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Quantum vibronic effects on the electronic properties of solid and molecular carbon

Arpan Kundu ,1,* Marco Govoni ,2,1 Han Yang ,3 Michele Ceriotti ,4 Francois Gygi ,5 and Giulia Galli1,2,3,†

1Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
2Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory,

Lemont, Illinois 60439, USA
3Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA

4Laboratory of Computational Science and Modeling, IMX, Ecole Polytechnique Federale de Lausanne,
CH-1015 Lausanne, Switzerland

5Department of Computer Science, University of California Davis, Davis, California 95616, USA

(Received 25 January 2021; accepted 28 June 2021; published 26 July 2021)

We study the effect of quantum vibronic coupling on the electronic properties of carbon allotropes, including
molecules and solids, by combining path integral first principles molecular dynamics (FPMD) with a colored
noise thermostat. In addition to avoiding several approximations commonly adopted in calculations of electron-
phonon coupling, our approach only adds a moderate computational cost to FPMD simulations and hence it
is applicable to large supercells, such as those required to describe amorphous solids. We predict the effect
of electron-phonon coupling on the fundamental gap of amorphous carbon, and we show that in diamond the
zero-phonon renormalization of the band gap is larger than previously reported.
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Understanding the electronic structure of materials and
molecules at finite temperature is important for the prediction
of the physical properties of countless systems, ranging from
opto- and bioelectronic devices, to solar cells, and materials
used to build quantum sensors and quantum computers. How-
ever, a general theoretical framework to study the electronic
properties of molecules and solids over a wide range of tem-
peratures, incorporating accurately nuclear quantum effects
and electron-phonon interaction, is still missing.

Most theoretical studies of electron-phonon coupling have
been based either on first principles molecular dynamics
(FPMD) [1–4] or on perturbative calculations assuming
harmonic potential energy surface (PES) [5–7]. FPMD is
accurate above the Debye temperature, provided interatomic
interactions are described at an appropriate level of density
functional theory. However, for light systems, especially those
containing first row elements, FPMD may not be appropriate,
since nuclear quantum effects play an important role even at
ambient conditions. Notable examples are liquid water [8]
and ice [9,10], many molecular crystals [11,12], and mate-
rials and molecules composed mostly of carbon atoms, such
as polymers, diamond, and graphite. In principle, perturba-
tive [5–7] and nonperturbative stochastic [13–15] approaches,
with anharmonic effects included at various levels of ap-
proximation [16,17], may be used also below the Debye
temperature, and they have been applied to several crystalline
solids [13–19]. However, they are not well suited to study dis-
ordered systems, for example, amorphous or glassy materials,
molecular compounds, and nanostructures [20].
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Here we investigate the effect of electron-phonon inter-
action on the electronic properties of solids and molecules
by accurately including quantum vibronic effects in first
principles simulations. We used path integral (PI) molecular
dynamics with a colored noise generalized Langevin equation
(GLE), named PIGLET, to sample the appropriate quantum
fluctuations of the nuclei [21]. In addition, we performed
FPMD simulations with a single bead and colored noise GLE
[a so-called quantum thermostat (QT) [22]]. See Sec. S2 in
Supplemental Material for more details [23]. We show that
the ability to perform PI simulations at a cost comparable to
that of FPMD is critical to obtain accurate results for large
systems. We report results for several carbon systems, includ-
ing diamond, amorphous carbon (a-C), and pentamantane and
we propose a simple computational protocol to predict the
fundamental gap of light disordered solids including nuclear
quantum effects (NQE), in an accurate and efficient manner.
We predict for the first time the effect of electron-phonon
coupling on the electronic properties of diamondlike a-C and
we show that the zero-phonon renormalization (ZPR) of the
band gap of crystalline diamond is larger than previously
reported, due to vibrational anharmonic effects. The approach
proposed here permits one to assess the validity of commonly
used approximations in the calculation of electron-phonon
interaction in molecular and condensed systems.

