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Elastic stability of Ga2O3: Addressing the β to α phase transition from first principles
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The elastic and structural properties of β-Ga2O3 and α-Ga2O3 are investigated from first principles. The full
elastic tensors and elastic moduli of both phases at 0 K are computed in the framework of semilocal density-
functional theory. We determine mechanical instabilities of β-Ga2O3 by evaluating the full stiffness tensor under
load for a range of hydrostatic pressure values. While a phase transition from the β to α phase is found to
be energetically favored at 2.6 GPa, we show that the β phase is mechanically unstable only for much higher
pressures (>30 GPa), which agrees well with experimental results. Our employed approach is based on the Born
stability criterion, is independent of crystal symmetry, and thus can be readily applied to different materials.
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I. INTRODUCTION

The wide-gap transparent conducting oxide gallium ox-
ide (Ga2O3) has gained a lot of interest in recent years as
a potential candidate for a number of applications. Its tun-
able electrical and optical properties make it a promising
material for gas sensors [1–5], field-effect transistors [6],
and photodetectors [7–10]. The material exhibits polymor-
phism; that is, depending on the experimental conditions,
it can adopt one out of at least five different known struc-
tures (α, β, γ , δ, and ε) [11]. The thermodynamically stable
phase at ambient conditions is β-Ga2O3. It crystallizes in a
base-centered monoclinic structure (space group C2/m) and
consists of both tetrahedrally and octahedrally coordinated
gallium atoms. The metastable high-density α phase exhibits
a rhombohedral corundum structure (space group R3̄c) and is
made up of solely octahedrally coordinated gallium. The unit
cells of α- and β-Ga2O3 are illustrated in Fig. 1. Remeika
and Marezio first reported a phase transition of the β phase
to the α phase at 4.4 GPa and 1000 K [12]. The transforma-
tion was found to be irreversible after quenching the sample
to room temperature. Since then, the phase transition has
been the subject of several studies at both high and room
temperatures. Studying nanoparticles of β-Ga2O3 embedded
in an amorphous silica-based host matrix by synchrotron-
radiation-based x-ray diffraction [13], Lipinska-Kalita and
coworkers reported a phase transition that sets in at about
6 GPa and is not completed at 15 GPa. It is, however, not clear
whether the phase transition is affected by the host matrix
or intrinsic to the nanoparticles [13]. In a follow-up study
conducted on bulk β-Ga2O3 at pressures up to 70 GPa, they
reported an onset of 7.9 GPa (3 GPa) and the completion of
the transition at 40 GPa (30 GPa) with (without) nitrogen as
a pressure-transmitting medium [14]. Wang and coworkers
subsequently subjected freestanding β-Ga2O3 nanocrystals to
pressures up to 64.9 GPa at room temperature and reported a
transition onset between 13.6 and 16.4 GPa and a completed
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transition at 39.2 GPa [15]. A phase transition was also ob-
served in β-Ga2O3 microparticles, taking place between 20
and 39 GPa, where only a highly disordered structure com-
parable to α-Ga2O3 remained [16]. Also in recently reported
shock-recovery experiments, a phase transition occurred (be-
tween 11 and 16 GPa) [17]. Similar transition pressures have
been published in computational studies. The reported values
range from 2 to 17 GPa [18–21].

From the review above, it is apparent that while there is an
extensive discussion in the literature about the phase transition
between the two polymorphs, the pressure at which the tran-
sition takes place is far from being settled. In particular, the
interplay between the transition pressure pt, which is obtained
by thermodynamical considerations, and the critical pressure
pc, which is ruled by a mechanical instability, has not been
thoroughly discussed. This is the aim of our work, in which we
illustrate that only considering both allows for understanding
the diversity of experimental results. We investigate the β to
α phase transition by calculating the elastic properties of both
α- and β-Ga2O3 and examining, in particular, their variation
under hydrostatic pressure. The critical pressure is obtained by
applying the generalized Born stability criterion to the elastic
constants under load.

