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Frustrated magnetic interactions in a cyclacene crystal
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We study the emergence of magnetism and its interplay with structural properties in a two-dimensional
molecular crystal of cyclacenes, using density functional theory (DFT). Isolated cyclacenes with an even
number of fused benzenes host two unpaired electrons in two topological protected zero modes, at the top
and bottom carbon rings that form the molecule. We show that, in the gas phase, electron repulsion promotes
an open-shell singlet with strong intramolecular antiferromagnetic exchange. We consider a closed packing
triangular lattice crystal phase and we find a strong dependence of the band structure and magnetic interactions
on the rotation angle of the cyclacenes with respect to the crystal lattice vectors. The orientational ground state
maximizes the intermolecular hybridization, yet local moments survive. Intermolecular exchange is computed
to be antiferromagnetic, and DFT predicts a broken symmetry 120◦ spin phase reflecting the frustration of the
intermolecular spin coupling. Thus, the cyclacene crystal realizes a bilayer of two antiferromagnetically coupled
S = 1/2 triangular lattices. Our results provide a bottom-up route towards carbon based strongly correlated
platforms in two dimensions.
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I. INTRODUCTION

Magnetism and strongly correlated phases have been tradi-
tionally alien to the realm of graphitic crystals and polycyclic
aromatic hydrocarbons (PAHs). Thus, graphite, graphene, and
carbon nanotubes, when described in an independent electron
approximation, feature wide bands with extended states (small
or vanishing density of states at the Fermi energy) so that the
effect of Coulomb interactions in these systems are mostly
negligible. In spite of this, strong correlations and magnetism
were predicted in graphene zigzag edges [1–3] and radical
PAHs [4], but in both cases their strong reactivity is expected
to compromise their chemical stability.

However, recent experimental breakthroughs have signifi-
cantly changed this scenario. First, the discovery of strongly
correlated electronic phases in twisted bilayer graphene [5,6]
has shown that narrow bands are indeed possible in suitably
designed carbon based two-dimensional (2D) materials. Sec-
ond, the on-surface assisted synthesis of multiradical PAHs,
that remain stable in ultrahigh vacuum, and the study of their
electronic excitations using scanning tunneling microcope
spectrocopy (STS) have significantly paved the way towards
the fine control of their synthesis. This includes triangulenes
[7–10], extended triangulenes, double triangulenes [11] and
rhombenes [12], among others [9,13]. Therefore, using STS
[14] to probe the fluctuating local moments, from PAH with
open-shell singlets [9,10,13], is a firmly stablished tool for this
kind of systems.

*On leave from Departamento de Física Aplicada, Universidad de
Alicante, Spain.

An ingredient common to both twisted bilayer and radical
PAHs is the presence of localized electronic states close to
the Fermi energy that host the strongly correlated electrons.
This leads us to propose here a bottom-up route to engineer
strongly correlated carbon based 2D crystals. Our approach is
to use as building blocks radical molecules that can assemble
in such a way that intermolecular interactions lead to a weak
hybridization of those molecular states hosting the unpaired
electrons. In-plane assembly of radical PAHs leads, with some
exceptions [9], to strong covalent bonding of the molecular
states, compromising the ultimate goal of preserving the lo-
calized molecular levels.

Here we consider cyclacenes with diradical character as
building blocks for a molecular crystal (see Fig. 1) with a
weak intermolecular interaction, so that the diradical char-
acter can be preserved in the crystal phase. These aromatic
hydrocarbon nanobelts [15] are very appealing molecules
and are the subject of strong interest, both theoretically and
experimentally. In the gas phase, the local moments are
hosted by molecular orbitals that are topological symmetry
protected zero modes [16]. A natural configuration for their
self-assembly is a closed packing crystal, where the separation
between molecules is in the range of the interlayer distance
in graphite. We find this preserves the local moments of the
isolated molecules in the crystal phase. Importantly, the re-
sulting organization in this idealized cyclacene crystal yields
a network of states that does not live in a bipartite lattice. This
opens the door, as we will show next, to frustrated antifer-
romagnetic interactions that are known to promote quantum
spin liquid states [17,18], and thus different from the widely
studied broken symmetry molecular magnetism [19] and from
the Lieb theorem paradigm [3,10,20,21].