We start by discussing our results for diamond. At T=0, if
we neglect the zero-point motion of the atoms and electron-
phonon coupling, the valence band maximum (VBM) and
conduction band minimum (CBM) are three- and sixfold de-
generate, respectively. At finite T, the band edge degeneracies
are broken, as shown in Fig. 1, where we report the electronic
density of states (EDOS) close to the VBM and CBM of a
64-atom diamond supercell (C64), obtained at 100 K from a
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FIG. 1. (Left) Electronic density of states (EDOS) at the valence band maximum (VBM, shaded) and conduction band minimum (CBM)
of diamond, computed with a 64-atom supercell and a 16-bead PIGLET NVT simulation at 100 K. The green, black, and orange vertical lines
represent the thermal average of the band edges (edge gap), the thermal average of the three highest VB and six lowest CB eigenvalues (center
gap), and the energy of degenerate VBM and CBM computed at the equilibrium geometry (static gap), respectively. (Middle) Difference
between the static and center gap (gap renormalization) as a function of temperature, obtained with the same protocol used in the left
panel. The symbols represent the simulation results while the lines are the Viña (linear) model fit [26] of the quantum (classical) results,
respectively. Classical values are obtained with first principles molecular dynamics; results including nuclear quantum effects are obtained
with PIGLET simulations (two or more beads) and a quantum thermostat (QT). (Right) Center gap computed with a 216-atom supercell and
two-bead PIGLET simulations in the NVT and NPT ensembles (solid lines, Viña model fit), compared with experimental results [27,28]. All
calculated results have been offset by different amounts so that at T = 0 they match the experimental band gap extrapolated to 0 K. The inset
shows the differences between results obtained using the frozen phonon harmonic approximation (FPH), a stochastic approach (Stoch) for a
C250 supercell [15], and many-body perturbation theory (MBPT) calculations performed on a 4×4×4 q-point grid [29]. Except for the NPT
simulations, we used the static lattice parameter (3.568 Å) for all calculations.

16-bead PIGLET simulation. The renormalized band gap due
to electron-phonon coupling may be defined in two different
ways: As the energy difference between (i) the thermal aver-
age of the three eigenvalues associated with the VBM and of
the six associated with the CBM (center gap) [13–15,24,25]
or between (ii) the thermal average of the highest of the three
VBM eigenvalues and of the lowest of the six CBM eigen-
values (edge gap). We show below that there is a substantial
difference of �160 meV between the center and edge band
gaps due to quantum vibronic effects; the minimum (indirect)
gap of diamond corresponds to the edge gap.

We first discuss the center gap. The middle panel of Fig. 1
shows the band-gap renormalization as a function of temper-
ature obtained with different approximations. Compared to
PIGLET results, classical simulations underestimate the band-
gap renormalization by more than 200 meV for T < 500 K,
while a QT accurately captures the NQE. The systematic error
present at low T in the QT results, due to the so-called zero-
point energy leakage [22], leads to an extrapolated ZPR that
is accurate within 30 meV. Interestingly, we found that such
systematic error may be reduced to 10 meV by performing
PIGLET simulations with just two beads, which only require
twice the computational cost of a QT simulation. On the basis
of this result, the NQE of all diamond supercells with more
than 64 atoms were simulated using the two-bead PIGLET
protocol in both the canonical and isothermal-isobaric ensem-
bles (labeled NVT and NPT, respectively).

The right panel of Fig. 1 compares the band gaps for a
216-atom supercell (C216) with the measured indirect band
gap of diamond [27] fitted using the Viña model [28]. The
difference between the band gaps obtained at constant vol-
ume and constant pressure is negligible at low temperature
and it is only 30 meV at 1000 K. Therefore, we conclude

that the lattice thermal expansion of diamond has a negligi-
ble effect on band-gap calculations, consistent with previous
studies [17,24] carried out with an approximate treatment of
anharmonicity of the PES.

