
PHYSICAL REVIEW MATERIALS 5, 125601 (2021)

Viscosity and transport in a model fragile metallic glass
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How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model
binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations,
involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie
the transport of free-volume and bond geometry. Such transport is found to correspond to the evolution
of a disclination network describing the spatial connectivity of topologically distinct bonding environments,
demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics.
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I. INTRODUCTION

The nature of a deeply undercooled metal-alloy liquid and
its transition to a bulk metallic glass may be characterized
by local structural motifs quite different from both the equi-
librium liquid and solid phase [1], and whose fluctuations
become increasingly heterogeneous in both space and time as
the temperature reduces [2]. While the larger-scale collective
processes eventually freeze-out, there still exist fast and more
localized structural fluctuations which mediate relaxation and
plasticity of the amorphous metallic solid. Quantifying the
properties and constraints of such dynamics is therefore essen-
tial for a fundamental understanding of the property-structure
relationship for both old, and new, engineering relevant metal-
lic glasses, and glassy solids in general [3].

As a structural measure, free-volume has played an im-
portant role in the phenomenology of undercooled metallic
liquids and bulk metallic glasses [4]. For simple liquids, Turn-
bull and Cohen [5,6] hypothesized transport, and thus flow,
was facilitated by ballistic particle rearrangements sometimes
resulting in the creation of local free-volume into which a
neighboring particle could enter. Spaepen [7] extended this
to bulk-metallic glasses by including a barrier energy to free-
volume migration, and treating the frozen-in free-volume as a
state variable characterizing the glassy structure and its plastic
flow properties. Here it was envisioned that an applied shear
stress could cause a local dilation and the creation of new
free-volume. This was further developed by Argon [8], who
replaced localized free-volume migration with a local shear
transformation (ST). High strain rate atomistic simulation has
given great insight into the athermal variant of Argon’s ther-
mally activated ST [9]—the shear transformation zone [10,11]
(STZ). On the other hand, simulation work under zero load
has also revealed glassy structural changes mediated by ther-
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mally activated cooperative atomic displacements [12–16],
here referred to as localized structural excitations (LSEs).

The core structural change of an LSE involves a sequence
of atoms changing their position with a neighbor (inset of
Fig. 1). Such stringlike excitations also occur in the under-
cooled liquid regime [18–22] and are fundamental to the
drastic changes in transport occurring during the glass transi-
tion [2]. Within the amorphous-solid regime, LSEs constitute
the elementary excitations of the glassy structure, where po-
tential energy landscape (PEL) exploration algorithms were
able to identify the energy barriers [23–26] and via harmonic-
transition state theory give estimates of the corresponding
attempt rate [27]. LSEs are to be distinguished from STZs
which are only active under load, correspond to stress in-
duced inflection points of the PEL, and tend to be more
spatially localized, not having the LSE stringlike geometry.
Finite temperature simulations demonstrate that LSE activity
occurs in regions lacking icosahedral content (Fig. 1) and
results in structural relaxation [28,29], stress relaxation [30],
and microplasticity [31]. The separation of structure into re-
gions of icosahedral and nonicosahedral content is a general
phenomenon [17,32–35] fundamentally connected to the level
of geometrical constraint and frustration occurring within the
amorphous solid [36–40]. How LSE occurrence is related to
this geometrical frustration, its relation to free-volume con-
tent, and how it mediates transport and viscosity below the
glass transition regime, remain quantitatively unknown, and
will be addressed in the present work.

