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Molecular dynamics studies of 〈a〉-type screw dislocation core structure
polymorphism in titanium
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The atomic scale computation of dislocation core structures has become an essential tool in the development of
models for the plasticity of metals. Competing dislocation core structures are often analyzed at T = 0 K (with T
the temperature), and the dislocation core structure with the lowest energy is assumed to be the structure dictating
the dynamics of the individual dislocation at finite temperatures. It is shown here that, for some hexagonal-
close-packed (HCP) metals, this approach may be too simplistic. As a prototypical example, 〈a〉-type screw
dislocations within HCP Ti modeled using an empirical interatomic potential are considered. It is shown using
molecular dynamics simulations that, at room temperature and above, the core structure of the dislocation is
remarkably complex and variable. The implications of this complexity for the dynamics of the dislocations are
discussed.

DOI: 10.1103/PhysRevMaterials.6.013603

I. INTRODUCTION

Dislocation core spreading and the resulting effects on slip
were first introduced by Peierls [1] and expanded upon by
Nabarro [2]. According to their model, for a given Burgers
vector, line direction, and material there is a plane in which
the dislocation will spread and have a minimal barrier to
slip. For a dislocation with edge character this plane will
always be the plane that contains both the Burgers vector
and line direction, but for a pure screw dislocation these
directions are parallel and thus there are many possible glide
planes.

Following the introduction of the dislocation core spread-
ing concept, there has been much work done to assess the
core configurations of dislocations within various materials,
including body-centered-cubic (BCC) [3–8], face-centered-
cubic (FCC) [9], and hexagonal-close-packed (HCP) [10–16]
metals. Thus far, the discussion of dislocation core struc-
tures has focused mostly on relaxed core structures at T =
0 K (with T the temperature). While it is no doubt im-
portant – not to mention surprisingly complicated – to gain
an understanding of the potential energy landscape for dis-
location core structures at T = 0 K, these core structures
may not define the behavior of dislocations at finite tem-
peratures. Specifically, the differences in energy between
different core structure configurations at 0 K can be very
small; e.g., for cores in HCP Ti prismatic and pyramidal
spread cores differ in energy on the order of 10–20 meV/b
with b the magnitude of the Burgers vector [13,17]. Given
that such energy differences are comparable to thermal en-
ergy scales on a per atom basis, it is reasonable to consider
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what effects temperature may have on the core structures.
(See Ref. [18] for a simple thermodynamic model of the core
configurations.)

A priori, one expects that the stable core structure will be
determined to be that which minimizes the excess Gibbs free
energy due to the dislocation. There are many factors that
can contribute to this excess free energy. For example, the
dislocation will alter the phonon spectrum of the crystal, and
this will lead to changes in the excess free energy. This has
been argued to have a stabilizing effect on the double period
reconstruction in the 90◦ partial dislocation in Si [19]. In the
case of dissociated dislocations, the temperature dependence
of the elastic constants and stacking fault energies can, in prin-
ciple, alter the observed dislocation dissociation, though this
effect appears to be negligible in Al [20] near room temper-
ature. Thermal fluctuations in the position of the dislocation
on the slip plane can also make a significant contribution to
the excess free energy of the dislocation [21], and studies of
these fluctuations have provided remarkable insight into the
properties of dislocations.

This paper, however, focuses on a configurational contri-
bution to the excess free energy of the 〈a〉-type dislocations
in hexagonal close packed (HCP) metals: the potential for a
formally undissociated dislocation core to exist in multiple
configurations, a property that we refer to as polymorphic
dislocation core spreading.

There are many examples of polymorphic dislocation core
spreading in the literature. In BCC metals, Vitek has iden-
tified nearly a continuum of dislocation core structures that
can be stabilized through the application of non-Schmid
stresses [6,7]. In diamond cubic semiconductors, some dis-
location cores are predicted to reconstruct [19,22–25], and it
is expected that the associated dislocation dynamics will be
dictated by equilibrium and nonequilibrium core configura-
tions [26]. More recently, the structure of dislocation cores
within HCP metals has been studied in detail [12–16,27,28],
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and here, too, there are numerous core structures that might
be observed.

As a concrete example, consider the cases of pure Ti and
pure Zr. Clouet et al. argued that the differences in individual
〈a〉-type screw dislocation dynamics is a result of the fact that
the dislocations in the two systems assume different ground
state core spreading morphologies [13]. In Ti, the dislocation
cores spread slightly on the first-order pyramidal planes at
T = 0 K, whereas in Zr, the dislocations spread slightly on
the prism planes at T = 0 K. In both cases, the prism plane is
the primary slip plane. In the case of Ti, this spread core con-
figuration leads to thermally activated slip of the dislocations
on the prism plane through a locking-unlocking mechanism
[13,29,30], and results in a “jerky” motion when observed
using in situ transmission electron microscopy. In contrast,
the motion of Zr dislocations on the prism plane is much more
sluggish, but smooth. Clouet et al. explain that the dislocations
in Zr need no thermal activation because they are spread on the
prism planes in their ground state.

Clouet et al. base their conclusions on dislocation structure
calculations of the energy difference between the pyramidal
and prism dislocation cores. For the case of Ti, the pyramidal
spread core is found to be approximately 20 meV/b lower in
energy than the prism spread core. This energy difference is
quite small. In fact, it appears to be of the order of thermal
fluctuations expected in the system [18]. Moreover, the energy
difference is so small that it must be approaching the limits of
the accuracy of density functional theory (DFT)-based meth-
ods. Notwithstanding these observations, the predictions from
the model do agree well with available experimental data, and
the given explanation is certainly plausible.

