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Ab initio free energies of liquid metal alloys: Application to the phase diagrams of Li-Na and K-Na
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Comparison of free energies between different phases and different compositions underlies the prediction
of alloy phase diagrams. To allow direct comparison, consistent reference points for the energies or enthalpies
are required, and the entropy must be placed on an absolute scale, yielding absolute free energies. Here we
derive absolute free energies of liquids from ab initio molecular dynamics by combining the directly simulated
enthalpies with an entropy derived from simulated densities and pair correlation functions. As an example of
the power of this method we calculate the phase diagrams of two binary alkali metal alloys, Li-Na and K-Na,
revealing a critical point and liquid-liquid phase separation in the former case, and a deep eutectic in the latter.
Good agreement with experimental data demonstrates the power of this simple method.
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I. INTRODUCTION

The free energy of a compound, G = H − T S, depends
on both the enthalpy H and the entropy S. Shifting H by a
constant value has no consequence because only free energy
differences enter into thermodynamics. Although the values
are arbitrary, comparing the free energies of competing phases
is facilitated if consistently chosen reference values are ap-
plied to the enthalpies. By thermodynamic convention, the
reference point for enthalpy of a compound is chosen as
the sum of the enthalpies of all constituent elements in their
stable state at standard temperature and pressure. However,
other choices can be equally valid, in principle. For example,
one could choose the enthalpy as calculated within density
functional theory (DFT) at temperature T = 0 K as the refer-
ence point, placing high-temperature enthalpies as calculated
from ab initio molecular dynamics (AIMD) on a well-defined
absolute scale. In contrast, since the entropy enters the free
energy multiplied by T , its actual value cannot be chosen
arbitrarily. Indeed, a unique reference point for the entropy is
provided by the third law; namely, S must vanish at T = 0 K.
The combination of enthalpy on a well-defined relative scale
and entropy on an absolute scale yields absolute free energy.

Knowledge of absolute entropy S(E ) is equivalent to
knowledge of the configurational density of states �(E ).
Histogram [1] and entropic sampling methods [2] such as
Wang-Landau [3] calculate �(E ) up to an unknown constant
factor, yielding relative but not absolute entropies. In some
special discrete cases, such as lattice models where the total
number of states is known, �(E ) can be normalized yielding
absolute entropy.

Most methods to compute absolute free energy rely on
connecting the free energy of interest to some reference state
of known free energy. Thermodynamic integration [4] cal-
culates ∂G/∂λ through simulation (λ is some parameter in

the Hamiltonian) then numerically integrates this derivative.
Thermodynamic perturbation theory [5,6] expresses G(λ) as
a low-order Taylor series expansion. Umbrella sampling [7]
and the Bennett acceptance ratio method [8] provide increased
computational efficiency to these basic approaches, as do
other schemes [9]. In practice, the thermodynamic integra-
tion requires reversible paths so that the free energy and its
derivatives are well defined. This is sometimes referred to
as the slow-growth approach [10–12]. Jarzynski’s identity
exp(−β�F ) = 〈exp(−βWλ)〉 holds even for nonequilibrium
transitions and allows for evolution over short time durations,
which is known as the “fast-growth” method [13].

Other methods build the free energy through sequential
addition of particles. The exact scanning approach [14–16]
computes the partial density of states ρ(αk|αk−1 · · · α1) where
the set {α j} is an ordered sequence of states containing succes-
sively more particles. Similarly, the particle insertion method
[17] calculates the free energy difference of a k-atom system
and a (k − 1)-atom system (i.e., the chemical potential), al-
though without explicitly calculating the density of states.

The empirical CALPHAD approach [18,19], proposes an-
alytical free energy models for the Gibbs free energy G(x, T )
of a compound with composition x. Starting from the ideal
free energy Gideal = Hideal − T Sideal, CALPHAD models the
excess free energy in a series of Redlich-Kister polynomials
[20] with coefficients obtained from experimental information
such as heat capacity and phase diagrams. The result is a set
of free energy functions in analytic form that can be used to
interpolate the free energy into compositions for which no
data are available.