II. THEORETICAL BACKGROUND

Application of strain leads to deformation of the crystal due
to the resulting stress. In the linear elastic regime, strain and
stress can be represented by symmetric second-rank tensors
and are related by Hooke’s law [22–24],

σi j = Ci jkl εkl , (1)

where Ci jkl represents the stiffness tensor, εkl is the physical
strain tensor, and σi j is the stress tensor. For conciseness, we
employ Einstein’s notation for summations throughout this
work. When dealing with symmetric tensors, it is convenient
to use the Voigt notation, where a pair of Cartesian indices i j
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can be written as a single index γ , according to

i j 11 22 33 23 13 12
γ 1 2 3 4 5 6

In the following, tensors expressed in the Voigt notation are
represented by six-dimensional vectors using a bold font. In
order to calculate the stiffness tensor, one can expand the total
crystal energy per unit cell E (ε) in terms of the strain [25],

E (ε)

V0
= E0

V0
+ σ0 · ε︸ ︷︷ ︸

= 0

+ 1

2!
εᵀ · C · ε + · · ·, (2)

where E0 and V0 refer to the equilibrium energy and volume
per unit cell and σ0 refers to the equilibrium stress tensor. The
stiffness tensor is defined as

Cγ λ = 1

V0

∂2 E (ε)

∂ εγ ∂ ελ

∣∣∣∣
ε=0

. (3)

This definition is only valid for the description of an ini-
tially unstressed crystal. For a crystal under arbitrary constant
stress, it is necessary to introduce a stiffness tensor under
load Bi jkl . As hydrostatic pressure does not reduce the crystal
symmetry, it has the same symmetry as the stiffness tensor C
and can be represented in Voigt notation, henceforth denoted
as B. The appropriate thermodynamical potential to describe
the stressed system is the enthalpy H = E + p0V , where p0

represents the initial constant pressure. The stiffness tensor
under external hydrostatic pressure can then be calculated as

Bγ λ = 1

Ṽ0

∂2 H (ε)

∂ εγ ∂ ελ

∣∣∣∣
ε=0

, (4)

where Ṽ0 is the volume per unit cell for the initially stressed
structure. To derive the relation between Cγ λ and Bγ λ, we have
to transform back to Cartesian indices and start with arbitrary
constant external stress σi j . Bi jkl can then be expressed as
[23,26,27]

Bi jkl = C̃i jkl+ 1
2 (δik σ jl+δ jk σil + δil σ jk + δ jl σik − 2 δkl σi j ).

(5)

Note that now one has to evaluate the stiffness tensor C̃i jkl

for the initially stressed crystal configuration at volume Ṽ0. In
this work, we consider the β phase under external hydrostatic
pressure, σi j = −P δi j (P > 0 for tension). Then, the stiffness
tensor under load can be written as

Bi jkl = C̃i jkl − P(δik δ jl + δ jk δil − δkl δi j ). (6)

Both tensors have the same symmetry, and we can thus go
back to Voigt notation. It follows that

Bγ λ = C̃γ λ +

⎛
⎜⎜⎜⎜⎜⎝

−P P P 0 0 0
P −P P 0 0 0
P P −P 0 0 0
0 0 0 −P 0 0
0 0 0 0 −P 0
0 0 0 0 0 −P

⎞
⎟⎟⎟⎟⎟⎠

.

(7)

The Born stability criterion [28] enables us to determine
the elastic stability of an unstressed crystal: A crystal with
arbitrary symmetry is stable if the stiffness tensor C is positive

definite [28,29]. This condition is equivalent to C being a
symmetric tensor having only positive eigenvalues that can be
calculated with standard algebraic techniques. While the Born
stability criterion is formulated for an unstressed crystal, it can
also be generalized to the case of constant external hydrostatic
load; in this case, the stiffness tensor under load B has to be
positive definite [29].

