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We investigate the electrical and thermal transport coefficients of an emergent transition metal tri-
chalcogenide, namely, TiS3. We implement an accurate description of the electron-phonon coupling and thus
of the energy dependence of the relaxation time, which goes beyond the commonly used approximations. We
find that standard calculation methods fail in accurately describing the thermoelectric transport properties of TiS3

and one needs to go beyond standard approximations to correctly investigate the thermoelectric performance of
TiS3 and other 2D materials. By applying state-of-the-art ab initio methods, we conclude that TiS3 stands as a
potential candidate for thermoelectric applications.
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I. INTRODUCTION

The discovery of graphene brought the investigation of
two-dimensional (2D) materials to the forefront of scientific
research [1,2]. The reason for this evolution lies in the po-
tential applications that these materials find in technology.
Indeed, 2D materials show extraordinary electronic, thermal,
and elastic properties dramatically different from their bulk
counterpart. In the family of 2D materials, one class, the
transition metal tri-chalcogenides (TMTC), is currently inves-
tigated for their outstanding optical and transport properties,
some of which are related to the intrinsic anisotropy of their
atomic structure. Moreover, some of these properties can be
controlled through external deformation, thus making TMTC
an extremely ductile playground to explore the properties of
2D materials. TMTC lack the exciting topological properties
of other materials like graphene or MoS2, but their outstand-
ing optical response makes them suitable for building up novel
transistors or sensors [3–14].

Among this class, the first material that attracted the in-
terest of the scientific community is TiS3 [3–10,15]. In its
stable configuration, at room temperature, it forms layers of
8 atoms (2 Ti and 6 S), of which 4 S belong to the surface,
and 2 are internal to the Ti atoms (see Fig. 1). The layers
are kept together by weak van der Waals (vdW) forces. The
unit cell of monolayer TiS3 presents a strong anisotropy with
one edge shorter than the other. Our calculation gives |a| =
4.99 Å, |b| = 3.40 Å, |c| = 8.90 Å, β = 97.3◦, where β

is the angle between a and c, in reasonable agreement with
the experimental results [|a| = 4.973(0) Å, |b| = 3.433(0) Å,
|c| = 8.714(0) Å, β = 97.74(0)◦] [3]. In contrast, for
the monolayer, we obtain the values |a| = 5.03 Å and
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|b| = 3.42 Å. Besides the interest as material for optical
applications, TiS3 has been investigated as a material for
electronics, optoelectronics, and thermoelectricity. For some
of these uses, one needs to evaluate both the phononic and
electronic transport coefficients.

In general, the electronic transport properties are affected
by scattering events of electrons with phonons, and hence
one needs to carefully consider the so-called electron-phonon
(e–p) interaction. The necessity of an accurate evaluation of
the transport coefficients has been pointed out also for other
materials, like, e.g., phosphorene [16–18], ZrSe3 [8]. Indeed,
we expect that the correction to the relaxation time applies to
the whole family of 2D materials. The methods we present in
the following are easily applicable to other 2D materials, and
we expect our results to be of general interest and application.
Recently, e–p interaction has received much attention, espe-
cially in the ab initio community. The constant increase of the
quality of the codes and the computational power makes the
first-principle evaluation of the e–p coupling possible. From
the e–p coupling, we can evaluate the electron relaxation time
considering one of its significant contributions, namely the
scattering with phonons. In the past, the standard approxi-
mation was to consider the electron relaxation time τ as a
constant that was evaluated either as a fitting parameter, via
the use of the simple Drude’s formula if the conductance was
somewhat known, or via some other sophisticated models,
which however completely neglected the energy dependence
of τ .

In this paper, we will focus on calculating the thermoelec-
tric response of TiS3 as both bulk and monolayer. (See Fig. 1.)
We aim at calculating τ (ω), as a function of the energy ω, and
all the transport coefficients along the unit-cell axis. We will
compare two methods to evaluate τ : one is in principle exact,
the other an approximation, known as e–p averaged (EPA)
approximation and has the advantage of reproducing the cor-
rect transport properties while reducing the computational
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FIG. 1. Atomic structure of TiS3. (a) Projection along the b axis.
(b) Projection along the a axis. (c) Prospective view showing two
layers of the bulk structure. The a axis is oriented outside the page.
We plot in yellow the sulphur atoms, while in blueish the titanium
atoms. The figure was made with VESTA [19].

cost of the exact calculation [20]. Recently we became aware
of another approximation, dubbed MRTA, which might over-
come the limitations of the CRT approximation, without the
computational cost of the full EPW calculation [21]. A direct
comparison between the MRTA and the EPA/EPW lies out-
side the scope of this paper.