To this end, we generalize the work of Spaepen [7] and Ar-
gon [8], and develop a phenomenological framework to study
LSEs based on a distribution of activated processes, each char-
acterized by activation parameters, a far-field stress/strain,
and a near-field bond-length displacement. An inverse rela-
tionship between the instantaneous diffusion D and viscosity
η parameters is established, which contains no explicit tem-
perature dependence but is proportional to the density of
possible LSEs. Here the terminology of instantaneous is used
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FIG. 1. Glassy atomic configuration visualized through a nearest
neighbor bond network in which each bond is colored according
to its bond order (the number of common neighbors shared by the
two atoms forming the bond). Here red bonds represent sixfold and
green bonds fourfold bond orders, whereas fivefold bonds are not
visualized. An atom containing only 12 fivefold bonds has a local
icosahedral structure, whereas an atom containing also four- and
sixfold bond orders is seen as a defected icosahedral environment.
From this perspective, the latter form a disclination network along
which the fivefold icosahedral symmetry has been broken. The vi-
sualized isosurface encloses atoms which have (mainly) icosahedral
and Frank-Kasper structural motifs, regions that only contain sixfold
disclination lines. Outside this region, both fourfold and sixfold
disclination structures are seen, reflecting both Frank-Kasper and
non-Frank-Kasper structural motifs, and an excited structural state
for which dissipation occurs via thermally activated localizes struc-
tural excitations—stringlike cooperative activity visualized through
atomic displacements (inset, where the color of the arrows indicate
the corresponding displacement magnitude). Data are derived from
atomistic simulations performed at 0.8Tg and the structural analy-
sis is performed using a modified Voronoi tesselation described in
Ref. [17].

to emphasize the dependence of such quantities over the
(short) timescale over which they are measured. Values of
both D and η are obtained from microsecond long atomistic
simulations revealing LSEs to be considerably more numer-
ous than that suggested by free-volume theories. Within this
phenomenology we fully characterize the LSEs, finding their
occurrence entails free-volume transport which on average
is volume conservative and thus nondilative, resulting in a
far-field shear stress signature as suggested by Eshelby [41].
Concurrent to this is the transport of coordination and bond or-
der which satisfies the topologically allowed deviations away
from minimally frustrated local icosahedral motifs. Thus an
important link between glass structure and the excitations
mediating transport and dissipation, and how this leads to a
less frustrated structure and emergent spatial heterogeneities
is quantitatively established.

In Sec. II a phenomenology relating the microscopic
properties of LSEs to bulk transport and microplasticity is
developed, as is a viscoelastic model to describe the mi-
croplasticity seen in Ref. [31], the latter of which will allow
for an estimation of the instantaneous viscosity. This is fol-
lowed by Sec. III which applies these phenomenologies to
the atomistic data of Ref. [31] to determine the key average
properties of LSEs. The final section, Sec. IV, provides a brief
summary of the work and some concluding remarks.

II. PHENOMENOLOGY

A. Localized structural excitations (LSEs)

Acknowledging the complexity of the glass PEL, we con-
sider a population of LSEs that mediate thermally activated
relaxation, and when under a load σ , mediate thermally ac-
tivated plastic flow. Within a volume V of N atoms, M =
ρLSEV , LSEs are assumed to exist, each of which has a prob-
ability of occurrence within a time interval �t equal to

�i�t = �tνi exp [−βEi(σ )], (1)

where β = (kBT )−1, and Ei(σ ) and νi are the shear stress
dependent barrier energy and attempt rate for the ith LSE
with occurrence rate �i. Defining an activation volume 	0i

via Ei(σ ) ≈ E0i − σ	0i, this becomes

�i�t ≈ �tνi exp [−βE0i](1 + β	0iσ )

= �0i�t (1 + β	0iσ ) (2)

for the regime of β	0iσ � 1.
The ith LSE is therefore characterized by an energy barrier

E0i, activation volume 	0i, and attempt rate νi. PEL explo-
ration algorithms [23,24] show that for a well relaxed sample,
the positive value distributions of E0i and νi are unimodal and
approach zero at small values, ν0i is weakly correlated with
E0i [27], as is 	0i which can be positive or negative [25].
LSEs are assumed to affect the surrounding glassy structure
through their far-field plastic shear strain �εi (∼1/V , due to
the general scaling properties of strain with volume), and by
core LSE atom displacements characterized by a mean-square
displacement �r2

i that underlies transport.
Within the volume V , the average number of LSEs occur-

ring in �t is given by

��t =
M∑

i=1

�i�t = M〈�〉�t = ρLSEV 〈�〉�t . (3)