III. COMPUTATIONAL DETAILS

All calculations are performed in the framework of density-
functional theory using the all-electron full-potential code
exciting [30], which applies the linearized augmented plane
wave plus local orbital method. Exchange-correlation effects
are treated within the generalized gradient approximation
as parametrized by Perdew-Burke-Ernzerhof for solids and
surfaces (PBEsol) [31], which shows high accuracy in de-
termining elastic properties for solids [32]. Total energies
are calculated using an 8 × 8 × 8 (6 × 6 × 6) k grid and a
plane wave cutoff Rmin

MT Gmax = 9.0 for α-Ga2O3 (β-Ga2O3).
We employ muffin-tin radii of RGa

MT = 1.65a0 (1.75a0) and
RO

MT = 1.45a0 for gallium and oxygen, respectively, in α-
Ga2O3 (β-Ga2O3), where a0 is the Bohr radius. The internal
atomic positions are relaxed until the atomic forces are smaller
than 0.2 mHa a−1

0 . These parameters ensure a numerical pre-
cision of 10−2a3

0 for the equilibrium volume V0, 10−2 GPa for
the bulk modulus B0, and 10−3 for its pressure derivative B′

0.
In order to calculate the full stiffness tensor at zero pres-

sure, a total of 13 (6) different deformation types are applied
to β-Ga2O3 (α-Ga2O3). The reader is referred to Ref. [25]
for a full list of the employed deformation types. For each of
them, several equally spaced strain points around the origin
are created for physical strain up to 4.5%. For every deformed
structure, the internal atomic positions are relaxed until the
atomic forces are smaller than 0.2 mHa a−1

0 . The preparation
of the deformed structures and evaluation of second-order
derivatives shown in Eqs. (3) and (4) are performed using
the ElaStic tool [25]. We create eight deformed β-Ga2O3

structures to analyze the variation of the elastic constants
under strain. The corresponding pressure values are extracted
from the energy vs volume fit and range from −10 to 35 GPa.

IV. RESULTS AND DISCUSSION

A. Structural properties

The lattice parameters, bulk moduli B0, and their pressure
derivatives B′

0 are obtained as fitting parameters from the
Birch-Murnaghan equation of state (EOS). The results for the
α and β phases are given in Table I. All parameters, obtained
at zero temperature and pressure, show excellent agreement
with previously published theoretical and experimental work.
The bulk modulus of the α phase is larger than that of the
β phase by about 50 GPa. Considering that α-Ga2O3 is the
more compressed phase and the bulk modulus is a measure
of resistance against uniform compression, such a result is
expected. Compared to experiment, it is underestimated by
about 10%–20%, which is within the typical accuracy of
a semilocal density-functional theory calculation of elastic
properties [34]. Note that B0 here is obtained from a fit and not
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TABLE I. Calculated lattice parameters, a, b, and c (in Å); mon-
oclinic angle β (in degrees); bulk moduli B0 (in GPa); and their
pressure derivatives B′

0 of α-Ga2O3 and β-Ga2O3 at zero pressure.

α-Ga2O3 a c B0 B′
0

Present work 5.01 13.47 218 4.5
Theory [19] (LDA) 4.95 13.32 244 3.8
Theory [20] (AM05) 5.00 13.45 215 4.5
Experiment [14] 4.98 13.43 252 4
β-Ga2O3 a b c β B0 B′

0

Present work 12.30 3.05 5.82 103.7 169 3.9
Theory [33] (LDA) 12.21 3.03 5.75 103.6 219 3.2
Theory [20] (AM05) 12.30 3.05 5.81 103.7 165 3.8
Experiment [14] 12.23 3.04 5.80 103.8 184 4

explicitly calculated as a linear combination of second-order
elastic constants (see Sec. IV C).

B. Phase transition

Using the energy vs volume relation at high pressures, we
can further analyze the phase transition from the β to the α

phase. The Gibbs free energy, G = U + pV − T S, dictates the
structural stability at a given temperature and pressure. The
complete calculation of this quantity would require the full
phonon spectrum. In this work, we focus on the enthalpy H =
E + pV , i.e., the low-temperature case, where the internal
energy, U ≈ E , is determined by the Birch-Murnaghan EOS.
Such an approach is justified for the pressure-induced prop-
erties of hard materials [35]. For a given pressure, the crystal
phase with the lowest enthalpy is the most stable one, while
a crossing point between two phases indicates a first-order
phase transition. This transition pressure is purely obtained
by thermodynamical considerations and will henceforth be
denoted as pt.