2475-9953/2022/6(1)/014406(8) 014406-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3535-0812
https://orcid.org/0000-0003-3867-1697
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.014406&domain=pdf&date_stamp=2022-01-19
https://doi.org/10.1103/PhysRevMaterials.6.014406


R. ORTIZ et al. PHYSICAL REVIEW MATERIALS 6, 014406 (2022)

(a) (b)

(c)

(d)

FIG. 1. (a) Chemical structure of [6]CC. (b) Molecular crys-
tal lattice of [6]crystacene showing the rotational angle θ . (c) and
(d) display two cyclacenes with different relative angle θ . Gray balls
represent carbons and white ones represent hydrogens [22].

Cyclacenes, hereafter [n]CC’s, with n denoting the number
of fused benzene rings, can be thought of as the shortest
possible carbon nanotubes with zigzag edges. The electronic
properties of [n]CC’s depend on the parity of n, showing an
odd-even pattern [23–25]. This is confirmed at several levels
of theory, where a simple one-orbital per atom tight-binding
model yields two zero-energy states for [even]CC’s and four
states split into two pairs for [odd]CC’s [26]. This provides
a simple picture to understand the di/tetraradical character
obtained by more sophisticated calculations [27]. On the ex-
perimental side, besides the multiple efforts to synthesize
carbon nanobelts [28–34], the obtention of pristine cyclacenes
is still missing.

In Fig. 1(a) we show the structure of [6]CC. We can think
of this molecule as two carbon rings with a strong cova-
lent coupling through the nonhydrogenated carbons (NHCs).
Their tight-binding energy spectra presents two zero-energy
states localized on the hydrogenated carbon (HC) sites. In this
work, we consider a two-dimensional crystal of these [6]CC
molecules, as if they had gone through a process of self-
assembly over a surface [35–37] (hereafter [n]crystacene [see
Fig. 1(b)]. We assume that the molecules assemble in a trian-
gular lattice, with the axis of the tubes perpendicular to the
plane of the crystal. This idealized (monolayer) self-assembly
agrees with that recently found for closely related systems, as
cycloparaphenylene nanorings [38]. In order to characterize
the orientational order of the crystal, we define the relative
angle θ formed between the line joining the geometric center
of the molecule and the projection of the hydrogenated carbon

atoms on the plane containing the center. This angle is deter-
mined by minimization of the ground state energy obtained
using DFT for different magnetic phases.

In the following we address the study of the electronic
structure of the [6]crystacene, focusing on the emergence of
molecular local moments, the nature of intermolecular ex-
change, and their interplay with the rotational angle θ .

II. METHODS

We describe the electronic structure of cyclacenes with
three different levels of theory. Individual molecules are de-
scribed with a Hubbard model with a single orbital per carbon
site. The model is treated both in the mean-field approxima-
tion [3] and using multiconfigurational methods in a complete
active space (CAS) with six single-particle states and six elec-
trons [14,21]. The molecular crystal is treated using density
functional theory (DFT) calculations, carried out with the
QUANTUM ESPRESSO (QE) code [39,40]. We use a Perdew-
Burke-Ernzerhof (PBE) [41] ultrasoft nonrelativistic density
functional for both carbon and hydrogen atoms. The van
der Waals (vdW) interactions, when considered, were imple-
mented with the “vdw-DF” flag [42–44]. The kinetic energy
cutoff considered for wave functions was 30 Ry, for the charge
density and potential it was 700 Ry, and we employed a k-grid
of 10 × 10 × 1.

We consider five magnetic states for the crystal: a spin-
unpolarized nonmagnetic (NM) state, a ferromagnetic (FM)
state, and three states with intramolecular antiferromagnetic
correlations that differ by the intermolecular spin order: AF1,
with ferromagnetic intermolecular correlations; AF2, a stripe
phase with two antiferromagnetically coupled molecules per
unit cell; and AF120, with noncollinear magnetic order
where first neighbor spins are misaligned by 120◦, and three
molecules per unit cell [see Figs. 3(a)–3(e)].

