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This paper provides an atomistic exploration of the lattice dissipation mechanisms accompanying the for-
mation of charged point defects through a femtosecond resolved study of F+-center creation in NaCl. Our
findings, following from a classical molecular dynamics based investigation of this model system, point to
general range of properties that should be present in similar systems. Immediately after the creation of such
a charged defect center, its excess energy is imparted amongst the highest energy optical modes with no clear
preference based on their degree of localization. This energy is then dissipated through equilibration amongst
a bath of lower energy phonon modes. The temporal behavior primarily follows exponential decay trends at
all the temperatures and energies explored, with a small degree of competition between phonon population and
depopulation amongst lower energy bath modes. Moreover, the dissipation timescale is found to be approxi-
mately the same amongst all phonon energies. A temperature-dependent analysis shows the expected decrease
in phonon lifetimes with increasing temperature. This is accompanied by similarly more rapid dissipation of
thermal energy around the defect center at lower temperatures when the phonon mean free path is increased. An
intuitive phenomenological model based on Langevin dynamics is also provided to interpret the atomistically
derived phonon decay characteristics in the temporal domain. More broadly, these results are expected to aid the
design and experimental investigation of strongly correlated materials where charged defect centers can play an
important role in technological applications.
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I. INTRODUCTION

Electronically driven lattice rearrangements often accom-
pany the active operation of ionic and oxide materials within
energy harvesting and conversion devices [1–8]. This includes
phenomena such as electron/hole transfer, defect ionization,
optical excitation, and even polaron formation [9–13]. When
the loss, excitation, or transport of charge is associated with
a single lattice site or thereabouts (e.g., via a defect center),
the accompanying lattice dynamics often form an essential
component in the manipulation of such energetic processes
[6,14–17]. Thus, an atomistic understanding of the rearrange-
ment dynamics associated with charge-state changes in point
defects could significantly aid the design of energy materials
[18,19]. Moreover, recent experimental advances in detecting
lattice relaxation dynamics point to the need for furthering our
atomic-scale understanding of such phenomena [15,20–27].
Following this vein of inquiry, we explore atomistically the
manner in which a newly formed charged defect center relaxes
its excess energy through dissipation within a surrounding
lattice.

The lattice dynamics triggered by changes in the charge-
state of a single lattice site typically involves the creation and
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annihilation of many phonons [15,20–26,28,29]. Over the past
several decades, pioneering theoretical studies have explored
the process of charged center relaxation via phonon dynamics
in condensed-matter systems ranging from solids to liquids
[30–34]. These analytical models have focused on the appli-
cation of Fermi’s golden rule to arrive at a phenomenological
description of the phonon dissipation processes arising from
the excitation or formation of charged defect centers [30–34].
Likewise, important model Hamiltonian developments have
also provided crucial insights into the dynamical formation
of small polaron-type charged defect centers via phonon in-
teractions [35]. An important long-term goal in the field is
to understand atomistically the mechanisms through which
defect centers dynamically interact with their surrounding lat-
tice [36,37]. By successively improving our atomistic models
of the lattice rearrangements induced by charge defect cen-
ters, via refined interaction descriptions, further quantitative
comparison with experiments should be achievable [15,20–
26]. Such investigations would also serve to eventually rec-
oncile both analytical and atomistic descriptions of charged
defect centers and their lattice formation/excitation dynamics.
Yet, atomistic studies focused on the dynamics of solid-state
charged defect centers remain sparse [10,38–41]. This paper
aims to further our atomic scale understanding of the lattice
dynamics occurring during the formation of charged defect
centers.
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FIG. 1. Configuration coordinate diagram for charged color cen-
ter formation in NaCl. The red balls represent Na atoms and the blue
balls represent Cl atoms. The localized electron is shown in yellow.
The image of the NaCl lattice is a 2D projection of the 3D lattice,
which can better show the displacement of the atoms. The vertical
transition from the initial (bottom) to the top potential energy surface
with the minimum at the undistorted lattice (point A) corresponds to
the ejection of the F center electron. After the electron is removed,
the lattice distorts from the nonequilibrium configuration A to the
equilibrium configuration B. Common to all charged defect centers,
this transition from A to B is driven by lattice dynamics. The lattice
coordinates and charge density of the localized electron (yellow ball)
in this figure are directly obtained from DFT calculations that are
detailed in Supplemental Material Sec. SA [47].

By adopting F+-centers in NaCl as a model system (see
Fig. 1) [20,28,42–46], we seek to address several unresolved
questions pertaining to the formation dynamics accompany-
ing charged defect centers. First, through what mechanisms
does a defect center impart its excess energy within the
phonon distribution and how does this energy relax/dissipate
amongst the overall phonons via population/depopulation?
Second, is there any preference or distinction between local-
ized and delocalized phonon modes in the dissipative process?
Third, what decay trends are exhibited in phonon dissipa-
tion dynamics? For example, do they decay exponentially
in the temporal domain—with or without interplay between
phonon population and depopulation over time, and what are
the characteristic timescales? Fourth, how do population and
depopulation characteristics vary as a function of phonon en-
ergy? Fifth, how do the dissipation trends in the local kinetic
energy (local temperature) in the vicinity of such a defect dif-
fer from those in the phonon population? Lastly, how do these
characteristics vary as a function of temperature? Crucially,
these questions can only be fully addressed within the context
of charged defect centers by also pursuing atomistic studies.

Across the computationally challenging length and
timescales, we explore these points of inquiry within a clas-
sical molecular dynamics (MD) description of F+-center
formation via the following process (see Fig. 1): First, the
F-center electron is ejected (the vertical O → A); this way

the excited electron is effectively removed from the system
leaving behind an F+-center in the nonequilibrium configura-
tion A, which then relaxes to state B. It is this last process
accompanied by the thermal relaxation that we study here.
Our findings reveal that, though the overall dissipation process
yields a complex substructure within the phonon relaxation
dynamics, the general temporal decay trends can be cap-
tured by an intuitive description of a lattice equilibration. The
highest energy phonon modes are shown to dominate in the
release of energy to lower energy phonon modes acting as
a bath—with the latter being weakly perturbed at the initial
stage of defect formation. The overall phonon decay trends
are found to be largely exponential in the temporal domain,
with some competition between population and depopulation
occurring in lower energy modes. Phonon lifetimes are shown
to decrease with respect to temperature, while the local kinetic
energy in the vicinity of the defect is shown to dissipate faster
at lower temperatures. Collectively, these findings point to the
important role that atomistic studies can provide in enhancing
our understanding of charged defect center dynamics and as-
sociated lattice rearrangements driven by electronic processes.