The calculated Birch-Murnaghan EOSs for both phases
are given in Fig. 2. We obtain a transition pressure of pt =
2.6 GPa. This value can be compared with the experimen-
tal transition onset, owing to the fact that a new phase is
thermodynamically favored once this pressure is reached.
We therefore consider pt to be the lower bound for a phase
transition setting in. As illustrated in the Introduction, the dis-
crepancy between published transition pressures is quite high
as the experimental conditions play a vital role in determining
the transition onset, where temperature, pressure medium,
sample size, and type can have a dramatic impact. Conse-
quently, reported experimental values range from 3 to 20 GPa
[13,14,16,17,36]. However, also theoretical values range from
2 to 17 GPa [18–21]. Here, differences can be assigned to the
usage of different exchange-correlation functionals as well as
as the treatment of the Ga 3d states (as core or valence states)
in pseudopotential approaches.

C. Elastic stability at different pressures

1. Ambient pressure

Depending on the crystal symmetry, the stiffness tensor
can have up to 21 independent components. In the case of the
monoclinic β phase (rhombohedral α phase), this number re-

FIG. 1. Top: Conventional (left) and primitive (right) unit cell of
β-Ga2O3. Bottom: Same for α-Ga2O3. Gallium atoms are in green;
oxygen atoms are in red.

duces to 13 (6). The calculated second-order elastic constants
at zero pressure for both phases are summarized in Tables II
and III, showing excellent agreement with other theoretical re-
sults. To compare our results to those of Ref. [20], we employ

ts
]

ts]

FIG. 2. Equations of state for the α and β phases of Ga2O3. En-
ergies are relative to values of β-Ga2O3. The dots and crosses are the
computed data points for β-Ga2O3 and α-Ga2O3, respectively. The
solid and dashed lines represent the corresponding Birch-Murnaghan
fits. The dotted line represents the common tangent of the EOS for
both phases. The transition pressure pt is determined by the common
gradient.
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TABLE II. Calculated second-order elastic constants at ambient pressure for the β phase of Ga2O3 (in GPa) compared to previously
published results.

β-Ga2O3 C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

Present work 220.5 116.4 128.3 −17.3 329.5 79.1 11.4 326.8 7.2 50.0 18.1 66.1 91.5
Theory [20] 223.1 116.5 125.3 −17.4 333.2 75.0 12.2 330.0 7.3 50.3 17.4 68.6 94.2
Experiment [37] 242.8 128.0 160.0 −1.6 343.8 70.9 0.4 347.4 1.0 47.8 5.6 88.6 104.0

the same lattice representation. For β-Ga2O3 it is chosen such
that the y axis is parallel to b, the x axis is parallel to a, and
the c axis lies in the x-z plane (see Fig. 1).

We also calculate the elastic moduli as linear combinations
of second-order elastic constants and compare the bulk mod-
ulus with the one obtained from the Birch-Murnaghan EOS,
B0, shown in Table IV. The values for the bulk moduli from
both methods show excellent agreement, further validating the
precision of our calculations. All elastic moduli of the β phase
are smaller than those of the α phase. This is expected since
the latter is obtained from compressing β-Ga2O3 under hy-
drostatic strain, and a higher density leads to more resistance
against strain and therefore larger elastic moduli.

The second-order elastic constants of both phases exhibit
pronounced anisotropy due to crystal symmetry. The diagonal
terms, C11, C22, and C33, have the highest values, in excess of
200 GPa. As large diagonal components mean a high degree
of hardness against strain in the respective directions, both
phases strongly resist deformations along the main axes. This
situation is reversed for the shear-strain components (indices
4 to 6). The calculated values are much smaller than the
axial strain components (indices 1 to 3). They are as low
as C25 = 11.4 GPa and C35 = 7.2 GPa for the β phase and
C14 = −16.5 GPa for the α phase. These findings suggest
that both phases are susceptible to shear strains. The elastic
moduli further validate this assumption, as the shear modulus
for both phases is smaller than the bulk and Young moduli,
i.e., G < B < E .

