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The discovery of atomically thin two-dimensional (2D) magnetic semiconductors has triggered enormous
research interest recently. In this paper, we use first-principles many-body perturbation theory to study a
prototypical 2D ferromagnetic semiconductor, monolayer chromium tribromide (CrBr3). With broken time-
reversal symmetry, spin-orbit coupling, and excitonic effects included through the full-spinor GW and GW
plus Bethe-Salpeter equation (GW -BSE) methods, we compute the frequency-dependent layer polarizability
tensor and dielectric function tensor that govern the optical and magneto-optical (MO) properties. In addition,
we provide a detailed theoretical formalism for simulating magnetic circular dichroism, MO Kerr effect, and
Faraday effect, demonstrating the approach with monolayer CrBr3. Due to reduced dielectric screening in 2D and
the localized nature of the Cr d orbitals, we find strong self-energy effects on the quasiparticle band structure of
monolayer CrBr3 that give a 3.8 eV indirect bandgap. Also, excitonic effects dominate the low-energy optical and
MO responses in monolayer CrBr3 where a large exciton binding energy of 2.3 eV is found for the lowest bright
exciton state with excitation energy at 1.5 eV. We further find that the MO signals demonstrate strong dependence
on the excitation frequency and substrate refractive index. Our theoretical framework for modeling optical and
MO effects could serve as a powerful theoretical tool for future study of optoelectronic and spintronics devices
consisting of van der Waals 2D magnets.
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I. INTRODUCTION

Chromium trihalides CrX3 (X = Cl, Br, I)—magnetic
semiconductors with layered structure in the bulk form
[1–3]—have received enormous attention recently since the
discovery of atomically thin 2D van der Waals magnets
[4–10]. Atomically thin chromium trihalides exhibit high tun-
ability with respect to electrostatic gating and magnetic fields
[11–14], pressure [15,16], and stacking order [17,18], etc.
Promising spintronics and valleytronics applications with van
der Waals heterostructures consisting of atomically thin CrX3,
such as the magnetic filtering effect [19,20] and proximity
effect [21,22], have also been demonstrated in experiments.

Magneto-optical (MO) effects, including the MO Kerr ef-
fect, Faraday effect, and magnetic circular dichroism (MCD),
are widely used as highly sensitive probes to characterize
the electronic structure and magnetic properties of thin films
[23,24]. Among these, the MO Kerr effect has played an
important role in the initial discovery of atomically thin in-
trinsic 2D magnets and demonstrated their rich magnetic
behaviors [4,5]. MO effects stem from the coupling between
photons and the orbital motion of spin-polarized electrons,
which is further interacting with the spin degree of freedom
via spin-orbit coupling (SOC). Both the spin-splitting and
SOC effects are essential for MO effects [25,26]. In addition,
the optical and MO properties of 2D magnetic semiconduc-
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tors are strongly modified by the electron-hole interaction,
forming tightly bound excitons that enhance the optical and
MO responses [27–29]. To accurately model the optical and
MO properties of 2D magnetic semiconductors, one needs
to calculate the quasiparticle excitation energies including
self-energy effects and then calculate both the diagonal and
off-diagonal elements of the dielectric function tensor in-
cluding excitonic effects. These goals are achieved by using
many-body perturbation theory such as the first-principles
GW and GW plus Bethe-Salpeter equation (GW -BSE) meth-
ods [30–33], which have proven very successful in explaining
and predicting the optical or MO properties of a variety of
2D materials of recent interest, such as monolayer transition
metal dichalcogenides, black phosphorus, and CrI3 [28,34–
38]. With our method, which supports full-spinor wave func-
tions and broken time-reversal symmetry from the outset,
we can achieve accurate quasiparticle band structure and di-
electric responses from first principles, with which we can
calculate the optical and MO properties.

So far, there have been several theoretical efforts us-
ing the ab initio GW and GW -BSE methods to study
excited-state physics in atomically thin CrX3, such as the
exciton-dominated optical and MO properties in monolayer
CrI3 [28]; strong excitonic effects in the optical properties
of monolayer, few-layer, and bulk CrCl3 [39]; as well as
chemical trends in the electronic structure, optical, and MO
responses in monolayer CrX3 [40]. However, there is still
ambiguity regarding whether self-energy effects on the quasi-
particle band structure can be approximated through a rigid
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FIG. 1. Crystal structure and electronic structure of ferromagnetic monolayer CrBr3. (a) Top view and (b) side view of the crystal
structure of monolayer CrBr3. Cr atoms are in blue, while Br atoms are in brown. Red arrows denote the out-of-plane magnetization, which
points along the +z direction. (c) Schematic energy diagrams of Cr d orbitals in the presence of an octahedral crystal field and magnetic
exchange interaction. The horizontal dashed line denotes the Fermi level. Local-spin-density approximation with an onsite Hubbard potential
(LSDA +U ) band structure (left) and projected density of states (DOS) (right) of monolayer CrBr3 (d) without and (e) with spin-orbit coupling
(SOC) effects. A rotationally invariant Hubbard potential is employed with U = 1.5 eV and J = 0.5 eV in the LSDA +U calculation. Colors
denote the magnitude of spin polarization along the out-of-plane direction. The red (blue) color denotes the majority-spin (minority-spin)
polarization. The DOS (in units of states per electronvolt per unit cell) is decomposed into contributions from Cr majority-spin 3d orbitals (red
curve), Cr minority-spin 3d orbitals (blue curve), Br majority-spin 4p orbitals (cyan curve), and Br minority-spin 4p orbitals (brown curve).
The energy of the valence band maximum is set to zero. A Gaussian broadening of 50 meV is used for the projected DOS plots.

shift of the mean-field valence and conduction bands, as well
as in how to calculate the MO signals from first principles
including the important excitonic effects. In this paper, we
use ferromagnetic monolayer CrBr3 as a model system. As
a member of the CrX3 family, monolayer CrBr3, which is an
air-stable magnetic semiconductor with nonnegligible SOC
effects, provides an ideal platform for exploring fundamental
physics and for potential applications of spintronics devices
[41,42]. However, a detailed and thorough theoretical study
of self-energy and excitonic effects has been lacking. To this
end, we perform full-spinor GW and GW -BSE calculations of
ferromagnetic monolayer CrBr3 and demonstrate the impor-
tance of SOC, self-energy, and excitonic effects. We further
lay out the formalism to simulate the optical and MO prop-
erties with the calculated ab initio frequency-dependent layer
polarizability tensor and dielectric function tensor.

