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Solutes that reduce yield strength anisotropies in magnesium from first principles
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Using Labusch-type solid solution strengthening models parameterized with DFT-computed solute-dislocation
interaction energies, we perform a computational search for 63 solutes across the periodic table to find those that
lower anisotropy ratios (non-basal to basal CRSS) of magnesium potentially increasing its ductility per the von
Mises criterion. For this purpose, we compute changes in strength for solutes as a function of composition and
temperature, and compute anisotropy ratios for solutes that include both rare earth and non-rare earth elements.
We specifically focus on solute-dislocation interaction energies in the following DFT-optimized dislocations as
representative of three non-basal plastic deformation modes: 〈c + a〉 edge, (101̄2) tension twinning edge, and the
(101̄1) compression twinning edge. We find that solute-induced changes in non-basal deformation modes can be
approximated using a second-order polynomial in the size misfit of the solutes, which permits rapid screening
of solutes. Our approach to identify solutes known to improve strengthening incorporates solute solubility, and
suggests other solutes that not have been previously explored for strengthening. The 8 rare-earth solutes that our
method suggests as the best, ordered by increasing anisotropy ratios at their optimal concentrations, are: Gd, Tb,
Dy, Nd, Ho, Er, Tm, and Yb. The 12 non-rare-earth solutes that our method suggests as the best, ordered by
increasing anisotropy ratios, are: Y, Mn, Sc, Pb, Ca, Ag, Bi, Tl, Zn, Li, Ga, and Al. Of these, Gd, Nd, Er, Yb, Y,
Mn, Ca, Zn, Li, and Al are used in commercial Mg alloys.
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I. INTRODUCTION

Magnesium alloys have a high strength-to-weight ratio
[1,2] and are therefore of interest to transportation industries
as light weight alternatives to heavier non-ferrous and ferrous
alloys. However, broader application of wrought Mg alloys
in ground transportation vehicles, for example, has been lim-
ited by low room-temperature ductility, poor formability, and
corrosion [3]. The low polycrystalline ductility is a result of
the yield strength anisotropy of the HCP crystal structure
of Mg. Slip activity is primarily limited to the basal plane
at room temperature since the critical resolved shear stress
(CRSS), or yield stress (these two terms are used interchange-
ably throughout), to move basal dislocations is more than
an order-of-magnitude lower than the CRSS for non-basal
deformation modes [4–10]. The large differences between
the basal and non-basal CRSSs result in insufficient active
slip systems at room temperature for generalized plasticity
according to the von Mises criterion [11]; fracture occurs
before plastic deformation and hence component forming re-
quires application of heat to activate non-basal systems [12].
Room-temperature, non-basal plastic deformation modes in
Mg are (101̄2) twinning in tension [7,13], and (101̄2) twin-
ning and the slip of 〈c + a〉 dislocations in compression
[10,14]. One approach to improving Mg plasticity is via solute
additions to strengthen deformation modes, and reduce plastic
anisotropy at lower temperatures. A useful metric is the ratios
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of the solute-induced non-basal CRSSs to the solute-induced
basal CRSS: if a given solute lowers these for realis-
tic solute solubilities in Mg, then improved plasticity will
result.

Significant experimental and theoretical/computational
research has focused on improving Mg alloy plasticity. Solid-
solution strengthening using classical strengthening models
parameterized with solute-dislocation interactions computed
with density functional theory (DFT) has been the subject of
several studies. For example, Yasi et al. [15,16] determined
the strengthening potencies for many different solute species
on basal dislocation slip [6] and thermally-activated basal
to prismatic cross-slip in Mg alloys. Ghazisaeidi et al. [7]
computed the strengthening effects of Al and Zn solutes on
(101̄2) tension twinning edge dislocations, and Buey et al.
[10] performed similar strengthening calculations for Y so-
lute on the slip of 〈c + a〉 edge dislocations. Jang et al. [17]
recently developed a computational approach aimed at explor-
ing activation of 〈c + a〉 slip in Mg alloys. Other studies have
attempted to use surrogate quantities like generalized stacking
fault energies to predict solute effects on non-basal slip in
Mg alloys [18]. Experimental efforts have largely focused
on the effects of alloying elements and processing on grain
refinement [9,19–25] and texture modification [9,24–32], or
introducing solutes [9,25,33,34], shaped precipitates [35–37],
or long-period stacking ordered (LPSO) phases [38–40] to
strengthen basal slip relative to non-basal deformation modes.
These approaches are aimed at reducing the plasic anisotropy
responsible for the poor room-temperature ductility of con-
ventional Mg alloys.
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Recent experiments have led to new Mg alloys with im-
proved room-temperature strength and ductility. Of particular
note are the studies of Shi et al. [41,42], who developed
Mg-2Zn-0.3Ca-0.2Ce-0.1Mn (wt%), a new Mg alloy with
unprecedented room-temperature strength (∼269 MPa) and
ductility (∼9.4%). These properties were achieved with a
homogenization route designed with CALPHAD. Upon heat
treatment, alloy ductility was substantially increased to ∼20%
with a modest decrease in strength. The reported properties
were attributed to a weakening of the basal texture, fine
grain structure (nominal 5.4 μm), and Mn and Mn6Zn3Ca2

precipitates. In a subsequent study, Shi et al. [42] used their
experimental/computational approach to develop Mg-1.0Zn-
1.0Al-0.5Ca-0.4Mn-0.2Ce (wt%) with a new homogenization
route. This alloy has ∼31% ductility and ∼350 MPa strength
at room temperature. Mechanical property improvements
were attributed to a weak or split basal texture, a fine grain
structure (nominal 9.6 μm), and formation of solute clusters.
Zhou et al. [43] found that grain refinement and solid-solution
strengthening are responsible for the considerable ductility of
Mg-Sc-Yb-Mn-Zr alloys.