The corresponding average plastic strain due to an applied
stress σ occurring within this time interval and volume V is
then

〈�εp〉 =
M∑

i=1

�i�εi�t

= M〈��ε〉�t

≈ M〈�0(1 + β	0σ )�ε〉�t

= M〈�0〉�tβ〈�ε	0〉σ. (4)

In the last equality of Eq. (4), 〈�ε〉 = 0 is assumed, entailing
the distribution of far-field shear strains spans all possible slip
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directions reflecting the complexity of the glassy structure and
its possible excitations.

The average total atomic (cumulative) displacement under
zero load can be derived in a similar manner:

〈
�r2

Total

〉 =
M∑

i=1

�i�r2
i �t

= M〈��r2〉�t

= M〈�0〉�t〈�r2〉, (5)

where in the last equality, the LSE mean-square displacement
is assumed to be uncorrelated with the LSE barrier energy and
the attempt rate.

Defining the instantaneous viscosity via 〈�εp〉/�t
.=

σ/η and the instantaneous diffusion constant via D
.=

〈�r2
Total〉/(6N�t ) gives

η
.=

(
ρLSE

V 〈�ε	0〉
kBT

〈�0〉
)−1

(6)

and

D
.= 1

6

ρLSE

ρAtom
〈�r2〉〈�0〉. (7)

Both equations have used M = ρLSEV .
Assuming the fundamental (Maxwell) timescale is also

related to the viscosity through 〈�0〉−1 = η/G, where G is an
appropriate shear modulus, Eqs. (6) and (7) give

Dη = 1

6

ρLSE

ρAtom
G〈�r2〉. (8)

The imposition of 〈�0〉−1 = η/G entails LSE occurrence does
not spontaneously induce further significant LSE activity at
the timescale of �t . This may be seen by the substitution of
〈�0〉−1 = η/G into Eq. (6), which gives

β〈�ε	0〉G = 1

M
∼ 1

V
. (9)

The left-hand-side of the above can be viewed as the second
term in the last equality of Eq. (2), showing the effect on the
LSE activity due to the change in stress arising from an LSE
occurrence will be negligible.

The above derivations assume the statistical independence
of LSE activity. This assumption becomes invalid at a lower
“cooperative” length scale where the system cannot indepen-
dently sample all LSE transition paths. The leading order
effect of this may be taken into account by dividing the pref-
actors νi by Mcoop, the characteristic number of LSEs within a
cooperative volume [42]. It is also noted that all 〈·〉 quantities
will depend implicitly on �t and temperature. For a small
enough �t or low enough temperature, only a subset of the
M, �i�t will be thermally accessible, a regime of statistics
for the determination of 〈·〉 tending towards the extreme-value
asymptote [43]. This emphasizes that all phenomenological
quantities (and their assumed lack of correlation) are repre-
sentative of the timescale �t and temperature at which they
are measured. It is because of this that the parameters D and
η are referred to as instantaneous quantities.

Because Eq. (8) has no explicit temperature depen-
dence, it is tempting to interpret it as a breakdown of the

Stokes-Einstein relation seen both experimentally [44] and
computationally [45] for temperatures up to and beyond the
liquidus temperature. Such a breakdown is related to a separa-
tion of the bulk viscous and bulk diffusion timescales, which
is not the case for our values of D and η—instantaneous
quantities that here do not capture the long-time collective
properties of LSE activity.