The rest of this paper is organized as follows. In Sec. II,
we discuss the crystal structure of monolayer CrBr3 and the
importance of SOC effects. Computational methods are ex-
plained in detail. In Sec. III, we discuss the treatment of
broken time-reversal symmetry in the GW method and present
the computed quasiparticle band structure results. In Sec. IV,
we calculate the exciton eigenstates and construct both the
diagonal and off-diagonal elements of the layer polarizability
tensor as well as the dielectric function tensor. We simulate
the absorbance spectrum with linearly polarized light and
analyze the exciton energy levels and exciton amplitudes in
real space. In Sec. V, the formalism of simulating MO effects

is presented. We then calculate the MCD of the absorbance
spectrum. Finally, to connect to experiments, a two-interface
polar setup with normal incidence is used to simulate the MO
Kerr and Faraday effects in monolayer CrBr3 with different
substrates.

II. CRYSTAL STRUCTURE AND SOC EFFECTS

Bulk CrBr3, crystallized in the rhombohedral BiI3 struc-
ture type <420 K, is a van der Waals layered material, with
the space group R3̄ [2,43]. Below the Curie temperature of
∼37 K, long-range ferromagnetic order emerges with an out-
of-plane easy axis [44,45]. Within each atomic layer, Cr atoms
are arranged in a honeycomb structure, with each surrounded
by six bromine atoms arranged in an octahedron, as shown in
Figs. 1(a) and 1(b). In its monolayer form, CrBr3 has a point
group of S6 and a Curie temperature ∼27–34 K [41,42,46].
The octahedral crystal field splits the Cr d orbitals into t2g and
eg manifolds, of which the spin degeneracy is further broken
by the magnetic exchange interaction, as shown in Fig. 1(c).
Hybridization between Cr d orbitals and Br p orbitals in the
octahedral crystal field forms ligand states and broadens the
band dispersion [47] (see Sec. I of the Supplemental Material
[48]). Because Cr is in the 3d3 electronic configuration, each
Cr site hosts a magnetic moment of 3μB (with fully occupied
majority-spin t2g orbitals), according to the Hund’s first rule.
Recent in situ spin-polarized scanning tunneling microscopy
and spectroscopy experiments have confirmed the monolayer
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crystal structure and the out-of-plane easy axis [17]. Through-
out this paper, the magnetization of ferromagnetic monolayer
CrBr3 is taken to be along the +z direction. The majority-spin
polarization direction is denoted as spin up.

In this paper, we used density functional theory (DFT)
and the method of local-spin-density approximation with an
onsite Hubbard potential (LSDA + U ) to serve as a reason-
able mean-field starting point for the following GW (at the
G0W0 level) and GW -BSE studies. The LSDA + U method
employed is implemented in the QUANTUM ESPRESSO package
[49,50]. We took the onsite Hubbard interaction parameter
U = 1.5 eV and Hund’s exchange interaction parameter J =
0.5 eV [51], the validity of which have been justified in previ-
ous theoretical works of chromium trihalides, sharing similar
crystal structures and chemical environment [28,39,40]. A
supercell model with a thickness of 16 Å along the direction
normal to the layer was adopted to avoid interactions between
periodic images. We employed optimized norm-conserving
Vanderbilt pseudopotentials including Cr 3s and 3p semicore
states [52]. The Kohn-Sham orbitals were constructed with
a plane-wave energy cutoff of 70 Ry. We used the experi-
mental monolayer lattice constant a = 6.3 Å [17] and relaxed
the internal coordinates until the forces are converged within
5 meV/Å. The relaxed structure has a Cr-Br-Cr bond angle
of 94.84°, consistent with the ferromagnetic superexchange
interaction [53]. In both DFT and GW calculations, we trun-
cated the Coulomb interaction in the z direction as discussed
in Refs. [54–56].

In the materials family of CrX3 (X = Cl, Br, I), the SOC
strength and magnetic anisotropy increase with the atomic
mass of the halogen element [2,42,57]. On the one hand, pre-
vious first-principles studies on excitonic effects in monolayer
and few-layer CrCl3 have neglected SOC effects [39], which
is justified by its small magnetic anisotropy [58]. On the other
hand, monolayer CrI3 hosts strong SOC strength and forms
a highly anisotropic Ising-type spin system with an out-of-
plane easy axis, which means a first-principles modeling of its
optical and MO properties must include SOC effects [28,40].
It is therefore interesting to first study SOC effects on the
Kohn-Sham (mean-field) DFT band structure of monolayer
CrBr3, which shows reduced anisotropy compared with CrI3

in the bulk and few-layer forms [42,59]. In Figs. 1(d) and
1(e), we compare the band structure of monolayer CrBr3

without and with SOC effects, respectively. Monolayer CrBr3

has an indirect bandgap of 1.67 eV both without and with
SOC; the valence band maximum is at the M point, while
the conduction band minimum is along the �-K path. The
direct bandgap at the M point is 1.69 eV without SOC and
1.68 eV with SOC. Without SOC effects, spin is a good
quantum number, and the band structure in Fig. 1(d) can
be grouped into spin-up and spin-down bands. The energy
ordering of Cr d states, as shown in the projected density of
states (DOS) plots in Figs. 1(d) and 1(e), agrees well with our
above analysis of the Cr d orbits in an octahedral crystal field.
When we switch on SOC effects, there are noticeable changes
to the band structure, as shown in Fig. 1(e). First, twofold
degeneracies at the � point are lifted because the double
group SD

6 (to which the Bloch states at the � point belong in
the presence of SOC) has only one-dimensional irreducible
representations. Second, spin is no longer a good quantum
number and some lower-energy valence states have mixed
spin polarization. Third, according to the projected DOS plot
in Fig. 1(e), spin-down Cr d orbitals have more contribution
to the top valence states when SOC effects are present. In this
way, we conclude that SOC effects are important in describing
the electronic structure of monolayer CrBr3, and therefore,
using full-spinor wave functions in the GW and GW -BSE
formalism is essential [28,38].