We recently developed an approximate method to calculate
absolute entropy of liquid metals from AIMD simulations
of their densities and pair correlation functions [21,22].
Since entropies cannot otherwise be derived directly from
simulations, our method provides a feasible approach to
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calculate the absolute entropy, and hence the absolute free
energy, with high accuracy and reduced computational effort.
As a demonstration of the utility of absolute free energy
and the power of our calculational approach, we apply the
method to calculate the free energies of two binary alkali
metal alloy systems, Li-Na and K-Na. These examples are
chosen because, despite the seeming chemical similarity, the
two systems exhibit very different phase behaviors. Li and Na
are nearly immiscible, both in the solid state and in the liquid
below a critical point at T = 578 K. In contrast, K-Na com-
pounds remain liquid below the melting points of elemental
Na and K, forming a deep eutectic at 33% Na and T = 260 K
(−13 ◦C). The low melting point of K2Na (often abbreviated
as “NaK”) makes the liquid alloy useful as a coolant for
nuclear reactors [23] and other applications. The immiscibility
of Na in Li makes it potentially useful for suppression of
dendrites in Li-ion batteries [24].

In the following we first describe our simulation methods,
including the manner in which we obtain absolute enthalpies
and entropies. Then we validate the methods by compar-
ing our calculated densities for pure elemental liquids with
experimental values, and our absolute entropies with values
tabulated in the NIST-JANAF tables [25]. Finally, we present
our predicted phase diagrams of Li-Na and K-Na and compare
with published experimental results, finding that they show
good agreement. We find a high positive energy of mixing
between Li and Na atoms which leads to phase separation at
moderately high temperatures, with a critical point for phase
mixing at higher temperatures. For the K-Na system, the en-
ergy of mixing is still positive, but it is relatively weak. In
consequence the entropy dominates the free energy. After in-
corporating the Gibbs free energies of competing solid phases,
we observe a deep eutectic transition at temperatures below
0 ◦C.

II. METHODS

We simulate liquid K-Na and Li-Na using ab initio energies
and forces to accurately reproduce their configurational en-
sembles. Different strategies are used for elemental and binary
metallic systems. For pure elements standard ab initio molec-
ular dynamics (AIMD) simulations are performed. For binary
alloys, we supplement AIMD with additional Monte Carlo
chemical species swapping steps [26] in order to accelerate
the sampling of diverse configurations. Enthalpies are taken
directly from the ab initio total energies, while entropies are
obtained from integrals of correlation functions [21,22]. We
carry out our simulations in canonical ensembles although our
entropy model is expressed in the grand canonical ensemble,
relying on locality of the correlations to achieve ensemble
independence [27].

Specific simulated temperatures and compositions are
chosen to cover the relevant soluble regions of the Li-
Na and K-Na phase diagrams. Only soluble phases are
chosen to avoid contaminating our data with multiple
phases and interfacial free energies. We then fit the Gibbs
free energy to an analytical model from which we de-
rive the phase diagrams by computing the convex hull of
G(x, T ). Individual data points are given in the Supplemental
Material [28].

A. Ab initio molecular dynamics and Monte Carlo

Our AIMD simulations apply electronic density functional
theory as implemented in the Vienna Ab initio Simulation
Package (VASP [29,30]). First-principles energies and forces
are calculated using the PBE generalized gradient approx-
imation [31,32]. MD time steps are set at 1 fs with the
temperature controlled in the NV T ensemble using a Nosé
thermostat. We take a plane-wave basis set with a cutoff
energy of E = 300 eV. Semicore electrons are included in
the pseudopotentials for potassium atoms and sodium atoms
while only valence electrons are considered for lithium atoms.
We employ simulation cells of 300 atoms for K-Na and 500
atoms for Li-Na. Justification for these decisions is presented
in Appendix A.

Simulations at a given temperature and composition are
pre-annealed for a minimum of 1 ps, until the onset of equi-
librium energy fluctuations, followed by data acquisition for
a minimum of 2 ps. We take equilibrated configurations from
high-temperature runs as initial conditions for lower temper-
ature runs. To predict the density at a given temperature and
composition, we monitor the total pressure at five different
volumes, and then find the volume at which the pressure
vanishes by fitting to a quadratic polynomial.

In binary systems, we additionally perform Metropolis
Monte Carlo by testing a randomly chosen interchange of
two atoms’ chemical species and accepting the change with
probability exp (−�E/kBT ). We attempt one species swap
every 10 MD steps. On average, a total number of 300
atomic swap attempts are made with a acceptance rates around
15%. Supplementing AIMD with Monte Carlo (MCMD [26])
accelerates the approach to equilibrium and enhances the con-
figurational diversity of the simulated ensemble, as discussed
in Appendix B.