B. Microplasticity

Motivated by the microplasticity simulations of Ref. [31],
a classical two phase elastic/viscoelastic model is developed.
An isostrain scenario is considered in which the global stress
is a volume-fraction weighted sum of the characteristic stress
of a purely elastic region (E) and a viscoelastic region (VE)
region: εE = εVE = ε and σ = 	EσE + 	VEσVE. Here ε is
the global strain state and 	E/VE and σE/VE are the volume
fractions and characteristic stress of the elastic/viscoelastic
regions. Such a partition of stress is seen in the atomistic sim-
ulations (see Sec. 3.1 of Ref. [31]). By definition, the elastic
region experiences only an elastic response, given by σE =
Gε, where G is a global shear modulus applicable to both
the elastic and viscoelastic regions. On the other hand, the
viscoelastic region experiences both an elastic and viscoplas-
tic response, and is characterized by a linear decomposition
of the applied strain, εVE = εelastic

VE + ε
plastic
VE = ε or, in terms

of strain rate, ε̇elastic
VE + ε̇

plastic
VE = ε̇. The elastic contribution

to the strain rate is given by ε̇elastic
VE = σ̇VE/G, whereas the

plastic contribution is written as ε̇
plastic
VE

.= σVE/ηVE(t ) defining
a time-dependent instantaneous viscosity for the viscoelastic
region.

Together, the above considerations give

σ (t ) + ηVE(t )

G
σ̇ (t ) = 	EGε(t ) + ηVE(t )ε̇(t ), (10)

which has the general form of a Maxwell representation of
a standard linear solid description of viscoelasticity. Indeed,
in the limit of a vanishing purely elastic region, 	E → 0
and ηVE(t ) = η0, the above corresponds to the well known
Maxwell equation for viscoelasticity.

For the initial condition σ (t = 0) = 0 and a fixed applied
strain rate ε̇(t ) = ε̇app, Eq. (10) has the solution:

σ (t ) = ε̇appG
∫ t

0
dt ′e−GF (t ′,t )

(
1 + G	Et ′

ηNI(t ′)

)
, (11)

where

F (t0, t1) =
∫ t1

t0

dt ′′ 1

ηVE(t ′′)
. (12)

Such a solution will be used to describe the microplastic
response of the elastic loading regime under constant strain
rate conditions.

III. LSE PROPERTIES FROM ATOMISTIC SIMULATION

A. Methodology

The zero-load data set taken from Ref. [31] represents 2
μs of physical simulation of a model Lennard-Jones binary
system [46], using a 50:50 composition of small to large
atoms. The initial configuration is the same configuration

125601-3



P. M. DERLET, H. BOCQUET, AND R. MAAß PHYSICAL REVIEW MATERIALS 5, 125601 (2021)

used for the loading simulations of Ref. [31] and numbers
32 000 atoms. The simulations were performed at fixed zero
pressure under isotropic volume fluctuations, at a temperature
of 0.8Tg, where Tg is the fictive glass transition temperature
[31]. During the simulation, atomic data was stored every
1 ns resulting in 2000 configurations spanning 2 μs. For each
configuration, a conjugate gradient relaxation was performed
to find a local minimum of the potential energy resulting in an
inherent state of the system. The volume of each configuration
was kept fixed during this relaxation. Thus any structural
deviation must involve the system transiting from one local
potential energy minimum to another. For the calculation of
the change in global stress, the simulation cells of all 2000
configurations were rescaled to that of the initial configuration
allowing for a meaningful calculation of the dilatational stress
due to LSE activity while negligibly affecting the shear stress
components.

All distances and energies are measured in terms of the re-
spective Lennard-Jones parameters σ and ε. For the definition
of time, see Ref. [31]. For a discussion on using a different ra-
tio of atomic sizes and/or for compositions deviating from the
used 50:50, see Refs. [17,29]. Bond-order analysis is done via
a modified Voronoi tessellation that is better able to tessellate
a given atomic configuration in terms of minimally distorted
tetrahedra [17,47].