Despite impressive progress towards improving room-
temperature mechanical properties, a fundamental study on
the effects of a wide range of solutes on non-basal deformation
in Mg is lacking. In particular, results from a comprehensive
search across the periodic table to examine the effect of solute
chemistry on the ratios of the solute-induced change in non-
basal yield stresses to the solute-induced change in basal yield
stress, while accounting for solute solubility, are not available.
There is ample evidence in the literature that solutes such as
Al, Zn, Ca, Mn, and various rare earth elements have a bene-
ficial impact on Mg room-temperature mechanical properties
but not necessarily via the same microstructural mechanisms
[42]. Lithium, for example, is known to reduce the c/a ratio of
Mg and activate non-basal slip while alteration of texture dur-
ing recrystallization in Mg extrusion alloys has been attributed
to Ce additions [44–46]. At present, the contribution from
solute strengthening via interaction of solutes with dislocation
cores on mechanical properties and its importance relative
to other strengthening mechanisms are difficult to determine
with experimental methods.

Here, we combine DFT calculations with solid solution
strengthening models to explore the strengthening effect of 63
different solutes. We were especially interested to learn if our
approach identifies solutes known to improve strengthening
and if it suggests other solutes that not have been previously
explored for strengthening. Solution strengthening in alloys
is a direct consequence of solute interactions with disloca-
tions [47], and electronic structure calculations are needed
to compute these interactions accurately [6]. Therefore, we
used density functional theory (DFT) to compute the interac-
tions of selected solute species with three dislocation types
associated with non-basal deformation in Mg: 〈c + a〉 edge,
(101̄2) tension twinning edge, (101̄1) compression twinning
edge. We use these direct interaction calculations to develop
approximate interaction models that combine geometric in-
formation from the equilibrium dislocation cores in pure
Mg with solute size and chemical misfits—quantities that
can be efficiently computed with DFT. Labusch-type solu-
tion strengthening models previously applied to Y solutes

in 〈c + a〉 edge dislocations [10] and Al and Zn solutes in
(101̄2) tension twinning edge dislocations in Mg [7] are
employed. In addition to alleviating the high computational
cost of calculating the solute-dislocation interactions by di-
rectly substituting every type of solute into all the sites of
the three non-basal dislocation cores, the geometric models
also quantify the relationships between the solute-dislocation
interaction energies and solute misfits. The computed interac-
tion energies parametrize the Labusch models, which predict
changes to CRSS from 63 different solute species on the three
different non-basal plastic deformation modes. We evaluate
the potential of each solute to improve the strength and duc-
tility of Mg by computing the ratios of the solute-induced
change in non-basal CRSSs to the solute-induced change in
basal CRSS. Promising solute candidates reduce these ratios
thereby promoting dislocation slip on a larger number of slip
systems required for generalized plastic deformation. Solute
solubility is incorporated into the ratios.

II. COMPUTATIONAL METHODS

We determine the strengthening of 63 different sub-
stitutional solute species on 〈c + a〉 and (101̄2) tension
and (101̄1) compression twinning edge dislocations in Mg
using Labusch-type solid solution strengthening models
[7,10,48,49]. The inputs to the strengthening models are (1)
equilibrium dislocation core structures, which can determine
(2) solute-dislocation interaction energies, along with (3) dis-
location line tension. The dislocation core structures and
solute interactions are all computed with density functional
theory, while the line tension requires a empirical interatomic
potential. As seen below, the Labusch model requires the
interaction energy U (xi, yi ) of a solute at a variety of xi, yi

positions within the dislocation core. Doing so directly re-
quires a large number of computationally intense calculations.
However, the direct calculations can be effectively replaced
with a computationally simpler approach: the pure Mg defect
geometries can be analyzed in terms of their local volumetric
strain and local “slip” (in the pyramidal plane for 〈c + a〉,
or the corresponding twin boundary for twin dislocations),
and then the solute “misfit”—changes in lattice constants,
stacking fault or twin energies—can be used to efficiently and
accurately compute the interaction energy. Such an approach
has a long history [6,7,10,16], and can be validated against
the direct calculations. In addition, the interaction energy for
solutes in different planes of a pyramidal fault or the two twin
boundaries can also be effectively modeled as a quadratic
function of the size misfit εs

v . While this is not possible for
the basal fault—which has nearly zero elastic strain—the
non-basal deformation modes all involve large local distor-
tions with significant volumetric components. The end result
is that the solute-dislocation interaction energies themselves
are quite accurately expressible as quadratic functions of the
solute size misfits, and so the strengthening models below can
be rewritten in terms of the solute size misfits only. The Sup-
plemental Material [50] contains additional details of the den-
sity functional theory calculations for line defects and the
various solute misfits calculations, and the empirical models
with respect to volumetric strain.
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A. Solid-solution strengthening models

Labusch-type weak pinning models are used to calculate
the effects of solute concentration, temperature, and strain rate
on the critical resolved shear stress (CRSS) of the 〈c + a〉
edge dislocation, and (101̄1) and (101̄2) twinning edge dis-
locations. This approach has been previously applied to Y
solutes with a 〈c + a〉 edge dislocation in Ref. [10], and for
Al and Zn solutes with a (101̄2) twinning edge dislocation in
Ref. [7]. We briefly review the approach here. A dislocation
bows out through a random field of solutes, taking on a shape
that minimizes the combination of the solute-dislocation in-
teraction energies and the elastic energy due to the change in
the shape of the dislocation. The presence of solutes produces
energy barriers that the dislocation must overcome to move
through the lattice, thereby raising the yield stress. The total
energy Etot of the dislocation as a function of the dislocation
bowing amplitude w and the bowed-out segment length ζ is