III. QUASIPARTICLE BAND STRUCTURE

In this section, we describe the computational details of
our GW calculations at the G0W0 level and compute the
quasiparticle band structure of monolayer CrBr3. An ac-
curate first-principles modeling of the electronic structure
of monolayer CrBr3 needs to account for the magnetic or-
der, the dielectric screening in a quasi-2D environment, as
well as the onsite Coulomb interaction among the localized
spin-polarized electrons. Through the screened Coulomb in-
teraction W , the nonlocal and dynamical screening effects
beyond DFT-LSDA can be captured accurately. In the pres-
ence of long-range magnetic order, there is no time-reversal
symmetry in the system. We therefore use the full Adler-Wiser
expression to calculate the static irreducible polarizability
within the random-phase approximation (RPA) used in the
Hybertsen-Louie plasmon-pole model [30,60]:

χ̃G1G2 (q) = 1

NkV

∑
cvk

{
〈v(k − q)|exp [−i(q + G1) · r]|ck〉〈ck|exp [i(q + G2) · r]|v(k − q)〉

εMF
v(k−q) − εMF

ck

+〈ck|exp [−i(q + G1) · r]|v(k + q)〉〈v(k + q)|exp [i(q + G2) · r]|ck〉
εMF
v(k+q) − εMF

ck

}
, (1)

where |v(k ± q)〉 denotes a valence band eigenstate with
band index v and crystal momentum k ± q, |ck〉 denotes a
conduction band eigenstate with band index c and crystal
momentum k, and εMF

v(k±q) and εMF
ck are the mean-field energies

of corresponding states, respectively. Here, G1 and G2 refer
to reciprocal lattice vectors which form the Bravais lattice in
the reciprocal space. Also, Nk is the number of k-points, and

V is the volume of a unit cell. The static irreducible polar-
izability χ̃ is then used to calculate the screened Coulomb
interaction W , as detailed in Ref. [30]. Note that, here, the
two terms in the summation cannot be combined into one
using time-reversal symmetry. The full Adler-Wiser expres-
sion is crucial to keep the particle exchange symmetry of the
screened Coulomb interaction such that W (1, 2) = W (2, 1),
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where 1 and 2 each denote coordinates (space, spin, and
time) of a particle. Since we choose LSDA + U as our
mean-field starting point for the subsequent G0W0 calcula-
tions, we treat on the same footing the Hubbard potential
(VHub) and the LSDA exchange-correlation potential (V LSDA

xc ).
That is, we subtract these mean-field contributions to the
exchange-correlation potential in the G0W0 self-energy and
use the difference as a first-order perturbation on the mean-
field band energies [30]. The self-energy correction operator
is given by [61–63]

�� = � − V LSDA
xc − VHub, (2)

where � is the self-energy operator in the GW approximation
[64].

The GW (at the G0W0 level) and GW -BSE calculations—
for the quasiparticle band structure and optical properties,
respectively—were performed using the BERKELEYGW pack-
age [55]. Since the standard sum-over-bands approach [30]
and the static remainder approach [65] in calculating the GW
self-energy converge to the final result in opposite directions,
we took their average to speed up the convergence of quasi-
particle band energies with respect to the number of empty
states. The kinetic energy cutoff in calculating the screened
Coulomb interaction was set to 50 Ry, and a total of 2000
bands were included in the GW calculation, with the highest
band energy at ∼90 eV above the valence band maximum.
We adopted a 3 × 3 × 1 q-grid with three subsampling points
using the nonuniform neck subsampling method to describe
the 2D dielectric screening [66]. The quasiparticle bandgap
was converged to within 50 meV. To perform Wannierization
of the Cr 3d orbitals and Br 4p orbitals (a total of 56 orbitals)
for later interpolation of the quasiparticle band structure, the
self-energy corrections of 42 valence bands and 14 conduction
bands were calculated on a 33 × 33 × 1 grid. We treated
the dynamical screening effect through the Hybertsen-Louie
plasmon-pole model [30], where the charge density of the
itinerant valence states (42 in total, excluding semicore Cr
3s and 3p states) were used. The resulting quasiparticle band
structure was interpolated with spinor Wannier functions, us-
ing the WANNIER90 package [67].

In Fig. 2, we show the quasiparticle band structure of
monolayer CrBr3 at the G0W0 level. The indirect quasipar-
ticle band gap is 3.80 eV, and the direct bandgap at the M
point is 3.81 eV. Our calculations reveal a strong self-energy
correction of 2.13 eV to the direct quasiparticle bandgap at
the M point, due to the weak dielectric screening in reduced
dimensions and the localized nature of the Cr d states. This
self-energy correction is larger than that of 1.77 eV in mono-
layer CrI3 [28] because the states are more localized with
smaller bandwidth in monolayer CrBr3, and the dielectric
screening is weaker. Moreover, according to the plot of pro-
jected DOS in Fig. 2, we find that self-energy effects push
the valence states that are dominated by Br p orbitals fur-
ther down in energy. At the G0W0 level, majority-spin and
minority-spin t2g bands have a similar bandwidth ∼0.72 eV.
The bandwidth is 0.38 eV for majority-spin eg bands and
0.34 eV for minority-spin eg bands. These bandwidths are
like those computed at the LSDA + U level (see Table S1 of
the Supplemental Material [48]). However, self-energy effects
on the shape of majority-spin t2g and eg bands cannot be

FIG. 2. G0W0 band structure (left) and projected density of states
(DOS) (right) of monolayer CrBr3 with spin-orbit coupling (SOC)
effects. Computational parameters and the color scheme are the same
as in Fig. 1.

approximated by a rigid shift, after comparing Figs. 1(e) and
2. The calculated quasiparticle band energies will be used in
the next section as input to the BSE calculations.