However, given the small energy difference between the
two core structures, one expects, at finite temperatures, to find
along a single dislocation domains that appear to be spread
primarily on the pyramidal plane, and domains that appear to
be spread primarily on the prism plane. The numbers and sizes
of these domains are expected to depend on the free energy
difference between the different core states, the free energy
cost associated with transitioning from one core structure to
the other, and the configurational entropy contribution arising
from the different configurations of core spreadings accessible
to the dislocation.

In what follows, the thermal properties of these dislocation
cores are studied in detail using molecular dynamics simu-
lations. α-Ti modeled using a MEAM potential [31] is used
as a prototypical system, in part due to the fact that non-
Schmid stresses can be used to select either a pyramidal core
or prism core as the T = 0 K ground state [32]. Therefore, by
applying non-Schmid stresses, we can study HCP metals that
behave more like Zr, and those that behave more like Ti. It is
demonstrated that the structure of the dislocation core displays
substantial stress-state-dependent fluctuations, even at modest
temperatures. It is also demonstrated that these fluctuations
have strong implications for the 〈a〉-type screw dislocation
dynamics in HCP metals, and consequently, the mechanical
properties of these same metals.

In the next section of this paper, a method for assessing the
core spreading tendencies of 〈a〉-type screw dislocations in
hcp metals is introduced. The section following that presents
the results and discussion of molecular dynamics simulations

of 〈a〉-type screw dislocations in α-Ti, and the final section
presents the conclusions.

II. AUTOMATED IDENTIFICATION OF CORE
SPREADING

The most common method for describing the core structure
of a segment of dislocation within an atomic scale simulation
is to calculate the Nye tensor [33] and/or the differential
displacement map [6], examine the data by eye, and then make
a determination of the dislocation core spreading morphology.
This method requires human input, and is therefore inefficient,
and also subject to bias. It is also a very coarse classification
method. Human observers of dislocation core structures have
tended to sort the structures into a small number of bins.
For example in HCP metals most references only discuss
basal, prismatic, pyramidal, and something along the lines
of asymmetric or mixed morphologies [13,17,28,34,35]. This
human classification scheme may in fact be glossing over
the significance of core structures that do not fit neatly into
one of these bins, and/or the importance of intermediate core
structures.

Automating the characterization of dislocation core mor-
phologies requires some thought as to how to determine which
atoms should be considered to be part of the dislocation
core, and to determine how the distribution of core atoms
can be converted into a descriptor for the dislocations. One
reasonable set of choices is to allow all atoms to contribute
to core structure identification and to weight contributions by
a function of the atomic strain. Intuitively this makes sense,
because a dislocation core is a highly strained region, and thus
the atomic strains in the core should be large compared to the
surrounding elastically-strained material. The atomic strain
may fall off quickly or slowly as a function of distance from
the dislocation core, and measuring the rate at which it does
could provide an estimate of the dislocation core size. More-
over, considering more-strained atoms to contribute more to
the assessment of the dislocation core orientation matches
(and formalizes) the existing practice when identifying core
structures by eye.

As noted above, two methods for visualizing dislocation
core structures are common: the Nye tensor and differential
displacement maps. The differential displacement map con-
struction is useful for visualization, but it can be inconvenient
choice if one attempts to use it to automate dislocation core
identification. For 〈a〉-type screw dislocations in HCP metals,
at each atom column position there are 6 different vectors
connecting to the neighboring columns. The lengths of these
vectors are scaled by the relative displacement between the
columns. As mentioned earlier, the pattern of displacements
is typically classified by eye into one of a small number of
categories. While machine learning methods might be used to
automate this classification scheme, the necessary automation
is not immediately available. Of course, the Nye tensor, the
curl of the atomic strain [36], robustly represents the Burgers
vector density at each atom position, and can be used to assess
differences between dislocation core structures.

In this work, however, an additional dislocation core identi-
fication method complementary to both the Nye tensor and the
differential displacement map is introduced. This parameter
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relies only on the atomic strain computed at a column of
atoms. The parameter, denoted as υ, is based on identifying
atoms that are near to or beyond elastic instability as predicted
by a continuum nonlinear elasticity analysis. Specifically, one
sometimes-used definition for a dislocation core is that it is
the region in which the stress predicted by continuum linear
elasticity theory is greater than the ideal strength of the ma-
terial [37–39]. The intuition behind this is that in this region
linear elasticity theory is certainly no longer applicable, and
the material within the region is, at a minimum, nonlinear
elastic, and may be, in fact, elastically unstable. This defini-
tion is interesting because it suggests that the extent to which
an atom is within a dislocation core can be calculated from
the strain itself rather than from a derivative of the strain.
For the analysis presented here, this choice has the advantage
that the stacking faults associated with core dissociation are
naturally identified as being within the core of the dislocation,
rather than identifying two separate partials with perfect crys-
tal intervening. This might aid in identifying the topological
characteristics of the spreading/splitting (if present).