In the case of NM, AF1, and AF2, we have explored the
θ dependence of the ground state energy, using the atomic
coordinates obtained upon relaxation of the unit cell at θ = 0◦
for these three magnetic configurations; this geometry was
further employed for any angle θ and for the band structures.
We have also computed the FM phase for two different angles
θ = 0◦ and θ = 18◦ using the same relaxed coordinates as
those employed for the AF120 phase, as we will explain in
the following. The results for this ferromagnetic phase are in
Table I.

In the case of the AF120 phase, the unit cell has three
molecules. This makes the computational cost of the struc-
tural relaxation prohibitively large. We use instead atomic
configurations obtained with smaller unit cells and we only
consider θ = 0◦. We have tried two different structures and,
in both cases, the magnetic ground state with three molecules
in the unit cell converges to the 120 phase. Below we show
the results obtained using the atomic coordinates obtained
from the relaxation of the AF1 phase with θ = −20◦, with
the lattice constants |�a|, |�b| = 14.29 Å (which corresponds
to a center-to-center intermolecular distance of 8.25 Å): the
approximate position of the energy minimum in the E vs
|�a|, |�b| curve for the frustrated AF2 phase (see Supplemental
Material [45]). No vdW interactions were considered for the
AF120 phase. For the NM and AF2 phases we employed a
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FIG. 2. Gas phase isolated molecule calculations. (a) Single-
particle tight-binding spectra for [6]CC, calculated for the planar
lattices of panels (c) and (d) with periodic boundary conditions.
Note that, as we mention in the text, finite-temperature DFT cal-
culations [27] hold the diradical character of [even]CC, so ignoring
the ring curvature on this matter is justified. (b) Excitation energies
computed with the CAS(6,6) approximation for the Hubbard model
with t = 2.7 eV. The ground state has S = 0. The S = 1 state has
ES=1 = 54 meV for U = t . We take t = 2.7 eV, which has been
widely used in the literature [47] and is very close to the value
inferred from angle-resolved photoemission experiments in graphene
[48]. (c),(d) Expectation value of spin density Sz(i), calculated in
the mean-field approximation of the Hubbard model with U = t for
two magnetic configurations, with total Sz = 0 (AF) and total Sz = 1
(FM). The AF is the ground state with EFM − EAF = 43.3 meV for
U = t and t = 2.7 eV in the mean field, not far from the CAS(6,6)
result.

Marzari-Vanderbilt smearing with a Gaussian spreading of
10−4 Ry, while no smearing at all was used for the AF1 or
AF120 phases [46].

In order to characterize the magnetic state of the crystals,
we use two indicators:

M tot
ring =

∑
i∈ring

mi (1)

and

Mabs
ring =

∑
i∈ring

|mi|, (2)

TABLE I. Energy and magnetization for different crystacene
crystal phases. �E = E − EAF120 is the energy per cyclacene re-
ferred to the energy of the AF120 phase, in meV. The magnetic
moments per ring are relative to those computed for the FM phase
with θ = 18◦ [see Methods, Eq. (3)].

Configuration �E (meV) M̃abs
ring M̃ tot

ring

AF120 0.0 0.89 0.68
AF2 6.9 0.92 0.68
NM 44.6 0.0 0.0
AF1 (θ = 0◦) 47.4 0.14 0.09
AF1 (θ = 18◦) 105.8 1.08 0.82
FM (θ = 0◦) 44.3 0.05 0.04
FM (θ = 18◦) 409.2 1.0 1.0

AF1 AF2

(a)

(d)(c)

(b)

AF120(e)

(f)

FIG. 3. (a) Calculated local moments of the AF2 collinear phase
from a side perspective when θ = 0◦ and (b) AF120 phase. Hydro-
gens were omitted for clarity. The local moment per hydrogenated
carbon is ≈0.04μB in both phases. (c), (d), and (e) are the schematic
representations of the AF1, AF2, and AF120 phases (see text). (f)
Ground state energy as a function of θ , for the NM, AF1, and AF2
phases, referred to the value for the AF2 phase and θ = 0◦. For this
calculation we employed the relaxed geometries and lattice vectors
at θ = 0◦ for each magnetic configuration. Angle steps of �θ = 1◦

were taken to calculate the curve shown.