IV. EXCITONIC EFFECTS AND OPTICAL PROPERTIES

To solve for exciton eigenstates (correlated electron-hole
pairs), we solve the BSE of the interacting two-particle
Green’s function [31] in the form of an eigenvalue problem:

AS
cvk(εck − εvk ) +

∑
c′v′k′

AS
c′v′k′ 〈cv, k|K̂|c′v′, k′〉 = AS

cvk�S,

(3)
where εck and εvk are quasiparticle energies of the conduction
and valence bands, respectively. The exciton eigenstate with
excitation energy �S is given by |S〉 = ∑

cvk AS
cvk|cv, k〉, as a

coherent superposition of free electron-hole pairs at different
k-points. Here, K̂ = K̂d + K̂x is the electron-hole interaction
kernel, containing an attractive direct screened Coulomb term
K̂d and a repulsive exchange bare Coulomb term K̂x [31].
When evaluating K̂d, we again use Eq. (1) for the irreducible
polarizability to keep the BSE matrix Hermitian. We per-
formed the BSE calculation of monolayer CrBr3 within the
Tamm-Dancoff approximation [31] and considered interband
transitions between 21 valence bands and 14 conduction
bands on a 15 × 15 × 1 Monkhorst-Pack k-grid to converge
the calculation of the optical spectra up to the frequency of
4.2 eV. An energy cutoff of 20 Ry was used for W in con-
structing the BSE kernel.

The eigenvalues �S and eigenstates |S〉 are used to con-
struct the frequency-dependent effective dielectric function
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FIG. 3. (a) Calculated real part (solid lines) and imaginary part (dashed lines) of the diagonal Pxx (red) and off-diagonal Pxy (blue)
layer polarizability of ferromagnetic monolayer CrBr3 without electron-hole interaction (GW -RPA). (b) Calculated real part (solid lines) and
imaginary part (dashed lines) of the diagonal Pxx (red) and off-diagonal Pxy (blue) with electron-hole interaction (GW -BSE). (c) Absorbance
spectrum of linearly polarized light with electron-hole interaction (GW -BSE, solid blue line) and without electron-hole interaction (GW -RPA,
dashed red line). The amplitudes <1.8 eV (indicated by black dashed line) are multiplied by 10 for better visibility. An 80 meV energy
broadening is applied.

tensor ε̃αβ (ω) in the supercell approach (in units of the vac-
uum permittivity ε0):

ε̃αβ (ω) = δαβ

(
1 − ω2

p

ω2

)
− 1

ε0ω2NkV

∑
S

[ 〈0| ĵαp |S〉〈S| ĵβp |0〉
h̄ω − �S + iη

− 〈S| ĵαp |0〉〈0| ĵβp |S〉
h̄ω + �S + iη

]
, (4)

where ωp is the plasma frequency, η → 0+, and α, β =
x, y, z. Matrix elements of the paramagnetic current operator
ĵp = −ev̂ between the ground state and a given exciton state
|S〉 are given by

〈0| ĵαp |S〉 =
∑
cvk

AS
cvk〈vk| ĵαp |ck〉, (5)

where e and m are the elementary charge and electron rest
mass, respective, and v̂ = 1

ih̄ [r̂, Ĥ ] is the single-particle ve-
locity operator.

As an extensive physical quantity, the dielectric function is
ill-defined for 2D materials. The meaningful quantity for com-
parison with physical measurements is the layer polarizability
tensor P:

Pαβ ≡ l (ε̃αβ − δαβ )/Nlayer, (6)

where l is the thickness of the supercell used along the out-
of-plane direction, and Nlayer is the number of layers of the 2D
material in a specific calculation. In the following discussion
of optical and MO properties, we define the dielectric function
of a monolayer CrBr3 using a layer thickness of d = cbulk/3 =
6.07 Å based on its bulk crystal structure [68,69]:

εαβ (ω) ≡ δαβ + Pαβ

d
. (7)

It is important to point out that this rescaling process is
done to make connection with previous formulations of opti-
cal properties of layered systems using dielectric functions.

For the optical responses of atomically thin few-layer van
der Waals 2D materials, the important physical quantity is
P which is independent of any assumption of d . Since we
only consider normal incidence in the following discussion,
the in-plane (xx and xy) components of P(ω) are calculated
and shown in Figs. 3(a) and 3(b). We find that the excitonic
effects greatly reshape the dielectric responses by comparing
the layer polarizability in Fig. 3(a) (without electron-hole
interaction, GW -RPA) and those in Fig. 3(b) (with electron-
hole interaction, GW -BSE). In Fig. 3(c), we calculated the
optical absorbance spectrum of linearly polarized light using
the diagonal elements of the GW -RPA and GW -BSE dielec-
tric functions. The GW -BSE absorbance spectrum features
several absorption peaks below the quasiparticle bandgap at
∼1.5, 2.1, 2.6 eV, etc. and another strong peak with ∼10%
absorbance at ∼4.0 eV. Several bright exciton states are re-
sponsible for these peaks in the absorbance spectrum, as seen
in the plot of exciton energy levels in Fig. 4(a), where the
bright exciton states are colored in red and dark states in
gray. Unlike monolayer CrI3, the top valence bands are flat
in monolayer CrBr3, creating a large joint DOS across the
bandgap which strongly enhances the excitonic effects and
thus increases the exciton binding energies. The first bright
exciton has an excitation energy of 1.5 eV, which leads to a
huge binding energy of 2.3 eV. In the following, we visual-
ize the exciton amplitudes in real space in Figs. 4(b)–4(e).
Note that the valence and conduction Bloch waves here are
all two-component spinor wave functions, which means the
electron-hole distribution in real space for a selected exciton
state should be calculated as