Etot (ζ ,w) =
[(

�
w2

2ζ

)
−

(
csζ

a0

)1/2

�Ẽp(w)

]
L

2ζ
, (1)

where cs is solute concentration, � is the dislocation line ten-
sion, L is the dislocation line length, and a0 is the periodicity
along the threading direction. The interaction with solutes
enters through �Ẽp(w); if we know the interaction energy
U (xi, y j ) of a solute at position (xi, y j ) relative to a dislocation
centered at the origin with an xz slip plane, then the collective
effect of all the solutes in Eq. (1) enters as

�Ẽp(w) =
[∑

i j

(U (xi, y j ) − U (xi − w, y j ))
2

]1/2

. (2)

Equation (1) can be analytically minimized with respect to ζ

to find the characteristic segment length ζc; the characteristic
width wc is found via numerical minimization. From this, the
zero-temperature change in yield stress �τy,0 is

�τy,0 = β

(
c2

s �Ẽ4
p (wc)

�a2
0w

5
c

)1/3

, (3)

where β is a unitless geometric factor related to the lattice
geometry and slip system [10,49]. Including the effect of
temperature T and strain rate ε̇ gives the change in stress
required for dislocation motion �τy is

�τy(T, ε̇) = �τy,0

[
1 −

( T

T0

)2/3]
, (4)

where

T0 = α

kB ln(ε̇/ε̇0)

(
�w2

c�Ẽ2
p (wc)cs

a0

)1/3

, (5)

and α is a unitless geometric factor similar to β and ε̇0 =
105s−1 is a reference strain rate. The model of Eq. (4) is
applicable directly for 〈c + a〉 strengthening.

However, as Ghazisaeidi et al. note, edge dislocations in
twin boundaries act quite differently [7]. Namely, the term
Etot (ζc) does not reach a minimum with respect to w; rather,
Etot/Lc2/3

s approaches a constant limiting value. This is due to
the interaction of solutes with the twin boundary itself, as op-
posed to the dislocation; motion of the dislocation necessarily

moves solutes in and out of the twin boundary. In such a case,
the model takes on a different, much simpler form [7],

�τy(T, ε̇) = γ
[−Etot/Lc2/3

s ]3/2
√

�cs

kBT ln ε̇0/ε̇
, (6)

where the limiting value of −Etot/Lc2/3
s is found numerically

for a given solute, and γ is a unitless geometric factor related
to the lattice geometry and twin system. References [7,10,51–
53] provide additional details on the strengthening models.
Determining the line tensions for our line defects requires the
use of interatomic potentials as described in the Supplemental
Material, and what remains is to determine the spatial distri-
bution of solute-dislocation interaction energies U (xi, y j ) in
and around the 〈c + a〉, (101̄1) and (101̄2) edge dislocations,
which can be used in Eq. (4) and Eq. (6).

B. Solute interactions

The volumetric solute size misfit εs
V quantifies the size mis-

match between the volume of solute atom s and the volume of
a matrix Mg atom. The volumetric size misfit also determines
the interaction energy of the solute with the volumetric strain
field of defects like dislocations [6,7,10] and twin boundaries
[54]. We compute volumetric size misfits for 63 substitutional
solutes in Mg using the strain misfit tensor methodology in
Refs. [55–57]. The strain misfit tensor εs

i j gives the derivative
of solute-induced strain ecs

i j with respect to solute concentra-
tion cs. To determine εs

i j , we substitute a single substitutional
solute into an HCP Mg supercell and then relax the positions
of the atoms while keeping the supercell lattice vectors fixed.
We then compute εs

i j from the solute’s elastic dipole tensor Ps
kl

and the DFT-computed elastic compliance tensor S0
i jkl of pure

Mg,

εs
i j = − 1


0

∑
k,l

S0
i jkl P

s
kl , (7)

where

Ps
kl = −N
0σ

(s,N,
0 )
kl . (8)

Here, 
0 is the volume per atom in the ideal solute-free HCP
crystal, N is the number of lattice sites in the computational
supercell, and σ

(s,N,
0 )
kl is the DFT-computed stress that a

single solute induces in the supercell with fixed ideal HCP
lattice vectors after relaxing the atomic positions. To ensure
that only solute-induced stress is included in Eq. (8), any small
residual stress in the solute-free supercell should be subtracted
from σ

(s,N,
0 )
kl . In the dilute limit, σ

(s,N,
0 )
kl scales with 1/N so

Ps
kl becomes independent of supercell size. For substitutional

solutes in Mg, εs
i j is diagonal. The element εs

ii gives the solute
size misfit along Cartesian direction i, and the trace gives the
volumetric size misfit εs

V .
The other misfits are defined in terms of the change in the

fault energy (pyramidal stacking fault or twin fault energy),
and depend on the position of the solute in the fault plane and
distance away from it. For the pyramidal fault, it is

εs,n
p2 = 1

γp2

(
∂γp2

∂cs

∣∣∣∣
cs=0

)
n

, (9)
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FIG. 1. Core structures of the 〈c + a〉 edge and screw disloca-
tions optimized using DFT with LGF-based FBC. The edge core
is visualized using the α31 edge component of the Nye tensor dis-
tributions, and the screw core is visualized using the α33 screw
component. The dislocations dissociate into 1/2〈c + a〉 partial edge
or screw dislocations separated by a pyramidal 2 stacking fault.

for layer n relative to the fault plane. It is worth noting that
scaling by the fault energy to get a unitless quantity is purely
convention for the “chemical misfit”; as we will use the misfit
to construct an interaction energy model, we will have to
multiply the misfit by the slip energy to produce an interaction
energy. In a similar vein, we can compute the interaction
energy, Un, of a solute with respect to twin boundary for
position n in the boundary; that is commonly reported simply
as an interaction energy, and we do so here.

