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Thermodynamic model for polymorphic dislocation core spreading within
hexagonal close packed metals
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An exactly solvable thermodynamic model for the core structure of 〈a〉-type screw dislocations in α-Ti is
introduced and used to explore the role in which polymorphic core spreading contributes to the free energy
of the dislocation. Each segment of the dislocation core is assumed to be in one of three possible configurations,
and the free energy differences per segment between dislocation core spreadings are taken as parameters. It is
shown that thermal fluctuations between the core spreadings should be common, even at room temperature,
and that these fluctuations can contribute significantly to the free energy. It is also shown that under some
circumstances, the core structures can display morphological switching wherein the stable core spreading
changes morphology with a change in temperature. The implications for dislocation dynamics and for modeling
finite temperature dislocation core properties using molecular dynamics simulations are considered.
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I. INTRODUCTION

The elastic forces driving dislocation motion are gener-
ally understood. The motion of the dislocation results in a
reduction of elastic energy, and a straightforward derivation
(within linear elasticity) leads to the Peach-Koehler equation
for the force on a dislocation [1]. From this perspective, then,
the driving force for the motion of the dislocations is similar
amongst all materials. What differs from material to material,
however, is the response of the dislocations to the forces
placed upon them. These responses are, in turn, strongly in-
fluenced by the core structures of the dislocations.

The structure and importance of dislocation core struc-
tures were first considered by Peierls [2] and Nabarro
[3]. As of now, studies of dislocation cores have be-
come more widespread and have been applied to many
materials including diamond cubic semiconductors [4–9],
body-centered-cubic (BCC) metals [10–15], face-centered-
cubic (FCC) metals [16], and hexagonal-close-packed (HCP)
[17–20] metals. Many of these calculations have focused
on predicting the proper core structure at zero temperature,
although some work in diamond cubic semiconductors con-
sidered thermal effects [7,8,21] and some explored the thermal
properties of dislocation cores in metals [22–24].

Of special interest here are the 〈a〉-type screw dislocation
cores in the HCP metals Ti and Zr. Farenc et al. reported
that dislocations within Ti will move by jumps, between
locking positions [25], a process that is now termed “jerky”
glide. Recently, Clouet et al. studied the dislocation cores
in Zr and Ti [20]. Using density functional theory (DFT)
based total energy methods they predict that, at zero temper-
ature, the 〈a〉-type screw dislocation cores in Zr are spread
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on the prism plane and that the same cores in α-Ti are
spread on the pyramidal planes. The impact on the dynam-
ics was predicted to be profound—dislocations in Zr should
glide smoothly, and those in α-Ti should display “jerky”
glide, wherein the dislocation moves in short bursts. Clouet
et al. confirmed these predictions using in situ electron mi-
croscopy experiments conducted at T = 150 K, with T the
temperature.

Interestingly, the predicted internal energy difference
between the competing core spreadings is approximately
21 meV/b, with b the magnitude of the Burgers vector
[20,26,27]. This small energy difference appears to be of the
order of the thermal energy per atom in the core, and this
suggests that thermal effects may be influencing the dynamics
of the dislocations. The purpose of this study is to assess how
the energy difference per unit length between competing core
structures influences the global structure, and hence dynam-
ics, of the dislocations. In particular, there is a configurational
degree of freedom, the local morphology of the dislocation
core spreading, that should contribute to the free energy of the
dislocations. Accordingly, recent molecular dynamics (MD)
simulations focused on the effects of temperature on the mor-
phology of dislocation core spreading in HCP metals [28].
These simulations revealed that the dislocation core spreading
is, indeed, influenced by temperature. Evidently, there is a
continuous spectrum of core spreading morphologies accessi-
ble to the dislocations at finite temperature, and this available
disorder affects the dislocation dynamics. One interesting ob-
servation from the molecular dynamics simulations is that
combinations of non-Schmid stresses and thermal fluctuations
may lead to transitions in the predominant core spreading
morphology yielding a dislocation core switching transition.
Based on these MD simulations and the work of Clouetet al., a
transition from prism spreading to pyramidal spreading could
have strong implications for the dislocation dynamics. For ex-
ample, a transition from prism to pyramidal spread core would
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FIG. 1. (a) Three of the planes on which dislocation cores in
the HCP metals such as Ti and Zr might be spread. The black
wireframe structure represents the unit cell for the crystal. The prism
and pyramidal planes are highlighted by color. The prism plane is
also indicated by the label “o”, whereas the two pyramidal planes are
indicated by a “+” and a “–”. (b) Examples of computed dislocation
core structures in Ti that are spread on the prism plane (left) and the
pyramidal plane labeled “–” (right). The core structures (as computed
using MEAM potentials [30] for the prism spread core, and with
an applied non-Schmid stress to stabilize the pyramidal core, as
described in Ref. [31]) are depicted using Vitek’s vector map [13,14].
The length of the vector connecting two columns of atoms indicates
the relative displacement of the two columns of atoms normal to the
page.

lead to locking of the dislocation, and, perhaps, enhanced
cross-slip probability.

The phenomenology observed in the molecular dynam-
ics simulations raises a number of interesting questions. For
example, how much does dislocation core spreading polymor-
phism contribute to the free energy of the cores? Can these
contributions alone lead to dislocation core switching? Molec-
ular dynamics simulations necessarily involve relatively small
cells. Does this influence the observations? If so, what are the
effects of finite size?

To explore these and other questions, an exactly solv-
able thermodynamic model for polymorphic dislocation core
spreading of the 〈a〉-type screw dislocations in HCP metals
is introduced. An Ising-like model is developed [7,8,29] that
allows for dislocation core spreading on the prism plane, and
two pyramidal planes as described in Fig. 1. The model is
solved analytically, and analyzed in detail. The model sug-
gests that core morphology configurational contributions to
the free energy become comparable to their zero-temperature
energy difference at roughly 300 K. The correlation lengths
for the core morphologies are computed, and then related to
the expected dynamics of the dislocations. The model also
shows that a dislocation core switching transition can be
driven by configurational entropy alone, but this is not likely

to be the origin of the transition observed in the molecular dy-
namics simulations. The model enables studies of the effects
of finite size, and demonstrates that in certain circumstances,
these effects can be quite strong. Finally, methods for con-
necting the predictions of the simplified model to the results
of molecular dynamics simulations are developed.