Following the work of de Jong et al. [40] and Winter et al.
[41], the ideal strength of a material (i.e., the elastic limit) can
be estimated if one knows the second- and third- order elastic
constants (SOECs and TOECs) for the material. Estimates of
the ideal strength, and the associated ideal strain, are obtained
by finding the eigenvalues of the symmetrized Wallace tensor
[42] (�), that governs the elastic stability of a crystal under a
uniform applied load [43]. � is defined in terms of the elastic
constants under finite deformation (ECFD), C′

klmn, and second
Piola-Kirchhoff stress tensor (PKST), τkl , as

�klmn = C′
klmn + 1

2 (τkmδln + τknδlm + τlmδkn

+ τlnδkm − τklδmn − τmnδkl ), (1)

with δkl being the Kronecker-δ. As � governs the elastic
stability of a solid under a uniform applied load, if an eigen-
value of the symmetrized Wallace tensor goes to zero the
ideal strength has been reached. The key to estimating ideal
strengths within an nonlinear elastic framework is to estimate
ECFD and the PKST in terms of an applied strain η, SOECs
and TOECs as described in Refs. [40,41]. In theory, the elastic
constants used to determine the Wallace tensor should be com-
puted at finite temperature. In practice, the zero temperature
values seem to suffice. The values of the elastic constants used
in the current work are presented in the Appendix.

This nonlinear elastic model can be applied to aid in un-
derstanding the structure of defects in materials as modeled
through atomistic simulations. The core region associated
with a crystalline defect is often qualitatively described as a
region lacking crystallinity. It can be assumed that this is a
result of the large strains near the origin of a defect causing
the atoms near the defect to rearrange themselves to the point
that they no longer correspond to the lattice of the defect-free
material. By further assuming that local nonlinear continuum
elasticity theory can accurately predict where this instabil-
ity will occur, atomic strains can be estimated using various
methods [44,45], and then used to estimate the eigenvalues of
�, to evaluate an atom’s nearness to a defect core.

Accordingly, for the αth atom in a system, one defines the
parameter υα:

υα = min[eig(�ref )] − min[eig(�α )]

min[eig(�ref )]
, (2)

where �ref is the symmetrized Wallace tensor for the reference
(undeformed) system, and �α is the symmetrized Wallace
tensor for atom α in the current configuration of an atom-
istic simulation. Given that min[eig(�ref )] > 0 for a stable
reference configuration and min[eig(�ref )] � min[eig(�α )],
the parameter υ � 0. The inputs required for this calcula-
tion are the atomic positions in the current state, a reference
(undeformed) lattice, and the second- and third-order elastic
constants of the system under no applied stress. Note that as
described here, the computation of υ requires no adjustable
parameters.

To determine if the υ parameter is useful in practice,
we compare it with the established dislocation identification
methods of Nye tensor analysis [36] and differential displace-
ment maps [6] for the same dislocation. One test case that is
both simple and important is the representation of the ground-
state dislocation cores calculated by DFT. A comparison of
these between the existing Nye tensor and differential dis-
placement map visualizations and υ is presented in Fig. 1 for
the case of the 〈a〉-type screw dislocation cores in titanium
from Ref. [17].

Another important test case is the performance of this pa-
rameter on atomic positions extracted from an MD simulation,
because these will have thermal noise. If this parameter is to
be used to classify core structures generated by MD simula-
tions, then it must be able to tolerate this noise. An example of
this is shown in Fig. 2. As Fig. 2 demonstrates, υ represents
the core structure effectively in that it is similar to a plot of the
Nye tensor screw component.

In considering the previous description of the υ parameter
it is important to note that υ should be considered an indicator
of the region’s nearness to instability, and not an absolute
stability criterion. Note that within the core of the dislocation,
the computed strains are often large enough to place the atoms
in the unstable range of strains, according to �. Clearly, based
on the atomic scale calculations, these atoms remain stable
in their positions. Also,the assumption of locality is rather
strong: instabilities caused by “soft” phonons away from the
�-point could possibly play a significant role, as is found to
be the case in some ideal strength calculations [46]. However,
due to the great added complexity in determining the force-
constant matrix as a function of strain, and the encouraging
results shown in this work (see Sec. III), only elastic instabil-
ities are considered in this method.

It is also noted, as mentioned above, that the elastic in-
stability parameter does not distinguish between different
sources of displacements. For example, stacking faults are
indicated to be elastically unstable, and appear naturally as
part of the dislocation. This can be contrasted with the Nye
tensor, which is strictly finite only where there is Burgers vec-
tor density. In some situations, such as that described below, it
is helpful to have the relevant stacking faults labeled as part of
the dislocation (which also includes, of course, the partials).
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FIG. 1. Nye tensor (in units of (Å−1), elastic instability parameter (dimensionless), and ellipse fitted to Eq. (3) (left) for the unstressed core
as predicted by density functional theory and (right) for the core under a compressive stress of 1 GPa along the [11̄00] direction. From top to
bottom in each column is the Nye tensor, the elastic instability parameter, and the fit to the form of Eq. (3). The angles for the ellipses in the
two cases are 88◦ and 61◦, respectively (both measured relative to the basal plane).

Taking υ as the choice for weighting the contribution of
each atom to the dislocation core, the next step is to choose a
method of extracting the relevant dislocation core spreading
information, or a descriptor for the core structure. In the
present case, we are interested in finding the distribution and
evolution in space and time of 〈a〉-type screw dislocation core
structures in α-Ti. From experience, we know that these tend
to be fairly planar and extended along pyramidal and prismatic
planes. Therefore, in this study the key parameter of interest
is the angle the dislocation core spreading makes with some
fixed plane of interest. For example, the basal plane is taken
as a reference here, so the prismatic orientation is at 90◦
and the first-order pyramidal orientations are at 61.5◦ and
118.5◦ for the c/a ratio (1.596) of the modified embedded
atom method (MEAM) potential of Hennig et al. [31] at
0 K. For other problems, completely different features that
can be extracted using the υ calculation may be of more
interest.