B. Entropy

We calculate absolute entropies directly from MCMD
simulations performed at the temperatures, densities, and
compositions of interest by evaluating the leading terms in an
expansion of the entropy in a series of progressively higher-
order correlation functions [27,33–35]. This method has been
previously validated for elemental liquid Al and Cu, and ap-
plied to the AlCu binary liquid alloy [21,22].

The quantum mechanically derived absolute entropy of the
ideal gas is

Sideal/kB = 5

2
−

∑
α

xα ln
(
ρxαλ3

α

)
, (1)

where α denotes atomic species, λα =
√

h2/2πmαkBT is the
thermal de Broglie wavelength of species α, xα is its fraction,
and ρ is total atomic number density. Note that Sideal contains
the entropy of mixing

Smix/kB = −
∑

α

xα ln(xα ). (2)

The leading term in the correlation function expansion is the
single-body entropy S1 = Sideal − kB, with the difference aris-
ing from interchange of multiple atoms [22,27]. The two-body
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FIG. 1. Radial distribution functions gαβ (r) of (a) K2Na and (b) Li2Na calculated by MCMD for for N = 300 atoms at T = 473 K. (c) and
(d) Two-body entropies Sαβ and S2 [see Eq. (5)] integrated up to distance R.

corrections to S1 include a fluctuation term

Sfluct = 1

2

∑
α,β

xαxβ

(
1 + ρ

∫ R

0
dr 4πr2[gαβ (r) − 1]

)
(3)

that is positive but very small (it is proportional to the isother-
mal compressibility) and an information term

Sinfo = −1

2
ρ

∑
α,β

xαxβ

∫ R

0
dr 4πr2gαβ (r) ln gαβ (r) (4)

that is negative-definite and reflects the entropy reduction
due to the information content of the pair correlation func-
tions. We approximate the total entropy as S ≈ S1 + S2 with
S2 = Sfluct + Sinfo. Note that S2 can be decomposed into partial
contributions for each species pair,

S2 =
∑
αβ

xαxβSαβ,

Sαβ = 1

2

(
1+ ρ

∫ R

0
dr 4πr2[gαβ (r) ln gαβ (r) + gαβ (r) − 1]

)
.

(5)

Figures 1(a) and 1(b) show correlation functions of K2Na
and Li2Na, respectively. Each correlation function vanishes

within its atomic core, and thereafter exhibits decaying os-
cillations. Positions of the first peaks vary in accordance with
relative atomic diameters. The oscillation frequencies are sim-
ilar for each combination of species, suggesting a universal
origin of oscillation. Indeed it is known that alkali metals pos-
sess long-range oscillatory potentials [36] with a frequency of
twice the Fermi wave number [37]. For valence-1 elements
with atomic volume v = 1/ρ, the Fermi wave numbers kF =
(3π2/v)1/3 evaluate to kF = 0.75 and 1.01 Å−1 for K2Na and
Li2Na, respectively. These values roughly match the kF values
0.84 and 1.04 Å−1 inferred from observed oscillation frequen-
cies of the correlations. A hard-sphere distribution function
with hard-sphere radius R = (3v/4π )1/3 also matches the fre-
quencies but does not reproduce the detailed shapes of the
correlation functions.

Because the oscillations decay, the integrals in Eq. (5) con-
verge as the upper limit of integration R increases, as shown
in Figs. 1(c) and 1(d). We take the values at R = 12 Å for our
values of S2. Sαβ and S2 are negative-definite (in the large-R
limit) reflecting the loss of entropy due to the correlations.
The entropy loss is larger for Li2Na than for K2Na because
of the strong chemical order that prefers like neighbors (Li-Li
and Na-Na), while this effect is nearly absent in the case of
K2Na.
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FIG. 2. Comparison between calculated and experimental entropies (top row) and enthalpies (bottom row) for Li, Na, and K (from left
to the right). Experimental values labeled NIST come from the NIST-JANAF standard reference database [25], while experimental entropies
at low temperatures are integrated from the heat capacities Cp tabulated by Hultgren [41]. Three liquid state entropy approximations are
represented: the ideal gas entropy Sideal, and the sum of the one-body and two-body entropies S1 + S2 with and without electronic entropy Se.
Solid state entropies Ssolid are derived from PHONOPY.