II. THERMODYNAMIC MODEL

The thermodynamic model assumes that the dislocation
is, on average, straight, and that there are no long range
interactions between the differing dislocation core structures.
The dislocation line length is divided into units of length b,
the magnitude of the Burgers vector for the dislocation. It
is further assumed that each section of the dislocation can
assume one of three configurations: one prism plane and two
pyramidal plane spreadings (Fig. 1). A spin variable σi is
assigned to each site in the model. The spin variables can take
on the three values –1, 0, and 1 corresponding to finding the
dislocation core at site i dissociated on the pyramidal plane
labeled − in Fig. 1, the prism plane labeled with an o in Fig. 1
and the pyramidal plane labeled + in Fig. 1, respectively.

It is noted that the the + pyramidal spread core, and the −
pyramidal spread core are displaced by the distance of one
Peierls valley in the prism plane, or approximately 2.4 Å.
This implies that there are, in practice, small displacements
of the dislocation line that may lead to long-ranged elastic
interactions. The present work neglects this contribution to the
dislocation core properties so as to retain the simplicity of the
thermodynamic model.

Based on these spin variables, the number operators defin-
ing the number of core segments of each type at each segment
i of the dislocation can be defined:

n+
i = 1

2 (1 + σi )σi

no
i = (

1 − σ 2
i

)
n−

i = − 1
2 (1 − σi )σi (1)

where the superscripts +, o, and − refer to the planes as
labeled in Fig. 1. Note that the ni’s can only take on the values
0 and 1. Since there can only be one type of core at each site,
only one of the ni’s can be 1, the other two must equal 0.

Using these occupation variables it is a simple matter
to construct an expression for the internal energy en-
abling computation of the free energy of a dislocation
core in which different segments are spread on different
slip planes. The free energy difference between pyrami-
dal spread core and the prism spread cores per unit length
is defined to be εp ≡ Ecore(pyramidal ) − Ecore(prism), with
Ecore(pyramidal ) (Ecore(prism)) the free energy per unit
length (here taken to be the magnitude of the Burgers vector
b) of an infinite dislocation spread on a pyramidal(prism)
plane. In addition, it is assumed that there is an energy cost
associated with changing core structures along a single dislo-
cation. These transitions are referred to as “flips” for lack of
a better word. The energy cost of a pyramidal core segment
adjacent to a prism core segment is defined to be κop and the
energy cost of a pyramidal core dissociated on the + plane
adjacent to a pyramidal core dissociated on the − plane is
defined to be κpp. Periodic boundary conditions are imposed
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on the dislocation, and all energies are measured relative to
the energy of a perfect prism spread dislocation core.

With these definitions and conditions, the core energy of a
dislocation that is M segments long is given by (with proper
accounting for periodic boundary conditions assumed):

Ecore =
M−1∑
i=0

{
n+

i

(
εp + �

2

)
+ n−

i

(
εp − �

2

)

+ κpp(n+
i n−

i+1 + n−
i n+

i+1)

+
(

κop + δ

2

)(
no

i n+
i+1 + n+

i no
i+1

)

+
(

κop − δ

2

)(
no

i n−
i+1 + n−

i no
i+1

)}
. (2)

In this expression, the parameter � is used to break the de-
generacy of the dislocation spreading configurations on the +
and − planes. For an isolated dislocation within an infinite
medium, one expects � = 0. However, local variations in
the stress, such as that caused by other defects, for example,
can break the degeneracy leading to a finite value of �. A
positive(negative) value of � favors spreading on the −(+)
prism plane. Similarly, the parameter δ reflects the fact that the
boundary energies between the prism and two types of pyra-
midal planes may also differ once the degeneracy is lifted. A
positive value of δ increases(decreases) the boundary energy

between the prism spread core state and the +(−) pyramidal
plane spread core.

After a bit of algebra, one finds that the energy of the
dislocation core can be written in terms of the spin variables
alone:

Ecore =
M−1∑
i=0

{(
�

2
+ δ

)
σi + Hσ 2

i − Jσiσi+1 + κσ 2
i σ 2

i+1

− δ

2

(
σ 2

i σi+1 + σiσ
2
i+1

)}
, (3)

with H = εp + 2κop, J = κpp/2, and κ = J − 2κop.
From the expression for the core energy, the influence of

the parameters is clear. ( �
2 + δ) acts like a magnetic field and,

when positive, favors σi = −1. H yields a positive contribu-
tion to the energy for both types of pyramidal cores, and hence
favors the prism spreading when positive. The term κ favors
adjacent pyramidal cores when negative, though the contri-
bution does not require the pyramidal cores to be identical.
J , which is always positive (otherwise, the domain boundary
energy between the two differing pyramidal cores would be
negative, and this would lead to an instability that is likely not
physical), also favors adjacent pyramidal spread segments, but
now these must be of the same type to reduce the energy of the
core.

The partition function Z is then defined in the usual
manner:

Z =
1∑

σ0=−1

· · ·
1∑

σM−1=−1

exp

[
−β

M−1∑
i=0

{(
�

2
+ δ

)
σi + Hσ 2

i − Jσiσi+1 + κσ 2
i σ 2

i+1 − δ

2

(
σ 2

i σi+1 + σiσ
2
i+1

)}]
, (4)

with, due to periodic boundary conditions, σM = σ0, and β =
1/kBT , with kB defined to be Boltzmann’s constant, and T the
temperature.

The partition function can be summed analytically through
the use of a transfer matrix t that is symmetric and real.
Specifically, the transfer matrix for the model with periodic
boundary conditions takes the form:

t =
⎛
⎝ e

�
2 −H−κ+J e

1
2 (δ+ �

2 )− H
2 e−H−κ−J

e
1
2 (δ+ �

2 )− H
2 1 e

1
2 (−δ− �

2 )− H
2

e−H−κ−J e
1
2 (−δ− �

2 )− H
2 e− �

2 −H−κ+J

⎞
⎠, (5)

where the factors of β are incorporated into the (now) di-
mensionless parameters of the model. (That is, H , J , κ , �,
and δ are all dimensionless according to the transformation
βH → H , etc.) The partition function for a finite-sized system
is then given by

Z = Tr[tM]

= Tr�M (6)

= λM
1 + λM

2 + λM
3 ,

with λi the ith eigenvalue of the transfer matrix, and

� = S−1tS =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠, (7)

with S the orthogonal matrix defined with the ith column equal
to the (properly normalized) ith eigenvector of t .