The remainder of this paper is organized as follows.
First, in Sec. II the computational details and analysis meth-
ods concerning our atomistic simulations are detailed. Then
we present our results in Sec. III. We begin by examining
lattice distortions between the initial and final configura-
tions and their corresponding phonon mode decomposition in
Sec. III A. This is followed by a detailed examination of dissi-
pation dynamics including phonon decay dynamics and local
temperature (kinetic energy) decay dynamics in Sec. III B.
Then, in Sec. IV we present an intuitive framework based on
Langevin dynamics for interpreting the general phonon de-
cay and population/depopulation trends. A brief comparison
between temperature dependence in the phonon-lifetime and
a first-order analytical approach is also provided in Sec. IV.
Finally, in Sec. V we present our conclusions and elaborate
on points left for future investigation.

II. METHOD

A. Molecular dynamics approach

All results were obtained through classical MD simulations
conducted within the LARGE-SCALE ATOMIC/MOLECULAR

MASSIVELY PARALLEL SIMULATOR (LAMMPS) package [48].
Each MD run was prepared in four successive stages as il-
lustrated in Fig. 2. We started at the pristine lattice geometry
(no vacancy), choosing a large supercell employing periodic
boundary conditions (details below). In stage I, the pristine
lattice temperature was prepared near the target temperature
following the approach of Estreicher et al. in Refs. [49,50].
This initial run period was held as a microcanonical (NVE)
ensemble for 20 ps—the blue region in Fig. 2. Though very
useful for initial thermalization, we found that this approach
did not precisely achieve the desired target temperature due
to lattice anharmonics. Thus, to ensure full phonon mode
randomization at the target temperature, in stage II a canonical
(NVT) ensemble with Langevin thermostat was applied for 50
ps at the target lattice temperature with a damping parameter
magnitude of 0.1 ps—the red region in Fig. 2. In stage III,
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FIG. 2. Schematic of the MD run process at 25 K averaged over
40 samples. The process is conducted in stages I–IV. First, thermal-
ization of the pristine lattice occurs in stages I and II. Then, partway
into a fixed temperature NVE run a Cl− atom is removed to mimic
the formation of an F+-center (stages III and IV, respectively). The
temperature spike in stage IV and subsequent decay is due to the
excess energy generated by the Cl− atom removal and associated
F+-center relaxation dynamics. The same process is repeated at
all temperatures, with the number of MD samples increasing with
temperature.

the Langevin thermostat was turned off and the system was
held as an NVE ensemble at constant lattice temperature
for 20 ps—the yellow region in Fig. 2. In the final fourth
stage, indicated in green in Fig. 2 and also held as an NVE
ensemble, a Cl− atom was removed to mimic the formation
of an F+-center due to electron ejection from the F-center
(configuration A in Fig. 1). The dynamics of relaxation from
configuration A to configuration B in Fig. 1 were then tracked
both in real space and phonon space over a period of at least
20 ps within stage IV. Importantly, an NVE ensemble was
employed to ensure that the relaxation process corresponds
to a realistic situation in which the extra energy accumu-
lated in the vacancy after excitation (modeled by the Cl−

removal) is able to dissipate into the rest of the crystal over the
realistic timescales corresponding to anharmonic relaxations
present in the system. We used this Cl− ejection approach
to approximately mimic the actual electron ejection process
from the F-center, as bond lengths of the F-center defect are
quite similar to that of the pristine lattice—this comparison
is made in Supplemental Material Sec. SA [47]. Moreover,
Cl− ejection/removal was deemed more physically sound
than attempting to capture the interactions of the partially
delocalized electron in the F-center via a force-field potential.
The duration of stages I–III could be optimized to be shorter.
However, we have found that at least 20 ps is needed to track
F+-center relaxation dynamics in stage IV.

To capture atomic interactions within this classical MD
framework, we utilized empirical Na+ and Cl− Buckingham
potentials [51] of the form

Ui j (r) = ZiZ je2

r
+ A exp

[
− r

ρ

]
− C

r6
. (1)

Here r is the interatomic distance between atoms i and j,
while Zi and Zj are their partial charges and e is the elemen-
tary charge. All force-field parameters are listed in Table SI

within the Supplemental Material [47] and were previously
fitted to the experimentally determined elastic constants and
crystal parameters of NaCl [51]. The resulting NaCl elastic
properties calculated using this parametrization have been
shown to match well with experiments [52]. Compared with
experimental data and 0 K density functional theory (DFT)
calculations, these potentials provide a quantitatively simi-
lar lattice constant and bulk modulus—see Table. SII in the
Supplemental Material [47] and Refs. [51,53–59] therein. The
phonon band structure obtained from these potentials can be
found in Supplemental Material Sec. SI [47]. In terms of the
overall phonon band structure trends, this approach excludes
the splitting of the longitudinal and transverse optical modes
at the �-point. However, the remaining phonon dispersion
properties are quantitatively similar to those computed from
first principles and measured experimentally [60–62]. There-
fore, our approach based on using classical force fields must
be appropriate for our purposes of capturing the main features
of the thermalization process. The corresponding bulk phonon
density of states (DOS) resulting from these potentials can be
found in Supplemental Material Fig. S7 a(ii) [47].

All of the MD results presented in this main portion of
the paper were obtained for a 6 × 6 × 6 supercell consisting
of 1727 atoms (or 1728 prior to removal of the Cl− atom as
shown in Fig. 2). Since relaxation dynamics were studied as a
function of temperature T , rigorous statistical sampling had
to be applied to ensure consistent trends. Details regarding
the statistical sampling criteria employed are discussed in
Sec. II B 2. Moreover, we found that a sufficiently large
supercell size is needed to obtain physically consistent re-
laxation trends (i.e., from A to B as illustrated in Fig. 1).
This was accomplished by achieving convergent relaxation
lifetimes with respect to system size as discussed in Sec. II C.
Importantly, the computational challenges arising from the
timescale, system size, and degree of MD sampling needed
to obtain physically meaningful insights were deemed to be
too excessive for first-principles MD studies of the relaxation
process at this time. This study is designed as an initial step to-
ward more quantitative first-principles studies and is focused
on obtaining qualitative atomistic insights into the relaxation
dynamics associated with charged defect centers.

B. Decay tracking

In this analysis, we track how the decay process from
configuration A to B occurs (as shown in Fig. 1) both in real
space and phonon space. Both approaches are detailed below.