To extract the core orientation the computed values of υ

are fitted to a two-dimensional Gaussian function of the form:

υ f it (ξ, ψ ) = max(υ ) exp[−A(ξ − ξ0)2

− B(ξ − ξ0)(ψ − ψ0) − C(ψ − ψ0)2], (3a)

A = cos2(θ )

2σ 2
1

+ sin2(θ )

2σ 2
2

, (3b)

B = sin(θ ) cos(θ )

σ 2
1

− sin(θ ) cos(θ )

σ 2
2

, (3c)

C = sin2(θ )

2σ 2
1

+ cos2(θ )

2σ 2
2

, (3d)

where max υ is fixed to be the maximum computed value for
υ, ξ and ψ are the components of position projected onto the
plane normal to the dislocation line direction, {ξ0, ψ0} is the
center of the dislocation, θ is the dislocation orientation angle
relative to the basal plane, and σ1 and σ2 are the magnitudes
of the major and minor axes. These allow for definition of the
eccentricity of the core (i.e., a characterization of how planar
the core structure is) E = σ1

σ2
. Viewed as a contour plot the

result looks elliptical.
Figure 1 displays the fits to the core structures predicted

by DFT for both the unstressed case and the case wherein
the core is subjected to a compressive stress of 1 GPa along
[11̄00]. Interestingly, the fit for the core dubbed pyramidal in
the literature yields an angle of 88 degrees from the basal
plane—an angle very near to that expected for the prism
spread core. Examination of the Nye tensor plots reveals that
the dislocation density is, indeed, not as spread along the
pyramidal planes as the differential displacement map seems
to indicate. Fitting to an ellipse brings out this behavior. The
application of the non-Schmid stress, however, reorients the
ellipse, and yields an angle of 61 degrees. Note that the
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FIG. 2. Top: Nye tensor screw component representation of the
sample dislocation core. Bottom: The parameter υ representation
of the same dislocation core. This example comes from an MD
simulation at 300 K using the MEAM potential for titanium. Lengths
are measured in Ångstroms.

changes in core structure between the two stress states are
subtle. From the Nye tensor plot, one can clearly see the shift
in dislocation density to being more heavily weighted along
the pyramidal plane at higher non-Schmid stress. This shift
is also obvious in the computation of the elastic instability

FIG. 3. Fit of Eq. (3) to the parameter υ calculated for the
same dislocation core shown in Fig. 2. Lengths are measured in
Ångstroms.

parameter. It is more difficult to see the subtle changes in
the differential displacement map. This analysis suggests that
there is, perhaps, not a single pyramidal core structure, but
a continuum of cores defined by subtle variations in core
displacements. This observation is supported by the molecular
dynamics simulations reported below.

The procedure can also be applied to the cores obtained
at temperature, like that in Fig. 2. For this example core, θ

is found to be 81.7◦, as shown in the fit displayed in Fig. 3
indicating that the dislocation is more near to being spread
on the prism plane than being fully spread on the pyramidal
plane. E is 1.51, indicating an extension of the core along
the identified direction. Both of these findings match with
what we would have determined visually from the Nye tensor
shown in Fig. 2.

III. APPLICATION TO 〈a〉-TYPE SCREW DISLOCATION
CORES IN MD: RESULTS AND DISCUSSION

As discussed in previous literature [17,32,47], the MEAM
potential for titanium employed here predicts a prismatic core
structure as the ground state for 〈a〉-type screw dislocations,
which does not agree with DFT calculations (in which a pyra-
midal core structure is predicted). However, it is also known
that there are effects of non-Schmid stresses on the structure
of 〈a〉-type screw dislocations in Ti as described within the
MEAM potential of Hennig et al. [31] when a tensile or
compressive stress is applied along the [11̄00] axis. In fact,
a non-Schmid stress can induce a transformation of the dis-
location core structure from prismatic to pyramidal (based on
the differential displacement map). Some interesting aspects
of this can now be studied using the approach outlined above.
In particular by applying non-Schmid stresses we can study
the dislocations with either a prism or pyramidal spread core
as the ground state, and compare their dynamics.

To begin these studies, a series of MD simulations using
a supercell with dimensions 300 Å × 325 Å on its face and
94 Å along the dislocation line (i.e., 32 Burgers vectors deep)
containing two dislocations arranged in the S configuration
[12] were performed using LAMMPS [48]. The data for the
individual dislocations are collected and analyzed separately.
In these simulations the temperature was in the range 50 to
500 K, and the non-Schmid stress on the [11̄00] axis was in
the range 0 to 1 GPa. Each simulation made use of an NσT
ensemble with a Langevin thermostat and Parrinello-Rahman
barostat [49], and was run for 100 ps using 1 fs timesteps. The
atomic positions were saved every 1 ps, and these were used
to generate the dislocation core orientation data. To accelerate
data collection, the dislocation extraction algorithm (DXA)
[50,51] in OVITO [52] was employed to locate the centers
of the dislocations, and υ was only calculated for atoms near
to these centers.