B. Instantaneous diffusion coefficient and viscosity

Taking �t to be 1 ns, we study LSE activity using the
zero-load atomistic simulation data set of Ref. [31]. Core LSE
atoms may be identified as those which displace more than 0.6
of a bond length within �t (see inset of Fig. 1). This numer-
ical value is the minimum of the Van Hove self-correlation
function separating bond length from sub-bond-length dis-
placements (see Fig. 7(c) of Ref. [31]). Figure 2(a) plots
the number of detected LSEs, NLSE, as a function of time,
showing the number decreases from 25 to 10 as the structure
relaxes (see Fig. 4(a) of Ref. [31]). Such unit LSE data is
obtained by a nearest-neighbor cluster analysis of all LSE core
atoms. Figure 2(b) gives a scatter plot between NLSE and the
total mean-square disaplacement due to only the core LSE
atoms, 〈�r2

Total〉. A good linear correlation is evident, giving
〈�r2〉 ≈ (2.40 ± 0.01)σ 2.

The outlier points associated with the larger values of NLSE

seen in Fig. 2(a), and also the values at the earliest times, gen-
erally correspond to the outliers in Fig. 2(b) that deviate from
the linear correlation seen for NLSE < 20. This observation
represents a good example of the dependence of the current
results on timescale (�t) and the absolute time at which the
analysis is performed (the microstructural state). At �t =
1 ns, the results of our analysis reveal that the average mean-
square displacement of an LSE is 〈�r2〉 ≈ (2.40 ± 0.01)σ 2.
When inspecting the displacements of individual core LSE
atoms, this value reflects several atoms changing their position
approximately a bond length (see inset in Fig. 1). Inspection of
the spatial autocorrelation (Van Hove) function at �t = 1 ns
(see Fig. 7(c) of Ref. [31]) reveals this to be the most probable
outcome. However, such a correlation function is not Gaus-
sian, having a fat-tail distribution for larger displacements.
Increased sampling (NLSE) of this distribution will result in

FIG. 2. (a) LSE number evolution and (b) corresponding scatter
plot of LSE number with LSE mean-square displacement. (c) Plot
of instantaneous diffusion as a function of time derived from the
zero-load data. (d) Stress-strain response for a strain rate of 104/s
decomposed in the contribution arising from the elastic (icosahedral
atoms) and the viscoelastic regions. The solid lines represent the
optimal fit of the developed two-phase elastic/viscoelastic model.

a larger mean value which deviates more and more from the
most probable displacement. This observation reflects itself in
the observed nonlinear trend seen in Fig. 2(b).

What is the origin of increased LSE activity (NLSE) over the
chosen time interval? For the earlier times, the glassy structure
is less relaxed admitting increased LSE activity, however there
also exist rare increases in NLSE at later times suggesting
some form of intermittent correlated LSE activity that would
increasingly affect the average LSE properties when �t is in-
creased. This again emphasizes the instantaneous nature of the
transport and dissipation processes being presently studied.

Dividing 〈�r2
Total〉 by 6N�t gives an estimate of D(t ),

which because of the varying levels of LSE activity [Fig. 2(a)]
is now time dependent. Figure 2(c) plots the evolution of
D(t ) over the 2 μs of available data, and also a fit us-
ing D(t ) = D0 + D1 exp(−t/t0) with D1 = 0.14 σ 2/μs, D2 =
0.197 σ 2/μs, and t0 = 0.23 μs. Due to the strong scatter in
atomistic data, the chosen mathematical form is one of many
able to reproduce the average trend seen in D(t ). Equation
(8) indicates that if η(t ) is also known then ρLSE can be
determined. To obtain an estimate of η(t ) the two-phase model
developed in Sec. II B is fitted to the deformation simulations
of Ref. [31]. In this past work the slowest strain rate consid-
ered was 104/s. Up to a strain of 0.02, this deformation spans
the 2 μs of physical time covered by the zero-load simulations
used for the determination of LSE properties and therefore
D(t ) in Fig. 2(c). Thus the present fitting procedure focuses
on an optimal fit of Eq. (11) to the 104/s microplasticity data,
and in particular the degree of elastic softening seen in the
viscoelastic component of the system’s stress response.
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In the work of Ref. [31], the purely elastic region was
identified as the system-spanning network of local icosahedral
environments of the smaller atom, the rational being that for
the smaller atom, this structural motif is minimally frustrated.
However, for the larger atom, it is the Frank-Kasper environ-
ments that are minimally frustrated. Detailed inspection of the
system spanning region (enclosed by the surface in Fig. 1)
reveals the inner structure is dominated by icosahedral regions
with a small population of the Frank-Kasper structural motifs.
Despite the presence of the latter, we consider the fractional
volume of the purely elastically deforming region as consist-
ing of only those atoms that are icosahedrally coordinated.
When doing this, from the ≈0.2% of atoms which belong to
a core LSE structure within �t , 95% of these occur outside
this as-defined elastically deforming region. Indeed, including
such Frank-Kasper motifs generally softens this nominally
elastic region.