We found a remarkable agreement between results ob-
tained with the stochastic approach [15], frozen phonon
harmonic results (FPH; see Sec. S5 [23]) and NVT simula-
tions (see inset of Fig. 1, right panel). This indicates that the
anharmonicity of the PES and higher-order electron-phonon
couplings have a negligible effect in determining the value of
the center gap. In Fig. 1, we also report the results obtained by
applying many-body perturbation theory (MBPT) to electron-
phonon interactions and using a generalization of the method
of Ref. [30] for solids [29]. The method relies on the rigid
ion approximation, which assumes that the ionic Hamiltonian
depends on potentials created independently by each nucleus.
The negligible differences between MBPT values and the FPH
results indicate that below �500 K the rigid ion approxima-
tion is justified in the case of diamond, consistent with the
conclusion of Refs. [16,31].

Furthermore the VSCF calculations by Monserrat et al.
yielded a ZPR (−462 meV) [17] value which is consider-
ably larger (by about 30%) than the corresponding harmonic
(−325 meV) [32], and our FPH (−321 meV) values, as well
as higher than the NVT-PIGLET result (at 100 K, −325 meV),
where all calculations were performed for the same super-
cell (C250). In contrast, by sampling the PES along each
phonon mode and using the independent mode approxima-
tion, Antonius et al. [16] found that anharmonicity reduces
the ZPR of the direct band gap of diamond by 30%. We
note, however, that large displacements (up to 0.3 Å) along
phonon modes were used in Ref. [16] which may introduce
a fictitious coupling between (i) stretching and (ii) bending
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FIG. 2. Difference between the center and edge gaps of diamond
(splitting parameter, which is positive definite) as a function of the
number of atoms (NC) in the supercell used in our calculations. Sym-
bols represent the simulated data (same acronyms as in Fig. 1), which
were fitted (solid lines) with the function a + b/NC. The dashed lines
represent the extrapolated value to the infinite supercell limit.

or torsional modes [33,34] and hence introduce numerical
artifacts.

We now turn to discussing the edge gap of diamond,
defined as the difference between the lowest nondegenerate
eigenvalue and the highest nondegenerate eigenvalue. Previ-
ous works [14,25] concluded that the observed splitting of
degenerate bands at T close to zero is caused by the small
size of the supercell adopted in DFT calculations. Zacharias
and Giustino [25] claimed that the lifting of the degeneracy
is caused only by the zone center phonons, and showed that
their omission in the electron-phonon calculation leads to
degenerate eigenvalues. In the infinite supercell size limit, the
influence of zone center phonons should vanish and the split-
ting of degenerate bands should go to zero. We extrapolated
the difference between the center and the edge gap (called here
splitting parameter, which is positive definite) with respect to
the number of C atoms (NC) in the supercell, using the func-
tion a + b/NC, where a is a contribution independent from
supercell size. Figure 2 shows our results for the two-bead
PIGLET simulations at 100 K, classical MD simulations at
1000 K, and FPH calculations at 0 K, in a canonical ensemble
using different supercell sizes. The splitting parameter con-
verges to zero for the FPH calculations, but for the PIGLET
or classical MD simulations, it converges to a non-negligible
value of 160 meV. Therefore, the splitting of the band edges
found here cannot be ascribed entirely to the finite size of the
supercell and it represents a physical effect. Specifically, we
attribute the center and edge gaps difference to anharmonic
vibronic effects. We note that MD simulations sample the
anharmonic PES, which is not necessarily symmetric around
its minimum (see, e.g., [17]) and consequently, the proba-
bility distributions along phonon modes are not Gaussians
due to skewness. For example, at 100 K for a C216 diamond
supercell, we found that 234 (out of 645) phonon mode distri-
butions deviate from a Gaussian distribution due to skewness
(see Sec. S6 [23]). This asymmetry and the consequent lo-
cal dynamical disorder (see Sec. S7 [23]) is obviously more
pronounced for large amplitude oscillations and hence clearly
visible at high T, e.g., 1000 K, in classical MD simulations.
However, when nuclear quantum effects are considered, the
asymmetry is present even at T close to zero. We emphasize
that it is this asymmetry and its contribution to the ZPR that