C. Effect of energy errors on �τy

As explained at the beginning of the methods section, we
find we can accurately and efficiently reduce the prediction of
strength changes to a simple model in terms of the solute size
misfit εs

v; however, this introduces error in our prediction, and
we wish to quantify this effect. We do so with a simple prop-
agation of error approach; we compute the variance in �τy

from the variance and covariance in the interaction energies
Un,

σ 2
�τy

=
∑
m,n

σ 2
UmUn

(
∂�τy

∂Um

)(
∂�τy

∂Un

)
, (10)

where σ 2
UmUn

is the covariance matrix for the solute-dislocation
interactions, and σ 2

Um
≡ σ 2

UmUm
is the variance in Um. We com-

pute the covariance matrix σ 2
Un,Um

for the fault energies Un

FIG. 2. Core structures of the (101̄1) compression twinning edge
dislocation optimized using DFT. The red lines indicate the two par-
allel twin planes, with the line defect spanning the distance between.
The out-of-page direction is along the a direction.

using the direct and fitted solute-fault interactions,

σ 2
Un,Um

= 1

Ns − 2

∑
s

(
U s

m − U s,fit
m

)(
U s

n − U s,fit
n

)
, (11)

where Ns is the number of solutes used to fit the interactions
as a function of solute size misfit, and σ 2

Un
≡ σ 2

Un,Un
.

III. RESULTS

Our intermediate goal is a prediction of the strength of
different deformation modes, as a function of chemical com-
position, temperature and strain rate; from these, our final goal
is the ratio of non-basal strengths to basal strengths to guide
alloy selection. The strengthening models from Sec. II A
require spatial interaction energies. For the 〈c + a〉 disloca-
tion, that information starts with the pure Mg dislocation core
structures; we can then directly substitute solutes at different
sites. We find that knowing the local strain and slip in the pure
core is sufficient to use a model for the interaction from only
the size and stacking fault misfit; moreover, the stacking fault
misfit itself can be well-approximated as a polynomial in the
size misfit. For the (101̄1) compression twin and (101̄2) ten-
sion twin dislocations, the information starts with the pure Mg
dislocation core structures and the twin boundaries; we can
again directly substitute solutes at different sites for both the
dislocation and the twin boundaries. We find that the changes
in the twin boundary energies, and the interaction energies
in the twin dislocation cores can be well-approximated as a
polynomial in the size misfit. The final result is a model for the
strength of different non-basal deformation modes in terms of
the size misfit, solute concentration, temperature, and strain
rate. The Supplemental Material [50] contains tabulated data
for all of the fits in addition to the graphical data presented
here.
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TABLE I. Volumetric size misfits and approximate pyramidal 2 chemical misfits for 63 substitutional
solutes in Mg. The chemical misfits are well-approximated by a second-order polynomial in the size misfit.
The misfits are used to efficiently compute solute interactions with the different dislocations in this study,
which ultimately lead to solid solution strengthening (see Fig. 7).

A. Dislocation core structures from first-principles calculations

The 〈c + a〉 edge and screw perfect dislocations dissociate
into 1/2〈c + a〉 partial dislocations separated by a pyramidal
2 stacking fault. Figure 1 shows the dislocation geome-
tries visualized using a combination of atomic positions and
Nye tensor distributions [58,59]. Our core geometries re-
laxed using DFT with lattice Green function-based (LGF)
flexible boundary conditions agree well with the DFT cores
found in Refs. [60,61]. The screw dislocation core was op-
timized in Ref. [60] using LGF-based flexible boundary
conditions, but the edge core in that work was optimized
under fixed boundary conditions. The authors of Ref. [61]
studied cross-slip mechanisms for screw dislocation using a
periodic quadrupolar array configuration. The relaxed core
structures provide substitutional sites for computing solute-
dislocation interactions and geometric information used to
construct computationally efficient approximations for these

interaction energies. Our relaxed edge and screw geometries
have substantially fewer atoms than previously published core
structures, which greatly increases computational efficiency
when computing solute-dislocation interactions by direct sub-
stitution of solutes into the core. We focus on solution
strengthening of edge dislocations here, and leave strength-
ening of screw dislocation for a future study; it is expected
that the strengthening effect of the screw dislocation will not
be significantly different than that of the edge dislocation.

Figure 2 shows the computed (101̄1) compression twin-
ning edge dislocation, relaxed using DFT. Unlike the 〈c + a〉
dislocation cores, we use fixed boundary conditions to handle
the dislocation core. The initial geometry is found using an
modified-embedded atom potential [8], with a 50 000 atom
geometry, then truncated to a 895 atom geometry; the outer
10 Å layer of atoms are held fixed. For the (101̄2) tension
twin edge dislocation, we use the relaxed geometry from [7].
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FIG. 3. Interaction energies of Al, Ba, Be, Ca, Cs, Ir, K, La, Li,
Mn, Na, Os, Pr, Rb, Sn, Sr, Y, and Zn solutes with the (101̄2) tension
twin boundary. (Top) The twin boundary is indicated by a dashed
line in both left and right geometries; the sites on the left are colored
based on the linear fitting coefficient U (1) for the solute interaction
energies, while the right are colored based on the quadratic fitting
U (2) coefficient. (Bottom left) The solute-twin boundary interaction
energies computed from the polynomial (U s

TB, fitted) agree with the
directly computed interactions. The quadratic fits predict interaction
energies for the other 45 solutes considered in this study. (Bottom
right) The covariance matrix (visualized as a signed |σ 2

UiUj
|1/2) shows

that the sites 1 and 2 have the largest fitting errors, and that these
errors are anticorrelated; we can propagate these errors into our error
estimates for our strengthening model [cf. Eqs. (6) and (10)].