II. THEORY AND METHODS

Our starting point is the Boltzmann transport equa-
tion (BTE) for the electronic single-particle distribution
function fnk, where n is the band index and k its momen-
tum. From the solution of the BTE, one can obtain all the
transport coefficients through a relatively simple integration
in the first Brillouin zone. A parameter entering the BTE is
the electron relaxation time τnk. Different scattering events
determine the relaxation time, but it is mostly dominated by
electron-electron (e–e) and e–p scattering in clean materials.

In general, we get the electron relaxation time for e–p
scattering in the form

τ−1
nk (T, μ) = �

(2π )2h̄

∑
m,v

∫
dq|gmnv (k, q)|2

× {[
n0

vq + f 0
mk+q

]
δ(εnk − εmk+q + h̄ωqv )

+[
n0

vq + 1 − f 0
mk+q

]
× δ(εnk − εmk+q − h̄ωqv )

}
, (1)

where � is the volume of the Brillouin zone (BZ), gmnv are
the matrix elements of the e–p interaction between the states
m and n for the electrons and v for the phonon; n0 is the Bose-
Einstein phonon distribution at a given temperature T , f 0

the Fermi distribution at the same temperature and chemical
potential μ, ε is the electronic energy (depending on the band
index n and momentum k), and ω is the phonon frequency.
Generally speaking, the e–p matrix elements can be obtained
from density-functional perturbation theory calculations [22].

The thermoelectric performance of a material is usually
defined in terms of its figure of merit ZT [23,24]. ZT is further
expressed as

ZT = S2σ

κ
T = S2σ

κlat + κel
T, (2)

where S is the Seebeck’s coefficient, σ the electrical conduc-
tance, κ the overall thermal conductance (that is usually split
into its phonon κlat and electron κel contributions). It is there-
fore clear that the evaluation of ZT requires the knowledge of
both electron and phonon transport properties. Generally, the
figure of merit of a good thermoelectric material ranges about
1, with the largest reproducible values obtained are above 2.
Moreover, ZT strongly depend on the working temperature T .

In the linear response regime [23,25], from the electronic
band structure, one evaluates the transport coefficients, for a
charge q,

Ln
α,β (μ, T ) = q2

∫
dεgα,β (ε, T )(ε − μ)n

(
−∂ f 0

∂ε

)
(3)

where g(ε, T ) is given by

gα,β (ε, T ) =
∑
n∈CB

∫
dk

(2π )3
δ(ε − εn,k )vnk,αvnk,βτnk, (4)

thus the electronic transport coefficients are obtained from the
coefficients L,

σ = L0, S = 1

qT

L1

L0
, κ = 1

q2T

(
L2 − (L1)2

L0

)
. (5)

In the above expression equation (4), vn,k = ∂εn/∂k are the
pseudo-velocities calculated from the electronic band struc-
ture. In principle, the transport coefficients, Eqs. (5), are
tensors that retain the underlying anisotropic structure of the
materials. For two-dimensional materials, it makes sense to
consider only the in-plane components of these tensors.

Usually, the evaluation of the relaxation time is performed
at different levels of approximation [26]. The crudest, the
constant relaxation time (CRT) approximation, neglects all
energy dependence in τ and replaces it with a constant that
is evaluated either from empirical data (for example, from
the Drude’s formula for the electrical conductance) or through
simplified models as the deformation potential approximation
[27–29] or Allen’s formalism [30,31]. Such an approach could
be sufficient for simple metals or those occasions where the
relaxation time has a lesser impact (for example, in evaluating
Seebeck’s coefficient). In this paper, we will investigate how
equation (1) can be evaluated numerically from first principles
for the case study of TiS3. We will use the code EPW [32,33]
for this aim. Also, we will make use of the so-called EPA
[20] approximation that turns the demanding integral over
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FIG. 2. Relaxation time for the monolayer TiS3 in the CRT,
EPW, and EPA approximations vs the electron energy in eV. The
shaded area represents the band gap.

momentum in Eq. (1) into an integration over energy. This
step is done by replacing quantities that depend on momentum
with their energy-dependent averages. As a result, EPA allows
for a faster evaluation of the relaxation time and can be easily
combined with a standard numerical tool for the solution of
the BTE.