Figure 2(d) displays the simulated stress evolution dur-
ing deformation of the elastic and viscoelasic regions (taken
from the simulations of Ref. [31]) as well as the optimal
fit arising from the viscoelastic model [Eqs. (8)–(12)] us-
ing 	E = 0.24 and the global elastic shear stiffness G =
16.5949 ε/σ 3, which gives the estimate ρLSE/ρAtom ≈ 1.1 ±
0.2 ∼ O(1). This value is many orders of magnitude larger
than that anticipated by free-volume theory which gives the
per site probability as exp(−γ v∗/vf ) for which γ v∗/vf is
typically O(10). Here γ v∗ is related to the particle volume
and vf to the average free-volume available to a particle. The
obtained instantaneous viscosity for the viscoelastic region,
expressed as η/G, is in the range 1–3 μs which is comparable
to the timescale for strain recovery seen in Ref. [31].

C. Far-field LSE properties

The theoretical work of Eshelby on plastic inclusions [41]
suggests the resulting far-field stress/strain signature of an
LSE will have a quadrapolar form and decay as r−3. While
the quadrapolar structure has been observed for stress-driven
STZs via simulation [48] and experimentally via deformed
colloidal glasses [49], it has yet to be for thermally activated
LSEs. Because of the fixed shear strain conditions, we focus
on the LSE stress signature and calculate the local atomic
stress differences between two configurations separated by
�t . The corresponding change in stress arises from the 10–25
LSEs that normally occur during �t . These local stresses are
summed for the core LSE atoms and those atoms at most a
distance δ away. Figure 3(a) plots the resulting von Mises
stress invariant as a function of δ, for 20 pairs of config-
urations. For δ < 1.25σ the local von Mises stress of the
core LSE atoms fluctuates strongly. In the intermediate range,
1.25σ < δ < 10σ , a clearer trend emerges.

Insight into this intermediate regime is given by consider-
ing an idealized distribution of internal stress variations due
to multiple LSE creations that together contribute to a global
stress change. Indeed, the change in stress over a volume V is
given by

�σμν = 1

V

∫
V

d3r �σμν (r) = 1

V

∑
i

Vi�σ
μν
i . (13)

FIG. 3. (a) Plot of 20 cumulative von Mises stresses as a function
of distance δ away from any core LSE atom. To enhance the observed
log δ/δ3 quadrapolar scaling, the data have been shifted and when
needed reflected such that all curves are equal at δ = 1.25σ . (b) Re-
sulting change in dilative and von Mises stress due to LSE activity.
Stresses in (a) and (b) are given in terms of the bulk (K) and shear
(G) moduli.

Here the first equality is with respect to a continuous func-
tion �σμν (r), representing the internal stress change of the
system, whereas the second equality is with respect to the
local atomic stress change �σ

μν
i of the ith atom with atomic

volume Vi. In the latter, the summation is over those atoms
contained in the volume V , and is the expression used in
atomistic simulation.