FIG. 3. Difference between the static and center and static and
edge fundamental gap of a pentamantane molecule (gap renor-
malization), C26H32 (Td), obtained using PIGLET simulations, and
calculated with the frozen phonon harmonic approach (FPH) and
many-body perturbation theory (MBPT). The renormalization of
both the center and edge gap is reported in the case of FPH and
PIGLET calculations. By construction, the difference between center
and edge gaps is zero within MBPT.

lead to a significant difference of 160 meV between the edge
and central gap. In its current implementation [13–15,25], the
stochastic method, in the limit of the large supercell, does
not account for the center-edge splitting because it samples
the probability distribution of connected harmonic oscillators
without accounting for the deviations of the PES from a
harmonic well. It would be interesting to explore whether
the recently proposed SSCHA approximation [35,36] is suf-
ficiently accurate to account for the splitting observed here;
we note that the SSCHA method uses linear combinations
of symmetric Gaussian functions to construct the anharmonic
vibrational wave functions and hence the wave function for
a nonsymmetric quartic potential becomes symmetric [36],
unlike the exact one.

In order to explore whether a difference between center and
edge gaps is observed also for carbon nanostructures, we stud-
ied the electronic properties of the pentamantane molecule.
Figure 3 shows the results from PIGLET simulations and
FPH calculations (see also Fig. S8 [23]). The ZPR of the
center gap (FPH, −200 meV; PIGLET, −220 meV) is con-
sistent with previous estimates at the PBE level of theory
(−210 meV) [37]. However, the ZPR of the edge gap (FPH,
−405 meV; PIGLET, −445 meV) is twice as large and cer-
tainly this value is not affected by the size of the supercell,
since we are considering an isolated molecule. The presence
of the splitting observed here was also reported in previous
ab initio studies of small diamondoids [38,39], and Gali et al.
suggested that the fine structure of the diamondoid photoe-
mission spectra can only be explained by considering such a
splitting [39]. We suggest that, as in the case of crystalline
diamond, the edge gap is the most appropriate definition
for the single particle gap in the case of the pentamantane
molecule, since by definition the measurement of a gap by
photoemission is a measure of the energy difference between
the highest occupied and the lowest unoccupied single particle
orbitals. Note that, unlike diamond, the splitting observed for
pentamantane does not only stem from anharmonic effects
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because FPH calculations also yield a sizable splitting. The
comparison of FPH and PIGLET results for pentamantane
shows that even at high temperatures, the combined contri-
bution of (i) anharmonicity of the PES and (ii) higher order
electron-phonon coupling does not amount to more than 10%
of the total electron-phonon renormalizations of the edge gap.

In Fig. 3, we also show the finite temperature electron-
phonon renormalizations calculated using the MBPT ap-
proach as implemented in the WEST code [40] and presented
in Ref. [30]. In addition to the harmonic approximation, the
calculations of Ref. [30] used the rigid-ion approximation,
finding a result for the center gap which differs by 100 meV
from that obtained with the FPH approach. This difference
indicates that the rigid ion approximation is not sufficiently
accurate for molecular systems, e.g., isolated molecules, and,
we expect, for molecular crystals as well. For diatomic
molecules, similar observations were previously reported by
Gonze et al. [41].

As in the case of the diamond crystal, we compared
QT and PIGLET gap renormalization results for pentaman-
tane over a wide range of temperatures and found excellent
agreement (see Fig. S9 [23]), indicating that the use of a
QT is adequate for MD simulation studies of single particle
gaps of molecular systems, and it is expected to be par-
ticularly valuable for larger nanostructures and when costly
functionals such as meta-GGA or hybrid functionals are
adopted.

Finally, we present results for a diamondlike amorphous
carbon (DLC), which is an example of a disordered sys-
tem, where both localized and extended electronic states are
present and where there are no degenerate electronic states.
In addition to classical MD, we used PIGLET as well as MD
with a QT to investigate the effects of NQE on the renormal-
ization of the minimum gap, and the results are shown in Fig. 4
for a 216-atom sample.