C. Electronic free energy

Electronic free energies are included in every case to
supplement our systematic calculations of thermodynamic
quantities of alkali metals. Electronic free energies at finite
temperature are obtained from the DFT-predicted electronic
density of state D(ε) as discussed in [38]. Electronic contri-
butions to the relative free energies �G are relatively small
compared with �G itself.

D. Interpolation

Because we carry out simulations at discrete tempera-
tures and compositions, but we wish to determine phase
boundaries as continuously varying functions of tempera-
ture, we require a method to interpolate the enthalpy and
entropy. To compute the phase diagrams it suffices to model
�H (x, T ) and �S(x, T ) relative to their values at the
concentration end points x = 0 and x = 1. Then the com-
positions x where �G(x, T ) = �H (x, T ) − T �S(x, T ) lies
above its own convex hull determine the phase coexistence
regions.

We fit the excess enthalpy �H (x, T ) and two-body term
S2(x, T ) to a quartic polynomial

f (x, T ) = x(1 − x)[a(T )x + b(T )x + C(T )x2], (6)

where a(T ), b(T ), and c(T ) are linear functions of T , result-
ing in 6 fitting parameters for each thermodynamic function f .
The enthalpy and entropy satisfy the constraints f (0) = 0 and
f (1) = 0, while the quadratic function of composition in the
brackets captures asymmetry. The simple linear temperature

dependence approximation is designed for accuracy over a
narrow temperature range. This approximation works well for
single-species liquid enthalpies as shown in Fig. 2. The S1

term is calculated from Eq. (1) using a quartic function to
fit the composition-dependent density. By this approach, we
capture the logarithmic singularities of the entropy near x = 0
and x = 1.

E. Solid phases

The Gibbs free energies of competing phases must be in-
cluded to determine the global phase diagrams. These phases
are body-centered-cubic solid phases of pure elements, and
a Laves phase (Pearson hP12, Strukturbericht C14) KNa2

binary phase. The Gibbs free energy for a solid phase includes
the vibrational free energy Gv , the electronic free energy Ge,
and a configurational free energy Gc. In principle the con-
figurational term includes contributions due to chemical and
vacancy disorder [38]; however, experimental evidence sug-
gests that the K-Li-Na solid phases are nearly stoichiometric,
so we simply approximate Gc with the enthalpy of the fully
relaxed (i.e., T = 0 K) structure. First-principles vibrational
free energy calculations use the same pseudopotentials and
exchange-correlation function as for the liquid simulations,
but with an increased plane-wave cutoff energy of 500 eV and
an increased electronic k-mesh density so that we may obtain
accurate interatomic force constants. The Gibbs free energies
at finite temperatures are calculated within the quasiharmonic
approximation using PHONOPY [39,40]. The differing cut-
off energies and k meshes result in an offset between solid
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FIG. 3. Snapshots of typical MCMD simulated configurations for (left) K2Na and (right) Li2Na at T = 473 K. Positions are plotted from
back to front, with diameters indicating depth (large at the back and small in front, to enhance visibility). Spatial units are Å.

and liquid enthalpies, which we correct by matching our cal-
culated enthalpy differences between 200 K and 500 K to
experiment.

III. RESULTS

A. Pure elemental Li, Na, and K

The calculated entropies and enthalpies of pure elemental
Li, Na, and K in their solid and liquid states are plotted
in Fig. 2 and compared to experimental values from the
NIST-JANAF tables [25]. After shifting our reference point
for enthalpy to set �H = 0 at T = 293.15 K, the calculated
enthalpies are in excellent agreement with experiment across
both solid and liquid states, with deviations of 1 kJ/mol or
less. Solid state entropies are also in excellent agreement with
experiment at low temperatures but show a slight deficit of
less than 1 J/(K mol) just below the melting temperatures.
We compare three different models for the liquid state en-
tropy. The ideal gas model Sideal substantially overestimates
the entropy, while the single-body entropy S1 yields an im-
provement, and the two-body correction S2 brings the value
close to experiment, but slightly below. Finally, a small con-
tribution from the electronic entropy provides an excellent
match to experiment at temperatures above melting. A small
deficit remains in the liquid entropy close to the melting point
that is presumably due to three- and four-body correlations
[22].