The data in Fig. 3(a) is calculated using the volume Vδ

which is defined as all points within a distance δ from an LSE
core atom. For the intermediate range of distances, Vδ may
be approximated as a summation of nonoverlapping spherical
volumes centered around each LSE core region of volume V ′

δ .
In this regime, for M ′ occurring LSEs, we have

�σ
μν
δ = 1

M ′V ′
δ

∑
i

∫
V ′

δ

d3r �σ
μν
i (r),

where now �σ
μν
i (r) represents the internal stress change due

to the ith occurring LSE. Here each integral is centered on its
LSE core region. This may be rewritten as

�σ
μν

δ = 1

V ′
δ

∫
V ′

δ

d3r 〈�σ
μν
i (r)〉M ′ . (14)

For increasing M ′, 〈�σ
μν
i (r)〉M ′ becomes an increasingly

isotropic function. Assuming a leading order quadrapolar
form for the characteristic far-field shear stress results in this
function scaling as 1/r3 and therefore Eq. (14) scaling as
log δ/δ3.

Inspection of Fig. 3(a) demonstrates that a log δ/δ3 scaling
is compatible with the data. For δ > 10σ in Fig. 3(a), almost
all atoms are included in the summation and the stress con-
verges to the total change in von Mises stress due to LSE
activity. Indeed, such a shear stress entirely dominates the far-
field stress signature, with the dilatational component being
comparatively negligible [see Fig. 3(b)]. Together, these re-
sults give strong evidence that LSE occurrence may be viewed
as an Eshelby plastic shear inclusion giving theoretical sup-
port to past coarse-grained thermal theories of glass plasticity
[50–54].
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TABLE I. Average change in volume, coordination (Z), and four-
, five-, and six-bond orders at start and end environments of core LSE
displacements. It is noted that �N6 − �N4 = �Z is approximately
satisfied.

Measure Start End

Large atoms
Free-volume 0.065 ± 0.064σ 3 −0.066 ± 0.063σ 3

Coordination 1.16 ± 1.88 −1.19 ± 1.87
(�N4, �N5, �N6) (−0.25, 0.60, 0.87) (0.24,−0.57, −0.90)

Small atoms
Free-volume 0.033 ± 0.053σ 3 −0.033 ± 0.053σ 3

Coordination 0.65 ± 1.84 −0.70 ± 1.83
(�N4, �N5, �N6) (−0.19, 0.42, 0.41) (0.19,−0.43, −0.42)

D. LSE conservative free-volume transport

The characteristic stringlike geometry seen in Fig. 1 moti-
vates three distinct core atomic environments: the start-point,
internal, and end-point core LSE atoms. Table I lists the av-
erage change in atomic volume for the start and end points
derived from the entire 2 μs zero-load data set. The local
atomic volume of the start and end configurations is cal-
culated using a modified Voronoi tesselation [17]. Table I
demonstrates an increase at the start point and a compara-
ble decrease at the end point, whereas the internal regions
(not shown) entail order-of-magnitude less average changes.
Thus LSEs transport free-volume antiparallel to the displace-
ment direction, indicating a less local generalization of the
free-volume migration first envisaged by Turnbull and Co-
hen [6]. Table I also reveals such transport to be on average
conserved suggesting a minimal average far-field dilatational
stress signature—a result entirely consistent with a dominant
far-field shear stress signature seen in Fig. 3(b).

Since the ratio between the volume transported (Table I)
and the present atomic volumes (Vsmall/Vlarge ≈ 0.65/0.78) is
comparable to γ v∗/vf , there is a historical justification to refer
to the transported volume as free-volume. Such free-volume
content is a direct measure of glass structural relaxation
[17,29,33,55,56]—a process intimately connected to the cre-
ation of icosahedral content associated with the smaller atom
[30]. Icosahedral content is characterized by a minimally
frustrated local environment containing 12 fivefold bonds (an
n-fold bond between two atoms has n common neighbors)
which has the lowest volume per atom and is largely ab-
sent of LSE activity. Deviations away from this environment
facilitate the fundamental connection between coordination
and free-volume, since higher coordinated environments have
larger atomic volumes to accommodate the larger number of
nearest neighbors. This is reflected in the concurrent transport
of coordination, which Table I shows to be also on-average
conservative.