III. RESULTS AND DISCUSSION

We begin with investigating the transport properties of
single-layer TiS3, which can be exfoliated from the bulk struc-
ture since the vdW forces between the layers are relatively
weak.

In Fig. 2, we plot τ calculated in the EPA and EPW
approximations as a function of the energy. The EPW has
been converged over different grids of q points, up to a dense
512×512 grid. The grey area represents the band gap, and τ

diverges when the energy gets close to the band edges. We see
that the EPA approximate the EPW calculation quite well in
this energy window. The agreement improves by increasing
the number of k points, but decreases at high energies. How-
ever, for linear response transport, we are only interested in
energies close to the band edges. For each value of the energy
E , the EPW calculation gives the scattering time for each
associated momentum corresponding to that energy. Here, we
pruned some of those points to make the plot readable. We
conclude that the EPA provides an accurate description of the
scattering time over the range of energies we investigated in
this paper.

In the same Fig. 2, we report the relaxation time in the
CRT approximation for hole propagating along the b axis
(about 67 fs). It is clear that CRT overestimates this relaxation
time, especially far away from the band edges. Moreover,
the relaxation times along the other direction and for both
electrons and holes are much larger.

We then calculated the transport coefficients for the ML
both in the CRT and EPA approximation at room temperature
(300 K). In Fig. 3 we report the electron thermal conductance
κel, the Seebeck’s coefficient S and the electrical conductance
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FIG. 3. Electron and hole transport coefficients for the mono-
layer TiS3 evaluated in the CRT approximation. Panes (a) and
(b) thermal conductance κel along different direction and dop-
ing, respectively. Panes (c) and (d) the Seebeck’s coefficient S
along different direction and doping, respectively. Panes (e) and (f)
the electrical conductance σ along different direction and doping,
respectively.

σ as a function of the density of carriers and for transport
along the a and b directions of the unit cell.

Analysing the results [see Fig. 3 panes (a), (c), and (e)],
we conclude that in the CRT, electronic transport shows a
strong anisotropy with electron flow along b favored with
respect to a flow along a. The situation is different when
we consider hole transport [see Fig. 3 panes (b), (d), and
(f)], in which case the transport coefficients do not show
any particularly strong anisotropy, although transport along
a is clearly favored. Interestingly, the Seebeck’s coefficient
is similar in all cases (notwithstanding the change of sign
due to the opposite charges). As shown in Fig. S1 in the
Supplemental Material [34], the density of the valence and
conduction states at the  point shows different behaviors.
Electron conduction appears limited along a direction, as the
electrons are localized. Hole conduction is favored along the
same direction since the valence state appears more diffus-
ing in the unit cell. The opposite applies for the conduction
band, where electron transport is favored. The same analysis
shows that the electron thermal conductance is larger in the
b direction. Indeed, the lattice thermal conductivity shows a
significant anisotropy along the a and b directions. This can be
justified through a purely geometrical argument, by counting
the different number of bonds that each Ti atom forms with the
S atoms along the two directions, as discussed in Ref. [35].

The situation is changed essentially when we consider the
EPA approximation. In Fig. 4 we report the same trans-
port coefficients calculated in the EPA scheme. EPA takes
into account better the dependence of the scattering time on
energy and thus should provide a more accurate evaluation
of the transport coefficients. The first notable difference is
that the strong anisotropy detected for the electron transport
in the CRT is now suppressed. Although electron transport in
the along b is still favored, the conductances for both axes
have a similar order of magnitude. Also, for the hole trans-
port, the two directions are essentially equivalent. Again the
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FIG. 4. Electron and hole transport coefficients for the mono-
layer TiS3 evaluated in the EPA approximation. Panes (a) and
(b) thermal conductance κel along different direction and dop-
ing, respectively. Panes (c) and (d) the Seebeck’s coefficient S
along different direction and doping, respectively. Panes (e) and (f)
the electrical conductance σ along different direction and doping,
respectively.

Seebeck’s coefficient appears insensitive to the direction of
transport and the carrier charges.

We have calculated the same quantities at different tem-
peratures and found a similar behavior of the transport
coefficients. The CRT keeps pointing at a strong anisotropy in
the transport coefficients, with a strongly favored flow along
the b axis. On the other hand, the EPA offers a more balanced
description, where the flow along b is still preferential, espe-
cially for electrons, but with conductances similar to those of
a flow along the a axis.