Importantly, for both the β and α phases, all eigenvalues
of the stiffness tensors are positive. Thus, according to the
Born stability criterion, they are elastically stable at equilib-
rium at 0 K. This coincides with previously published results
[11], where β-Ga2O3 was identified as the thermodynamically
stable phase and α-Ga2O3 was identified as a metastable
phase.

2. Variation under hydrostatic pressure

We now explore how the second-order elastic constants
of the β phase react to hydrostatic pressure. For this pur-
pose, we perform calculations on configurations that are
obtained by isotropically straining the crystal by applying the

transformation

R(ε) = (1 + ε)RP=0,

where ε is a constant value, and calculate their stiffness
tensors under load B [Eq. (4)]. The chosen values for ε

correspond to pressure values between −10 and +35 GPa.
The results are summarized in Table V. Overall, the elastic
constants increase in value with increasing pressure, reflecting
that the denser structures are more resistant to strain. The
eigenvalues of the stiffness tensor are positive up to 20 GPa,
indicating mechanical stability of the β phase under strain.
The structure at 35 GPa is the only unstable one. We conclude
that the critical pressure pc must thus be much higher than the
thermodynamical transition pressure of 2.6 GPa obtained in
Sec. IV B. As such, pc can be seen as the upper bound of the
phase transition pressure.

In order to estimate pc, we further analyze our results using
the Born stability criterion. As an alternative to calculating the
eigenvalues of the stiffness tensor, we aim at finding a closed
mathematical expression for its conditions. [29,38,39]. This
can be done, for example, by making use of the leading prin-
cipal minors of the stiffness tensor [29]. The onset pressure of
mechanical instabilities can be estimated by evaluating these
expressions over a certain pressure range. For cubic systems
under hydrostatic stress, the second-order constants Bγ δ differ
from the stiffness constants Cγ δ by only a linear term in
P [29,38,39]. Such linear equations are not attainable for a
monoclinic system. As an alternative approach, we evaluate
the equation

det |B| = 0 (8)

to explore when the system becomes unstable [39]. This
enables us to estimate the critical pressures only from the
stiffness tensor under load. In the case of β-Ga2O3, Eq. (8)
is a polynomial equation of sixth degree in pressure, which
can be expressed in the following form:[

P2 − P (C44 + C66) + C44 C66 − C2
46

]
︸ ︷︷ ︸

M(P)

·P4(P)︸ ︷︷ ︸
N (P)

= 0. (9)

The first term, denoted as M(P), includes only shear compo-
nents of the stiffness tensor and can be identified as a shear
instability criterion. The second term, P4(P), is a polynomial

TABLE III. Calculated second-order elastic constants at ambient pressure for the α phase of Ga2O3 (in GPa) compared to previously
published theoretical results.

α-Ga2O3 C11 C12 C13 C14 C33 C44

Present work 380.3 174.5 128.5 −16.6 342.9 80.1
Theory [20] 381.5 173.6 126.0 −17.3 345.8 79.7
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TABLE IV. Calculated elastic moduli (in GPa) given as Voigt’s,
Reuss’s, and Hill’s averages. For the bulk modulus we also show the
value obtained from the Birch-Murnaghan (B-M) EOS in Fig. 2.