In the thermodynamic limit, i.e., M → ∞, only the largest
eigenvalue is relevant. Most atomic scale dislocation dynam-
ics simulations, however, employ relatively small values of M.
In what follows, all terms are retained, and the properties of
dislocations defined by finite M are studied.

The expectation values for the number operators, i.e., 〈no
i 〉,

〈n+
i 〉, and 〈n−

i 〉, are computed in the usual way using the spin
matrix σ :

σ =
⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠. (8)

For example, the expectation value of σi, denoted 〈σi〉 is given
by:

〈σi〉 = 1

Z
TrσtM . (9)

The expectations of the number operators (and correlations
functions, discussed below) require the expectation values of
the products of the spin variables. These can be computed
using similar expressions.

The expectation values do not give direct insight into the
domain size associated with the dislocations. In order to ex-
plore this, we introduce the correlation functions go(l ) and
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FIG. 2. Expectation values for the core structure number operators plotted as a function of temperature for six different choices of the
parameters. For all panels, κop = 0.01 eV and κpp = 0.04 eV, and M = 10, 000. Panels (a)–(c) all have εp = −0.021 eV. Panels (d)–(f) have
εp = 0.021 eV. Panels (b) and (e) have � = −0.01 eV and δ = 0.0 eV, whereas panels (c) and (f) have � = 0.0 eV and δ = 0.01 eV. In panels
(a) and (d), 〈n+

i 〉 = 〈n−
i 〉 for all T , and hence both appear as a single line.

g+(l ):
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〈
no

i+l n
o
i
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no

i
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and
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+
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i 〉2
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i )2〉 − 〈n+

i 〉2
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σ 2

i σ 2
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σ 2
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)2(

2 − 〈σi〉 − 〈
σ 2

i

〉)(〈σi〉 + 〈
σ 2

i

〉) .

(11)

In the thermodynamic limit (M → ∞) it is assumed that these
correlation functions decay exponentially as they do for the
more simple Ising model, and can be described by correlation

lengths ξo and ξ+:

go(l ) = e−l/ξo

g+(l ) = e−l/ξ+ . (12)

These correlation lengths give a measure of the core structure
domain sizes for most cases. For simplicity, the correlation
lengths can be be determined by solving:

go(ξo) = e−1

g+(ξ+) = e−1. (13)

However, below, it is shown empirically the that analytical
forms predict exponential decays, but that the longest lived
correlations cannot always be identified by solving Eqs. (13).

III. RESULTS AND DISCUSSION

A. Dislocation Structure

The simple model can be used to explore the structure of
the dislocation cores, and the influence of temperature. In or-
der to do so, however, one needs reasonable estimates for the
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parameters entering the model. The free energy difference per
segment between prism and pyramidal spread cores εp can be
approximated from zero temperature atomic scale total energy
calculations. Clouet et al. compute the core energy difference
between the two structures at T = 0 K to be approximately
0.07 eV/Å. Assuming that each of our sites corresponds to a
segment of dislocation of length b, then for α-Ti one expects
that εp ≈ −0.021 eV. Of course, the value may change with
temperature and/or applied stress [31]. In principle, the “flip”
free energies κop and κpp can also be computed using atomic
scale total energy methods, but these are more difficult to
determine accurately. Consequently, these “flip” free energies
are treated as parameters, and the changes in core structure as
they vary is explored.

For an isolated dislocation in an infinite crystal, one ex-
pects that the spreading of the dislocation on either of the
pyramidal cores should have the same energy. Therefore, it
is typically true that � = δ = 0. However, local stresses can
lift the degeneracy, so the dependence of the dislocation core
structure on � and δ is explored as well.

The potential ground states of the system consist of σi =
−1 or σi = 1 for all i, with a corresponding energy of εp

per site, and σi = 0 for all i, with a ground-state energy
of 0 per site. Of course, the model is one dimensional
with short-ranged interactions. The implication is that in the
thermodynamic limit, the dislocation core is, in principle,
disordered, even as T → 0.

Empirically, one expects that the energy of the “flips” be-
tween differing pyramidal plane core spreadings will exceed
the energy of a flip between a pyramidal plane spreading
and the prism plane core spreading. Therefore, consider the
properties of the dislocation cores when |ε| = 0.021 eV, and
choose κpp = 0.04 eV while choosing κop = 0.01 eV. The
predictions for these conditions are shown in Fig. 2 for a
model containing M = 10 000 sites.

When � = δ = 0.0 eV, the + and − pyramidal cores are
degenerate, and have equal population at all temperatures. In
the case that ε > 0, these are both the minority species, but
each rises to be around 15–20% as the temperature increases
from 0 K 300 K.

The +/− symmetry between the pyramidal spread cores
can be broken by setting � to a nonzero value. In the case that
(� = −0.01 eV), the + pyramidal spread plane has the lowest
on-site energy. For ε = −0.021 eV, the + pyramidal plane is
the ground state. As the temperature is increased to 300 K, the
core becomes approximately 60% + pyramidal spread, with
approximately 20% on each of the prism and − pyramidal
plane spreadings, though the prism plane is just slightly more
populated. Similar results hold when ε = 0.021 eV, with the
roles of the prism and + pyramidal plane spreadings being
reversed.

The symmetry can also be broken in the energies of the
“flips” as is shown for δ = 0.01 eV. The effects of this pa-
rameter are more subtle. Though the energies of the +/−
pyramidal spread cores remain degenerate, the excitation
spectrum accessible to both structures is different. For a posi-
tive δ, the − pyramidal core has a set of excitations accessible
to it that are lower in energy than any of those accessible
to the + pyramidal core. This has the consequence that the
− pyramidal spread core is most common for T > 50 K,

FIG. 3. Expectation values for the core structure number op-
erators plotted as a function of temperature κop = 0.01 eV and
κpp = 0.04 eV, εp = −0.021 eV, � = 0.0 eV and δ = 0.01 eV for
M = 102, 104, 106, 108, and1010. The degeneracy as T → 0 K is a
finite size effect. See the text for details.

for M = 10, 000 and εo = −0.021 eV [Fig. 2(c)]. However,
the behavior of the model as T → 0 K is interesting. Fig-
ure 2(c) shows that the fraction of pyramidal spread core
on the + plane becomes equal to the fraction spread on the
− pyramidal plane, with each constituting one-half of the
sites.