AS (re, rh) ≡
∑
cvk

∣∣AS
cvk

∣∣2 ∑
σh

|φvk(rh, σh)|2

×
∑
σe

|φck(re, σe)|2, (8)
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FIG. 4. (a) Exciton energy levels of ferromagnetic monolayer CrBr3 calculated using the first-principles GW -BSE method. Energy levels
of optically bright exciton states are in red, while those of dark states are in gray. The bright excitons have at least two orders of magnitude
stronger oscillator strength than the dark ones. The free electron-hole continuum starts from 3.81 eV. (b)–(e) Top view and side view of electron
distribution in real space with the hole fixed on a Cr atom for selected bright exciton states. The exciton excitation energies are: (b) 1.5 eV,
(c) 2.1 eV, (d) 2.6 eV, and (e) 2.9 eV. Shown are isovalue surfaces with the value set at 1% of the maximum. Here, the dominant states (with
the largest oscillator strength among the nearby bright states) are plotted.

where σh and σe refer to the z-axis spinor components of the
hole (φ∗

vk) and electron (φck) band states, respectively. By cal-
culating the expectation value of spin operators for the elec-
tron and hole in an exciton state, we find that the bright exciton
states in Figs. 4(b)–4(e) all consist of majority-spin electrons
and minority-spin holes (i.e., formed by up-to-up interband
transitions, see Sec. II of the Supplemental Material [48]).
Unlike monolayer transition metal dichalcogenides where the
lowest-energy bright excitons are of the Wannier-Mott type
with a diameter of several nanometers [34,35], ferromagnetic
monolayer CrBr3 hosts bright charge-transfer exciton states
that extend over one to several primitive cells (�1 nm) which
is still large compared with atomic size and is indicative of
excitonic formation from band transitions instead of intra-
atomic d-d transitions. These plots of exciton distribution are
also consistent with the intuition that a larger exciton binding
energy is related to a smaller exciton radius [70].

V. MO EFFECTS

In magneto-optics, a linearly polarized continuous-wave
light propagating through a medium is modified by the pres-
ence of a magnetic field, where the σ+ and σ− circularly
polarized components propagate with different refractive in-
dex and therefore pick up different optical path length and
absorption. There are several important MO effects, such as
the Faraday effect [71], the MO Kerr effect [72], and MCD.
In the Kerr effect, the polarization change of the reflected
light is measured, while in the Faraday effect, the polariza-

tion change of the transmitted light is measured. That is, the
reflected or transmitted light becomes elliptically polarized
(characterized by an ellipticity angle), and the long axis of
the polarization ellipse is rotated (characterized by a rotation
angle). In this paper, we consider the most common MO setup
used to study 2D magnets [5,9]: the polar setup with normal
incidence, where the direction of magnetization is parallel
to the out-of-plane direction (+z). MCD, on the other hand,
describes differential absorption of circularly polarized lights.
SOC effects are important to achieve nonzero MO effects in
rhombohedral systems such as CrBr3 because they break the
orbital degeneracy such that optical transitions corresponding
to different circularly polarized lights are no longer equivalent
[24–26,73].

For a ferromagnetic material with C3 rotational symmetry
along the spin-polarization direction (z-axis), its frequency-
dependent layer polarizability tensor as a function of the
magnetic field takes the following form:

P(ω, B) =
⎡
⎣−

Pxx(ω, B) Pxy(ω, B) 0
Pxy(ω, B) Pxx(ω, B) 0

0 0 Pzz(ω, B)

⎤
⎦, (9)

where B is the internal Weiss field, and we have applied Pyy =
Pxx, Pyx = −Pxy, and Pxz = Pzx = Pyz = Pzy = 0 due to the C3

symmetry (see the Appendix). To simplify the expression of
the diagonal element Pxx, we calculate the imaginary part of
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FIG. 5. (a) Absorbance spectrum of circularly polarized lights without electron-hole interaction (GW -RPA). (b) Absorbance spectrum of
circularly polarized lights with electron-hole interaction (GW -BSE). The solid red (dashed blue) curve corresponds to the σ+ (σ−) circularly
polarized light. The amplitudes <1.8 eV (black dashed line) are multiplied by 10 for better visibility in (b). (c) Frequency-dependent magnetic
circular dichroism (MCD) signal of absorbance with (red, GW -BSE) and without (blue, GW -RPA) electron-hole interaction. The MCD signal
is calculated as (A+ − A−)/(A+ + A−), where A± denotes the absorbance for σ± circularly polarized lights in (a) and (b). To avoid numerical
instability, a small imaginary part of η = 0.001i is added to the denominator and the real part is plotted.