B. Solute size and chemical misfits

Table I show our computed solute misfits of 63 different
substitutional solute species in Mg using the strain misfit
tensor approach discussed in Sec. II B. The size misfit εs

V
shown in the top of Table I is the most significant quantity
for our purposes, as the other changes in pyramidal slip and
twin energies can be predicted using an approximation that is
quadratic in the size misfit; the Supplemental Material [50]
includes the quadratic equation. We computed pyramidal 2
chemical misfits for Al, Ca, Cs, Ir, K, La, Li, Mn, Na, Os,
Pr, Rb, Sn, Sr, Y, and Zn solutes in the three atomic layers
adjacent to the pyramidal 2 stacking fault (see Sec. II B). The
volumetric size misfits εs

V of these solutes range from −1.31
for Os to 1.71 for Cs, and we find that the chemical misfits
for all three layers are described well by a second order poly-
nomial in εs

V . The polynomials provide a better description
for solutes with positive εs

V than for solutes with negative εs
V ,

with the Os and Ir having the largest fitting errors. However,
for solutes with large magnitude |εs

V |, the solute-dislocation
interactions are dominated by the volumetric strain contribu-
tions, and the slip energy contributions have a negligible effect
on the strengthening predictions. We use the fitted dependence
on εs

V to predict the chemical misfits for the rest of the solutes
in this study. The values of the approximated chemical misfits
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FIG. 4. Interaction energies of Al, Ba, Be, Ca, Cs, Ir, K, La,
Li, Mn, Na, Os, Pr, Rb, Sn, Sr, Y, and Zn solutes with the (101̄1)
compression twin boundary. (Top) The twin boundary is indicated
by a dashed line in both left and right geometries; the sites on the
left are colored based on the linear fitting coefficient U (1) for the
solute interaction energies, while the right are colored based on
the quadratic fitting U (2) coefficient. (Bottom left) The solute-twin
boundary interaction energies computed from the polynomial (U s

TB,
fitted) agree with the directly computed interactions. The quadratic
fits predict interaction energies for the other 45 solutes considered
in this paper. (Bottom right) The covariance matrix (visualized as a
signed |σ 2

UiUj
|1/2) shows that the sites 1 and 2 have the largest fitting

errors; we can propagate these errors into our error estimates for our
strengthening model [cf. Eqs. (6) and (10)].

for the 63 substitutional solutes are given in the bottom of
Table I.

C. Solute-twin boundary interactions

For the interaction of solutes with twin boundaries, we
computed direct interactions for 18 distinct solutes, then fit
a second-order polynomial with size misfits to predict inter-
actions for 63 solutes across the periodic table. For direct
substitution, we chose the 18 solutes: Al, Ba, Be, Ca, Cs, Ir,
K, La, Li, Mn, Na, Os, Pr, Rb, Sn, Sr, Y, and Zn. For both the
(101̄1) compression and (101̄2) tension twin boundaries, we
found that the interaction energies, U s,fit

n,TB, can also be approx-
imated in terms of the solute volumetric size misfit εs

V as

U s,fit
n,TB := U (1)

n εs
V + U (2)

n εs
V

2
, (12)

where U (1)
n is the linear and U (2)

n the quadratic fitting
parameters for each site n (the sites we consider are shown in
Figs. 3 and 4, and Fig. S1 within the Supplemental Material
[50]). These polynomials are used to predict the interactions
of the other 45 solute species with the twin boundaries. The
top panels of Figs. 3 and 4 show the linear and quadratic
coefficients for each site in the (101̄1) and (101̄2) twin
boundaries. The coefficients are largest at sites 1 and 2
in each boundary—those directly in the twin planes—and
generally decrease in magnitude away from the boundaries,
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FIG. 5. Local volumetric strain eV and slip energy Eslip distributions in the 〈c + a〉 edge dislocation core (sorted by strain). The figures on
the left show the distributions for the pure Mg dislocation core and label 24 different sites in the core for direct solute substitution. The bar
charts on the right show there are minimal changes in the strain and slip energy distributions after substituting a Ca solute at the sites in the
equilibrium core.

showing that the solutes interact most strongly with sites
1 and 2. The bottom left panels of these two figures show
the good agreement between the directly computed twin
boundary interaction energies and the predicted energies from
Eq. (12), which is quantified by the diagonal elements of the
covariance matrices in the bottom right panels.

A recent study by Pei et al. [54] computed solute segre-
gation energies for the two different sites in the (101̄2) and
the (101̄1) twin boundaries (corresponding to sites 1 and 2
in the current paper) for 23 different solute species. Among
the solutes they considered, Al, Be, La, Li, Os, Pr, Y, and
Zn are common to our study. For these common solutes, our
DFT-computed interaction energies for the (101̄2) agree with
their DFT values to within 30 meV. Pei et al. also developed an
approximation for solute-twin boundary interactions based on
the solute size misfits and the local volumetric strain at each
site in the boundaries computed using Voronoi volumes. Their
model is linear in the size misfit, in contrast to our empirical
models that contain terms that are linear and quadratic in the
size misfit. In general, our predicted energies agree better with
the direct DFT values due to the extra degree of freedom in
our interaction models, compared with the approximation of
Pei et al.

D. Solute-dislocation interactions from direct
first-principles calculations

The interaction of solutes with the 〈c + a〉 edge dislocation
can be described with an approximate geometric model, and

validated against direct substitution of a Ca solute, as shown in
Fig. 5. We substitute a single Ca solute into one of 24 different
sites in the 〈c + a〉 dislocation core and compute the total en-
ergy of the system using DFT. We subtract a reference energy
for a solute far from the dislocation cores from each of these
energies to determine the interaction energy at each site. The
geometric model of Eq. (S7) (see Supplemental Material [50])
expresses the energy as the sum of a volumetric energy (up to
quadratic in size misfit) and a slip energy (linear in pyramidal
2 chemical misfit). The site-by-site analysis of the geometry is
shown in Fig. 5, where we also investigate changes induced by
the Ca solute; we find that there are only small changes in both
the volumetric strain and local slip at each site, despite the
large size misfit of a Ca atom, which suggests that using the
pure Mg dislocation geometry is reliable. The bottom panel of
Fig. 6 shows the agreement between the geometric and direct
energy values, with a standard error of 70 meV. The effect of
this error on the estimate of the solute strengthening in the
Labusch model is shown below for Ca, and it is negligible.