where mi is the length of the atomic magnetic moments, as
obtained from the output of our DFT calculations. The use
of these two indicators is motivated by the fact that, in a
given ring, there is a small residual magnetization in the non-
hydrogenated carbon atoms, typical of the broken symmetry
solutions in bipartite systems [3]. As a reference, the absolute
magnetic moment per ring in the single-molecule mean-field
calculation is Mabs

ring ∼ 1.6μB for the FM solution, to be com-
pared with M tot

ring = 1μB.
The calculation of the atomic magnetic moments, carried

out by QUANTUM ESPRESSO by integrating the magnetic den-
sity over a sphere centered around the atom, turns out to
be nonreliable in this system. For instance, let us consider
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(a) (b)

(c) (d)

FIG. 4. Plot of the isosurfaces with the same isovalue [22] of the
magnetic moments calculated with DFT for two different angles for
the magnetic phases called in the text as (a),(c) AF1 with θ = 0◦

and θ = 18◦, respectively, and (b),(d) FM with θ = 0◦ and θ = 18◦,
respectively. The color stands for the sign.

the FM phase in a strongly insulating case where the total
moment per CC can be determined by counting the number
of occupied bands per spin channel, and is unambiguously
determined to be 2μB. We can now obtain a lower limit for
the magnetic moment per hydrogenated carbon atom using
the following argument. The calculation of the magnetic den-
sity, shown in Fig. 4(d), shows that nonhydrogenated carbon
atoms have a residual magnetization opposite to the domi-
nant contribution of the hydrogenated carbon. We thus have
6(|mHC| − |mNHC|) = 1μB, the magnetization per ring. How-
ever, the value given by QE for this system is 6(|mHC| −
|mNHC|) = 0.43μB, which gives a good account of the unre-
liability of the integration method. We attribute the source of
this discrepancy to the poor matching between a sphere and
the π -shape electronic cloud that host the local moments (see
Fig. 4).

For the phases with vanishing total spin per unit cell, we
cannot rely on the use of the total moment to assess the error of
the integration method. For this reason, in Table I we choose
to normalize the values of the atomic moments obtained by
QE for all phases to those obtained for the FM phase with θ =
18◦, which is the angle with minimal intermolecular hopping.
This local moment can be considered as an upper limit for the
magnetization per ring. We thus define

M̃ tot
ring = 1

M tot
ring(FM, θ = 18◦)

∑
i∈ring

mi (3)

and analogously for the absolute magnetization.

III. RESULTS AND DISCUSSION

A. Single CC

Our starting point is the single-particle spectrum of the
[6]CC molecule described with the tight-binding model with
one orbital per atom. It features two zero modes whose

molecular orbitals are localized at the hydrogenated carbons
of the top and bottom rings. These zero modes arise due to the
combination of the chiral symmetry associated to the bipartite
character of the [6]CC graph and the additional presence of
the CN symmetry, when N is even, in spite of the fact that the
number of sites in both sublattices is the same.

The argument is similar to that presented by Koshino et al.
[16]. We use the CN symmetry to represent the Hamiltonian
of the molecule. This symmetry permits one to build the
molecule as the repetition of N blocks of four atoms. We
label the eigenvalues of the CN symmetry as ω� = eik�, where
� = 0, . . . , N − 1. We thus have to impose k = 2π

N m, where
m = 0, 1, . . . , N − 1, so that ωN = 1. The Hamiltonian is thus
block diagonal [H = ∑

k H0(k)], with

H0(k) = t

⎛
⎜⎜⎝

0 1 + eik 0 0
1 + e−ik 0 1 0

0 1 0 1 + e−ik

0 0 1 + eik 0

⎞
⎟⎟⎠, (4)

where t is the first neighbor hopping and the order of the
basis goes from top to bottom in the unit cell. Now, for even
N , we can have k = π for m = N

2 . This leads to 1 + eik =
1 + e−ik = 0, so that the specific block has two zero modes,
localized at the top and bottom rings. Effectively, the k = π

Hamiltonian is equivalent to the molecule with two discon-
nected zero modes, very much like the Clar’s goblet [21]. Note
that the argument can be trivially generalized to longer tubes.