We can summarize our results by looking at the figure of
merit, ZT, for thermoelectric energy conversion. As seen in
Eq. (2), to evaluate this coefficient, we need not only the
electron/hole transport coefficients but also the phonon ther-
mal conductance. In our case, we have calculated κlat through
the phonopy code that takes the output of Quantum Espresso
to evaluate the phonon transport by solving a linearized Boltz-
mann equation. The results of our calculations are reported
in Fig. 5, where again the anisotropy in the transport coef-
ficient is also confirmed for the phonons [36]. The lattice
thermal conductivity is in good agreement with that reported
in Ref. [7] as shown in Fig. S3 in the Supplemental Material
[34].

In Fig. 6, we report ZT as a function of temperature and
carrier concentration along different directions for transport
(upper part along b and lower part along a). We see that
the CRT approximation suggests that this material can be
an excellent n-type candidate for thermoelectric applications,
primarily when operated with a flow along the b axis and
already at room temperature, we have a ZT of about 3 for
n-doping of 1012 electrons per cm2. Indeed, our results for
the CRT approximation are in overall good agreement with
those reported in Ref. [7] and within the error typical of using
different codes and pseudopotentials, as one can appreciate
by comparing Fig. S2 in the Supplemental Material [34] with
those in Ref. [7]. The EPA reconsiders this conclusion and
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FIG. 5. Thermal conductance for the monolayer TiS3 as function
of temperature along the a and b axis.

suggests that TiS3 is still an attractive candidate as a p-type
thermoelectric converter, although the overall figure of merit
is strongly reduced. Indeed, we have to point out that this
figure of merit has been obtained in ideal conditions without
taking into account the presence of impurities or, more im-
portantly, vacancies. For example, it is well known that TiS3

is an S-poor atmosphere, eject S atoms creating vacancies
that could then be closed in an S-rich atmosphere. These
vacancies create extra states inside the band gap, thus facil-
itating transport [3]. To further investigate the nature of TiS3

as a thermoelectric material, we looked at the bulk structure.
Indeed, we know from experience that the transport properties
of two- and three-layer TiS3 are similar to the monolayer,
and thus we do not expect any improvement. In Fig. 7, we
report ZT for different carrier concentrations and temperature
along the 3 axes of the unit cell. Overall, ZT along a and b
is similar to that for the monolayer (compare with Fig. 6).
On the other hand, ZT is larger along the c direction for the
n doping. A way to understand this is to look at the lattice
thermal conductance κlat.

In Fig. 8, we plot the lattice thermal conductance as a func-
tion of temperature along the 3 unit-cell axis. As expected,
the thermal transport is strongly suppressed along the c axis
due to the weak vdW bonds in this direction. On the other
hand, the lattice thermal conductance is significantly larger
in the in-plane directions due to the covalent bonds in the
atomic structure. We find a strong in-plane anisotropy ratio
(κb/κa) for the lattice thermal conductance of around 2 at
300 K, which agrees well with both experimental results [35].
A similar analysis can be performed for the other transport co-
efficients. Both the electrical and the thermal conductance are
reduced in the c axis, while the Seebeck’s coefficient shows
a similar value in the range of carrier densities investigated
here. Therefore, the increased ZT along the c axis stems from
the balance between the reduced electrical conductance and
the reduced lattice thermal conductance. Finally, the thermal
conductivity is generally larger for the monolayer than the
bulk as one can appreciate by comparing Fig. 5 and Fig. 8.
This dissimilarity stems from the different velocity distribu-
tions and scattering lengths of the phonons modes, as it can be
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FIG. 6. Contour plot of ZT for monolayer TiS3 evaluated in the (a) CRT approximation and (b) EPA as a function of carrier concentration
and temperature. For both figures, in the upper part, the transport takes place along the b axis and in the bottom along a. The left panes refer
to the material extrinsically doped with electron; in the right panes, doped with holes. Notice the different scale of the color-bar in the (a) and
(b) sets of plots.

appreciated in Figs. S4 and S5 of the Supplemental Material
[34].