We take a similar approach to the (101̄1) compression
twinning edge dislocations, following the work of Ghazisaeidi
et al. on the (101̄2) tension twinning edge dislocation [7]. The
geometric model Eq. (S8) (see Supplemental Material [50]) is
a sum of a volumetric strain term and chemical twinning misfit
energy, with numerical values shown in Table II. The chemical
twinning misfit energy is extracted from the solute interactions
with pure twin boundaries, shown in Figs. 3 and 4; it, too,
can be well-approximated as a quadratic function of the size
misfit of different solutes, similar to Eq. (12). For the (101̄1)
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CT1 edge dislocation

+ edge dislocation

FIG. 6. Comparison of directly computed and geometric model
interaction energies of a Ca solute with the (101̄1) compression
twinning edge dislocation (top) and the 〈c + a〉 edge dislocation
(bottom). We computed the interactions Udirect at 12 different sites in
the twinning dislocation core and at 24 different sites in the 〈c + a〉
dislocation core by direct substitution of a Ca solute into the dif-
ferent sites. We also compute these interactions using the geometric
models for the twinning and 〈c + a〉 dislocations, Eq. (S8) and Eq.
(S7) (see Supplemental Material [50]). The two sets of values agree
well in each case, with variances of σU = 45 meV for the twinning
dislocation and σU = 70 meV for the 〈c + a〉 dislocation.

compression twinning edge dislocations, we substitute a sin-
gle Ca solute into one of 12 different sites and compute the
total energy of the system using DFT. We subtract a reference
energy for a solute far from the dislocation cores from each
of these energies to determine the interaction energy at each
site. The top panel of Fig. 6 shows the agreement between the
geometric and direct energy values, with a standard error of
45 meV. The effect of this error on the estimate of the solute
strengthening in the Labusch model is shown below for Ca,
and it is negligible.

E. Solid-solution strengthening predictions for individual
deformation modes

Figure 7 shows the accuracy of a simple model of strength-
ening for both twins and prismatic deformation with size
misfit. We combine all of our interaction models—size
and prismatic 2 chemical misfit, solute interactions with
twin boundaries, and dislocation core interactions—with the

Labusch strengthening of Eqs. (4) and (6) to predict the ef-
fect of solute chemistry and concentration on strength as a
function of temperature and strain rate. In the end, due to the
strong empirical correlation between size misfit and all of the
interactions, the strength models can be ultimately reduced to
a simple quadratic function of size misfit. The accuracy of this
approximation can be seen clearly both in the fit (cf. Fig. 7)
as well as the estimated variances, which give reasonable esti-
mates of the errors. Our final empirical strengthening relations
are (

�τ s
y

)
TT1 = 606cs/at%

(T/300 K){ln [108] − ln[ε̇/(10−3s−1)]}
× εs

V
2 MPa, (13)(

�τ s
y

)
CT1 = 1649cs/at%

(T/300K){ln[108] − ln[ε̇/(10−3s−1)]}
× εs

V
2 MPa, (14)(

�τ s
y

)
〈c+a〉

= {113(cs/at%)2/3 − 1.84(T/300 K)2/3(cs/at%)4/9

× (ln[108] − ln[ε̇/(10−3s−1)])2/3}εs
V

2 MPa, (15)

where T is the temperature and ε̇ is the strain rate. The vari-
ances, from Eq. (10), in each quantity also scale quadratically
with the size misfit, and correspond to a less than 10% error
for all predictions over the range of physically realizable size
misfits.

F. Strength and ductility predictions for Mg alloys

Now with models of basal and non-basal strengths as
functions of temperature and composition, we can reach our
ultimate goal to suggest possible alloys with the lowest possi-
ble plastic anisotropy, for improved ductility and formability.
In magnesium alloys, basal slip is easiest, and all addi-
tional modes of plastic deformation require higher stresses;
at 300 K in pure magnesium, basal slip requires 1/6 of the
stress to activate (101̄2) tension twinning, 1/124 of the stress
to activate 〈c + a〉 slip, and 1/200 of the stress to activate
(101̄1) compression twinning. The addition of solute elements
strengthens all of these modes; however, as basal slip is an
extremely easy deformation mode, adding solute elements can
help reduce the plastic anisotropy associated with non-basal
deformation modes, which in turn improves the ductility of
magnesium alloys while increasing strength. We look to strike
an important balance where we strengthen basal deformation
significantly (to reduce plastic anisotropy) while not overly
strengthening non-basal deformation (which would increase
plastic anisotropy). As we saw in Sec. III E, strengthening in-
creases quadratically with size misfits, but the modes respond
quantitatively differently. However, as has been known since
Hume-Rothery [62], solubility decreases with differences in
atomic sizes; thus, we need to identify solutes with both a
good balance of strengthening and solubility in magnesium
that can aid in the design of improved alloys. Rather than
rely on simple empirical relations for solubility, we turn to
CALPHAD modeling, using the COST507 database [63] with
the PYCALPHAD code [64] to find the maximum solubility for
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TABLE II. Chemical twinning misfit energies for 63 substitutional solutes in the (101̄2) tension
twinning (TT1) and (101̄1) compression twinning (CT1) dislocation cores in Mg. The misfits are used
to efficiently compute solute interactions with the twinning dislocations, which ultimately lead to solid
solution strengthening (see Fig. 7)

47 solutes (out of our 63) in magnesium; this often occurs
at the solidus temperature, so quenching may be required
to achieve this maximum. It should be noted that there are
elements where the optimal concentration—defined as the
concentration with the lowest ratio between (101̄1) compres-
sion twinning and basal slip—is actually below the maximum
solubility; this needs to be identified on a case-by-case basis.