B. Binary K-Na

As shown in our simulation snapshot of K2Na at T =
473 K in Fig. 3 (left), K and Na atoms are uniformly dis-
tributed, indicating a homogeneous liquid state. We confirm
a stable mixture of liquid K-Na alloy at T = 473 K and
x = 33%. The stability of the liquid alloy is confirmed by
our calculated enthalpies, entropies, and Gibbs free energies
as plotted in Fig. 4. The internal energy of the compound
is positive, which could indicate phase separation, but the
amplitude of its peak is substantially below the amplitude of
the peak in the Li-Na system, and far below the magnitude of

T S. Values of S1 contain the density ρ, which varies mono-
tonically and smoothly with composition, and also contains
the entropy of mixing Smix. Hence −T �S1 is negative and
strongly convex. Note that although S2 is negative-definite,
we find that −T �S2, defined relative to the pure elements,
is negative and seemingly is also convex. As a result, the
total Gibbs free energy is dominated by entropy and is convex
over all compositions, resulting in continuous miscibility of
K and Na at 473 K. We would expect phase separation below
T = 189 K based on extrapolation of �G to low temperatures,
but this is preempted by the eutectic transition to the solid
phases, as we now discuss.

We compare the free energy of the liquid phase with its
competing solid phases in order to predict the composition-
and temperature-dependent K1−x-Nax phase diagram as
shown in Fig. 4(c). K-Na has three known low-temperature
phases: elemental K (x = 0), elemental Na (x = 1), and the
KNa2 Laves phase (x = 2/3). In the experimental phase di-
agram, a deep eutectic transition occurs at xE ≈ 33% and
TE ≈ 260 K, where the K-Na alloy exists in the liquid state
at temperatures below the melting points of elemental K and
Na. In our predicted phase diagram, a eutectic transition is
found near T = 268 K and x = 40.3%, not very far from the
experimental position.

The deviation of these values from the experimental transi-
tion might be an effect of the systematic error in prediction via
DFT or it might be due to our approximations for the entropy.
To understand which is most responsible, we compare the
predicted melting points (i.e., the temperatures at which solid
and liquid free energies cross) with experiment as seen at
x = 0 and 1 in Fig. 4(c). Our calculated melting temperatures
of elemental K and Na are approximately 359 K and 355 K,
respectively, which differ somewhat from the experimental
values of 336 K and 370 K. An alternative approach to calcu-
lating melting temperatures via DFT using interface pinning
predicts the melting point of elemental Na to be Tm ≈ 354 K
[45] which is very close to our predicted 355 K. This agree-
ment between our approach and interface pinning suggests
the discrepancy of both predictions compared with experiment
may lie primarily within DFT.
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FIG. 4. Top row: Thermodynamic functions of (a) K-Na and (b) Li-Na at T = 473 K, relative to values for pure elements. S1 and S2 are
the one- and two-body contributions to the entropy. Data points are individual simulations, while curves are fits to Eq. (6) (dashed are from
N = 300 atoms, solid from N = 500). The orange dotted line in (b) shows the convex hull of G(x). Bottom row: Predicted and experimental
phase diagrams [42–44] of (c) K-Na and (d) Li-Na.

C. Li-Na

We present a snapshot of a 300-atom Li2Na system at
T = 473 K in Fig. 3 (right). The snapshot shows clear phase
separation into an Na-rich region and an Li-rich region that
mutually coexist in equilibrium. The separation is also evident
in the correlation functions in Fig. 1(b), where the amplitudes
of the first two peaks of the Li-Na pair correlation function are
substantially smaller than those of Li-Li and Na-Na, indicat-
ing effective Li-Na repulsion.

In order to understand how internal energies and entropies
contribute to the total free energies and drive the system
toward phase separation, we plot our calculated enthalpy, en-
tropy, and Gibbs free energy for Li1−xNax in Fig. 4(b). The
energy cost of mixing Li and Na is large compared to that
of mixing K and Na [Fig. 4(a)], and similar in magnitude
but opposite in sign to −T S. The resulting free energy lacks
convexity and hence explains the separation of liquid Li and
Na at low and moderately high temperatures. Specifically,
G(x) lies above its own convex hull over the interval from
x = 0.07 to x = 0.90 [see dotted orange line in Fig. 4(b)].