Our analysis is based on the idea of expanding atomic
displacements ui(t ) directly available during the course of
MD simulations via normal modes of atomic harmonic vi-
brations corresponding to the final equilibrium configuration
(B in Fig. 1). Higher-order terms in expanding the potential
energy beyond the harmonic approximation describe anhar-
monic properties in the lattice and have proven quite useful
for computing phonon lifetimes [63]. However, in this pa-
per, only second-order force constants are utilized to analyze
the dynamics within phonon populations. This considera-
tion arises from the enormous expense the treatment of the
third-order constants would entail: Our minimum system size
consists of 1727 atoms in a 6 × 6 × 6 supercell, as discussed
above. This would then correspond to ∼1 × 1011 third-order
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force-constant matrix elements to compute—even an order
of magnitude reduction via symmetry would still be substan-
tial. If fourth-order force constants were accounted for, the
number of terms would have extended into ∼1 × 1014 [60].
Additional temperature-dependent considerations in the an-
harmonic terms would extend this computation burden much
further [60,63]. For the above reasons, we restrict this atom-
istic study to tracking decay within the phonon eigenspace of
configuration B shown in Fig. 1—considering only up to the
second-order force constants at this time. Moreover, as our
supercell is large (the minimum one is 6 × 6 × 6 in size), we
focus on tracking phonon decay at the supercell �-point only.

The harmonic normal modes are obtained as eigenvectors
es = (eis) of the dynamical matrix D:

Des = ω2
s es . (2)

Here ωs are vibrational frequencies shown in Supplemental
Material Fig. S7 a(ii) [47]. The dynamical matrix D consists of
matrix elements Di j = �i j/

√
mimj , with �i j being the force

constant matrix that is calculated directly from interatomic
potentials detailed in the previous subsection and mi is the
atomic mass associated with the degree of freedom i. In this
paper, the dynamical matrix is obtained using the finite dif-
ference method within the PHONOLAMMPS and PHONOPY

packages [64,65].
Actual atomic displacements ui(t ) and velocities u̇i(t ) pro-

duced during the course of MD simulations can then be
projected onto the normal modes displacements qs(t ) and
velocities q̇s(t ) via

ui(t ) = 1√
mi

∑
s

eisqs(t ) , (3)

u̇i(t ) = 1√
mi

∑
s

eisq̇s(t ) . (4)

Here qs(t ) serve as amplitudes in expanding the displacements
via the normal modes. Exploiting the orthonormality of the
vibrational eigenvectors, the amplitudes

qs(t ) =
∑

s

√
mieisui(t ) (5)

can be extracted and therefore easily calculated during the
MD run from the actual atomic displacements. Note that the
amplitudes are time dependent. A similar expression exists for
calculating the amplitudes q̇s(t ) in expanding the atomic ve-
locities u̇i(t ). Analyzing these amplitudes in time is essential
for understanding the energy redistribution within all modes
during the course of the F+-center relaxation (thermalization)
when tracking the decay process from configuration A to B.

Each normal mode s carries the harmonic potential energy
Us(t ) = 1

2ω2
s q2

s (t ) and kinetic energy Ks(t ) = 1
2 q̇2

s (t ), both be-
ing time dependent. The total energy of the given harmonic
mode, Es = Ks + Us, will therefore change in time due to
redistribution of the energy between the modes caused by
anharmonicity in the system. The total energy of our system,
Etot = K + U , consists of the total kinetic energy of the vi-
brating ions, K = ∑

s Ks, and their potential energy,

U =
∑

s

Us + Uanh, (6)

where Uanh is the corresponding anharmonic contribution that
is always present in any realistic MD simulation.

1. Local temperature decay

Following conventional MD interpretations [66], kinetic
energy can be related to the temperature T of the system via
N
2 kBT = K , where N is the number of degrees of freedom
within our system (i.e., three times the number of atoms) and
kB is Boltzmann’s constant. Following this line of reasoning,
one may take the kinetic energy for a subset of atoms and their
corresponding velocities to define a local temperature Tl of the
form

Tl (t ) = 1

kBNl

Nl∑
j=1

mju̇
2
j (t ), (7)

where the corresponding summation is restricted to the Nl

atomic degrees of freedom within some spherical region sur-
rounding the F+-center of interest. This Tl is then tracked in
time (t) as the system decays from configuration A to B at
various lattice temperatures—see Fig. 1.

2. Phonon population decay

In our NVE MD calculations of the decay process from
configuration A to configuration B, the total energy E remains
conserved. However, the specific energy in a given mode
Es(t ) changes dramatically in time t during equilibration and
is tracked throughout the decay process. This is due to an-
harmonic processes that facilitate energy exchange between
(harmonic) normal modes.

We have also found it quite useful to track the redistribution
of energy amongst all phonon modes by defining an energetic
phonon density of states of the form

ϒ(E , t ) =
N∑

s=1

Es(t )Ds(E ),

Etot =
∫ ∞

0
ϒ(E , t )dE , (8)

where Ds(E ) = δ(E − h̄ωs) is the phonon density of states
contribution by mode s. To provide a smooth curve when plot-
ting ϒ(E , t ), we approximated each Ds as a single Gaussian
[67] of the form

Ds(E ) = 1

σ
√

2π
exp

[
− 1

2

(E − h̄ωs

σ

)2]
, (9)

employing a broadening value of σ = 0.5 meV. When ana-
lyzing the quantity ϒ(E , t ), we found it necessary to sample
it over many MD runs to eliminate the noise, especially at
higher T ; see below for details.

Particularly useful insights can be gleaned by tracking the
system decay in ϒ(E , t ) from nonequilibrium configuration A
to steady-state configuration B via

ϒ̃ (E , t ) = ϒ(E , t ) − ϒ̄ (E ),

ϒ̄ (E ) = 1

tr

∫ tmax

tss

ϒ(E , t )dt, (10)

where tss is the time at which the system has been determined
to reach equilibrium in configuration B, tmax is chosen well
into stage IV of the NVE run, and tr = tmax − tss corresponds
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to the final part of stage IV in Fig. 2 in which the system is
considered fully equilibrated in configuration B. Hence, ϒ̄ (E )
is the steady-state averaged form of ϒ(E , t ), and ϒ̃ (E , t ) cor-
responds to the deviation from the equilibrium value decaying
to zero over time during the thermalization from A to B.
Through extensive benchmarking, we have found that physi-
cally consistent trends in ϒ̃ (E , t ) are obtained with tss = 10
ps and tmax = 20 ps, though showing small variations (but
the same physical trends) as tmax and tss are extended further.
However, the values of tmax and tss are certain to change with
different defect systems.