IV. CONCLUSIONS

In conclusion, we have investigated the lattice and electron
thermal transport for a prototype two-dimensional material,
namely TiS3. This material has been investigated for its po-
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tential range of application, spanning optical and electrical
applications. Here, we looked at its potential as thermoelec-
tric material. To pursue this investigation, we use a recently
proposed technique to estimate the electron relaxation time
from first-principle calculations. We show that the so-called
EPA can capture the behavior of τ with the electron energy,
especially when compared with the constant relaxation time
approximation, which completely neglects the energy depen-
dence of the relaxation time. We compare the EPA with the
more accurate EPW and show overall good agreement. We
expect that the correction to the relaxation time we have
pointed out here is present and significant also for the whole
family of 2D materials.

We found that the exceptional thermoelectric properties
suggested for this material stem principally from the poor es-
timate of the relaxation time. We show indeed that the shortest
relaxation time strongly suppresses the overall figure of merit,
especially in the case of the monolayer. Bulk TiS3 shows
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FIG. 8. The lattice thermal conductance for bulk TiS3 for differ-
ent directions as a function of temperature.
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good thermoelectric performance, even more considering that
we have investigated the pristine material where we made
no effort to suppress the thermal conductance or increase the
electron transport by doping. Indeed, it is known that TiS3 can
self-dope by losing S atoms in an S-poor atmosphere, thus
increasing the electrical conductivity. Further studies on this
direction are currently underway.

V. COMPUTATIONAL DETAILS

A. Ground state calculations

The electronic, structural, and vibrational properties of
monolayer (ML) and bulk TiS3 have been evaluated through
density functional theory (DFT) and density functional per-
turbation theory calculations using the Quantum ESPRESSO
code [37]. For both Ti and S, the electron exchange-
correlation potential is evaluated within the generalized gradi-
ent approximation throughout the Perdew–Burke–Ernzerhof’s
functional. We have used the “GBRV” ultrasoft pseudopoten-
tial library that has been optimized for use in high-throughput
DFT calculations [38]. By starting from the experimental pa-
rameters for the unit cell [3], and the spectroscopic atomic
configuration [15], we have optimized the atomic positions
with a residual force after relaxation of 0.001 a.u. The kinetic
energy cutoff for the basis set is put at 120 Ry, while the
cutoff for the charge density is 700 Ry. In the sampling of the
Brillouin zone for the bulk material, we used a k-point mesh of
6×6 × 6 (for ML, 10×10×1). The chosen parameters ensure
a convergence of the DFT band gap within an accuracy of
around 0.01 eV. A semi-empirical GGA-type density func-
tional has been used to incorporate vdW corrections in the
bulk calculations [39,40]. In Fig. 1, we report the atomic
structure of TiS3 projected along the a axis after the atomic re-
laxation to reduce the residual forces. Weak vdW forces bind
the structure along the c axis, and it is thus easily exfoliated
to produce a monolayer sample [3]. The unit cell contains 8
atoms, 2 Ti and 6 S, as shown in Fig. 1.

B. Electron transport coefficients and relaxation time

BoltzTraP [41] has been used to calculate the electronic
conductivity within the constant relaxation time (CRT) ap-
proximation by solving the semiclassical BTE. As DFT tends
to underestimate the band gap, we have opened up the gap
with a rigid shift of the conduction bands to the more real-

istic GW gap of around 1.1 eV for all transport calculation
[3,42]. For the CRT approximation results, the relaxation
time obtained within the deformation potential theory has
been used [7]. To go beyond the simple CRT approxima-
tion, we have utilized the EPA approximation to calculate
the energy-dependent relaxation time τ (ω), which then enters
the solution of the BTE. Using the fully relaxed structure,
we performed e-p calculations with 10×10 × 1 k points and
4×4 × 1 q points for the monolayer case, while we employed
8×8 × 8 k-point and 3×3 × 3 q-point samplings for the bulk.
The dynamical matrix was then fed into EPA to obtain an av-
erage e-p dynamical matrix. This average matrix was then fed
into a modified BoltzTraP code along with the other required
parameters to calculate the carrier relaxation time. To test the
validity of the EPA results we have calculated the relaxation
time for the ML (shown in Fig. 2) by directly solving Eq. (1)
with then EPW code by interpolating from a coarse 4×4 × 1
q-points grid to a dense 512×512 grid [32,33].