β-Ga2O3 B G E ν

Voigt 169.4 78.4 203.7 0.30
Reuss 166.7 66.2 175.3 0.32
Hill 168.0 72.3 189.6 0.31
B-M EOS 168.8
α-Ga2O3 B G E ν

Voigt 218.5 97.4 254.5 0.31
Reuss 216.4 92.2 242.0 0.31
Hill 217.4 94.8 248.2 0.31
B-M EOS 218.4

of order 4 in P [denoted as N (P)] which is provided in
the Appendix. The structure is mechanically unstable if one
term equals zero. We now estimate the critical pressure(s) by
interpolating our results for M(P) and N (P). By doing so,
we can identify from the zero of M(P) whether the transi-
tion occurs solely due to shear strain. Our interpolation of
both expressions should be used with caution for very high
(>50 GPa) and very low pressures (<−20 GPa). We want to
emphasize that the aim is to estimate the critical pressure in
the experimentally relevant range of up to 50 GPa. The results
are illustrated in Fig. 3. We obtain two critical pressures of
pc = −21.4 GPa and pc = 32.4 GPa. This indicates that β-
Ga2O3 is mechanically stable in the range of −21.4 < P <

32.4 GPa. The upper bound agrees well with the observations
from several experiments as the phase transition is fully com-
pleted above 30 to 40 GPa; that is, only α-Ga2O3 remains in
the sample [13–15]. Only in Ref. [21] was a theoretical critical
pressure below 30 GPa reported. Their transition pressure of
19.4 GPa is, however, drastically higher than our calculated
value of 2.6 GPa. Note that our results are obtained at 0 K.
First-principles calculations show that the elastic constants
for β-Ga2O3 decrease with temperature; however, the effect
is small at room temperature [40]. Therefore, we do not ex-
pect a significant change in the critical pressure at ambient
temperature. The lower bound would indicate the emergence
of another metastable phase below −21.4 GPa which is due
to an instability of the pure shear criterion, M(P) = 0. To
our knowledge, no studies have been performed with negative
pressure for any of the sesquioxides. In principle, it is possible
to reach negative pressure values on the order of a couple of
gigapascals in solids [41].

While most studies report the phase transition with quasi-
hydrostatic pressure mediums, the phase transition also occurs
under nonhydrostatic conditions [14]. This, in turn, indi-
cates that an additional mechanical instability may arise from
nonuniform stress, which would reduce the symmetry of the
stiffness tensor under load B. We have so far not considered
this in our analysis.

V. SUMMARY

We have investigated the structural and elastic properties of
Ga2O3 in the rhombohedral α and monoclinic β phases from
first principles. Based on our results, a phase transition from

FIG. 3. Instability criteria M(P) and N (P), as defined in Eq. (9),
as a function of hydrostatic pressure P. The red dots represent the
calculated data points for the strained β-Ga2O3 structures. The solid
lines indicate polynomial fits of order 2 and 4 to the data points for
M(P) and N (P), respectively.

β- to α-Ga2O3 is energetically favored at pt = 2.6 GPa. The
calculated full stiffness tensors C of both phases at ambient
pressure show pronounced anisotropy as well as susceptibil-
ity to shear strain, indicated by the small shear moduli of
Gβ

V = 78 GPa and Gα
V = 97 GPa, respectively. Investigating

the variation of the stiffness tensor under hydrostatic pressure,
we observe that, according to the Born stability criterion,
β-Ga2O3 becomes mechanically unstable at a critical pressure
of pc = 32.4 GPa. The transition pressure pt can be seen as
a lower bound for the phase transition and agrees well with
the transition onset in previously reported experimental and
theoretical results [14,16,18,20]. Considering only this pres-
sure value obtained from thermodynamics is, however, not
sufficient to explain the full range of experimentally observed
transition pressures. While a phase transition is energetically
favored above pt, there are additional kinetic barriers that
must be overcome. Only when the β phase is mechanically
unstable, i.e., at pc = 32.4 GPa, can we expect the phase
transition to be completed. This agrees well with experimental
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TABLE V. Second-order elastic constants of β-Ga2O3 as a function of hydrostatic pressure P. Pressure and elastic constants are given in
gigapascals. V0 is the volume of the unstressed crystal.