The origin of this behavior lies in the finite size of the
dislocation. As T → 0 K, the number of flips within the dis-
location structure approaches zero. If there are no excitations,
then energies of the + and − pyramidal cores are degenerate,
and one expects that their fractions would be equal. This will
happen only when all the excitations have been “frozen” out
of the system. For a finite length dislocation, freezing out all
excitations is a possibility. That is, there is a finite temperature
at which the probability of finding a single “flip” becomes
arbitrarily small. This temperature, however, should depend
upon the length of the dislocation. In the thermodynamic limit,
in fact, this temperature should go to zero.

Figure 3 displays the behavior for the same set of pa-
rameters as in in Fig. 2(c) for different values of M. The
degeneracy between the pyramidal cores is broken by the
broken symmetry in their flip energies. As discussed above,
for any finite-sized system, as shown in the figure, the ground
state is truly degenerate, as one can always find a temperature
below which there are no flips in the configuration. However,
as M increases, the temperature at which the fractions of
+ and − pyramidal spread cores become equal to one-half
decreases. In the thermodynamic limit, M → ∞, the broken
degeneracy between the two pyramidal spread cores persists
to T = 0 K, so that in the thermodynamic limit, the differing
excitation spectrum selects a unique, nondegenerate ground
state.

Figure 4 displays the same core fraction results for the case
κpp = κop = 0.01 eV. The results are very similar to those
shown in Fig. 2 with the exception that for � = 0.00 eV
and δ = 0.01 eV, the T → 0 K state for εp = −0.021 eV
appears to include equal concentrations of + and − pyramidal
spreadings in the thermodynamic limit.

The effect of the “flip” energies can be explored by consid-
ering the effects on the occupations. Figure 5 displays results
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FIG. 4. Expectation values for the core structure number operators plotted as a function of temperature for six different choices of the
parameters. For all panels, κop and κpp are taken equal to 0.01 eV. Panels (a)–(c) all have εp = −0.021 eV. Panels (d)–(f) have εp = 0.021 eV.
Panels (b) and (e) have � = −0.01 eV and δ = 0.0 eV, whereas panels (c) and (f) have � = 0.0 eV and δ = 0.01 eV. In panels (a) and (d),
〈n+

i 〉 = 〈n−
i 〉 for all T , and hence both appear as a single line.

similar to those in Fig. 4, but now, as an extreme example
(the +/− flip energy exceeds the energy difference between
core spreadings), κop = 0.02 eV and κpp = 0.06 eV. From the
figure, it is clear that an increased “flip” energy increases the
thermal stability of the structures, but does not much alter the
behavior overall, in comparison to Fig. 2.

It is interesting to gauge whether or not polymorphic core
spreading can contribute significantly to the free energy of
the dislocation core. The model enables the computation of
the free energy per site as a function of temperature. Figure 6
displays the free energy per Burgers vector of the dislocation,
F (T ) computed according to:

F (T ) = −kBT

M
ln Z, (14)

assuming εp = −0.021 eV, and � = δ = 0.0 eV for various
choices of κop and κpp. For the case κop = 0.01 eV and κpp =
0.04 eV, at 300 K, the free energy is reduced from the T = 0 K
state by approximately 0.012 eV/b. The thermal contribution
to the free energy is approximately one-half the T = 0 K
internal energy difference between the cores computed using
DFT. For larger “flip” energies, the reduction in free energy at

300 K is only 0.006 eV, whereas for smaller, but equal “flip”
energies, the difference is 0.017 eV. So for the parameters
considered here, the thermal contribution to the free energy
of polymorphic core spreading is comparable in magnitude
to the total internal energy difference between the competing
spreading morphologies at T = 0 K.

B. Correlations

Of course, the dynamics of the dislocations depend not
only on the polymorphic fractions, but also on how those
fractions are distributed along the core. The correlation func-
tions introduced above, Eqs. (10) and (11), can provide some
insight. Figure 7 displays the correlation lengths computed
from Eqs. (13). For the case in which the pyramidal cores
are the ground state Fig. 7(a), prism spread core sections
remain essentially uncorrelated over the temperature range
shown. (ξo is less than one over the entire range.) However,
the pyramidally spread cores appear to become correlated
as the temperature drops. In contrast, if the prism core is
the ground state, Fig. 7(b), both types of core segments re-
main, essentially, uncorrelated over the range of temperatures
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FIG. 5. Expectation values for the core structure number operators plotted as a function of temperature for six different choices of the
parameters. For all panels, κop = 0.02 eV and κpp = 0.06 eV. Panels (a)–(c) all have εp = −0.021 eV. Panels (d)–(f) have εp = 0.021 eV.
Panels (b) and (e) have � = 0.01 eV and δ = 0.0 eV, whereas panels (c) and (f) have � = 0.0 eV and δ = 0.01 eV. In panel (a), 〈n+

i 〉 = 〈n−
i 〉

for all T , and hence both appear as a single line.

shown. Though not shown in a figure, in the case that the
symmetry between core states is broken, then the correlation
length again remains quite small for all temperatures.

The fact that the correlation lengths sometimes do not
diverge as T → 0 K can be contrasted with the results from
the 1D Ising model in zero field. Whereas the 1D Ising model

FIG. 6. Free energy curves for εp = −0.021 eV, � = δ =
0.0 eV, with different values for “flip” energies, given in eV.

in the zero field limit can be thought of a displaying a phase
transition precisely at T = 0 K, the model for the dislocation
core spreading appears to display this behavior only for a very
specific set of parameters, for others, there is no increasing
correlation length. The origins of this behavior are discussed
further below.