C. Lattice thermal transport

The lattice thermal conductivity κlat has been calculated
by using the finite displacement methods as implemented
in Phono3py [43,44]. For this, the second- and third-order
inter-atomic force constants were calculated by creating a
2 × 2 × 2 supercell (ML :3 × 3 × 1) in Quantum Espresso
with a grid of 4 × 4 × 4 k points (ML: 5 × 5 × 1) and keeping
the other parameter the same. The lattice thermal conductivity
was obtained by solving the linearized phonon Boltzmann
transport equation with a grid of 10 × 10 × 10 q points (for
ML 40 × 40 × 1).

ACKNOWLEDGMENTS

R.D’A. acknowledges support from the “Grupos Consol-
idados UPV/EHU del Gobierno Vasco” (Eusko Jaurlaritza
Grant No. IT1249-19), the Red Consolider of Spanish Gov-
ernment “TowTherm” (Ministerio de Economia y Competi-
tividad Grant No. ENE2017-90743-REDC) and Grant QuEST
(Grant No. PID2020-112811GB-I00) funded by Ministerio
de Ciencia y Investigacion/Agencia Estatal de Investigacion
10.13039/501100011033 and by “ERDF A way of making
Europe” by the European Union. R.B. acknowledges fund-
ing from the European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie Grant
Agreement No. 793318.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[2] A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa,
R. Frisenda, A. J. Chaves, S. H. Song, Y. D. Kim, D. He,
J. Zhou et al., Bandgap engineering of two-dimensional
semiconductor materials, npj 2D Mater. Appl. 4, 29
(2020).

[3] J. O. Island, M. Barawi, R. Biele, A. Almazán, J. M.
Clamagirand, J. R. Ares, C. Sánchez, H. S. J. van der Zant,
J. V. Álvarez, R. D’Agosta et al., TiS3 transistors with tailored

morphology and electrical properties, Adv. Mater. 27, 2595
(2015).

[4] J. O. Island, R. Biele, M. Barawi, J. M. Clamagirand,
J. R. Ares, C. Sánchez, H. S. J. van der Zant, I. J.
Ferrer, R. D’Agosta, and A. Castellanos-Gomez, Tita-
nium trisulfide (TiS3): A 2D semiconductor with quasi-
1D optical and electronic properties, Sci. Rep. 6, 22214
(2016).

[5] R. Biele, E. Flores, J. R. Ares, C. Sanchez, I. J. Ferrer,
G. Rubio-Bollinger, A. Castellanos-Gomez, and R. D’Agosta,
Strain-induced band gap engineering in layered TiS3, Nano Res.
11, 225 (2018).

014004-6

https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/s41699-020-00162-4
https://doi.org/10.1002/adma.201405632
https://doi.org/10.1038/srep22214
https://doi.org/10.1007/s12274-017-1622-3


TRANSPORT COEFFICIENTS OF LAYERED TiS3 PHYSICAL REVIEW MATERIALS 6, 014004 (2022)

[6] F. Saiz and R. Rurali, Strain engineering of the electronic and
thermoelectric properties of titanium trisulphide monolayers,
Nano Ex. 1, 010026 (2020).

[7] J. Zhang, X. Liu, Y. Wen, L. Shi, R. Chen, H. Liu, and B. Shan,
Titanium trisulfide monolayer as a potential thermoelectric ma-
terial: A first-principles-based Boltzmann transport study, ACS
Appl. Mater. Interfaces 9, 2509 (2017).

[8] Z. Zhou, H. Liu, D. Fan, G. Cao, and C. Sheng, High ther-
moelectric performance originating from the grooved bands in
the ZrSe3 monolayer, ACS Appl. Mater. Interfaces 10, 37031
(2018).

[9] J. Dai and X. C. Zeng, Titanium trisulfide monolayer: Theoreti-
cal prediction of a new direct-gap semiconductor with high and
anisotropic carrier mobility, Angew. Chem., Int. Ed. 54, 7572
(2015).

[10] I. Ferrer, J. Ares, J. Clamagirand, M. Barawi, and C. Sánchez,
Optical properties of titanium trisulphide (TiS3) thin films, Thin
Solid Films 535, 398 (2013).

[11] Y.-Q. Wang, X. Wu, Y.-F. Ge, Y.-L. Wang, H. Guo, Y. Shao, T.
Lei, C. Liu, J.-O. Wang, S.-Y. Zhu et al., Tunable electronic
structures in wrinkled 2D transition-metal-trichalcogenide
(TMT) HfTe3 films, Adv. Electron. Mater. 2, 1600324
(2016).