For T < 250 K, neglecting NQE severely affects the band-
gap renormalization, which is underestimated by more than
50% in the classical MD simulations, relative to the PIGLET
results. As T is increased, as expected, the classical descrip-
tion becomes increasingly more accurate, with only ∼10%
deviations at 1000 K. The band-gap predictions from classical
MD are, therefore, not accurate for most applications with a
working temperature range of 250–350 K. Interestingly, we
find that in spite of the presence of some localized states in
the system, which are expected to be less sensitive to electron-
phonon renormalization than extended states [29], the overall
ZPR of the band gap of a-C is substantial (�400 meV at low
T), amounting to about two-thirds of that found for crystalline
diamond. Finally, we note the excellent agreement between
QT and PIGLET results below 500 K, confirming that MD
simulations with either a QT or two-bead PIGLET represent
a promising, pragmatic choice that does not add a substantial
computational overhead to classical FPMD (see Sec. S3 [23]).
This result is particularly important for the modeling of amor-
phous systems, where it is usually necessary to average results
over multiple configurations obtained from separate annealing
processes; in addition, large samples with several hundreds of
atoms are often required to represent the medium range order
in these systems; hence, performing PIGLET simulations with
a large number of beads may not be computationally feasible.

FIG. 4. Difference between the minimum static and center gap
(gap renormalization) computed for amorphous-C obtained using
different methods to treat nuclear quantum effects (acronyms as in
Fig. 1). We carried out NVT simulations for an a-C sample with
density of 3.25 g/cm3, from Ref. [42]. The inset shows the absolute
percentage deviation of (i) classical molecular dynamics (MD) and
(ii) MD with a quantum thermostat from PIGLET simulations.

In summary, we investigated the effect of quantum vibronic
coupling on the electronic properties of light molecules and
solids, including ordered and disordered systems, by coupling
FPMD with a generalized quantum thermostat which accounts
for anharmonic effects in the ionic potential energy surface.
Our approach avoids all the approximations commonly made
in calculations of electron-phonon coupling, including the
rigid-ion and the harmonic approximation. Importantly,
it is an efficient approach, which only adds a moderate
computational cost to FPMD simulations and hence it is
applicable to large supercells, such as those required to
describe amorphous solids.

We found that in molecular and solid carbon-based
materials, nuclear quantum effects significantly alter the
electron-phonon band-gap renormalizations at temperatures
below 500 K. Our calculations showed that in diamond, even
at temperatures close to zero, the degeneracy of the band
edges is lifted due to vibrational, anharmonic effects, and
the resulting zero phonon renormalization (ZPR) of the band
gap due to electron-phonon interaction is ∼160 meV, larger
than previously reported at the same level of theory. With
continuing improvement in the resolution of photoemission
experiments [43], we believe our predictions are amenable
to experimental validation. The ZPR is substantial also for
diamondlike a-C, albeit about 30% smaller than in crystalline
diamond. Similar to the solid phases, we also observed a large
ZPR (445 meV) for the pentamantane molecule.

Finally, our simulations allowed us to asses the validity
of common approximations used in the literature to study
electron-phonon coupling. We showed that the rigid-ion ap-
proximation, widely applied in MBPT-based methods, though
adequate for extended solids such as diamond at low temper-
atures (<500 K), is severely deficient for molecular systems
(e.g., pentamantane). We found that stochastic nonperturba-
tive methods are promising approaches; however, in their
current implementation they cannot account for the splitting
of degenerate orbitals originating from the dynamical disorder
found in diamond, due to its anharmonic potential energy sur-
face. Work is in progress to apply the computational protocol
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to heterogeneous and disordered systems where both localized
and delocalized electronic states are present, for example,
point defects in diamond and amorphous and glassy carbon
with different densities.

Data and workflows are available at [44].
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