To the extent that the correlation lengths reflect the sizes
of the domains, these calculations suggest that for the values
κop = 0.1 eV and κpp = 0.04 eV, the domains are quite small.
In the case where prism spreading is favorable, the fluctua-
tions to pyramidal spreading must act as a weak pinning point
for the dislocation, resulting in a drag that increases with the
disorder, i.e., as the temperature, increases. For the case where
pyramidal spreading is favored, the pyramidal domains begin
to grow below 100 K, and this could lead to jerky glide be-
cause the domains of core structure that cannot glide easily on
the prism plane are extended in length. Recall that the choice
of “flip” energies here is somewhat arbitrary. Increasing them
increases the correlation lengths and hence the domain size
of cores spread on the pyramidal plane. However, at higher
temperatures, the domains again become very small. This
does not mean, however, that dislocation motion becomes
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FIG. 7. (a) Correlation lengths for εp = −0.021 eV, � = δ =
0.0 eV, κop = 0.01 eV, and κpp = 0.04 eV. (b) Correlation lengths for
εp = 0.021 eV, � = δ = 0.0 eV, κop = 0.01 eV, and κpp = 0.04 eV.

smooth—the dislocation is still predominantly spread on the
pyramidal planes even at room temperature.

Interestingly, if the symmetry between pyramidal cores is
broken, the correlations appear not to diverge at low temper-
atures. This behavior is similar to that observed for the case
of the prism spreading being the ground state morphology.
Examination of the terms in the correlation function g+(l )
reveals the origin of this behavior. In the limit that symmetry
between pyramidal spreadings is not broken, all expectations
of the spin variables raised to an odd power vanish identically.
This implies that the correlation function takes on the follow-
ing form:

g+(l ) → gsym
+ (l ) =

〈
σ 2

i σ 2
i+l + σiσi+l

〉 − 〈
σ 2

i

〉2(
2 − 〈

σ 2
i

〉)〈
σ 2

i

〉 . (15)

Examination of the terms entering the correlation function and
their dependence on l , reveals that the l-dependence of gsym

+ (l )
is dominated by the correlation 〈σiσi+l〉. At low temperature,
the fraction of the core that is in the prism spread state drops to
near zero, and this forces σ 2n

i = 1, with n ∈ Integers. Hence
the only dependence on l arises from the Ising like term in
the problem, and the correlations behave similarly to the 1D
Ising model in zero field. However, in the case that the 〈σi〉
is nonzero, or if the symmetry between pyramidally spread
cores is broken, the correlations behave differently, and the
Ising term is only one of many terms contributing to the free
energy, which now includes contributions from terms linear in
〈σi〉. These terms are similar to those for the 1D Ising model
with a finite magnetic field, and no transition at T = 0 K is
expected.

For the case of εp > 0, when the prism core is the ground
state, the correlation function, Eq. (10), does not include an
Ising-like term, and again, there is no divergence of the corre-
lation length as T → 0 K.

So, for typical parameters, correlation lengths remain quite
small, except for very low temperatures under specific con-
ditions. The implication is that the domain sizes at typical
deformation temperatures are quite small. This observation
holds implications for dislocation drag and, perhaps, disloca-
tion cross slip rates.

C. Dislocation Core Switching

1. parameter driven core switching

The question of whether or not the model can display
a temperature driven switching from, for example, prism
spreading to pyramidal spreading, is of some interest. Since
the core morphology dictates the dislocation dynamics, such
transformations might lead to significant changes in mobility.
Atomic scale studies have shown that stresses (both Schmid
and non-Schmid) can alter dislocation spreading morpholo-
gies, even to the point of altering the ground state structure
(at least within empirical potential models) [31]. So the most
obvious manner in which the model might display a spreading
morphology transition is for the free energy difference per
segment (εp) between the dislocation cores to change sign, ei-
ther due to local non-Schmid or Schmid stresses. In additions,
the different core spreading morphologies certainly have dif-
ferent phonon spectra, and this will lead to changes in the
internal free energy per unit length similar to those computed
for diamond cubic semiconductor [8,21]. The model enables
study of this type of transition in principle, but in practice the
situation is more complicated. Since there is no good model
for the free energy difference between core types, and/or the
flip free free energies, it is difficult to make a predictions about
how the core switching transition will appear. Purely as an
example of what might transpire, Figs. 8(a) and 8(b) plot the
results expected for a model in which the parameters govern-
ing the simulation vary with temperature as shown in Fig. 8(c).
The core switching transition temperature was set to be 100 K.
Note that the core switching transition is marked by a cusp in
the core fraction curves for both the case where pyramidal
spread cores are degenerate in energy, and for the case that
the degeneracy is broken. Though these results are obtained
for M = 10 000, they have converged to the thermodynamic
limit.

Dislocation switching transitions may hold implications
for experimental measurements as well. Molecular dynam-
ics simulations suggest that these might be observed if the
ground-state core spreading morphology is prism spread, as
is expected for Zr. This does not appear to be the case for
α-Ti, but is, perhaps, not out of the question. In α-Ti, DFT
predicts that the ground state morphology is spread on the
pyramidal planes [20,26,27]. It is interesting to note that, a
typical cell used to compute the energy difference between
core structures contains around 200 atoms. Given that the
total energy difference between the two configurations in
question is 0.042 eV (there are two dislocations within the
unit cell), accepting this value as accurate implies an accuracy
of the underlying theory for predicting energy differences of
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FIG. 8. The predictions of the model for dislocation core frac-
tions when the parameters are allowed to vary in temperature. Panel
(a) displays the predictions for the model using the temperature
dependent parameters shown in panel (c) when the the symmetry is
not broken (� = δ = 0.0 eV). Panel (b) displays the predictions for
the same set of parameters, but with � = 0.007 eV and δ = 0.0 eV.
For both sets of results, M = 10 000.

approximately 0.2 meV/atom. This is likely approaching the
limits of current DFT functionals, and may also be influenced
by the high density of dislocations within the computation.
Given these observation, there is still some uncertainty in the
predictions of the dislocation core energies, and perhaps, even
the ground state spreading morphology.

Another possibility for observing a dislocation core switch-
ing transition could be through alloying experiments. In Zr,
the morphology of the core is predicted to be spread on the
prism plane. The opposite is true of α-Ti. It is possible that by
alloying the two elements in different ratios, one might be able
to fabricate an alloy in which the dislocations would display
the core switching transition. These should be marked by vis-
cous dislocation motion up to the temperatures corresponding

FIG. 9. The dislocation core spreading “composition” as a func-
tion of temperature for εp = 0.001 eV, � = 0.0 eV, δ = 0.0 eV,
κpp = 0.01 eV, and κop = 0.04 eV, for a dislocation containing M =
104 sites. Note that the core switches, rather abruptly, though not
with a step function singularity, from being primarily prism spread,
to spreading on both pyramidal planes at a temperature near 70 K.

to the core switching transition, wherein thermally activated
“jerky” glide would set in.