The steady-state distribution of ϒ̄ (E ) was also utilized
to determine the degree of statistical MD sampling required
at a given temperature as this quantity is highly sensitive
to the number of MD runs performed for the sampling
of ϒ̃ (E , t ). Specifically, we utilized the root-mean-square
(RMS) in ϒ̃ (E , t ) defined over the domain of times when the
system is considered equilibrated (tss � t � tmax):

ϒ̃RMS =
√

1

trEmax

∫ Emax

0

∫ tmax

tss

[ϒ̃ (E , t )]2dtdE , (11)

where Emax was typically set at 3σ or so beyond the maximum
value of h̄ωs. Note that ϒ̃RMS is unitless, as ϒ(E , t ) defined by
Eqs. (8). Typically, the value of ϒ̃RMS depends on the manner
in which the mode density of states (Ds) is plotted. When
setting σ = 0.5 meV in Eq. (9), consistent decay trends we
determined result from ϒ̃RMS < 2.4, which is considerably
less than the maximum value of ϒ̃ arrived at with this value
of σ . We mention these factors since the peak values of ϒ̃

(and necessary ϒ̃RMS noise tolerance) depend very much on
the value of σ employed to plot the decay process. Moreover,
minimizing noise is essential in Fig. 2. To meet these stringent
noise criteria, we have found that as few as 40 MD samples
can suffice at 25 K to properly sample ϒ̃ (E , t ), while at least
6000 MD samples are needed at 300 K. Full details can be
found in Supplemental Material Sec. SD [47]. These aspects
will also be discussed further in Sec. III.

C. Decay fitting and system size

All decay lifetimes (τ ), either for a phonon mode or the lo-
cal temperature about the F+-center, were determined through
an exponential decay fit of the form

f (t ) = Cexp(−t/τ ) + D, (12)

where C, D, and τ are fitting constants. For phonon mode
lifetimes, we assigned τ = τs, whereas for the local tempera-
ture (Tl ) lifetimes we assigned τ = τl . Fits were made for the
decay from A to B starting from the point in stage IV when
the Cl− was removed (see Fig. 2).

Crucially, the convergence of lifetimes extracted via these
exponential fits, via Eq. (12), was taken to be the primary
criteria for determining the appropriate supercell size for
this paper. There are two key issues associated with study-
ing decay properties via a supercell approach. First, periodic
boundary conditions can lead to the echoing of the relaxation
distortion front at long timescales (i.e., > 1 ps). Second, small
supercells typically dampen even the initial decay dynamics
(i.e., <1 ps) improperly due to the magnitude of the energy be-

ing dissipated. For the potentials parameterized in this paper,
the removal of a Cl− atom to form an F+-center is accom-
panied by the lattice relaxation which releases 2.19 eV of
energy in a 6 × 6 × 6 supercell. To determine the appropriate
supercell size, it was successfully increased until the local
temperature and phonon population decay trends were found
to have converged. These convergence tests were performed
at 50 K up to a cell size of 10 × 10 × 10 (7999 atoms). We
found it is important to perform such tests at low temperatures,
where damping by the external lattice is less pronounced and
the impact of the aforementioned computational issues can be
clearly discerned. Detailed information regarding these con-
vergent lifetime trends can be found in Supplemental Material
Sec. SE [47].

III. RESULTS

A. Lattice distortion and phonon mode decomposition

Configuration A in Fig. 1 constitutes a nonequilibrium
charged state, the energy of which is relaxed through the
interaction with the lattice phonons. The dissipative transition
from configuration A to B is accompanied locally around the
center by an inward motion of Cl− atoms (blue) and outward
pushing of Na+ (red) into new equilibrium positions, as shown
in Fig. 1. Over longer length scales, the distortion interaction
with the F+-center follows this same directionality trend, as
shown in the inset to Fig. 3(a). Specifically, the magnitude of
the Cl− and Na+ displacements is progressively decreasing
as one moves away from the defect [denoted as a shell index
in Fig. 3(a)]. These trends are consistent with repulsive and
attractive electrostatic interactions expected for a positively
charged defect center in an ionic lattice.

The F+-center distortion magnitude in Fig. 3(a) is pro-
jected to the phonon space of configuration B in Fig. 3(b).
Here one can see the distortion magnitude is well distributed
amongst all acoustic and optical phonon modes, with the
exception of three higher energy optical modes captured in
bold purple, blue, and black in Fig. 3(b) that are represented
much stronger than others. The spatial character of these
three prominent modes is provided in Fig. 4, where it can
be seen that they are optical modes in nature and extend
well beyond the defect center. Specifically, they belong to
the highest energy optical modes (see Supplemental Material
Sec. SI) [47]. The most localized of the three is situated at 9.1
THz [Figs. 4(a)–4(c,ii)]. Acoustic modes are only pronounced
below ∼5 THz (see Supplemental Material Sec. SI) [47]. The
prominence of the high-energy optical modes in Fig. 3(b) is
not entirely surprising, given that they all follow the same
trend of opposing Cl− and Na+ displacements as the overall
distortion and have the defect’s symmetry. This can be seen
by comparing Figs. 4(a)–4(c) with the inset in Fig. 3(a). The
spatial character of some other modes introduced by the F+-
center and their localization measurement can be found in
Supplemental Material Sec. SJ [47].

Next, let us turn to calculate the potential energy change
imparted to each mode (δUs) by the distortion via Eq. (6) as
given in Fig. 3(c). Here we can see that the ω2

s contribution
in Eq. (6) dramatically elevates the dissipative contribution of
the higher energy optical modes. Those modes that are high-
lighted in bold in Fig. 3(b) take an especially large fraction
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(a) (b)

(c)

FIG. 3. (a) Atomic distortion magnitude around a relaxed F+-center with respect to shell index, comprising the atomic displacement from
A to B in Fig. 1. With increasing shell index, one moves progressively further away from the charged defect site. Atomic displacements within
the first ten shells are shown as an inset, with vectors reflecting the magnitude of the displacement for a given atom. In both the atomistic
view and distortion plot, Na ions are indicated in red and Cl ions are indicated in blue. (b) The distortion field magnitude is projected into the
phonon space of configuration B in Fig. 1, prominent high frequency optical phonon modes at 9.1 THz, 9.5 THz, and 9.6 THz are highlighted
in bold purple, blue, and black, respectively. (c) The potential energy change (δUs) per phonon modes s (in configuration B) immediately after
the removal of a Cl− atom to form an F+-center (also see Fig. 1). All results are obtained within a 6 × 6 × 6 NaCl supercell consisting of 1727
atoms, with phonon modes calculated at the � point of the supercell. Inset to (c): The overall fraction of total potential energy contained by all
modes below a given frequency.