[12] J. Kang and L.-W. Wang, Robust band gap of TiS3 nanofilms,
Phys. Chem. Chem. Phys. 18, 14805 (2016).

[13] F. Iyikanat, R. T. Senger, F. M. Peeters, and H. Sahin, Quantum-
transport characteristics of a p-n junction on single-layer TiS3,
ChemPhysChem 17, 3985 (2016).

[14] F. Iyikanat, H. Sahin, R. T. Senger, and F. M. Peeters, Vacancy
formation and oxidation characteristics of single layer TiS3,
J. Phys. Chem. C 119, 10709 (2015).

[15] S. Furuseth, L. Brattas, and A. Kjejshus, On the crystal struc-
tures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3, Acta Chem.
Scand. 29a, 623 (1975).

[16] R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, and L.
Yang, Enhanced thermoelectric efficiency via orthogonal elec-
trical and thermal conductances in phosphorene, Nano Lett. 14,
6393 (2014).

[17] B. Liao, J. Zhou, B. Qiu, M. S. Dresselhaus, and G. Chen,
Ab initio study of electron-phonon interaction in phosphorene,
Phys. Rev. B 91, 235419 (2015).

[18] G. Gaddemane, W. G. Vandenberghe, M. L. Van de Put, S.
Chen, S. Tiwari, E. Chen, and M. V. Fischetti, Theoretical
studies of electronic transport in monolayer and bilayer phos-
phorene: A critical overview, Phys. Rev. B 98, 115416 (2018).

[19] K. Momma and F. Izumi, VESTA 3 for three-dimensional visu-
alization of crystal, volumetric and morphology data, J. Appl.
Crystallogr. 44, 1272 (2011).

[20] G. Samsonidze and B. Kozinsky, Accelerated screening of
thermoelectric materials by first-principles computations of
electron-phonon scattering, Adv. Energy Mater. 8, 1800246
(2018).

[21] A. M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson,
K. A. Persson, and A. Jain, Efficient calculation of carrier
scattering rates from first principles, Nat. Commun. 12, 2222
(2021).

[22] F. Giustino, Electron-phonon interactions from first principles,
Rev. Mod. Phys. 89, 015003 (2017).

[23] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics:
Basic Principles and New Materials Developments, Springer

Series in Material Science, Vol. 45 (Springer Verlag, Berlin,
2001).

[24] O. Caballero-Calero and R. D’Agosta, Review–towards the next
generation of thermoelectric materials: Tailoring electronic and
phononic properties of nanomaterials, ECS J. Solid State Sci.
Technol. 6, N3065 (2017).

[25] R. D’Agosta, Towards a dynamical approach to the calculation
of the figure of merit of thermoelectric nanoscale devices, Phys.
Chem. Chem. Phys. 15, 1758 (2013).

[26] R. Biele and R. D’Agosta, Beyond the state of the art: Novel
approaches for thermal and electrical transport in nanoscale
devices, Entropy 21, 752 (2019).

[27] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-
limited mobility in n-type single-layer MoS2 from first princi-
ples, Phys. Rev. B 85, 115317 (2012).

[28] F. Murphy-Armando and S. Fahy, First-principles calculation of
carrier-phonon scattering in n-type Si1-xGex alloys, Phys. Rev.
B 78, 035202 (2008).

[29] F. Murphy-Armando, G. Fagas, and J. C. Greer, Deformation
potentials and electron-phonon coupling in silicon nanowires,
Nano Lett. 10, 869 (2010).

[30] B. Xu and M. J. Verstraete, First Principles Explanation of the
Positive Seebeck Coefficient of Lithium, Phys. Rev. Lett. 112,
196603 (2014).

[31] S. Y. Savrasov and D. Y. Savrasov, Electron-phonon in-
teractions and related physical properties of metals from
linear-response theory, Phys. Rev. B 54, 16487 (1996).

[32] S. Poncé, E. Margine, C. Verdi, and F. Giustino, EPW:
Electron–phonon coupling, transport and superconducting
properties using maximally localized Wannier functions,
Comput. Phys. Commun. 209, 116 (2016).

[33] S. Poncé, E. R. Margine, and F. Giustino, Towards predictive
many-body calculations of phonon-limited carrier mobilities in
semiconductors, Phys. Rev. B 97, 121201(R) (2018).