υ is calculated for every slice of the supercell (each slice
is 1 Burgers vector thick, the minimum repeat length along
the dislocation line direction) at each saved timestep, and
thus there are nominally 6400 core orientations calculated for
each simulation. Unfortunately, not every calculation yields
reliable data. The eccentricity of the fitted Gaussian, Eq. (3)
used to compute the angle, E , was used to filter the data
set used for further analysis. Orientations corresponding to
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FIG. 4. Core orientations (left) and histograms (right) of all
assignable core structure orientations slices for both dislocations in
MD simulation at 100 K, 300 K, 400 K, and 500 K (top to bottom)
under no applied stress. The black line shows the nominal position of
the prismatic orientation and the red lines are the nominal pyramidal
orientations.

cores with 1.25 � E � 4.00 were used for the analysis, and
those outside of that range were discarded. This was based
on a heuristic analysis that eccentricities outside of that range
typically correspond to failed convergence of the fit in Eq. (3).
It also naturally makes sense that when E is close to 1 the
orientation is not significant, since the core is roughly circular.
In the simulations presented here, this typically removes 10–
15% of the total data. This neglect of certain configurations
of dislocations is reasonable as long as one is careful about
the conclusions drawn from the resulting data. In particular,
the data provides only an approximate measurement of the
relative concentrations of the differing core-spreadings along
a single dislocation. The analysis below, then, focuses on key
trends and qualitative observations, rather than on a quantita-
tive estimate of the fractions of the core that are of one type
versus another.

A. Effects of temperature

As noted above, the simulation cells contain a dislocation
dipole, and the data presented here is separated by dislocation.
Simulations at 100 K, 300 K, 400 K, and 500 K under no
applied stress were each conducted for 100 ps, and the results
are summarized in Fig. 4. The following discussion will focus
on visualizations using the median, lower quartile and upper

quartile core orientation angles at each timestep as in the left
column of Fig. 4, and histograms of the core distributions
over the entire simulation as in the right column of Fig. 4.
Specifically, at each recorded time step, the median angle
value, and the lower and upper quartile core orientations from
the segments of each dislocation are recorded as the symbol
and the error bars, respectively. Thus, each symbol represents
the structure of an entire dislocation (less the slices that could
not be quantified with an angle) at the indicated time. The
orange symbols correspond to one of the dislocations in the
unit cell, the blue symbols correspond to the other.

The histograms in Fig. 4, in contrast, represent the behavior
over time of the individual dislocations as they include the
angle configuration data from all times (after equilibration)
and from all slices of the dislocation that could be assigned
an orientation angle. Again, the results for one dislocation
are shown in orange, and for the second in blue. When the
histograms overlap, they appear gray.

Clearly, as the temperature increases the width of the dislo-
cation core orientation distributions increases significantly. At
100 K virtually all assignable cores are prismatically-oriented,
with few outliers further than 10◦ from the prismatic orien-
tation. At 500 K almost all possible core orientations have
at least some representation, and at most timesteps even the
median core orientation is at least 10◦ from prismatic. The
increase in the spread of the core orientations within each
timestep is also significant. At higher temperatures we find
dislocations ranging from prismatic to pyramidal on the same
dislocation at the same instant frequently. Another observa-
tion is that at higher temperatures the overall orientation of
the dislocation changes much more rapidly, i.e., the median
core orientation for a dislocation changes from pyramidal to
prismatic to the other pyramidal regularly. At 100 K there are
none of these changes observed.

These behaviors at elevated temperatures largely match
expectations. Note that in all cases, the fitting reveals that
there is not a single pyramidal core structure, but rather a
range of core structures. Note also that as the temperature
increases, the angular range of the cores, as measured by the
width of the distribution, is increasing. The increase in the
angle with temperature suggests that at higher temperatures,
the cores begin to look more frequently like those in Fig. 1(b)
than those like Fig. 1(a).

Note that the crystallographic angles describing the rela-
tionship between the prism and pyramidal planes do appear
special in these distributions. This is one lesson that can be
learned from removing the human element of classification
and instead looking at algorithmically generated data. The
prismatic orientation is the ground state with no applied stress
and the pyramidal orientation is accessible within thermal
energies (there is a 9 meV/b potential energy difference [17]
under zero stress as modeled within the MEAM potential).
It follows that increasing the temperature would allow for
significant occupation of the pyramidal structure.

The histograms resulting from higher-temperature simu-
lations indicate that the occupations of orientations varies
somewhat smoothly. This is mildly surprising, since up to this
point the discussion has revolved around a finite number of
possible core structures rather than a continuous distribution
of structures. Physically, though, this is reasonable. Interme-
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diate core structures are necessary for transitions between
primary structures (i.e., prismatic, pyramidal, basal) to occur.
Moreover, thermal fluctuations induce variation about a local
equilibrium structure, as can be seen in the 100 K distribu-
tions that sample primarily prismatic core structure. Given the
low potential energy differences between the core structures
discussed previously, it is not surprising to conclude that the
potential energy landscape is relatively flat and that this leads
to the smooth orientation distributions.

B. Effects of non-Schmid stress

By applying stresses with zero resolved shear stress on
〈a〉-type screw dislocations, the ground-state core structure
of these dislocations in the MEAM potential can be changed.
More specifically, when a large compressive stress is applied
on the [11̄00] axis the equilibrium core structure changes from
prismatic to pyramidal. The υ parametrization can be used
to investigate the pressure at which this transition occurs.
Consider, then, the series of simulations with different applied
stresses on the [11̄00] axis, all at 100 K (Fig. 5). This temper-
ature was chosen because Fig. 4 indicates that there will be
minimal spread of the orientations due to thermal fluctuations,
and thus it will be simple to assess which core structure is
favored.