of the total potential energy in Fig. 3(c) because their |qs|
magnitude is twice that of comparable high-energy optical
modes leading to a further factor of 4 increase in their po-
tential energy compared to modes of similar frequencies [see
Fig. 3(b)]. The cumulative distribution of energies amongst all
modes can be found in the inset panel within Fig. 3(c) (red),
where we see that the higher energy optical modes above ∼6
THz take approximately 80% of the total defect relaxation
energy—also see Supplemental Material Fig. S7 [47]. Very
similar trends to Fig. 3(c) can be found in larger supercells, as
provided in Supplemental Material Sec. SF [47].

Though optical phonons represent the character of the
distortion imposed by such a center (in the sense of oppo-
site displacement of positively and negatively charged lattice
sites, see Figs. 3 and 4), this is not the primary reason why
they dominate during energy dissipation. At best, the high-
energy optical modes only project twice the overall phonon
magnitude |qs| compared to the vast litany of phonon modes
to which the defect couples [see Fig. 3(b)]. Indeed, a great
many of the phonon modes to which the distortion projects
substantially via |qs| lie in the acoustic range below 5 THz as
shown in Fig. 3(b) [see also Supplemental Material Fig. S7
a(ii)] [47,62]. Rather, higher energy modes dominate energy
dissipation primarily because their corresponding potential
energy contribution via Eq. (6) increases quadratically with ω2

s
[see again Fig. 3(c)]. Moreover, their localization association
with the defect center appears to be weakly correlated with
the energy imparted (see Figs. 3 and 4). This can be seen by
comparing the localization trends of the higher energy modes
in Fig. 4 with their imparted energies in Fig. 3(c).

B. Dissipation dynamics

1. Phonon decay dynamics

The phonon dynamics associated with the formation of an
F+-center are presented in Fig. 5. Here the phonon population

change, at various temperatures from 25 K through to 300 K,
is depicted as the system transitions from configuration A
to B (see also Fig. 1). This phonon population is plotted in
the form of the energetic phonon DOS perturbation (ϒ̃) from
the steady state as discussed in the context of Eqs. (8)–(10).
The steady state (in configuration B) is assumed to have been
reached after 10 ps, while configuration A at t=0 is viewed
as a perturbation from steady state. Across all temperatures
in Fig. 5 a striking consistent trend can be seen. A great
majority of the lattice distortion energy initially present in
configuration A (also see Fig. 3) is depopulated/annihilated
(red through green, ϒ̃ > 0) through the population/creation
(blue, ϒ̃ < 0) of lower energy acoustic and optical phonon
modes below ∼6 THz.

The distribution of lower energy phonons which are pop-
ulated (blue in Fig. 5) qualitatively mirrors the bulk phonon
DOS distribution at and below ∼ 6 THz in Supplemental
Material Fig. S7 a(ii) [47]. Specifically, the most prominent
phonon creation peak at all temperatures in Fig. 5 occurs at the
same energy as the bulk DOS peak in Supplemental Material
Fig. S7[47]. Indeed, a correlation between the phonon DOS
and decay dynamics is expected from first-order models of
phonon dissipation dynamics in defect centers [29–32,71].
Due to zone folding the �-point phonon DOS in a 6 × 6 × 6
supercell is a fair approximation to the bulk phonon DOS—
see Supplemental Material Sec. SG and Sec. SI [47].

A closer examination of the phonon dynamics toward
steady-state (configuration B) at frequencies below 6 THz
reveals a more complex interplay between creation and anni-
hilation dynamics in Fig. 5. At t=0, within this THz range
phonon creation (ϒ̃ < 0) clearly dominates, as energy is
rapidly dissipated from the high energy optical modes. Yet,
at longer time scales in Fig. 5(b) (e.g., toward t=2.5 ps
at 50 K), we see that minor phonon annihilation (ϒ̃ > 0)
processes also occur. This is not entirely unexpected since
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FIG. 4. (a)–(c,i) Configuration B eigenvector (es) patterns of the
most prominent three high-frequency phonon modes in Fig. 3(b) (for
the distortion to configuration A from B). To enhance clarity, the
displacement pattern of each mode is only projected around the first
ten shells about the F+-center. Na and Cl atoms are marked by
red and blue, respectively, and darker colors indicate larger relative
displacements within a given mode. The arrows illustrate the rela-
tive directions and magnitudes of phonon displacements. (a)–(c,ii)
Spatial decay of the three high-frequency phonon modes. Here the
Cl− vacancy is set as origin. The black dots are |es(Rn)|2 at each
distance normalized by the number of atoms at distance Rn. The
red lines are fitted lines in the form ∝ exp(−2|Rn|/ξs ), with the
localization length ξs indicated in the upper right corner of each
plot [68]. Details regarding other defect-induced modes and their
localization characteristics are provided in Supplemental Material
Sec. SJ [47] and Refs. [68–70] therein.

∼20% of the energy imparted at configuration A occurs be-
low 6 THz [see Fig. 3(c)]. Meaning, these modes also have
excess energy to dissipate, and creation-annihilation inter-
change, therefore, takes place within the bulk dynamics during
equilibration toward configuration B (see Fig. 1). With the
increasing temperature in Figs. 5(a)–5(e), the primary fea-
tures associated with phonon dynamics below 6 THz display
increasingly more rapid decay toward steady state (configu-
ration B). However, the temperature-dependent variation in
equilibration features below 6 THz becomes less pronounced
at temperatures 200 K and above, as shown in Figs. 5(f)–5(h).