[34] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.6.014004 for an explanation of the
electronic anisotropy, difference between bulk and monolayer
thermal transport properties, and comparison of the figure of
merit and lattice conductance with the literature.

[35] H. Liu, X. Yu, K. Wu, Y. Gao, S. Tongay, A. Javey, L. Chen,
J. Hong, and J. Wu, Extreme in-plane thermal conductivity
anisotropy in titanium trisulfide caused by heat-carrying optical
phonons, Nano Lett. 20, 5221 (2020).

[36] For the monolayer, we have normalized κlat by the numerical
factor 20.28/8.72, i.e., the ratio of the height of unit cell used in
the calculation and the estimated thickness of the monolayer. In-
deed, in Quantum Espresso, we need to add a consistent amount
of vacuum to avoid interaction within the replica induced by
periodic boundary conditions.

[37] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., QUANTUM ESPRESSO: A modular and open-source
software project for quantum simulations of materials, J. Phys.:
Condens. Matter 21, 395502 (2009).

[38] K. F. Garrity, J. W. Bennett, K. M. Rabe, and D.
Vanderbilt, Pseudopotentials for high-throughput DFT calcula-
tions, Comput. Mater. Sci. 81, 446 (2014).

[39] S. Grimme, Semiempirical GGA-type density functional con-
structed with a long-range dispersion correction, J. Comput.
Chem. 27, 1787 (2006).

014004-7

https://doi.org/10.1088/2632-959X/ab89ea
https://doi.org/10.1021/acsami.6b14134
https://doi.org/10.1021/acsami.8b12843
https://doi.org/10.1002/anie.201502107
https://doi.org/10.1016/j.tsf.2012.10.033
https://doi.org/10.1002/aelm.201600324
https://doi.org/10.1039/C6CP01125J
https://doi.org/10.1002/cphc.201600751
https://doi.org/10.1021/acs.jpcc.5b01562
https://doi.org/10.3891/acta.chem.scand.29a-0623
https://doi.org/10.1021/nl502865s
https://doi.org/10.1103/PhysRevB.91.235419
https://doi.org/10.1103/PhysRevB.98.115416
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1002/aenm.201800246
https://doi.org/10.1038/s41467-021-22440-5
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1149/2.0111703jss
https://doi.org/10.1039/C2CP42594G
https://doi.org/10.3390/e21080752
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1103/PhysRevB.78.035202
https://doi.org/10.1021/nl9034384
https://doi.org/10.1103/PhysRevLett.112.196603
https://doi.org/10.1103/PhysRevB.54.16487
https://doi.org/10.1016/j.cpc.2016.07.028
https://doi.org/10.1103/PhysRevB.97.121201
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.6.014004
https://doi.org/10.1021/acs.nanolett.0c01476
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/j.commatsci.2013.08.053
https://doi.org/10.1002/jcc.20495


ROBERT BIELE AND ROBERTO D’AGOSTA PHYSICAL REVIEW MATERIALS 6, 014004 (2022)

[40] V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and
A. Vittadini, Role and effective treatment of dispersive forces
in materials: Polyethylene and graphite crystals as test cases,
J. Comput. Chem. 30, 934 (2009).

[41] G. K. Madsen and D. J. Singh, BoltzTraP. A code for calculating
band-structure dependent quantities, Comput. Phys. Commun.
175, 67 (2006).

[42] F. Ghasemi, R. Frisenda, E. Flores, N. Papadopoulos, R. Biele,
D. Perez de Lara, H. S. J. van der Zant, K. Watanabe, T.

Taniguchi, R. D’Agosta et al., Tunable photodetectors via in
situ thermal conversion of TiS3 to TiO2, Nanomaterials 10, 711
(2020).

[43] A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon
lifetimes in Brillouin zones, Phys. Rev. B 91, 094306 (2015).

[44] K. Mizokami, A. Togo, and I. Tanaka, Lattice thermal conduc-
tivities of two Si2 polymorphs by first-principles calculations
and the phonon Boltzmann transport equation, Phys. Rev. B 97,
224306 (2018).

014004-8

https://doi.org/10.1002/jcc.21112
https://doi.org/10.1016/j.cpc.2006.03.007
https://doi.org/10.3390/nano10040711
https://doi.org/10.1103/PhysRevB.91.094306
https://doi.org/10.1103/PhysRevB.97.224306