A liquid alloy in this composition range will phase separate
into a mixture of those two end point compositions. Note that
we only use data at compositions that lie within our predicted
single-phase regions.

Collecting data similar to those of Fig. 4(b) at higher
temperatures (see Fig. 8 in Appendix C), we then fit the
temperature evolution of the phase boundaries. Figure 4(d)
compares our predicted phase coexistence region with the
experimental results labeled Jost [43] and Khairulin [44].
This figure is based on simulated data from T = 523 K and
573 K. Note that we reproduce the boundary qualitatively,
including the asymmetry showing greater solubility at the
Na-rich end, with the notable exception of the vicinity of
the critical point. The difficulty in the vicinity of the critical
point is not a surprise because the expected singularities in the
thermodynamic functions cannot be represented within our
polynomial form [Eq. (6)]. Similarly, the diverging correla-
tion lengths near the critical point cannot be accommodated
in our finite-size simulation cells. Critical exponents of Li-
Na have recently been measured experimentally and match
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expectations for the three-dimensional Ising universality class
[44].

In addition to the Li-Na phase separation, a eutectic transi-
tion (not shown) occurs at xNa ≈ 97% and T ≈ 290 K and
a monotectic transition near the melting point of Li. Both
features are also reported in the experimental phase diagram
[46].

IV. CONCLUSIONS

In summary, we systematically studied thermodynamic
properties of solid and liquid K-Na and Li-Na metallic al-
loys at finite temperature and zero pressure. The Gibbs free
energies of bcc K, Li, and Na, and Laves phase KNa2,
were calculated in the quasiharmonic approximation as imple-
mented in PHONOPY [39,40]. Standard ab initio molecular
dynamics and Monte Carlo/molecular dynamics simulations
modeled the liquid alloys. Absolute entropies in the liquid
state were obtained as functionals of simulated densities and
pair correlation functions. We note that a similar approach
is possible in the solid state also [21,47]. At T = 473 K we
observed phase separation in Li2Na in contrast to phase mix-
ing in K2Na, and these observations were justified by explicit
calculation of the composition-dependent absolute Gibbs
free energy G(x) that revealed nonconvexity in the case of
Li-Na.

Extending our calculations to other temperatures, we pre-
dicted composition-temperature phase diagrams that agreed
well with experiment in most respects. Specifically, we ob-
tained a deep eutectic transition in K-Na and liquid-liquid
phase separation in Li-Na. Our principal shortcoming was our
inability to accurately model the critical point for Li-Na phase
separation. We attribute this difficulty to the thermodynamic
singularities and diverging correlation length that characterize
the critical point [44].

Although the present study exclusively addresses the spe-
cial case of liquid Li-Na and K-Na alloys, our methods
generalize to more complex liquid metals. This could prove
useful in conjunction with design of multicomponent high-
entropy alloys [48] where knowledge of the liquidus and

solidus temperatures would be helpful. If we have C chemical
species, in a simulation cell of N atoms, then at fixed N the
available data Dαβ relevant to a given correlation function
gαβ (r) falls off as 1/C. To maintain accuracy as C grows, in
the face of diminishing data, would require run times to grow
as C2. Further, correct prediction of liquid-solid phase equilib-
ria depends on prior knowledge of the coexisting solid phases.

The principal limiting factor in the present approach is
our truncation of the entropy expansion at the level of pair
correlations. This is likely not sufficient for molecular liquids,
and liquids with strong covalent boding. Additionally, in order
to converge the integrals in Eqs. (3)–(5) the simulation cell
size must exceed the range of the correlation functions. We
already saw in Fig. 4 that the diverging correlation length
limited our accuracy close to the critical point of Li-Na.
Similar difficulties would occur due to long-range Coulomb
interactions in ionic liquids.
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APPENDIX A: OPTIMIZATION OF CALCULATION
PARAMETERS

Density functional theory calculations make numerous ap-
proximations that affect the accuracy of its predictions. Here
we test choices of numerous calculational details that affect
our results, seeking to achieve a balance between accuracy and
computational efficiency. Because the enthalpy and entropy
both depend sensitively on the density of the liquid, and exper-
imental data on density are readily available and presumably
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fit, and the star marks our fitted P = 0. (b) Variation of predicted density ρ = 300/a3 with respect to number of atoms N .
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reliable, we take the accuracy of our predicted density as a
measure of accuracy overall.