Our next step is to study the effect of electron-electron
interaction, within the Hubbard approximation. First we carry
out a mean-field calculation for two configurations with Sz =
0 (AF) and Sz = 1 (FM). The expectation values of the local
spin density Sz(i) for the ground states of the AF and FM
solutions are shown in Figs. 2(c) and 2(d) for U = t . The
hydrogenated carbon atoms host a magnetic moment gμBSz(i)
close to 1/6, the value expected for two unpaired electrons
localized at the zero modes. The AF solution has an energy
of 43.3 meV smaller than the FM solution for U = t and
t = 2.7 eV.

The mean-field results are validated by the CAS(6,6) calcu-
lations, with both exact diagonalization of the Hubbard model
and more complex quantum chemistry calculations [49]. We
systematically find that the ground state has S = 0, complying
with Lieb’s theorem [20]. The first excited state has S = 1,
and the energy difference grows with U . For U = t the en-
ergy difference is 53.8 meV, close to the mean-field value.
The nature of the intramolecular antiferromagnetic interac-
tion is Coulomb-driven exchange, very much like in bowtie
diradicals [13,21]. The emerging picture is therefore that the
ground state is an open-shell singlet, very much like the
bowtie molecule, with two unpaired electrons hosted at the
zero modes.

B. Atomic structure of the crystal phases

The combination of magnetic states, intermolecular dis-
tance, and angular orientation define a huge configurational
space that can be explored only in part. For θ = 0◦ we find that
the relaxed lattice constants for the NM phase were |�a|, |�b| ≈
8.07 Å, for the AF1 phase |�a|, |�b| ≈ 8.18 Å, and for the AF2
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phase |�a| ≈ 16.25 Å and |�b| ≈ 8.14 Å. The center-to-center
distance d can be related to the [6]CC radius by d = 2R + δ,
where δ � 3.34 Å for the AF2 phase, similar to the interlayer
distance in graphite [50].

We find that, for the NM, AF1, and AF2 magnetic states,
and reasonable intermolecular distances, the orientational
ground state energy is minimized for θ = 0◦ [see Fig. 3(f)].
Figure 3(f) shows E (θ ) for θ in a 60◦ window, on account of
the C6 symmetry of the system. It is apparent that intermolec-
ular exchange depends strongly on θ . This figure shows that
for θ = 0◦, AF2 has lower energy than NM and AF1 phases,
and for these three magnetic states θ = 0◦ is the ground state.

Importantly, we find that AF2 has lower energy than NM
for all values of θ , showing that local moments survive in the
crystal phase. In addition, we find that the lowest energy state
for θ = 0◦ is the AF120 phase (Table I), but we could not carry
out a θ dependence in this case. This type of noncollinear
magnetic state is expected to arise as a broken spin symmetry
solution in triangular lattices with antiferromagnetic exchange
[51]. We therefore find that magnetic moments persist in the
crystal phase and intermolecular exchange is antiferromag-
netic. These are the central results of this work.

C. Magnetization in the crystal phases

Our next step is to address the key question of whether the
open-shell nature of the molecules is preserved in the molec-
ular crystal. This is assessed by computing the magnitude of
the local moments per carbon ring that sheds light on whether
the system remains in the open-shell strong-coupling limit of
the single molecule, with local moments in line with those
obtained in the gas phase. On the contrary, magnetic moments
are quenched to some degree in the crystal phase.

As discussed in the methods part, it is convenient to refer
our results to the case of the FM insulating crystal, for which
the total magnetization is 2μB and the magnetic moment per
carbon ring is M tot

ring = 1μB. From our calculations, summa-
rized in Table I, we conclude that magnetic moments survive,
to a large extent, in the crystal phase for the AF2 and AF120
phases at θ = 0◦ and for the AF1 phase at θ = 18◦, with
small reductions, but they are severely quenched in the AF1
and FM phases for θ = 0◦. This reflects the strong interplay
between orientational order and the survival of the magnetic
moments. The energy differences presented in Table I are not
expected to change qualitatively if different functionals are
used. Specifically, the 120◦ phase is expected to be the broken
symmetry ground state in a triangular lattice with AF inter-
actions. We note that the PBE functional has been previously
used to model exchange interactions in planar nanographenes,
with the comparison with experiments in fair agreement [52].