As discussed previously, the core structure under no ap-
plied stress is purely prismatic with very little deviation. With
125 MPa compression applied on the [11̄00] axis, evidence
of a small number of excursions toward pyramidal core struc-
tures are observed. Further increasing the compression to 200
MPa, the dislocations spend approximately equal time in pris-
matic and pyramidal orientations. This, roughly speaking, is
the transition pressure at 100 K. It is clear that the transition
from one core structure to the other is not sharp (in this
supercell), which makes determining the pressure at which it
occurs inexact. In the histogram from the 200 MPa, 100 K,
simulation one can see that the individual histograms are
asymmetrically distributed about the prism core orientation,
indicating that the pyramidal orientations are occupied to a
greater extent than simply as variations about the prismatic
orientation. Further increasing the compression to 500 MPa
results in only pyramidal core structures. With this simulation
it was somewhat fortunate that the two dislocations happened
to occupy opposite pyramidal orientation—as mentioned be-
fore, the dislocations sample the same distribution so there
is no reason to expect this. This results in a histogram that
neatly shows the orientations of the two pyramidal structures
occupied at this temperature and pressure. At the highest
compressive stress simulated (1 GPa), the dislocations hap-
pened to select the same pyramidal plane and not transition
to any other structures, and thus the distributions overlap. If
one compares the histograms resulting from the 500 MPa and
1 GPa simulations quite carefully, then it can be observed
that the peaks of the distributions are slightly different. With
500 MPa compression applied the lower-angle pyramidal ori-
entation peak is at 71.5◦, while under 1 GPa it is at 68.0◦,
which is closer to the ideal pyramidal orientation (and similar
to the orientation calculated for the DFT ground-state under
the same non-Schmid stress). The distribution corresponding
to an applied compression of 250 MPa (not shown), results in

FIG. 5. Core orientations (left) and histograms (right) of all core
structure orientations slices for both dislocations in MD simulation
at 0 MPa, 125 MPa, 200 MPa, 500 MPa, and 1 GPa (top to bottom)
non-Schmid stress applied on the [11̄00] axis at 100 K. The black line
indicates the prismatic orientation and the red lines the pyramidal
orientations.

pyramidal cores peaked at 74.6◦, which continues this trend.
These are substantial differences in core orientations, and
the trend implies that the effect of non-Schmid stresses goes
beyond selecting the degree to which the prismatic and pyra-
midal orientations are occupied; in fact, they also influence
the preferred configuration of pyramidal core structures.

Given the significant changes induced by the non-Schmid
stresses on the dislocation core structures, one would an-
ticipate strong effects on dislocation slip behavior and thus
on plastic deformation. Specifically, in light of the core
structure-based explanation for the locking-unlocking mech-
anism proposed by Clouet et al. [13], the expected behavior
is that under zero non-Schmid stress the dislocations should
be able to slip easily on the prismatic plane (known to be the
dominant slip plane in titanium), whereas under large non-
Schmid stresses that induce the pyramidal core orientation slip
should be much more difficult. In other words, it is expected
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FIG. 6. Shear strain vs time for MD simulations with 200 MPa
shear stress for prismatic slip and 0 MPa, 200 MPa, 500 MPa, and
1 GPa non-Schmid compression along the [11̄00] axis applied at
100 K.

that the dislocation cores will be unlocked under no applied
compression on the [11̄00] axis, and locked under 500 MPa
and 1 GPa compression on the same axis, based on the orienta-
tion distributions shown in Fig. 5. For intermediate stresses for
which both prismatic and pyramidal cores are represented we
expect some slip to occur, but less than for the totally unlocked
state.

To investigate these predictions, we performed simulations
very similar to the previous set described above, but with a
shear stress of 200 MPa oriented with the maximum resolved
shear stress on the prismatic plane applied in addition to the
non-Schmid stresses. A plot of shear strain versus time for
simulations with 0 MPa, 200 MPa, 500 MPa, and 1 GPa non-
Schmid stress applied at 100 K is shown in Fig. 6.

Examining the strain data in Fig. 6, it is evident that the
predictions largely held true. Slip occurs readily when no
non-Schmid stress is applied—the unlocked configuration—
and with increasing compression on the [11̄00] axis the strain
decreases. When 1 GPa compression is applied—the locked
configuration—the dislocations hardly slipped at all. At 200
MPa, substantial slip occurred because the prismatic orienta-
tion is accessible. The only surprising simulation is that under
500 MPa compression. Under these conditions the core is
almost entirely pyramidally oriented when there is no shear
applied, so one anticipates little or no prismatic slip to occur.
However, it is now clear that this stress is not high enough
to make the prismatic orientation inaccessible at 100 K, and
thus under applied shear stress the cores were able to trans-
form into the prismatic configuration and accommodate slip.
One can compute the core structure distributions during slip
exactly as at rest, and thus verify that the differences in strain
are in fact due to the amount of locking of the dislocation
cores. The core structure distributions corresponding to the
simulations under shear stress at 100 K are shown in Fig. 7.

It is clear that the greater the fraction of the dislocation
cores that are oriented along the prismatic plane, the greater
the degree of prismatic slip. It is also plain that under 500
MPa and 1 GPa compression the dislocation cores still have a
strong tendency toward pyramidal orientation, which is what
is expected based on the calculations with no shear stress
applied. However, the key difference between these two stress
states is the accessibility of the prismatic configuration. At

FIG. 7. Core orientations (left) and histograms (right) of all core
structure orientations slices for both dislocations in MD simulation
with 200 MPa shear stress for prismatic slip and 0 MPa, 200 MPa,
500 MPa, and 1 GPa (top to bottom) non-Schmid stress applied
on the [11̄00] axis at 100 K. The black line indicates the prismatic
orientation and the red lines the pyramidal orientations.