1. Size of simulation cell

Previously, in our study of liquid Al [22], we observed
oscillations in the predicted density as a function of the
size of the simulation cell. This effect was related to the
commensurability of cell lattice constant a0 with the os-
cillation frequency of the spatial correlation functions. To
assess this behavior for alkali metals we simulated elemental
liquid Li using N = 100–400 atom cells. The runs were per-
formed using the valence-1 PAW_PBE-type pseudopotential

“Li 17Jan2003” and we employed a plane-wave energy cut-
off of 180 eV that exceeds the default by the recommended
30%, and a single k point. For each number of atoms we
performed runs at T = 473 K taking several cell sizes a in
the vicinity of the expected optimum a0. We fit the average
pressure (including the kinetic component [49]) at each size
to a quadratic and solved for the equilibrium volume at P = 0
as illustrated in Fig. 5(a). Oscillations die off with increasing
size, and on the basis of Fig. 5(b) we judge that we obtain
accuracy of around 0.2% when N = 300. Since the ideal gas
entropy varies logarithmically with respect to density, this
translates into an uncertainty of around 0.002kB in the ideal
gas component of the entropy, and will be a relatively small
component of our overall uncertainty.

When we simulated the Li-Na and K-Na binaries, we found
that the N = 300 atom cells exhibited spontaneous phase
separation (see, e.g., main text Fig. 3) over wide ranges of
composition, even at temperatures far above the expected crit-
ical temperature. In contrast, cells with N = 500 did not show
this behavior, and in fact revealed only localized indications
of separation below the critical temperature. Thus we adopt
N = 300-atom cells for K-Na and N = 500-atom cells for
Li-Na. Further, our thermodynamic modeling is restricted to
data obtained from temperature-composition combinations at
which phase separation is not predicted.

2. Cutoff energy

The incompleteness of the plane-wave basis set creates
systematic errors in the calculated pressure (the Pulay stress
[50]) that diminish as the plane-wave energy cutoff increases.
Different elements, and even different pseudopotentials for the
same element, have very different default energy cutoffs. The
defaults are 140.000 eV for “Li 17Jan2003,” 116.731 eV for
“K_pv 17Jan2003,” and 259.561 eV for “Na_pv 19Sep2006.”
The “_pv” subscripts indicate that p semicore electrons are
treated as valence. Calculational cost grows as the cube of the
number of plane waves, which itself grows as the 3/2 power
of the energy cutoff, leading to rapid growth of cost versus
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FIG. 8. (a)–(d) Thermodynamic functions of Li-Na at temperatures 523–673 K. and (e) predicted phase boundaries. Thermodynamic
functions are enthalpy H (black), one-body entropy −T S1 (red), two-body entropy −T S2 (green), electronic free energy Ge (blue), and total
free energy G (orange). Data points are AIMD simulation (squares for N = 300 atoms, triangles for N = 500). Curves (dashed for N = 300
atoms and solid for N = 500) are fits to Eq. (6). (e) Predicted phase boundaries for Li-Na including all data up to and including temperatures
573–673 K from simulation sizes N = 300 and 500 atoms. Curve labeled Jost is a model fit to experiment [43], while explicit data points are
taken from Khairulin [44].

cutoff, yet consistency of calculated energies requires that the
applied energy cutoff be uniform across different composi-
tions. Since the Na potential requires the highest energy cutoff
for both the Li-Na and K-Na alloy systems, we explore the
sensitivity of the density of Na to the energy cutoff. Testing
values 260, 300, and 340 eV, with systems of N = 300 atoms
at T = 473 K, we obtained densities of 0.02948, 0.02378, and
0.02381 atoms/Å3. Thus we settle on a cutoff of 300 eV. Note
the experimental value is around 0.0237 [see Fig. 6(b)].

Figure 6(d) illustrates the composition-dependent densities
for Li-Na at two temperatures and compare with experiment

[43]. Our predictions follow the experimental trends, while
remaining slightly high.

Note that the predicted density of K drops with increas-
ing energy cutoff, and converges to nearly 5% below the
experimental value at this cutoff. The situation is marginally
improved if we switch to the “K_sv” potential, but not suffi-
ciently to compensate for the increased electron count.