Inspection of Fig. 4 clearly shows that local moments are
hosted by π orbitals. A comparison of the diffferent panels
shows how the magnitude of the atomic magnetic moments is
very different in different crystal phases, in line with the re-
sults of Table I. It is apparent that moments are predominantly
located on the hydrogenated carbon atoms, as anticipated in
our single-molecule calculations with the Hubbard model.
The nonhydrogenated carbons host moments opposite to the
majority magnetization, as seen in planar nanographenes [3].

(b)(a)

(c) (d)

FIG. 5. (a) Band structure for AF1 phase and θ = 18◦.
(b),(c),(d) WANNIER three-dimensional representations of the three
bands in (a). Panels (b) and (c) corresponding to the bottom and
middle bands match the zero-energy states from the single-molecule
system. Panel (d) corresponds to the top band, which shows σ char-
acter instead of π .

D. Energy bands

We now look for microscopic understanding of both the
angular dependence of the ground state energy, as well as
the differences between magnetic states. For that matter it is
instructive to study the energy bands, as obtained from our
DFT calculations. Naively, we expect that the bands closer to
the Fermi energy are formed by the two zero modes of the
diradical molecule. These states are a linear combination of π

orbitals localized along the radial direction of the molecules,
which anticipate a strong dependence of the intermolecular
hybridization on θ .

Our energy band calculations for the AF1 phase for θ =
18◦ [Fig. 5(a)] show that, in addition to the two relatively
narrow bands arising from the in-gap zero modes of the
molecule, there is a third band slightly above, that overlaps
with the states above the Fermi energy. The angle θ = 18◦
corresponds to the second minima that appears in the curve
of Fig. 3(f), which corresponds to a crystal geometry where
carbon and hydrogen atoms avoid the alignment with those
of their neighbors in order to minimize steric interactions.
In this calculation we use the relaxed unit cell with θ = 0◦,
and rigidly rotate the molecules to have θ = 18◦. A k grid
of 4 × 4 × 1 was used instead since the convergence of this
parameter is achieved earlier for insulators, and no smearing
was used here either. These bands feature a twofold spin
degeneracy that arises in centrosymmetric antiferromagnets.

In order to confirm the origin of these bands, we compute
the Wannier wave functions using WANNIER90 [53–55]. We
find three Wannier orbitals associated to the three narrow
bands of Fig. 5(a). The ones corresponding to the first valence
and conduction bands are localized in the top and bottom rings
of the molecule, at the π orbitals of the hydrogenated carbon
atoms, as expected from our previous work for the molecular
phase [26]. The one corresponding to the higher energy band
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(a) AF1(b)

(c) (d)

NM

AF2 AF120

FIG. 6. Calculated band structure for the four magnetic configu-
rations considered in [6]crystacene: (a) NM, (b) AF1, (c) AF2, and
(d) AF120. θ = 0◦. The geometries are the same as those used for
Fig. 3(f). Inset in (c) is the oblique lattice’s first Brillouin zone with
the high-symmetry points. For the collinear phases, the spin-up and
spin-down bands are degenerate.

has a σ character and a smaller bandwidth thereby, on account
of the smaller intermolecular hopping.

The width of the energy bands depends strongly on θ , as
can be seen comparing Fig. 5(a) with Fig. 6(b), showing the
bands of the AF1 phase for two different values of θ . We see
that the bandwidth W of the valence band goes from less than
200 meV for θ = 18◦ to more than 1.1 eV for θ = 0◦. This
dependence is a consequence of the highly directional nature
of the π orbitals that form these bands.

In turn, the modulation of the bandwidth has consequences
on the local moment formation. The two energy scales that
govern the emergence of local moments are the bandwidth W
of the bands at the Fermi energy and the effective Coulomb
repulsion for double occupation of the molecular orbitals, that
in the Hubbard aproximation is given by Ũ = U

∑
i |ψ (i)|4,

where ψ (i) is the amplitude of the molecular orbital at atom i
and U is the atomic Hubbard parameter, which is in the range
of 9 eV [56]. Since ψ (i) is equally distributed in six atoms,
we estimate Ũ = U/6 � 1.5 eV. This is to be compared with
the bandwidth.