The analysis above was carried out for one specific ad hoc
set of parameters, and is meant to demonstrate one possibility
regarding the temperature dependence of the parameters. In
addition, there is substantial computational evidence that the
difference in internal energy between competing core spread-
ings is also stress state dependent [31]. The same most likely
holds for the other parameters of the model. If so, the parame-
ters describing a dislocation within a pileup, for example, may
differ from dislocation to dislocation, even if all dislocations
are at the same temperature. In fact, it is even possible in
principle for two different portions of a single dislocation to be
described by differing model parameters. Given these obser-
vations, the modeling of dislocation dynamics under realistic
conditions of fluctuating stresses and reasonable temperatures
poses a significant theoretical challenge.

2. entropy driven switching transition

The model raises another possibility that is interesting to
explore, although it is not a likely scenario for the dislocations.
Consider the situation in which the prism spread core is just
slightly favored (εp > 0.0 eV), and choose the flip energies so
that κop is significantly larger than κpp. In these circumstances,
as T → 0 K, the prism spread core will become the dominant
core fraction. However, the pyramidal spread cores will have
significantly more low-energy excitations available to them.
This raises the possibility that as the temperature increases,
the core fraction might be dominated by pyramidal spread
cores, due to the associated increase in entropy.

To explore this possibility, take εp = 0.001 eV. Then, take
the flip energy between pyramid and prism spread cores to
be quite high, κop = 0.04 eV, whereas κpp = 0.01 eV. For
simplicity, choose � = δ = 0.0 eV, for a dislocation with
M = 10 000. Figure 9 shows that the dislocation core spread-
ing changes rather abruptly from being spread in the prism
plane, to spreading on the pyramidal planes at a temperature
just slightly below 70 K. We refer to this phenomenon as an
entropy driven switching transition.
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The nature of the entropy driven dislocation core switching
can be explored by examining the behavior of the correlation
functions near the transition temperature. Figure 10(a) shows
the correlation lengths computed by using Eqs. (13). Clearly,
the correlations in the spins are increasing near the switching
temperature. These correlations have not diverged, so there
does not appear to be a continuous phase transition in the
model. Moreover, the model does not display any discontinu-
ity, so strictly speaking, there is no phase transition. (However,
the dislocation core switching transition can be made nearly
arbitrarily sharp by increasing κop.) Figure 10(b) plots the
correlation function go(l ) on a log/normal scale. The lines
are relatively straight, suggesting that the correlations in no

i
remain simple exponential decays. However, Fig. 10(c) that
plots g+(l ) on a log/normal scale displays an interesting
behavior. For these temperatures, the correlations display a
more complicated behavior. They decay initially with a short
correlation length, and then display longer range correlations
characterized by a longer correlation length. This suggests
that using Eqs. (13) is not appropriate for g+(l ). Instead, one
should consider the slowly decaying tail of the correlation
function, and use this exponential cutoff as a measure of
the correlation length. The correlation length so computed is
shown in Fig. 10(d) that shows a correlation length approach-
ing 350b for g+(l ), and, in fact, the correlation lengths for no

and n+ are equal.
The switching behavior can persist, even in the case of bro-

ken symmetry between the pyramidal spread cores. Figure 11
displays the composition of the dislocation core, and the cor-
relation times for the case εp = 0.001 eV, � = −0.0005 eV,
δ = 0.0 eV, κpp = 0.01 eV, and κop = 0.04 eV, for a dis-
location containing M = 104 sites. The core structure still
displays a switching transition, and that the correlations still
peak near the transition. [The correlations lengths for g+(l )
are computed from the long time decay.]

D. Finite Size Effects

The effects of finite size become interesting when one con-
siders atomic scale calculations of dislocation core structures
at temperature. Atomic scale calculations will necessarily be
limited to relatively small values of M because of size limita-
tions on the unit cells that can be employed. For example, if
one employs the unit cells containing dislocation dipoles, the
cells have to be quite large in the direction perpendicular to
the line direction of the dislocation. If these cells must also
be made 1000b thick, their size can slow computation times
dramatically. For this reason, it is interesting to understand
the effects of finite size on the predictions of the model.

As the discussion above makes clear, there are conditions
under which the correlation lengths within the model can
extend for relatively large distances of 300b or more. It stands
to reason that if such a system is studied with a system size
smaller than 300b, that the effects of finite size will alter the
results. To explore this size dependence, consider the predic-
tions for the same parameters as Figs. 9 and 10 except now,
let the values of M vary from 32 to 1024. Figure 12 plots the
same core fractions as in Fig. 9 for these values of M. Clearly,
for system sizes below the correlation length (computed in
the thermodynamic limit), the size has a significant effect on

FIG. 10. (a) The correlation lengths computed using Eqs. (12)
for a range of temperatures near the switching temperature for εp =
0.001 eV, � = 0.0 eV, δ = 0.0 eV, κpp = 0.01 eV, and κop = 0.04 eV,
for a dislocation containing M = 104 sites. (b) Correlation function
go(l ) plotted on a log/normal scale. (c) Correlation function g+(l )
plotted on a log/normal scale. (d) Correlation length for g+(l ) mea-
sured from the long time correlations and compared with correlation
length computed from no. The two curves coincide.
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FIG. 11. (a) The composition of the dislocation for εp =
0.001 eV, � = −0.0005 eV, δ = 0.0 eV, κpp = 0.01 eV, and κop =
0.04 eV, for a dislocation containing M = 104 sites. (b) Correlation
lengths for no and n+ using the same parameters.

the entropy driven switching transition and can broaden the
temperatures over which the transition takes place. So in the
case of core switching within the atomic scale simulations,
care might be needed in exploring potential core switching
behavior.