P V/V0 B11 B12 B13 B15 B22 B23 B25 B33 B35 B44 B46 B55 B66

−10.0 1.07 175.9 90.6 84.9 −15.0 272.3 37.8 13.8 277.3 5.3 25.8 7.6 66.7 87.4
−5.0 1.03 201.5 103.7 106.0 −15.2 302.4 58.2 12.9 303.0 6.6 40.9 13.2 66.7 90.0

0.0 1.00 220.5 116.4 128.3 −17.3 329.5 79.1 11.4 326.8 7.2 50.0 18.1 66.1 91.5
0.5 0.99 222.2 117.2 131.7 −18.4 332.2 79.6 10.3 328.8 7.2 50.9 18.2 65.8 91.7
2.5 0.99 229.3 122.6 140.0 −18.8 343.4 87.7 10.8 336.3 7.7 53.6 19.4 65.4 92.1
4.9 0.97 236.3 129.9 149.7 −19.0 357.1 98.5 11.5 343.9 8.8 57.1 20.2 64.9 92.5

10.0 0.95 249.8 143.7 174.5 −23.9 382.5 118.4 8.6 361.7 9.2 61.0 22.5 62.4 92.7
19.6 0.91 265.2 170.2 222.3 −33.7 429.7 160.3 4.1 392.2 10.4 68.3 24.2 56.5 91.4
35.0 0.86 279.5 212.5 307.0 −52.9 502.4 229.5 −3.0 433.7 11.5 78.9 22.2 43.7 84.6

observations showing completion of the transition only above
30 GPa [14–16]. In addition, we found a critical pressure of
−21.4 GPa. Phonon calculations in this pressure range could
provide insight into the emergence of a novel metastable phase
for negative pressures. Experiments with negative pressures,
at values below a few gigapascals, have so far not been con-
ducted but could point to novel discoveries in the future.

Our first-principles approach, successfully demonstrated
here for the wide-gap oxide Ga2O3, although requiring hydro-
static pressure, is independent of crystal symmetry and thus
could be applied to other materials. For example, a similar
analysis could be conducted for other sesquioxides to esti-
mate stability windows and the possible emergence of novel
metastable phases.

All input and output files are available at the NOMAD
Repository [42,43] with the following Ref. [44].
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APPENDIX

The term N (P) in Eq. (9) is a polynomial of order 4 in P
and can be expressed in terms of the elastic constants Cγ λ as
follows:

N (P) = b4 P4 + b3 P3 + b2 P2 + b1 P + b0,

with

b4 = − 4,

b3 = − 4C12 − 4C13 − 4C23 + 4C55,

b2 = C11C22 + 2C11C23 + C11C33 − C2
12 − 2C12C13 − 2C12C23 + 2C12C33 + 4C12C55 − C2

13 + 2C13C22

− 2C13C23 + 4C13C55 − 4C15C25 − 4C15C35 + C22C33 − C2
23 + 4C23C55 − 4C25C35,

b1 = − C11C22C33 − C11C22C55 + C11C
2
23 − 2C11C23C55 + C11C

2
25 + 2C11C25C35 − C11C33C55

+ C11C
2
35 + C2

12C33 + C2
12C55 − 2C12C13C23 + 2C12C13C55 − 2C12C15C25 − 2C12C15C35

+ 2C12C23C55 − 2C12C25C35 − 2C12C33C55 + 2C12C
2
35 + C2

13C22 + C2
13C55 − 2C13C15C25

− 2C13C15C35 − 2C13C22C55 + 2C13C23C55 + 2C13C
2
25 − 2C13C25C35 + C2

15C22 + 2C2
15C23

+ C2
15C33 + 2C15C22C35 − 2C15C23C25 − 2C15C23C35 + 2C15C25C33 − C22C33C55

+ C22C
2
35 + C2

23C55 − 2C23C25C35 + C2
25C33,

b0 = C11C22C33C55 − C11C22C
2
35 − C11C

2
23C55 + 2C11C23C25C35 − C11C

2
25C33 − C2

12C33C55

+ C2
12C

2
35 + 2C12C13C23C55 − 2C12C13C25C35 − 2C12C15C23C35 + 2C12C15C25C33

− C2
13C22C55 + C2

13C
2
25 + 2C13C15C22C35 − 2C13C15C23C25 − C2

15C22C33 + C2
15C

2
23.
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