As mentioned above, the annihilation dynamics associated
with higher energy optical modes shows prominently in red
through green in Fig. 5. The most prominent annihilation
peak at ∼9.5 THz in Fig. 5 is due to the clustering overlap
of several high-frequency modes that take a large proportion
of the distortion energy, as shown earlier in Fig. 3(c). The
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FIG. 5. F+-center formation dynamics associated with the tran-
sition from configuration A to B in phonon space (see also Fig. 1).
(a)–(h) Provide the energetic phonon DOS perturbation ϒ̃ (E , t ),
from the calculated steady-state population ϒ̄ (E ) in configuration B,
at various initial lattice temperatures from 25 K to 300 K. At 0 ps, the
system is in configuration A just after removal of the Cl− atom, while
steady state in configuration B is assumed to have been reached at 10
ps. MD sampling was set to maintain ϒ̃RMS < 2.4 at all temperatures.
Phonon populations that are annihilated during the decay to steady
state have a value of ϒ̃ (E , t ) > 0, while phonon populations that are
enhanced during the dissipation process have values of ϒ̃ (E , t ) < 0.
All results are for the � point in a 6 × 6 × 6 supercell.

second prominent annihilation peak is at ∼ 9.1 THz, and it
is the mode with the highest degree of spatial localization
among the three dominant optical phonon modes (see Fig. 4).
Compared with other local modes shown in Sec. SJ [47],
during the dissipation dynamics, the mode at 9.1 THz is the
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FIG. 6. (a)–(h) Phonon mode decomposed dissipation of the total
energy during equilibration from A to B in Fig. 1 from 25 K to 300 K.
The three most prominent phonon modes at 9.1 THz, 9.5 THz, and
9.6 THz are plotted in purple, blue, and black, respectively. All other
modes are plotted in grey. An exponential fit of the form provided
by Eq. (12) to the D mode at 9.1 THz, colored in red with τ = τs,
results in the time constants (τs) provided in (a)–(h). The initial lattice
temperature in configuration A is also provided in (a)–(h).

most dominant local mode associated with the defect, and thus
we denote it as the D mode. When taken individually, the three
dominant optical modes (see Fig. 4) each follows very similar
temporal exponential decay of the form given by Eq. (12). In
Fig. 6, the lifetime (τs) of the the D mode at 9.1 THz has
been extracted by fitting Eq. (12). Such decay behavior, sum-
marized by Eq. (12), is characteristic of Langevin dynamics
as we shall discuss shortly in Sec. IV A. Hence, phenomeno-
logically speaking, we can view each of the prominent high
energy phonon modes coupled to the defect [see Fig. 3(c)] as
collectively damped by the bath of lower energy modes that
are created below 6 THz in Fig. 5 [3,35,72].

Exponential decay fits, via Eq. (12), to the D mode
at 9.1 THz are provided in Fig. 6. These fits taken col-
lectively as a function of temperature provide the phonon
lifetimes in Fig. 7 (red squares). Very similar trends can
be obtained for all the prominent optical modes above 6
THz in Figs. 3–6. From the temperature-dependent trends
in Figs. 5 and 7, one can see that an anharmonic coupling

FIG. 7. Lifetimes as a function of the initial lattice temperature
obtained for a 6 × 6 × 6 supercell. Temperature-dependent phonon
lifetime of the D mode at 9.1 THz (τs, red squares) and local lattice
temperature lifetime (τl , blue triangles). A 1/T fit to the phonon
lifetime is provided as a dot-dashed red line. Similarly, a first-order
quantum rate fit is provided as a dotted red line.

between an annihilating/depopulating high-energy mode and
the surrounding lattice has an increasing impact with ris-
ing temperature. This leads to increased dampening as the
surrounding lattice temperature rises [73,74]. An increase in
damping is manifest as a decrease in the phonon lifetime (τs)
with respect to increasing temperature, as shown in Fig. 7 for
the D mode [30–32,69,72]. Interestingly, the phonon lifetime
decreases proportionally with respect to the inverse tempera-
ture in the manner of 1/T which is provided as a dot-dashed
red line in Fig. 7 from 25 K through to 300 K—a trend
discussed further in Sec. IV. Little change in the phonon
lifetime occurs from 200 K through to 300 K, as can be seen
in both Figs. 6 and 7. Most of the lifetime variation occurs
from 25 K through to 150 K in Figs. 6 and 7. Moreover, since
these results follow from classical MD calculations, excluding
quantum-derived phonon transitions, any lifetime estimates in
Fig. 7 as T → 0 should be treated with caution [30–32,69–
71,75]. This is a point we shall come back to in Sec. IV.

It is important to recognize that the phonon decay features
in Figs. 5 through 7 should be taken as indicative of the
dynamics that will present in the infinite bulk. The number of
modes participating in the dissipation process increases with
the system size examined (e.g., beyond 6 × 6 × 6). Hence,
in larger supercells, more high-energy optical modes above 6
THz will drive the annihilation dynamics presented in Figs. 5
and 6. Likewise, the creation dynamics below this frequency
will span a broader range of modes in larger supercells. Nev-
ertheless, the central trends presented remain as discussed in
Sec. II C and presented in Supplemental Material Sec. SE
[47].

2. Local temperature decay dynamics

Now, if we return to examining the spatial distribution
of the three dominating optical modes in Fig. 4, it can be
seen that even the D mode at 9.1 THz extends well beyond
the defect center itself. Thus, the decay rate of a delocalized
phonon mode is not necessarily indicative of energy dissipa-
tion in the vicinity of such a defect. For example, 78% of
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FIG. 8. (a)–(h) Local temperature dissipation within the first ten
shells closest to the F+-center during equilibration from A to B
in Fig. 1. The selected region corresponds to 169 atoms amongst
1727 total in the 6 × 6 × 6 supercell. Each local temperature (shown
in blue) is fitted with an exponential decay (marked in red); the
corresponding fit time constant is shown in each panel. Fitting takes
the form of Eq. (12) with τ = τl . The data is only fitted prior to the
emergence of interference due to periodic boundary conditions. The
corresponding initial lattice temperature in configuration A is also
provided in (a)–(h) at zero time. Larger supercells show very similar
trends.

the F+-center distortion is localized within just the first ten
atomic shells around it (see Fig. 3(a) and also Supplemental
Material Sec. SH [47] to this paper). Hence, a more informed
description of how energy dissipation impacts upon the defect
itself can be obtained by also extracting the local temperature
(Tl ) decay in the vicinity of the defect as summarized by
Eq. (7) and provided in Fig. 8. Here we plot local temperature
change within the first ten shells for a duration of 10 ps
at various initial lattice temperatures ranging from 25 K to
300 K. Strikingly, Fig. 8 demonstrates that the local temper-
ature lifetime (τl ) is reduced at low temperatures and then
rises only slightly at higher temperatures (see Fig. 7, blue
triangles). This τl trend is precisely opposite to the phonon
lifetime trends presented in Figs. 6 and 7, which are longest

at low temperatures and decrease with increasing temperature
(see Fig. 7, blue triangles).