Pxx in the limit of η → 0+:

Im Pxx(ω) = π h̄2l

ε0NkV Nlayer

∑
S

1

�2
S

|〈0| ĵx
p |S〉|2[δ(h̄ω − �S )

− δ(h̄ω + �S )], (10)

where we have replaced 1/ω2 by h̄2/�2
S due to the

Dirac delta functions. In the limit of low frequency, the

Thomas-Reiche-Kuhn sum rule ω2
p = 2

ε0NkV

∑
S

|〈0| ĵαp |S〉|2
�S

leads
to the cancellation of the frequency-dependent parts of both
the first and second terms in Eq. (4), leading to a finite value
of the dielectric constant at zero frequency, as expected for a
semiconductor. Then the expression of the real part of Pxx can
be derived with the Kramers-Kronig relation:

Re Pxx(ω) = 1

π
P

∫ ∞

−∞
dω′ Im Pxx(ω′)

ω′ − ω

= − h̄2l

ε0NkV Nlayer

∑
S

1

�2
S

|〈0| ĵx
p |S〉|2

×
[

1

h̄ω − �S
− 1

h̄ω + �S

]
, (11)

which is now numerically stable around ω = 0. Combining
Eqs. (4)–(6) and (9), we can prove that Re 〈0| ĵx

p |S〉〈S| ĵy
p|0〉 ≡

0 (see the Appendix), which means the real part of Pxy is given
by

Re Pxy(ω) = iπ h̄2l

ε0NkV Nlayer

∑
s

1

�2
S

[〈0| ĵx
p |S〉〈S| ĵy

p|0〉δ(h̄ω − �S )

−〈S| ĵx
p |0〉〈0| ĵy

p|S〉δ(h̄ω + �S )
]
. (12)

Then the expression of the imaginary part of Pxy can be
derived with the Kramers-Kronig relation:

Im Pxy(ω) = − 1

π
P

∫ ∞

−∞
dω′ Re Pxy(ω′)

ω′ − ω

= ih̄2l

ε0NkV Nlayer

∑
s

1

�2
S

×
[ 〈0| ĵx

p |S〉〈S| ĵy
p|0〉

h̄ω − �S
− 〈S| ĵx

p |0〉〈0| ĵy
p|S〉

h̄ω + �S

]
.

(13)

To model the inhomogeneous broadening observed
in optical experiments, we add a Gaussian broadening
δ(h̄ω ± �S ) ≈ 1

η
√

2π
exp[− (h̄ω±�S )2

2η2 ] to Eqs. (10) and (12).

A regularization procedure 1
h̄ω±�S

≈ h̄ω±�S

(h̄ω±�S )2+η2 is used to
avoid numerical problems with fine frequency sampling for
Eqs. (11) and (13). The validity of Eqs. (10)–(13) has been
verified by previous work [55].

We define the complex refractive index with the direction
of the wave vector k of light, n ≡ ck

ω
, where c is the speed of

light in vacuum, and ω is the frequency of light. By solving
the wave equation (n2 I − ε − nn�) · E = 0 with Eqs. (7) and
(9), we get the eigenmodes as σ+ and σ− circularly polarized
plane waves, with distinct refractive indices:

[n±(ω, B)]2 = εxx(ω, B) ± iεxy(ω, B), (14)

of which the complex electric field amplitude points along
the direction of the basis ê± = ∓√

2
(êx ± iêy). In the wave

equation, n is a column vector, and n� is the transposed row
vector. In this paper, we avoid the ambiguous terminology
of left and right circularly polarized lights and stick to the
usage of σ+ and σ− circularly polarized lights, which are
well-defined after the Cartesian coordinate system is setup.
Moreover, according to the Onsager reciprocal relations [74],
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FIG. 6. (a) Polar setup of the magneto-optical (MO) effects with two interfaces (located at z0 and z1). Each layer is homogeneous in the x-y
plane. The left (zeroth) and right (second) media are semi-infinitely thick, and the middle (first) layer has a finite thickness d = z1 − z0. The
normal incident light coming from right to left is linearly polarized along the x axis. The red arrow pointing along the +z direction denotes the
magnetization of layer 1. E(0) and E(1) denote the amplitudes of electric fields in the zeroth and first layer at the z0 interface, respectively. E(2)

denotes the amplitude of electric field in the second layer at the z1 interface. (b) The polarization plane of the transmitted light. E(0)
← denotes

the electric field amplitude of the transmitted (left-moving) light. The polarization ellipse is oriented at a Faraday angle θF with respect to the
x axis. The Faraday ellipticity is defined through the Faraday ellipticity angle χF. (b) The polarization plane of the reflected light. E(2)

→ denotes
the electric field amplitude of the reflected (right-moving) light. The polarization ellipse is oriented at a Kerr angle θK with respect to the x
axis. The Kerr ellipticity is defined through the ellipticity angle χK. (d) Calculated Faraday angle and ellipticity in the setup with layers of
semi-infinite vacuum, monolayer CrBr3, and semi-infinite vacuum. (e) Kerr angle and ellipticity in the setup with layers (from left to right) of
semi-infinite sapphire, monolayer CrBr3, and semi-infinite vacuum. (f) Kerr angle and ellipticity in the setup with layers (from left to right) of
semi-infinite fused silica, monolayer CrBr3, and semi-infinite vacuum. A monolayer thickness d = 6.07 Å is used for monolayer CrBr3.

we have

εαβ (ω, B) = εβα (ω,−B). (15)

Equation (15) allows us to easily calculate the MO effects
when the magnetization direction is flipped. If there is no
net magnetization or external magnetic field (i.e., B = 0),
Eqs. (7), (9), and (15) lead to εxy ≡ 0, which means there are
no MO effects.

Using Eq. (14), we calculated the absorbance spectrum of
circularly polarized lights in Fig. 5(a) without electron-hole
interaction and in Fig. 5(b) with electron-hole interaction.
Note that the ranges of frequency and absorbance are different
in these two plots. Comparing Figs. 5(a) and 5(b), we find that
the electron-hole interaction enhances the optical absorption
for both circularly polarized lights in the frequency range
of interest. In addition, by calculating the MCD signal as
(A+ − A−)/(A+ + A−) in Fig. 5(c), where A± denotes the
absorbance for σ± circularly polarized lights, we find that
the excitonic effects significantly enhance the dichroism over
a large frequency range up to the onset of the electron-hole
continuum. This is because the BSE matrix, which involves
the dielectric function and carrier wave functions in the pres-
ence of a magnetic order, has broken time-reversal symmetry.
Therefore, the excitonic effects are different on different

circularly polarized transitions. The peak position and helic-
ity of the first bright exciton peak in Fig. 5(b) agree well
with recent polarization-resolved magnetophotoluminescence
measurements, where the photoluminescence peak is located
at 1.35 eV [41].