In Figs. 6(a) and 6(b) we see how both the θ = 0◦ NM
and the AF1 phases are conducting and have a Fermi surface
with two pockets. In contrast, the AF2 and AF120 phases
[Figs. 6(c) and 6(d)], that are more stable in energy, are in-
sulating, also for θ = 0◦. This shows the interplay between
the intermolecular spin correlations and conduction.

Our results suggest that [6]crystacene provides a physical
realization of two triangular monolayers that host local mo-
ments, with strong intralayer antiferromagnetic interactions,
and antiferromagnetic interlayer exchange. In the AF120
phase the quenching of the local moments, relative to the

gas phase, is small compared to the molecular case, so the
system provides a physical realization of the triangular lattice
bilayer Heisenberg model [57]. The nature of the ground state
of the S = 1/2 triangular monolayer has been studied for five
decades now [17,18,58,59]. Using both quantum Monte Carlo
and exact diagonalizations it was established that the ground
state of the S = 1/2 Heisenberg model with first neighbor
AF coupling features long-range order with gapless Goldstone
mode excitations and depleted magnetic moments, on account
of enhanced quantum fluctuations [59]. For the triangular
bilayer [57] it was found that, depending on the ratio λ = J

g
between intralayer J and interlayer g exchange, the spectrum
is gapped for small λ, and gapless for λ > 1.4, signaling the
critical value for the transition between a quantum disordered
state and a ground state with broken symmetry and long-range
order. Interestingly, intramolecular exchange could be modi-
fied if we consider a crystal of longer cyclacenes. Therefore,
this platform could permit one to study the quantum phase
transition that may occur when the ratio of intramolecular and
intermolecular exchange is modified.

As for the electronic properties of the broken symmetry
AF120 phase predicted by our DFT results, we expect a
vanishing Chern number [60] as well as a vanishing Berry
curvature, and thereby null anomalous Hall effect. In contrast,
at three-quarters filling the ground state of a triangular lattice
is the so-called Q phase predicted by Martin and Batista
[61,62], where the spins point to the corners of a tetrahedron,
and there is a quantized anomalous Hall conductivity [61].
The study of this phase is out of the scope of the present
paper.

IV. DISCUSSION AND CONCLUSIONS

We have studied different magnetic configurations from a
molecular crystal consisting of a two-dimensional triangular
array of cyclacenes. In the gas phase, we have explored the
diradical nature of the molecules using both multiconfigu-
rational and mean-field calculations for the Hubbard model.
We have shown that the diradical nature of the molecules
has a topological origin, which leads to an open-shell S = 0
singlet formed by two antiferomagnetically coupled electrons
localized at the top and bottom rings of the molecule. We
have studied the fate of these local moments in the crystal
phase, using density functional theory. We have explored both
the relative orientation of the molecules with respect to the
crystal lattice vectors, characterized by the angle θ , and we
have considered four different magnetic states: NM and four
types of magnetic order, FM, AF1, AF2, AF120. We find a
strong dependence of the electronic structure with θ . For all
angles, the AF2 magnetic solution has lower energy than the
NM case, showing that the antiferromagnetically correlated
local moments of the gas phase survive in the crystal. We
find that the ground state occurs for the AF120 phase, for
θ = 0◦, which indicates antiferromagnetic intermolecular in-
teractions.

In principle, the fate of these magnetic configurations
might change due to interactions with the substrate. On the
theory front, a previous work by two of us [63] shows that
coupling to a conducting surface indeed renormalizes the

014406-6
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spin excitation energies, but does not eliminate the open-
shell nature of the nanographenes. In addition, there is now
a growing body of experimental work reporting magnetism
on nanographenes deposited on gold [8–13,64]. We also note
that it may be possible to find synthetic routes of the proposed
system that lead to the formation of a cyclacene crystal on top
of an insulator.

Therefore, our results portray the crystacene crystal as a
versatile platform to promote strongly correlated phases, akin
to the twisted bilayer graphene.
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