The temperature-dependent lifetime trends in Tl (Fig. 7)
can be attributed to competing physical factors. First, more
rapid transportation of the distortion energy away from the
defect occurs at low temperatures when the phonon mean-free
path is quite long. This leads to shorter local temperature
lifetimes at lower temperatures rather than at higher temper-
atures. At lower temperatures, the imparted phonon energy
can transport more rapidly away from the defect. Yet within
the vicinity of the defect, a competition between increased
phonon decay rate (see Fig. 5) and the decreased phonon
mean-free path leads to a saturation trend in the Tl lifetime
as higher external lattice temperatures are reached (Fig. 7,
blue triangles) [73,76]. Stated more concisely, at higher lattice
temperatures the energy dissipates more rapidly into the sur-
rounding lattice (as evident by the decreased phonon lifetime
at higher temperatures in Fig. 6) but also has greater difficultly
in transporting away from the region surrounding the defect
[73,76–78].

To obtain the local temperature lifetime (τl ) estimates in
Figs. 7 and 8, we conducted an exponential fit of the same
form given in Eq. (12) with τ = τl . However, fitting (shown
in red in Fig. 8) was only conducted up to the emergence of
boundary propagation interference. In a 6 × 6 × 6 supercell,
this interference begins around 1 ps in Fig. 8(b) at 50 K, taking
the form of rapid oscillations, and is progressively damped
as the lattice temperature increases [see Figs. 8(a) through
8(h)]. Essentially, this interference arises from lattice waves
echoing back into the defect region after propagating to the
simulation cell boundaries. In smaller supercells, likely nec-
essary to pursue first-principles calculations of such systems,
open boundary conditions may be employed to overcome this
difficulty [79–82]. As discussed in Sec. II C, through exten-
sive benchmarking we have found that a sufficiently large
supercell size is needed such that the decay process in Fig. 1
converges to a consistent damping lifetime. Larger supercell
benchmarking of the trends in Fig. 8 can be found in Supple-
mental Material Sec. SE [47].

IV. DISCUSSION

The findings in Figs. 5–8 are connected through the
common theme of phonon dynamics. At low temperatures,
phonon-phonon scattering is reduced, leading to a longer
phonon mean-free path. This results in longer phonon life-
times at lower temperatures, thereby providing the trends in
Figs. 5–7. Similarly, at lower temperatures a longer phonon
mean-free path leads to the more rapid dissipation of thermal
energy from around the defect center, likewise resulting in
the local temperature trends found in Figs. 7 and 8. Thus,
we would like to explore the energy dissipation trends arising
from phonon dynamics further. To this end, we first present
an analytical model that intuitively captures the phonon
dissipation dynamics provided in Fig. 5. Subsequently, we ex-
plore the degree to which the temperature-dependent phonon
trends in Fig. 7 can be captured by first-order phonon rate
expressions. Higher-order theoretical avenues for future inves-
tigation are also discussed.
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A. Analytically interpreting the phonon dissipation trends

During the transition from A to B in Fig. 1, the excess
potential energy δU (which is present when the system resides
in configuration A) is subsequently transformed into ther-
mal energy through redistribution amongst all phonon modes.
Hence, in the final steady-state equilibrium at B, each mode
gains a mean thermal energy contribution of δUs given by

δUs = 1

N

N∑
s=1

δUs, (13)

which in our 6 × 6 × 6 supercell occurs over N = 5181
modes. The equilibrium redistribution in Eq. (13) can be
compared to the excess nonequilibrium energy distribution for
each mode δUs (in configuration A) as presented in Fig. 3(c).
Following the results of Figs. 5 and 6, we can further assume
that all modes work in concert to approximately dissipate this
excess energy in A as a first-order decay process of the form
described by Eq. (12). Based on these assumptions, an ana-
lytical expression for the perturbation in the energetic phonon
density of states given by Eq. (10) takes the form

ϒ̃ (E , t ) ≈
N∑

s=1

[δUs[e
−t/τs+η]δ(E − h̄ωs)− δUs]. (14)

This phenomenological model arises from treating the dissi-
pation physics acting on each phonon mode (s) via Langevin
dynamics of the form

d2qs

dt2
= −ω2

s qs(t ) − 1

τs

dqs

dt
+ ηs, (15)

〈ηs(t )〉 = 0, (16)

〈ηs(t )ηs(t
′)〉 = 2kBTf

τs
δ(t − t ′), (17)

where ηs is the thermal noise driving each mode to the final
equilibrated thermal energy of kBTf /2 = δUs + kBT/2. Here
T is the initial lattice temperature prior to the formation of the
defect center.

To simplify the analysis, let us further assume that the
decay time constant τs = τ is approximately the same for all
modes. This is based upon the similar decay trends demon-
strated for annihilated/depopulated (red through green) and
created/populated (blue) modes in Fig. 5. The term η is in-
cluded in Eq. (14) to simulate the impact of random thermal
noise, taking on an average value of zero—in a similar manner
to ηs in Eq. (15). Plotting Eq. (14), employing the δUs distri-
bution in Fig. 3(c), we obtain the analytical ϒ̃ (E , t ) result in
Fig. 9(a). Impressively, this phenomenological model captures
many of the physical trends present in the MD simulations.
For comparison, the 50 K MD data set from Fig. 5(b) has been
replotted next to it in Fig. 9(b)—with the time axis scaled by
τ = 1180.7 fs as determined from Fig. 6(b). It is important to
note that the τ and δUs values assigned in Eq. (14) all follow
from the MD simulations and are not taken as adjustable
parameters. Intriguingly, these decay trends are largely inde-
pendent of temperature when normalized by the lifetime (τ ) at
a given temperature—see Fig. S11 [47]. This indicates that the
same anharmonic physics is driving the temporal decay trends
(amongst phonons) in the temperature ranges investigated.
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FIG. 9. (a) An analytical model of the energetic phonon DOS
perturbation ϒ̃ (E , t ) arising from defect relaxation compared to the
molecular dynamics result at 50 K. (b) This MD result is the same
as that in Fig. 5(b), normalized here with a time constant of τs =
1180.7 fs for purposes of direct comparison.