FIG. 12. The composition of the dislocation core as a function
of temperature for varying periodic cell sizes. The parameters have
been chosen the same as those used in Fig. 10, excepting that value
of M, which is chosen to be 16, 32, 64, 128, 256, 512, and 1024. The
gold curves are 〈no

i 〉. Here, the concentrations of “+” and “–” cores
are equal, so the lines coincide, and only the lines for 〈n−

i 〉 are visible
(green). The black arrows indicate the direction of increasing M for
the sets of curves. The core composition at M = 1024 is essentially
equal to that of the thermodynamic limit.

Finite size, however, can also be used to advantage. To
see how this might be, consider that each dislocation segment
chooses a plane upon which to spread. These planes can be
designated by the angle they make with the basal plane. For
example, a prism spread core will intersect the basal plane
of the crystal at 90◦. Similarly, a dislocation spread on the
“+” pyramidal plane will make an angle of approximately
118.5◦ with the basal plane (depending upon the specific
lattice constants), which corresponds to the an angle of 28.5◦
with the prism plane (corresponding to c

a = 1.595). Similarly,
assuming the same c

a , the “–” pyramidal plane will make
an angle of −28.5◦ with the prism plane. The instantaneous
average angle, θ̄ , that a dislocation’s spreading plane makes
with the basal plane can be computed (in degrees)

θ̄ = 90 + 28.5
1

M

M=1∑
i=0

σi. (16)

The average angle during any time snapshot is simply pro-
portional to the sum of the spins. The time average of θ̄

is proportional to 〈σi〉. This average angle, however, should
display fluctuations in time. In the thermodynamic limit, the
fluctuations from this average value are expected to go to zero.
But for finite size systems, the fluctuations are observable, and
they have a characteristic distribution that can be computed.
Since molecular dynamics simulations are always finite sized,
these fluctuations can be observed and analyzed (though this
has not yet been done). So the angle distributions can be used
to make contact between the simple model and molecular dy-
namics simulations. In order to make more progress, however,
we need to compute the angle distributions, P(θ̄ ) within the
simple model.

The distribution of the sum of spins can be derived from the
partition function using the fact that the sum over the spins is
always given by an integer. The probability that the sum of
spins equals the integer N , then, is formally given by

P(N ) = 1

Z

1∑
σ0=−1

· · ·
1∑

σM−1=−1

exp [−βEcore({σi})]δN,
∑M=1

i=0 σi
,

(17)
with δn,m the Kronecker delta function of the integers n and m.
The evaluation of the sum can be carried out by introducing
the integral representation of the Kronecker delta function:

δn,m = 1

2π

∫ 2π

0
dφ exp [iφ(n − m)]. (18)

Substitution of Eq. (18) into Eq. (17) yields:

P(N ) = 1

2πZ

∫ 2π

0
dφ exp [iφN]

1∑
σ0=−1

· · ·
1∑

σM−1=−1

× exp [−βEcore({σi})] exp

[
−iφ

M=1∑
i=0

σi

]
. (19)

The constrained sum, then, effectively adds a term to the
transfer matrix. Once this term is added, the summation is
performed, and the remaining three integrals (one for each
eigenvalue of the transfer matrix) are performed numerically
to compute the probability distribution P(N ) and hence the
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FIG. 13. Angle distributions for a dislocation with εp =
−0.021 eV, κop = 0.01 eV, κpp = 0.04 eV, � = δ = 0.0 eV, and
M = 32 [panels (a) and (b)] and M = 128 [panel (c)] for different
temperatures. The distributions are only defined for discrete values
of θ̄ .

probability distribution P(θ̄ ). Figure 13 displays the com-
puted distribution of θ̄ for εp = −0.021 eV, κop = 0.01 eV,
κpp = 0.04 eV, � = δ = 0.0 eV, and M = 32 for different
temperatures. Note that within this model the probability is
defined only for certain discrete values of θ̄ . Hence these plots
are not approximations to a curve, but rather, the plots report

FIG. 14. Angle distributions for a dislocation with εp =
0.021 eV, κop = 0.01 eV, κpp = 0.04 eV, � = δ = 0.0 eV for
(a) M = 32 and (b) M = 128. The distributions are only defined for
discrete values of θ̄ .

a set of probabilities in graphical form. At low temperatures
for the parameters chosen here, essentially no core segments
are spread on the prism plane, even though the average value
of θ = 90◦. As the temperature warms, the prism segments
become more common, and the initially bimodal distribu-
tions become unimodal. The cores, however, remain primarily
spread on the pyramidal planes, but with equal probability,
driving the distribution to be peaked about θ = 90◦. Another
interesting aspect of the low-temperature behavior is shown
by the plot for T = 50 K. Here, the probability for the most
extreme value of the angles is quite large in comparison to
the remaining probabilities. Thus at low temperatures, the per-
fectly ordered state, for this system with M = 32, occurs with
a finite probability (over 90% if one considers both possible
pyramidal core spreadings). For M = 128, the distributions
are more sharply peaked about θ = 90◦. This is reasonable,
as the larger the system one examines, the lower the variation
in the mean of a parameter.

The behavior of the angle distribution when prism core seg-
ments are favored is shown in Fig. 14. Here, the distribution
starts peaked at the completely prism ground state, and then
grows broader with increasing temperature. Note, however,
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FIG. 15. Comparison of angle distributions for a dislocation with
εp = 0.021 eV, κop = 0.01 eV, κpp = 0.04 eV, � = −0.01 eV, δ =
0.0 eV for (a) M = 32 and (b) M = 256, plotted for various temper-
atures. The distributions are only defined for discrete values of θ̄ .

that the distribution for prism spread cores is narrower, at a
given temperature, than that for pyramidal spread cores. Fi-
nally, the dependence of the distribution width on temperature
is opposite for the two cases: pyramidal spread dislocations
show a distribution with decreasing width as temperature
increases, whereas the widths of the distributions for prism
spread cores increase with temperature.

Of course, the θ̄ distributions depend on the size of the
system. One obvious dependence is that an increase in system
size increases the number of accessible values of N , because
−M � N � M. This implies that the probability of encoun-
tering each individual angle is reduced, and this is reflected
in the computed distributions. A second dependence has to do
with the width of the probability distribution. As M increases,
the width of the distribution P(θ̄ ) decreases (for a given tem-
perature).

