growth starts with the accumulation of material at the corners,
forming 15◦ facets, progressively extending toward the center
of the edges so as to replace the slow m and a planes of the
initial square. The effect of the template is, however, evident
as only the eight fast-growing planes at 15◦ with respect to
the initial square sides are formed, while the remaining four
planes expected at the corners of the square are not observed.
In the case shown on the right in Fig. 8, the initial square is
rotated by 45◦ so that all facets correspond to fast-growing
fronts at 15◦ with respect to the m and a planes. As expected,
this alignment is preserved in the inner concave region, while
in the outer perimeter the slow-growing planes nucleate, start-
ing from the corners. However, as the growth of the concave
region is much faster, only a local rearrangement of the profile
is found in the outer region before the closure of the inner
cavity.

IV. CONCLUSIONS

The complex dynamics of crystal growth of ringlike
structures was investigated by phase-field simulations. The
coexistence of convex and concave regions almost decoupled
from each other, i.e., the inner and outer perimeter of the
ring, offers a valuable strategy to assess the relative role of
thermodynamics and kinetics in driving the crystal faceting,
for the nucleationless growth mode. Our analysis shows that a
continuous variation in the morphology between the extreme
cases of ECS and KCS is possible as a function of the relative
strength of anisotropic surface energy, incorporation kinetics,
and orientation-dependent deposition flux or through the �-
to-M ratio.

Importantly, our approach not only returns the final mor-
phology, but also tackles the full kinetic pathway driving the

system from the initial shape, templated by the window slit
in SAE, across all intermediate stages before the final one.
The comparison of our simulation results with experimental
cases in the literature, in particular, with the case of InP
rings here taken as reference, shows the consistency of the
modeling and indicates a major role of kinetics in leading the
faceting of crystals grown by SAE. While the present study
was not meant to be a quantitative comparison of specific
experiments, the proposed approach could be used as a more
predictive tool, by a suitable calibration of the parameters,
following the approach proposed in Ref. [21] for nanomem-
branes. To this purpose, the comparison and validation of the
model setup against experimental time series would be quite
necessary, especially for the fine-tuning of the facets’ incor-
poration times, generally unknown and difficult to achieve by
theoretical calculations. With this respect, the possibility of
exchanging the fully representative, but more demanding, 3D
simulations for an effective 2D description extends the size
scale and timescale accessible by simulations making a one-
to-one comparison with micrometer-sized structures possible.

Finally, the implicit representation of the geometry in the
phase-field approach makes it possible to consider any arbi-
trary shape of the mask windows as initial profiles, so that
simulations can be used for scouting new growth designs in
place of running expensive experimental campaigns. Indeed,
once the parameters are properly set they can be straight-
forwardly used for simulating different window shapes and
crystallographic alignments, as well as different substrate ori-
entations. This offers a great advantage in the tuning of the
crystal morphology, as the window shape can template the
faceting during the earliest growth stages.
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