In the following, we discuss how to calculate MO Kerr and
Faraday signals in a two-interface polar setup, as shown in
Fig. 6(a). The system consists of two interfaces located at
z0 and z1, with the middle (first) layer being the atomically
thin magnetic material of interest. The left (zeroth) and right
(second) layers are semi-infinitely thick. A normal incident
light comes from the right side, and we measure the reflected
light on the right side or the transmitted light on the left side.
To mathematically describe how an electromagnetic wave in-
teracts with such stratified and anisotropic media, we adopt a
4 × 4 formalism involving the in-plane components of both
electric (Ex, Ey) and magnetic fields (Bx, By). This formalism
has been used to study birefringent multilayer media and MO
ellipsometry [75,76], and it can be generalized to more com-
plex setups. We consider a ferromagnetic monolayer CrBr3
magnetized along the +z direction, and the second layer is
vacuum. Within each layer (l = 0, 1, 2), we choose the four
eigenmodes of light as follows: ê(l )

1 = ê(l )
2 = ê+, ê(l )

3 = ê(l )
4 =

ê−, with the corresponding refractive indices: n(l )
1 = −n(l )

2 =
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n+, n(l )
3 = −n(l )

4 = n−. The electric and magnetic fields of
light in the first and second layers are given by

E(l ) =
4∑

j=1

E (l )
0 j ê(l )

j exp
{
i
[
k(l )

j (z − zl−1) − ωt
]}

, (16)

and

cB(l ) =
4∑

j=1

E (l )
0 j b(l )

j exp
{
i
[
k(l )

j (z − zl−1) − ωt
]}

, (17)

with b(l )
j = n(l )

j êz × ê(l )
j , and k(l )

j = ω
c n(l ). The electric and

magnetic fields of light in the zeroth layer are given by

E(0) =
4∑

j=1

E (0)
0 j ê(0)

j exp
{
i
[
k(0)

j (z − z0) − ωt
]}

, (18)

and

cB(0) =
4∑

j=1

E (0)
0 j b(0)

j exp
{
i
[
k(0)

j (z − z0) − ωt
]}

. (19)

The requirement of the continuity of the tangential field
components at the interfaces connects the field amplitudes E (l )

0 j
between two layers. The dynamical matrix within each layer
is given by a block-diagonal form:

D(l ) =

⎡
⎢⎢⎢⎣

ê(l )
1 · ê∗

+ ê(l )
2 · ê∗

+
b(l )

1 · ê∗
+ b(l )

2 · ê∗
+

ê(l )
3 · ê∗

+ ê(l )
4 · ê∗

+
b(l )

3 · ê∗
+ b(l )

4 · ê∗
+

ê(l )
1 · ê∗

− ê(l )
2 · ê∗

−
b(l )

1 · ê∗
− b(l )

2 · ê∗
−

ê(l )
3 · ê∗

− ê(l )
4 · ê∗

−
b(l )

3 · ê∗
− b(l )

4 · ê∗
−

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1 1 0 0
−i n(l )

+ i n(l )
+ 0 0

0 0 1 1
0 0 i n(l )

− −i n(l )
−

⎤
⎥⎥⎦. (20)

The propagation matrix is defined as a diagonal matrix
with entries being the phase shift associated with the optical
path length for each eigenmode within the sample P(1) =
diag{eiδ+ , e−iδ+ , eiδ− , e−iδ−}, where δ± = ω

c n±d and d is the
thickness of the middle layer. In this two-interface setup, E(0)

0

and E(2)
0 are related by the transfer matrix Mc in the basis of

circularly polarized lights:

E(2)
0 = McE(0)

0 = {[D(2)]
−1

D(1)P(1)[D(1)]
−1

D(0)}E(0)
0 . (21)

Here, Mc has a simple block-diagonal form:

Mc =
[

M+ 0
0 M−

]
,

M± = 1

t±
21t±

10

[
eiδ± + e−iδ±r±

21r±
10 eiδ±r±

10 + e−iδ±r±
21

eiδ±r±
21 + e−iδ±r±

10 eiδ±r±
21r±

10 + e−iδ±

]
, (22)

where rmn and tmn are the one-interface Fresnel coefficients
from the mth layer to the nth layer. However, in the mea-
surement of MO signals, we use a linearly polarized light and
measure the polarization of the reflected or transmitted ellip-
tically polarized light. Assuming the left and right layers are
nonmagnetic and isotropic with one optic axis of their dielec-
tric function tensor pointing along the z direction, we adopt

a basis transformation from the circularly polarized light to
linearly polarized light in the left and right layers: ê(l )

1 = ê(l )
2 =

êx, ê(l )
3 = ê(l )

4 = êy, as well as n(l )
1 = −n(l )

2 = n(l )
3 = −n(l )

4 =
n(l ), for l = 0, 2. In the following, this new basis of linearly
polarized plane waves is denoted as {x →, x ←, y →, y ←},
emphasizing the polarization and propagation direction of
each mode. In this basis of linearly polarized lights, the elec-
tric field amplitudes in the left and right layer are related by
transfer matrix M:⎡

⎢⎢⎢⎣
E (2)

0x→
E (2)

0x←
E (2)

0y→
E (2)

0y←

⎤
⎥⎥⎥⎦ = M

⎡
⎢⎢⎢⎣

E (0)
0x→

E (0)
0x←

E (0)
0y→

E (0)
0y←

⎤
⎥⎥⎥⎦,

M = 1

2

[
M+ + M− −i(M+ − M−)

i(M+ − M−) M+ + M−

]
. (23)

As mentioned above, we consider an incoming x-polarized
light from the second medium to the zeroth medium, that is,
E (2)