Table III tabulates the best solutes for improving ductility,
based on their possible reduction in plastic anisotropy (mea-
sured by plastic anisotropy ratios). In that table, we report
the maximum solubility for each solute found in the COST507
database, as well as the optimal concentration; the optimal
concentration is at the lowest possible ratio of compression
twinning strength to basal strength at 300K or the maximum
solubility, whichever is lowest. For each solute, we also report
the change in strength at the optimal concentration for the
three non-basal modes and basal deformation, as well the ratio
of strengths. We have ordered the table from lowest ratio of
τCT1

y /τ basal
y to largest with the rare earth solutes first, followed

by the other solutes, to find the best 20 solutes for which
we have solubility data. We choose to use the compression
twinning to basal strength ratio to guide our selection as it is
the largest anisotropy ratio at room temperature; moreover, we
find that generally, this ratio remains larger than the pyrami-
dal deformation or tension twin ratios. Thus, the solutes that
reduce the τCT1

y /τ basal
y ratio also reduce the other non-basal

anisotropy ratios. Not surprisingly, rare earth additions—well-
known to improve the ductility and formability of magnesium
alloys—are near the top. It should be noted that Y, Mn, Sc, Pb,
and Ca are all competitive with rare earth solutes. We note that
the solubilities of Sc, Tl, Li, and Al are large, which may result
in less accurate quantitative strength predictions compared to
elements with lower solubilities, as the strengthening models
do not account for the effects of solute-solute interactions on
the motion of the dislocation cores. Note also that Ce is not on
our list; while Ce additions as little as 0.2 wt% are known to
randomize Mg texture [46], which favors formability, all three
anisotropy ratios are essentially unchanged relative to pure
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FIG. 7. Solute-induced change in τy for the (101̄2) tension twin-
ning, (101̄1) compression twinning, and 〈c + a〉 edge dislocations
for T = 300 K and ε̇ = 10−3 s−1. The red squares are Labusch theory
predictions for �τy using directly computed solute-twin boundary
interactions for the twinning dislocations, or direct solute-dislocation
interactions for the 〈c + a〉 dislocation. The black points are Labusch
predictions using fitted twin boundary interactions or geometric
model interactions. As all of the interactions have been found to
be well-approximated in terms of the size misfit, we find a simple
quadratic scaling with the volumetric solute size misfit εs

V . The
black curves are quadratic fits to the black points, and the shading
corresponds to the predicted variance in �τy computed from the vari-

Mg because of extremely low solubility in Mg up to 600 ◦C
[65]. Our predictions are all predicated on a comparison of
room-temperature anisotropies; as temperature is raised, the
strength of the non-basal modes all decreases faster, permit-
ting forming at very elevated temperatures, such as 300 ◦C.
However, the solutes suggested by Table III should promote
ductility and formability at lower temperatures, while also
imparting increased strength to magnesium alloys. Combined
with randomized texture, and possible precipitate strengthen-
ing, our results suggest possible paths to stronger and more
ductile magnesium alloys.

IV. DISCUSSION AND CONCLUSION

Anisotropy ratios for three non-basal deformation modes
in Mg relative to the basal deformation mode were computed
for 63 potential strengthening solutes across the periodic table
based upon Labusch-type solid solution strengthening models
parameterized with DFT-computed solute-dislocation interac-
tion energies. The three non-basal deformation modes were
characterized by the 〈c + a〉 edge, (101̄2) tension twinning
edge, and the (101̄1) compression twinning edge. The core
structure of each dislocation was optimized to its equilib-
rium geometry with DFT and the flexible boundary condition
approach. Due to the large computational cost of directly
computing the interactions by directly substituting solutes into
sites in the dislocation geometries, we developed computa-
tionally efficient approximations for the interactions that use
geometric information from the geometries in pure Mg and
solute size and chemical misfits. The size misfit quantifies
the size mismatch between a solute and an HCP Mg atom,
and the chemical misfit quantifies the interactions between
solutes and stacking faults or twin boundaries. Both types of
misfits were computed in supercells that are small compared
to the dislocation supercells, providing a substantial compu-
tational savings compared to direct interaction calculations.
We validated the approximate interaction energy models by
comparing the energy predictions to a selected set of direct
calculations for several different solute species. We find that
both the interaction energies and the solute-induced changes
in yield stress for the different non-basal dislocations scale as
second order polynomials in the solute size misfit. These scal-
ing relations provide a simple way to predict the strengthening
potencies for a large number of different solute species in
Mg. Strengthening potencies, which relate the solute-induced
change in the CRSS to solute concentration, solute volu-
metric size misfit, temperature, and strain rate, were first
computed. The solute-induced change in the CRSS predicts
the increase in the energy barrier a dislocation must overcome
to move under an applied load due to the balance between
solute-dislocation interactions and the elastic energy of the
dislocation, ultimately leading to an increase in yield stress

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ances in the solute-dislocation interaction energies (see Sec. II C).
Like �τy, the variances also scale quadratically with the solute size
misfit. The twinning strengthening is linear in concentration, while
the 〈c + a〉 strengthening is evaluated for cs = 1 at%. All non-basal
modes show the largest strengthening for the largest magnitude size
misfits.
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TABLE III. Solubilities, changes in yield stress �τy for compression twinning (CT1), pyramidal deformation (〈c + a〉), tension twinning
(TT1), and basal deformation, and yield stress ratios for the 20 best solute species in Mg. The solubilities cmax

s are determined from the HCP
boundaries of binary phase diagrams, and the optimal concentrations copt

s minimize the ratio τCT1
y /τ basal

y . The solutes are divided into two
groups: rare earth elements (upper group) and non-rare earth elements (lower group). The �τy and τ non−basal

y /τ basal
y values are evaluated at copt

s ,
T = 300 K and ε̇ = 10−3 s−1.