It is also interesting to explore the evolution of the angle
distributions in the case that the symmetry is broken. Consider
a dislocation described by εp = −0.021 eV, κop = 0.01 eV,
κpp = 0.04 eV, δ = 0.0 eV, � = −0.01 eV. This distribution
will favor the n+ dislocation segments, and should lead to
distribution peaked at an angle greater than 90◦. In fact,
symmetry breaking between the two pyramidal dislocation

FIG. 16. The angle distributions in the case of parameters vary-
ing with temperature as shown in Fig. 8. For both panels, M = 64.
(a) The plotted distributions in the broken symmetry case, with � =
0.007 eV. (b) The distributions plotted in the case that � = 0.0 eV.
In both panels, the maximum for T = 25 K has been cropped from
the plot.

cores is the only way to have an angle distribution peaked
away from 90◦, 61.5◦, and 118.5◦ (given that c

a is chosen
as above). A distribution with a peak angle differing from
these values is one necessarily corresponding to the broken
symmetry case. Figure 15 displays the angle distributions for
these parameters. In this circumstance, the distributions are
skewed as expected. At very low temperatures, the skewing is
extreme. As the dislocation is warmed, however, the average
angle moves away from the limiting value and more towards
90◦.

Finally, it is interesting to consider what will happen to
the angle distributions near the switching transition. Figure 16
displays the distributions expected for the same parameters
as used in Fig. 8, excepting that M = 64 and in panel (b)
the symmetric case (� = 0.0 eV) is considered. Note that he
distribution width increases monotonically with temperature
over the range of temperatures plotted.

Figure 17 displays an example of the angle distributions
computed through the entropy driven switching transition
shown in Fig. 9, for a dislocation with M = 256. Below
the switching transition, the finite system is completely in
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FIG. 17. Comparison of angle distributions for a dislocation with
εp = 0.001 eV, κop = 0.04 eV, κpp = 0.01 eV, � = −0.0005 eV, δ =
0.0 eV and (a) M = 32, (b) M = 256 shown at various temperatures.
The distributions are only defined for discrete values of θ̄ .

the prism spread state, and, essentially, P(90◦) = 1. As the
temperature is increased, there is still a significant probability
to find the dislocation core prism dissociated, but the prob-
ability to find the favored pyramidal spreading is increased.
Eventually, the probability to find the prism spread core drops
to, essentially, zero, and the distribution is dominated by the
pyramidal spread core states. These states, however, are near
symmetric, as the symmetry breaking is quite small for this
set of parameters.

It is also apparent that once the pyramidal segments be-
come the dominant, the distribution has the property that the
probability of every other angle is markedly reduced relative
to its neighbors. This is because a flip from one pyramidal
core to the next, changes the average of 〈σi〉 by an increment
of 2

M . The only way to change the average spin by an incre-
ment 1

M is to introduce a prism core state, which has a very
low probability of appearing immediately above the transition
temperature. In this plot, sums of σi that are even are more
common because M is chosen to be even. If M is chosen to be
odd, then the most common sums of σi would be odd as well.

In Ref. [28], angle distributions are computed. Those dis-
tributions, however, differ from those considered here in that
they measure the angle at each segment, for many differ-

ent snapshots in time, and lump all the segment data from
different times together in order to generate a time aver-
age of the angle distribution. In the thermodynamic model,
since there are only three possible orientations, these dis-
tributions would appear as three simple spikes at the fixed
angles. In contrast, P(θ̄ ) measures the distribution of average
angle over an entire dislocation. This data is in princi-
ple accessible to MD simulations, but has not yet been
analyzed.

Nevertheless, an interesting observation can be made. In
the simple model, the distribution for P(θ̄ ) is symmetric about
θ̄ = 90◦ as long as � = δ = 0.0 eV. The symmetry breaking
requires that the stress favor one configuration over another.
MD dynamics simulations of dislocations within periodic
supercells appear to show the symmetry breaking, which sug-
gests that the stresses from the periodic environment might
be breaking the symmetry between the two pyramidal core
spreadings. However, this conclusion might be in err. The
exact solution for the thermodynamic model does not tell
one anything about the dynamics. According to the ergodic
hypothesis, the time average of the phenomenon should be
equal to the thermodynamic expectation. However, the time
scales over which one must average is unknown. Given this, it
is possible that the MD simulations considered thus far have
not yet been run for times long enough for the results to be
ergodic.

IV. CONCLUSIONS

In this paper, a simple model aimed at computing the con-
figurational contributions to the free energy of a dislocation
arising from core spreading polymorphism is introduced and
studied. The thermodynamic properties of the model are com-
puted exactly, and in most cases analytically. It is shown that
the configurational contributions to the free energy at room
temperature can be comparable to the total energy difference
computed at zero temperature. It is also demonstrated that,
at temperature, it is likely that an individual dislocation is
composed of segments that are a mix of all three spreadings,
or, perhaps, a mix of both types of pyramidal spread-
ing, depending on the specific parameters describing the
dislocation.

The possibility for dislocation core switching is explored.
The simple model allows for transitions in the core structure
driven by an increase in temperature. These can come about at
fixed model parameters, or perhaps, through the temperature
dependence of the parameters themselves. The former case
is considered in some detail, and it is noted that for certain
choices of the parameters, the pyramidal cores can have more
entropy accessible at lower temperatures. This can lead to a
dislocation core switching transition in which the predomi-
nant core spreading morphology changes rather abruptly over
a small temperature range. It is noted that such transitions
will strongly influence dislocation dynamics, and hence may
complicate modeling.

Correlation lengths are examined. It is found that for most
parameters choices and temperatures of interest, correlation
lengths are quite small, as are domain sizes. The implication
is that small simulations, the size of those accessible to atomic
scale computation, are in many cases sufficient. However,
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under certain circumstances, the correlation lengths can grow
to 300b or more. One example is during the entropy driven
core switching transition. Another instance is for very low
temperatures, where the + pyramidal plane symmetry is not
broken.

Given the size limitations for atomic scale simulations, it
is of some interest to identify parameters that can be assessed
using smaller scale simulations. One such parameter is the an-
gle the dislocation core spreading plane makes with the basal
plane. The simple model was used to calculate the distribution
of these angles, and the dependence of these distributions on
the parameters of the model are explored. It is noted that
asymmetry in the pyramidal core spreading energies was the

only way to obtain a distribution not centered on the prism
plane in the ergodic limit.
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