In terms of energetics, Fig. 9 demonstrates that the dis-
tribution of annihilating/depopulating (red through green)
and creating/populating (blue) modes are well captured by
Eq. (14). Surprisingly, the temporal trends are also captured
quite well by this first-order model. This is especially true
for the highest energy modes around the D mode at 9.1 THz
(red through green in Fig. 9) to which the decay time con-
stant (τ ) was fitted—also see Fig. 6. For the lower energy
bath modes undergoing creation events (blue in Fig. 9), the
general decay timescale found in the numerical and analytical
plots agrees reasonably well. Though we caution that this
agreement is likely an averaging/aggregation effect, as such
individual phonon lifetimes (τs) are expected to vary about
this mean (particularly for the bath of modes below 6 THz).
Most prominently, the long timescale annihilation process
below 6 THz, which are present beyond 3τ in the numerical
result [light blue in Figs. 9(b) and S11 [47]), are excluded
in the analytical model. This disagreement is to be expected
as not all interactions acting on the lower energy modes are
captured phenomenologically by Eq. (14), but might be with
suitable modifications— a subject for future work.

B. Correspondence of phonon temperature dependence with
first-order descriptions

The juxtaposition in Fig. 9 also lends further support to-
ward viewing the lower energy modes below 6 THz as a
bath into which excess energy from the highest energy optical
modes is dissipated. Indeed, for this 6 × 6 × 6 supercell, there
are ∼12 modes participating in creation dynamics below 6
THz for every mode likewise undergoing annihilation above 6
THz. Furthermore, given the dominance of creation processes
below 6 THz, to first-order one may express the escape rate
of energy into each such bath mode of energy h̄ωs < 6 THz in
the form

ks = 2π

h̄
|M|2D(h̄ωs)[n(h̄ωs) + 1], (18)

which follows from Fermi’s golden rule [29,32]. Here |M|
is the coupling for such a mode transition following from
the anharmonic contributions summarized in Eq. (6), D is
the phonon DOS, and n(h̄ωs) = [exp(h̄ωs/kBT ) − 1]−1 is
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the Bose-Einstien distribution for the phonon population
[29,32]. Here we only consider the first-order creation of such
bath states, since the results in Figs. 5 and 9 indicate that
annihilation/depopulation events play a minor role below 6
THz. This threshold of 6 THz is entirely lattice dependent.
Those modes with an initial energy (at t = 0) less than the
final equilibrium lattice thermal energy kBTf will be absorbing
modes, as discussed in the context of Fig. 9 in Sec. IV A.

If we treat such a bath as an escape route for excess energy,
then phenomenologically the total escape rate of energy into
the bath can be approximated by

1

τ
=

∑
s

ks, (19)

which is based upon the results in Fig. 9 where the system is
well approximated as a first-order decay process [83]. Taking
the DOS results computed for our 6 × 6 × 6 supercell (see
Supplemental Material Sec. SG [47]) and applying Eqs. (18)
and (19), we arrive at the first-order lifetime (τ ) result in
Fig. 7 (dotted red). This is obtained by fitting the coupling
term to |M| = 3.5 × 10−7 eV. This first-order description of
the lifetime (τ ) temperature dependence captures 1/T trends
well above 200 K, but with less success at lower tempera-
tures. At higher temperatures, we have n(h̄ωs) ∝ T , following
from a Maclaurin series expansion, which explains the cor-
respondence at 200 K and above. At lower temperatures, the
[n(h̄ωs) + 1] factor in Eq. (18) correctly captures the quantum
trends toward a finite lifetime as T → 0, which is not present
in either the 1/T fit or the MD results. It is the discrepancy
between the MD results (red squares) and first-order rate
expression (red dotted line) between 50 K and 150 K in Fig. 7
which clearly indicates the need for future investigations into
a higher-order model [30–32]. To further reconcile analytical
and atomistic lifetime calculations in this intermediate tem-
perature regime, the first step would be to pursue lifetime
calculations based on the third-order anharmonic terms as
discussed in Sec. II and in Ref. [63]. Moreover, bulk atom-
istic studies have shown that the temperature dependence in
the anharmonic coupling terms (in addition to the phonon
populations) may impact temperature dependence of phonon
lifetimes [60,63]. This temperature-dependent reconciliation
between atomistic and analytical models is left for future
work.

V. CONCLUSION

In this paper, we have examined the atomistic energy
dissipation mechanisms associated with the formation of
charged defect centers–with F+-centers in NaCl adopted as
a model system. Although the defect distortion was found
to nearly equivalently perturb both high- and low-energy
phonon modes, it was determined that the ω2

s proportional
potential energy contribution leads to a large majority of the
distortion energy being initially placed in the highest energy
optical modes. Subsequently, through a temporal analysis of
the energy redistribution amongst the phonon DOS, it was

determined that this excess energy in high-energy optical
modes is dissipated through the creation of lower energy
lattice modes acting as a bath. Moreover, by developing a
first-order analytical model of phonon dissipation, the lifetime
of this dissipation process was found to proceed on roughly
the same timescale across all phonon energies and quali-
tatively follow Langevin dynamics. Moreover, the temporal
decay characteristics were determined to be qualitatively very
similar at all temperatures investigated—after normalizing by
their decay time constant. Further analysis of the kinetic en-
ergy dissipation in the vicinity of the defect found that the
locally generated heat dissipates more rapidly at lower lattice
temperatures when the phonon mean-free path is longer. Cor-
respondingly, at lattice higher temperatures the local defect
kinetic energy (heat) dissipates more slowly due to increased
phonon-phonon scattering. Similarly, the phonon lifetime was
found to be largest at low temperatures and thereafter de-
crease proportionally to the inverse initial lattice temperature.
This collection of general features is likely to be present in
the relaxation of many charged defect systems. A first-order
quantum rate model was also applied to further interpret the
temperature dependence of the phonon lifetime. Good agree-
ment was found beyond 200 K through the dominance of the
phonon population distribution n(h̄ω), yet less quantitative
agreement was found with the first-order quantum rate model
between 50 K and 150 K. It is likely that these shortcom-
ings could be reconciled in future work on the calculation
of phonon lifetimes through the atomistic investigation of
higher-order anharmonic coupling terms and the inclusion of
quantum effects [29–32,60,63].

It would also be quite interesting to extend this vein of
investigation to understand the formation stages of small po-
larons, which are typically localized to approximately one
lattice site as a charged defect center. In particular, it would
be insightful to understand how analogous dissipation dy-
namics participate in the phonon dressing of small polaron
centers [35,84]. However, this will likely require large-scale
first-principles studies to adequately capture both the electron
and lattice degrees of freedom. Similarly, large-scale first-
principles studies of charged defects associated with lattice
point defects (such as the F+-center studied herein) will also
likely prove useful in the endeavor toward quantitative pre-
dictions of such relaxation rates. These intriguing avenues of
investigation are also left to future work.
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