[at%] [MPa]

solute cmax
s copt

s �τCT1
y �τ 〈c+a〉

y �τTT1
y �τ basal

y τCT1
y /τ basal

y τ 〈c+a〉
y /τ basal

y τTT1
y /τ basal

y

pure Mg 200 124 6
Gd 4.37 4.32 95.7 114.3 52.0 22.8 8.4 7.6 2.4
Tb 4.60 4.60 91.7 107.5 49.5 20.5 9.1 8.1 2.5
Dy 6.00 5.34 95.3 107.1 51.2 20.3 9.4 8.1 2.6
Nd 0.70 0.70 25.0 49.9 14.0 12.6 9.5 8.6 1.3
Ho 5.43 5.43 87.2 97.4 46.6 18.5 9.8 8.4 2.6
Er 6.05 6.05 87.2 94.4 46.4 18.3 10.0 8.3 2.6
Tm 2.31 2.31 30.1 42.1 15.9 11.9 10.5 8.4 1.5
Yb 0.67 0.67 21.3 42.7 11.8 8.4 13.7 11.8 1.7
Y 4.11 3.50 94.6 81.4 34.7 17.1 11.1 8.2 2.1
Mn 1.00 1.00 28.0 31.4 10.3 10.2 12.0 8.7 1.2
Sc 21.46 21.46 10.4 6.1 4.4 7.4 14.0 8.7 0.9
Pb 7.69 7.69 46.3 46.6 23.8 8.9 15.5 11.5 2.8
Ca 0.40 0.40 18.8 19.7 6.9 6.8 16.3 11.2 1.4
Ag 6.08 4.61 90.5 83.5 38.1 9.5 19.1 14.6 4.1
Bi 0.95 0.95 9.2 15.8 4.8 5.1 19.6 13.9 1.4
Tl 16.10 16.10 34.1 27.5 16.9 5.1 24.0 16.0 3.6
Zn 2.92 2.92 56.3 45.5 18.3 5.5 26.1 18.0 3.6
Li 17.70 17.70 56.4 27.0 17.0 4.9 28.7 16.3 3.7
Ga 3.24 3.24 27.8 29.0 11.9 3.7 30.1 21.5 3.5
Al 11.60 7.18 84.9 54.3 27.4 5.6 30.1 19.0 4.9

to move the dislocations relative to pure Mg. We also com-
bine our solution strengthening predictions with CALPHAD
predictions of solubility limits to suggest promising candidate
solutes for improving the strength and ductility of Mg alloys.
Solutes with the greatest potential for improving the mechan-
ical properties of Mg alloys should strengthen the individual
deformation modes, while reducing the plastic anisotropy of
Mg by lowering the ratios of non-basal to basal yield stresses.
We used the COST507 database for light metals and the PYCAL-
PHAD code to compute the solubility limits in the HCP phase
for twelve binary Mg alloys, and take the solubility limits of
35 other binary Mg alloys from literature. Our strengthening
predictions show that solutes with large positive or large nega-
tive size misfits are most effective at increasing the yield stress
of the different deformation modes. However, these solutes
generally have low solubilities in HCP Mg so their overall
effectiveness at improving the mechanical properties of Mg
alloys is limited in practice. Solutes with small size misfits
can have large solubilities in HCP Mg, but their strengthening
potencies are small so they are also ineffective at improving
mechanical properties. So a compromise that includes opti-
mal solubility is needed. Any extra solute additions that lead
to increased solubility of mid-sized solutes should also lead
to improved Mg alloys. Further studies combining our solu-
tion strengthening data with phase diagram calculations using
comprehensive databases on alloy thermodynamics could be
performed to search for new multicomponent Mg systems
with enhanced solubilities.

The major conclusions from this study are
(1) The 8 rare earth solutes that our method suggests as

the best, ordered by the increasing anisotropy ratios at their
optimal concentrations, are: Gd, Tb, Dy, Nd, Ho, Er, Tm, and
Yb. Of these, Gd, Nd, Er, Yb are used in commercial alloys
[66].

(2) The smallest and hence most favorable τCT1
y /τ basal

y
anisotropy ratio for the rare earth solutes is 8.4 for Gd, while
the largest is 13.7 for Yb. These represent considerable im-
provements in ductility relative to the value of 200 for pure
Mg.

(3) The 12 non-rare earth solutes that our method suggests
as the best, ordered by increasing anisotropy ratios, at their
optimal concentrations, are: Y, Mn, Sc, Pb, Ca, Ag, Bi, Tl,
Zn, Li, Ga, and Al. Of these, Y, Mn, Ca, Zn, Li, and Al are
used in commercial Mg alloys [66].

(4) The smallest and hence most favorable τCT1
y /τ basal

y
anisotropy ratio for the non-rare earth solutes is 11.1 for Y,
while the largest is 30.1. These represent considerable im-
provements relative to the value of 200 for pure Mg.

(5) There is no need to exclusively use the computation-
ally more expensive DFT to compute the solute/dislocation
interaction energies when examining a large number
of solutes. Rather, computationally efficient approxima-
tions for the interactions that use geometric information
from the geometries in pure Mg and solute size and
chemical misfits can be used at far less computational
expense.
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The VASP input and output files, along with all direct calcu-
lations for solute interactions are available to download at the
LightMat DataHub [67].
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