3. XC functional

The choice of exchange correlation functional can lead
to systematic errors in the density. We compared the local
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density approximation (LDA) with the PBE generalized gradi-
ent approximation and with PBEsol for a system of N = 300
Li atoms at T = 473 K using an energy cutoff of 300 eV and
a single k point. These yielded densities of 0.04535, 0.04516,
and 0.04511 atoms/Å3, for LDA, PBE, and PBEsol, respec-
tively, compared with experimental values that range from
0.0444 to 0.0448. All three overestimate the density. PBEsol
proves only marginally better than PBE, and we prefer PBE
because it is more widely used. To test whether this is caused
by neglect of the Li core electrons, we tested the valence-3
“Li_sv 10Sep2004” potential at energy cutoff 650 eV (30%
above its default of 499.034 eV) and found density 0.0462,
which is far above the experimental value. Thus we settle
on the PBE functional and stick with our decision to use the
valence-1 Li potential.

4. Uncertainties in thermodynamic quantities

Our calculations are subject to both systematic and sta-
tistical errors. Density functional theory itself relies on the
approximate exchange-correlation functional, leading to sys-
tematic errors that we do not attempt to quantify, beyond
noting that differing choices of functional had modest influ-
ence on the density as discussed in Sec. A 3, while DFT may
lead to errors in the vicinity of 15 K for the melting point of
Na as discussed in Sec. III B. We truncate our expansion of
the entropy at the pair level, systematically omitting three-
and higher-body correlations. This may be the reason that
our entropy falls below experiment close to the melting point
[22,47], as seen in Fig. 2. We restrict our simulations to
certain finite sizes, leading to errors on the density as shown in
Fig. 5, but also leading to premature phase separation in Li-Na
even at high temperatures above the critical point, when the
correlation length grows beyond our simulated cell size (see
Fig. 8).

To estimate our statistical errors, we break our runs into
three segments and evaluate the standard error on the assump-
tion of uncorrelated errors. For K2Na at T = 473 K we find
statistical errors of order 1 meV/atom in both the enthalpy H
and the entropy −T S2. However, these are anticorrelated so
that the statistical error on G is of order 0.4 meV/atom. These
statistical errors are in general agreement with the scatter of

data points around our smoothed fitting curves as seen in
Figs. 4 and 8.

APPENDIX B: ACCELERATED SAMPLING

Hybrid Monte Carlo/molecular dynamics (MCMD [26])
is applied in order to accelerate the sampling of the config-
urational ensemble. This method supplements conventional
molecular dynamics, in which the structure evolves contin-
uously through diffusion of atoms, with discrete interchanges
of pairs of atoms of differing chemical species. Although the
Monte Carlo steps are less important in the liquid state than in
the solid state, where diffusion is nearly unachievable, we still
see an improvement in equilibration time. Figure 7(a) graphs
the evolution in total energy for a 300-atom Li2Na liquid
at T = 573 K in which atomic species have initially been
randomly interchanged then briefly annealed under conven-
tional AIMD. The energy drops more rapidly under MCMD
as species swaps allow more rapid growth of clusters of like-
species atoms. Once equilibrium is achieved, around 10 ps,
MCMD continues to enhance the diversity of the sampled
ensemble, while AIMD has not yet reached equilibrium. Fig-
ure 7(b) illustrates the evolution of pair correlations during the
MCMD simulation, showing a drop in mixed Li-Na species
pairs and corresponding growth in like-species pairs.

APPENDIX C: DETAILED RESULTS FOR Li-Na

This section presents detailed results for the simulated
thermodynamic functions of Li-Na at various temperatures
and numbers of atoms, as illustrated in Figs. 8(a)–8(d). Non-
convexity of the total Gibbs free energy G(x) predicts phase
separation at each temperature, though the uncertainties on
our fits to Eq. (6) are sufficient to render those predictions
doubtful especially at the higher temperatures. Consequently,
our predicted phase boundaries place the critical points for
phase mixing far above the experimental value [see Fig. 8(e)],
especially for N = 300 atoms, where visible phase separation
(see Fig. 3) persists to the highest temperatures. The exper-
imentally observed asymmetry in the coexistence curve is
respected in every predicted phase boundary.
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