500 MPa non-Schmid stress, the distribution of dislocations
becomes centered on the prism orientation, but the tails ex-
tend to the pyramidal configurations. The dislocations display
many transformations between prism and the two pyramidal
orientations, as can be seen in the quartile representation
which shows frequent switching back and forth across the
prismatic line. However, under 1 GPa compression the pris-
matic orientation is more rarely seen, and the distribution
of cores assumes a slight bimodal character. There are only
a small handful of slip events observable in Fig. 6 for this
stress state, and each of them corresponds to one of the
rare occasions that a dislocation core orientation is prismatic.
These unlocking events are short-lived, and the cores rapidly
return to one or the other of the pyramidal configurations.
This behavior is what one might expect based on the locking-
unlocking model formulated by Farenc et al. [30] and as
modeled by Clouet et al. [13].

The potential of the dislocations to display the locking-
unlocking mechanism due to core structure reorientation can
be made more evident by comparing the dislocation core
configurations with the positions of the dislocations during the
simulation at 1 GPa compression and 200 MPa shear stress
at 100 K. The dislocation center positions is a convenient
byproduct of using DXA to locate the dislocations as a pre-
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FIG. 8. (Top) Dislocation core orientations during a MD simu-
lation at 1 GPa compression and 200 MPa shear stress at 100 K.
(Bottom) Dislocation centroid positions parallel to the [0001] axis
the during the same simulation. Excursions of the core structure into
the prismatic configuration are highlighted, and the correspondence
between these and slip steps of the dislocations shown.

processing step during calculation of υ. This comparison is
shown in Fig. 8, and it is clear that every movement of the
dislocations along the prismatic plane corresponds to a brief
unlocking of the dislocation core structure. It is noted that
the movements observed here are between individual Peierls
valleys and that the dislocations move from one Peierls valley
to the next in discrete jumps. (In two instances, there are two
events spaces within 10 ps of one another, which may indi-
cate some correlation between them that could lead to longer
range motion.) This motion is, thus, not the equivalent of the
“jerky” glide seen in the experiments. However, the Peierls
mechanism can lead to jerky glide through the nucleation of
multikinks [53]. In short, the nucleation of multikinks will
lead to large scale motion of the dislocation that is arrested,
ultimately, when the multikinks all annihilate at grain bound-
aries or with opposite signed kinks. It is possible, then, that
the short repeat length of the dislocations (32 b) is the reason
dislocations do not propagate more than one or two Peierls
valley in an instance. The size of the dislocations studied here
may be such that multikinks spanning two or more Peierls
valleys cannot form.

As the temperature increases to 300 K, the behavior of the
dislocations remains consistent with the behavior observed at

FIG. 9. Core orientations (left) and histograms (right) of all core
structure orientations slices for both dislocations in MD simulation
at 0 MPa, 125 MPa, 200 MPa, 500 MPa, and 1 GPa (top to bottom)
non-Schmid stress applied on the [11̄00] axis at 300 K. The black line
indicates the prismatic orientation and the red lines the pyramidal
orientations.

100 K. The core structure angles and distributions without
shear stress applied, to parallel Fig. 5, are shown in Fig. 9.

Examination of Fig. 9 yields many of the expected obser-
vations, as well as a more subtle, interesting finding. First,
the anticipated: For all stress states, the variation in the core
orientations is greater at 300 K than at 100 K. This is true
both in terms of the widths of the quartiles at each step, and
the variation in the median orientations from step to step. This
is a straightforward effect of temperature. Higher temperature
induces broader distributions of the occupied orientations.
A related effect is that the dislocations change their over-
all orientations more frequently. For example, at 100 K and
500 MPa compression the dislocations settled into pyramidal
orientations and did not change to prismatic or the other
pyramidal spreading. At 300 K and 500 MPa, a number of
reorientations can be observed. Given the findings from the
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simulations under shear stress, this suggests that there should
be somewhat more slip at 300 K under the larger compressions
than there is at 100 K. This would be in line with previous
predictions based on a dislocation core structure explanation
for the locking-unlocking mechanism [13].

However, comparing the simulations with 0 MPa, 125
MPa, and 200 MPa compression at 300 K with the same
applied stresses at 100 K, it appears that at higher temper-
ature there is less occupation of prismatic core structures.
This is true not just in the sense of greater fluctuation away
from these states (which certainly accounts for some of the
difference) but also in the locations of the medians. In fact
while at 100 K compression of 200 MPa is found to be the
transition pressure, at 300 K there are almost no prismatically
oriented median structures at this pressure. This suggests that
the transition pressure is reduced at higher temperature. An-
other way of stating this is that the pyramidal orientations are
favored by higher temperature, which implies that these are
higher-entropy structures. Calculations on the temperature-
dependence of dislocation core structures in semiconductors
suggests that in that case vibrational entropy plays an im-
portant role in the dislocation structural properties at high
temperatures [54] and that configurational entropy can com-
plicate the structures [19,25]. However, the authors are not
aware of any literature discussing entropy of competing dislo-
cation core structures in metals. Even when high-temperature
effects on core structure are discussed, the entropy of the
structures is assumed to be the same [55].

This increase in pyramidal occupations at higher temper-
atures implies another effect on the dislocation dynamics.
Increasing the temperature can decrease the strain rate for a
given stress. Certainly at 500 MPa or 1 GPa compression it
is expected that the increased accessibility of the prismatic
configuration will lead to easier prismatic slip. At 0 MPa com-
pression, though, the core structure is always prismatically
oriented at 100 K, but at 300 K there is significant pyramidal
orientation occupation. The portions of the core that transition
to the pyramidal spreading serve as weak pinning points for
the dislocation, and act as sources of drag. Since their num-
ber increases with temperature, the dislocations move more
slowly at higher temperature. To discover whether this is the
case, MD simulations under 200 MPa shear strain at 300 K
were carried out and the resulting strains plotted in Fig. 10.