E. LSE-driven disclination network evolution

To gain insight into the changes in coordination, the
topologically distinct deviations from the icosahedral en-
vironment must be considered, an approach initiated by
Frank and Kasper [36,57], Bernel [37], Chaudhari and
Turnbull [38], and later given a mathematical foundation

by Nelson [39,40]. These works show that (low energy)
topologically distinct deviations away from the icosahedral
environment consist of bonding environments defined by the
number of four-, five-, and sixfold nearest-neighbor bonds
(N4, N5, N6). Recent work [17] shows that up to 95% of a
glassy structure quantitatively follows the predicted bond-
ing topologies. The coordination is trivially given by Z =
N4 + N5 + N6, but since the presence of a fourfold/sixfold
bond entails a decrease/increase in coordination one also
has Z = 12 − N4 + N6, giving (N4, 12 − 2N4, N6) and thus
a change in bond order (�N4,−2�N4,�N6) and change in
coordination �Z = N6 − N4. Table I includes the average
changes in bond order for the start- and end-point core LSE
atoms, showing both relations to hold. More generally, on av-
erage, two fivefold and two sixfold bonds are transported with
free-volume migration, for every fourfold bond transported in
the opposite direction, which together results in the expected
change in coordination.

When the defect bonds are seen as disclination segments
(along which the fivefold symmetry of the icosahedron is
broken), the glassy structure may be viewed as a complex
network of extended disclinations whose nodal points satisfy
the bonding topologies dictated by Ref. [40]—see Fig. 1.
Such line defects also convey the connectivity of variations
in coordination, and the present work establishes that LSE
facilitate nonlocal variations in the network’s nodal points
and coordination. The observed stringlike geometry of these
structural changes seen in a variety of past works [18–31] is
therefore a direct result of these local topological bonding
constraints and the line defect nature of the corresponding
disclination network.

While the data of Table I suggests on-average conserva-
tive transport, this cannot be the case over long times, with
relaxation tending towards lower free-volume characterized
by increased icosahedral content for the smaller atoms and
Frank-Kasper motifs (bonding topologies involving sixfold
bonds) for the larger atoms [17,29]. In Ref. [17], structural
evolution entailed an average bond-order evolution character-
ized by the creation of two fivefold bonds at the expense of
a fourfold and sixfold bond. This trend is also seen in the
present data and suggests a topological bond order relaxation
pathway characterized by (3, 6, ·) → (2, 8, ·) → (1, 10, ·) →
(0, 12, ·). Such transitions are expected to underly the fluc-
tuations away from the mean quantities shown in Table I.
How such changes in bonding topology occur is not yet clear,
but due to the constrained connectivity of the disclination
network, atomic environments beyond the core LSE structure
will play an important role again indicating the collective
nature of the disclination network [17]. The growing system
spanning icosahedral and Frank-Kasper motifs (also seen in
material-specific model systems [17,58,59]) are thus strong
candidates for the emergent heterogeneities believed to con-
trol not only the properties of the amorphous solid [60,61] but
also the level of fragility in the undercooled liquid and glass
transition regime [62].

IV. SUMMARY AND CONCLUSIONS

We have presented a phenomenology that relates dissipa-
tion, via an instantaneous viscosity and diffusion, to atomic-
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scale parameters that characterize the mediating thermally
activated cooperative atomic displacements, also referred to
as local structural excitations (LSEs). In doing so, we find
that LSEs transport free-volume, coordination, and bond-
order on-average conservatively between the end points of the
displacement sequence whose stringlike geometry arises natu-
rally from the underlying disclination network characterizing
the frustrated amorphous structure. Moreover, the average
conservative transport of free-volume gives a natural origin
to the observed far-field quadrapolarlike shear stress signature
admitted by the LSE. Together, these results provide the basis

for future coarse-grained models of thermally activated glass
plasticity in which the same underlying processes are re-
sponsible for material transport and heterogeneous structural
evolution, paving the way for a simulation-based quantitative
understanding of the bulk metallic glass structure-property
relation.
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