0y← = 0. Moreover, there are no incident lights from the

zeroth medium to the second medium, which means E (0)
0x→ =

E (0)
0y→ = 0. With these conditions, we can calculate the reflec-

tivities and transmissivities as follows:

tss ≡ E (0)
0x←

E (2)
0x←

= M44

M22M44 − M24M42
, (24)

tsp ≡ E (0)
0y←

E (2)
0x←

= −M42

M22M44 − M24M42
, (25)

rss ≡ E (2)
0x→

E (2)
0x←

= M12M44 − M14M42

M22M44 − M24M42
, (26)

rsp ≡ E (2)
0y→

E (2)
0x←

= M32M44 − M34M42

M22M44 − M24M42
. (27)

As shown in Fig. 6(b), the Faraday signals for the transmit-
ted (left-moving) electric field E(0)

← = E (0)
0x← êx + E (0)

0y← êy are
determined by the ratio of transmissitivities tsp/tss [77]:

tan 2θF = 2
∣∣ tsp

tss

∣∣ cos
(
arg tsp

tss

)
1 − ∣∣ tsp

tss

∣∣2 , −π

2
< θF � π

2
, (28)

sin 2χF = 2
∣∣ tsp

tss

∣∣ sin
(
arg tsp

tss

)
1 + ∣∣ tsp

tss

∣∣2 , −π

4
< χF � π

4
. (29)

Similarly, the Kerr signals for the reflected (right-moving)
electric field E(2)

→ = E (2)
0x→ êx + E (2)

0y→ êy are determined by the
ratio of reflectivities rsp/rss:

tan 2θK = 2
∣∣ rsp

rss

∣∣ cos
(
arg rsp

rss

)
1 − ∣∣ rsp

rss

∣∣2 , −π

2
< θK � π

2
, (30)

sin 2χK = 2
∣∣ rsp

rss

∣∣ sin
(
arg rsp

rss

)
1 + ∣∣ rsp

rss

∣∣2 , −π

4
< χK � π

4
. (31)

Next, we apply Eqs. (24)–(31) to study the MO Kerr and
Faraday signals of monolayer CrBr3 with different substrate
materials. First, we consider the simplest case with both left
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and right layers being just vacuum and calculate the Fara-
day angle θF (solid blue) and ellipticity χF (dashed red) in
Fig. 6(d). We find that θF and χF are connected through a set
of approximate Kramers-Kronig relations, as expected from
previous work [24]. As shown in Figs. 6(d)–6(f), we find a
strong dependence of the MO signals on the excitation fre-
quency. We predict a maximal positive θF of 2 mrad around the
excitation frequency of 2.6 eV and negative θF of the order of
−1 mrad between 2.0 and 2.5 eV. Furthermore, we calculate
the Kerr signals in the presence of conventional thick substrate
materials, namely, sapphire and fused silica. Both insulating
substrates have large bandgaps and little absorption in the
range of 1.0–3.5 eV. In this paper, we modeled their refractive
indices using experimental values at the relevant frequencies
with n = 1.5 for fused silica [78] and n = 1.75 for sapphire
[79]. In Figs. 6(e) and 6(f), we show the calculated Kerr
signals in the setup with sapphire and fused silica substrates,
respectively. We find a similar shape for the signals but with
opposite sign compared with the Faraday signals in Fig. 6(d).
In addition, different substrate materials can strongly modify
the amplitudes of Kerr signals. For example, the signals in
the fused silica setup are almost twice as large those in the
sapphire setup. Close attention therefore should be paid in
interpreting MO experiments on atomically thin 2D magnetic
semiconductors with different substrate configurations.

VI. SUMMARY

In conclusion, we present a detailed theoretical formal-
ism to model the optical and MO properties of 2D magnetic
semiconductors, including the important SOC and excitonic
effects. The theoretical and numerical methods presented in
this paper can also be applied to other mono- or multi-layer 2D
magnets, as well as van der Waals heterostructures consisting
of 2D magnets. Using the first-principles full-spinor GW and
GW -BSE methods without time-reversal symmetry, we cal-
culate the exciton eigenstates, layer polarizability tensor, as
well as optical and MO spectra of a prototypical 2D magnetic
semiconductor, ferromagnetic monolayer CrBr3. The calcu-
lated optical absorbance spectra and MO signals demonstrate
dominant excitonic effects. With a two-interface model, we
also find that the substrate refractive index will significantly
affect the MO signals. In this paper, we provide a theoretical
framework and a first-principles approach to simulate the
optical and MO properties of 2D magnetic semiconductors
and shed light on possible design principles for building opto-
electronic and spintronic devices with magnetic van der Waals
materials.
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APPENDIX

In this section, we prove the form of the matrix in Eq. (9).
Monolayer CrBr3 has S6 = C3 ⊗ Ci point group symmetry,
and a general layer polarizability tensor is given by

P =
⎛
⎝Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

⎞
⎠. (A1)

Here, P should be invariant under the C3 rotational opera-
tion given by a SO(3) rotation matrix D:

D =

⎛
⎜⎜⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠, (A2)

which leads to

P ≡ DPD−1. (A3)

Comparing each entry of the matrices on both sides of
Eq. (A3), we have the following identities:

Pxz = Pzx = Pyz = Pzy = 0, (A4)

Pxx = Pyy, (A5)

Pyx = −Pxy. (A6)

Combining Eqs. (4)–(6) and (A6), we arrive at∑
S

[〈0| ĵx
p |S〉〈S| ĵy

p|0〉 + 〈0| ĵy
p|S〉〈S| ĵx

p |0〉]

×
[

1

h̄ω − �S + iη
− 1

h̄ω + �S + iη

]
≡ 0, ∀ω.

(A7)

Equation (A7) leads to

〈0| ĵx
p |S〉〈S| ĵy

p|0〉 + 〈0| ĵy
p|S〉〈S| ĵx

p |0〉
= 2Re 〈0| ĵx

p |S〉〈S| ĵy
p|0〉 ≡ 0, ∀S. (A8)
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