Clearly, Fig. 10 demonstrates that 300 K is sufficient tem-
perature to unlock the dislocations under 1 GPa compression.
It is also plain to see that the differences in strain between the
different non-Schmid stress simulations are much smaller at
300 K than at 100 K. What cannot be seen easily by eye is that
the plastic strain under 0 MPa compression at 300 K is lower
than that at 100 K: 2.01% versus 2.45%. This is consistent
with the predictions made above.

There are implications of these observations for the dynam-
ics of the 〈a〉-type screw dislocations in some HCP metals. It
is clear that dislocations that are predominantly pyramidally
spread display enhanced mobility with increasing tempera-
tures, whereas dislocations predominantly spread on prism
planes display reduced mobility with increasing temperature.
It is also interesting to note that the predominant structure
of the dislocation may change with increasing temperature
and/or application of non-Schmid stresses (and perhaps, glide

FIG. 10. Shear strain vs time for MD simulations with 200 MPa
shear stress for prismatic slip and 0 MPa, 200 MPa, 500 MPa, and
1 GPa non-Schmid compression along the [11̄00] axis applied at
300 K.

stresses too). A dislocation core switching transition, in which
the predominant core structure changes morphology with
increasing temperature, could influence the overall slip mor-
phology. For example, prism glide might switch from smooth,
perhaps sluggish motion, to a thermally activated Peierls bar-
rier dominated while increasing the propensity for cross-slip
(and consequently decreasing slip planarity). The influence of
non-Schmid stresses on this transition could lead to situations
in which the dynamics of nominally identical dislocations, or
even portions of the same dislocation, are markedly different
due to differing local stress states.

While this study employs the MEAM potential designed to
represent Ti, the general picture that emerges of the dynamics
of 〈a〉-type screw dislocations is, perhaps, more broadly appli-
cable. It has already been suggested that for Zr, the 〈a〉-type
screw dislocations are spread primarily on prismatic planes at
T = 0 K. However, the difference in core energy between the
prism plane and pyramidal plane spreading is approximately
12 meV/b [13]. For the MEAM potential for Ti, this energy
difference is 9 meV/b, so the properties of Zr will be similar
to those predicted by the MEAM potential for Ti without the
application of a non-Schmid stress. One expects the cores of
dislocations in Zr to fluctuate, leading to increased drag with
increasing temperature. One also expects that the 〈a〉-type
screw dislocation cores in Zr could undergo a morphologi-
cal transition with increasing temperature that would lead to
thermally-activated dislocation motion at higher temperatures.
In their ground state, 〈a〉-type screw dislocations in Mg are
dissociated into Shockley partials, so their dynamics will dif-
fer from that studied here. However, similar methods could be
applied to study those dislocations as well.

IV. CONCLUSIONS

Simulations that enable the exploration of the dislocation
core morphology for the 〈a〉-type screw dislocations in α-Ti
have been developed and analyzed. The analysis was aided
by the introduction of a parameter (υ) that can be used to
gauge how near an atom is to elastic instability. This parame-
ter is used to quantitatively extract structural features of the
core spreading of the 〈a〉-type screw dislocations in Ti as
represented by a MEAM potential, most notably the angle the
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TABLE I. Elastic constants for the MEAM potential under no
applied stress at 0 K.

C11 174 GPa
C12 95 GPa
C13 72 GPa
C33 188 GPa
C44 58 GPa
C111 −1850 GPa
C112 −965 GPa
C113 −443 GPa
C123 −628 GPa
C133 −292 GPa
C144 −129 GPa
C155 170 GPa
C166 −507 GPa
C333 −93.5 GPa
C355 117 GPa

predominant plane of spreading makes with the basal plane,
the angle θ . Molecular dynamics simulations for a classical
potential model of HCP Ti were performed over a range of
temperatures and applied stress—both non-Schmid and with
shear stress oriented for prismatic slip—and core orientation
distributions were calculated using the developed framework.

This data illustrates a number of facts about the depen-
dence of dislocation orientations on temperature and stress
state. With increasing temperature, the width of orientation
distributions is increased as higher-energy core structures be-
come thermally occupied. With increasing compressive stress
applied along the [11̄00] axis, the dislocation core orientations
shift from prismatic to pyramidal, but there is apparently no
sharp transition between these states for this system size.
Interestingly, for this MEAM potential the transition pressure
from the prismatic to pyramidal core structure is lowered
by increased temperature, implying that higher temperatures
favor pyramidal orientations. This implies that these orien-
tations have higher entropy than the prismatic orientation,

suggesting the possibility of a dislocation core morphology
switching transition.

In molecular dynamics simulations with shear stress ap-
plied to induce prismatic slip, the influence of the cores
spreading is apparent. Under 1 GPa of compressive non-
Schmid stress at 100 K, every slip step of the dislocations
can be shown to correspond to an unlocking event. At 300 K
and the same stress, slip is substantially easier because the
prismatic core structure is thermally accessible. However, the
strain rate under no compression is reduced in these simula-
tions by increasing the temperature, because this leads to a
higher pyramidal core structure occupation.

The implications for the dynamics of the 〈a〉-type screw
dislocations in HCP Ti are discussed. It is noted that dis-
location core morphological switching, induced either by
temperature or stress (or both), implies significant changes
in the temperature dependence of the dislocation dynamics,
including the potential to alter observed slip morphologies.
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APPENDIX: ELASTIC CONSTANTS

The elastic constants under no applied load used for the
calculation of elastic constants under finite deformation were
calculated for the MEAM potential used here at T = 0 K.
These are summarized in Table I.
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