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We develop a probabilistic machine learning model and use it to screen for new hybrid organic-inorganic
perovskites (HOIPs) with targeted electronic band gap. The data set used for this work is highly diverse,
containing multiple atomic structures for each of 192 chemically distinct HOIP formulas. Therefore, any property
prediction on a given formula must be associated with an irreducible “uncertainty” that comes from its unknown
atomic details. As a result, dozens of new HOIP formulas with band gap falling between 1.25 and 1.50 eV were
identified and validated against suitable first-principles computations. Through this demonstration we show that
the probabilistic deep learning approach is robust, versatile, and can be used to properly quantify this uncertainty.
In conclusion, the probabilistic standpoint and approach described herein could be widely useful for the very

common and inevitable data uncertainty which is rooted at the incompleteness of information during experiments

and/or computations.
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I. INTRODUCTION

The enormous interest devoted to hybrid organic-inorganic
perovskites (HOIPs), specifically methylammonium lead io-
dide CH3NH;Pbl; [1] during the past decade, was mainly
fueled by the amazing power conversion efficiency when they
are used as solar absorbers [2—6]. Materials in this family
have the chemical formula of ABX3 and adopt the classic
perovskite structures in which cations A are inserted into the
cages formed by the 3D network of cations B and anions
X. Because the organic cations are highly anisotropic and
typically much larger than any inorganic cation A of classic
perovskites, the BX3 network is inevitably deformed/broken,
introducing remarkable structural diversity [5,7-11] and in
some cases enabling the suitability of HOIPs for other appli-
cations as well, i.e., optoelectronics [12,13], spintronics [14],
and ferroelectrics [15].

The most notable HOIPs, i.e., methylammonium lead
iodide CH3;NH3;Pbl; and formamidinium lead iodide
HC(NH,),Pbl;, are essentially unstable and contain a
toxic species (Pb). Therefore, searches for new HOIPs have
been highly active [16-21]. While Sn is probably the most
examined alternative for Pb, about a hundred monovalence
organic cations were screened at some levels of experiments
and computations, especially using machine-learning (ML)
techniques [5,9,10,17-20,22,23]. These works typically start
by putting together a data set of ABX3 formulas and some
properties needed for a solar absorber. Then, some ML models
were developed, directly mapping the HOIP formulas onto
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the properties. Next, a large-scale screening follows, utilizing
these models to identify those having favorable properties
for specific applications. Within this generic workflow, a
representative atomic structure was assumed for each formula
using some targeted properties, e.g., the electronic band-gap
E,, that can be computed. The main reason to directly
map the ABX3 formula onto the respective property is that
predicting reasonable atomic structures for a large number of
formulas, e.g., using computations [24], is very expensive and
technically impractical. In a vast majority of these ML works
[16,19,25,26] the (3D) perovskite prototype structure, whose
E, often falls into the right window for solar cell applications,
was selected as the representative for each formula. This is
an oversimplification because multiple phases of a HOIP can
coexist at the same condition, e.g., the cubic and tetragonal
phases of CH3NH3Pbl; can be realized at room temperature
[27]. Therefore the previously used data sets [16,19,25,26]
are generally small (a few hundreds entries) and structurally
uniform.

In fact, assuming a representative for each chemical for-
mula is a quick response to a more general and important
question of how to explore the materials space efficiently.
However, the selected prototype structure is not the ground
state of many ABXj formulas [9-11], introducing some in-
evitable uncertainty that will be subsequently elaborated. The
development of modern atomic structure prediction methods
[24] can provide a more reliable but expensive answer using
which bigger and extremely more diverse data sets were cre-
ated [10,28-30]. One of them, the targeted HOIPs data set
of this work [10], contains 1346 atomic structures of 192
ABXj; formulas and some associated properties computed
using density functional theory (DFT) [31,32]. These atomic
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FIG. 1. Electronic band-gap E, (circles) computed [10] for the
predicted atomic structures of ASnlz, 16 HOIP formulas correspond-
ing to 16 organic cations A. For each formula, the mean and standard
deviation of Eg, i.e., ;""" and E, sid_are given by dark golden squares
and assoc1ated error bars Predlcted Ej™ is given in red while the
shaded area indicates the interval of predlcted EFen £ 2F; s of the
predictions using the probabilistic model developed in this work

structures exhibit a wide range of different atomic structural
motifs including not only 3D but also lower-dimensional (2D,
1D, and 0D) HOIPs [9,10,33]. This diversity is unmistakably
translated into a remarkable diversity in physical properties
[33],e.g., Eq is low (~1.5 — 2.0 eV) with 3D HOIPs while for
lower dimensions, E, becomes higher (2.5 eV) [9,10,34].
On the other hand, there is essentially no correlation between
the atomic structural motifs (and the band gap) with their
thermodynamic stability, as discussed in previous structure
prediction works [35].

Figure 1 shows that each formula is associated with not a
single value but a distribution of E, computed for a number of
atomic structures of the same formula. In other words, these
structures are indistinguishable when being observed by their
chemical formula, but they are significantly different when
atomic details are considered. This implies that estimating E,
for a chemical formula without any atomic details will suffer
from an irreducible “uncertainty” that is closely associated
with its complex energy landscape. This uncertainty is funda-
mentally rooted from the standpoint selected by the observer,
who relies only on the information encoded in the chemical
formula when making predictions. In the language of uncer-
tainty quantification, this is an aleatoric uncertainty [36,37].

Data uncertainty of this nature is very common in materials
science. The outcome of the same experimental measurement
generally fluctuates each time it is repeated [38,39]. Computa-
tional methods always involve some levels of approximations
[31,32], leading to certain implicit errors [40]. Such uncer-
tainty cannot be reduced or eliminated by having more data,
making it different from epistemic uncertainty whose nature
is the sparsity of the data [36,37] and can somehow be cap-
tured by methods like Gaussian process regression (GPR)
[41,42]. Traditionally, when having such data uncertainty, a
representative, i.e., the mean, median, minimum value, or

maximum value of the available data, was used [43,44]. Over-
all, the management of materials science data uncertainty
remains in an early stage and should be promoted.

We take this opportunity to address a general problem of
how to quantify the prediction uncertainty multiple outcomes
of identical observations exist. For demonstration purpose, we
will focus on the HOIPs Eg data set [10], one of many proper-
ties needed for a solar absorber, e.g., efficiency, stability, and
toxicity. In particular we designed some protocols for learning
some key parameters, i.e., the mean value Eé“e““ and/or the
standard deviation ES' or the probability distribution of E,
directly [45]. We found that probabilistic deep learning (PDL)
[46—48], which treats each data entry as a distribution rather
than a single number, is a robust and suitable approach. We
then used the developed probabilistic model to screen over
1284 new possible ABX3 formulas, identifying those with
suitable Eg, the conclusion that was validated against new
computations. This work concludes with a discussion in
Sec. V, extensively elaborating the possible applications of
PDL. Given that the inevitable uncertainty in materials data
should be addressed properly [36,37,40], PDL is powerful
and generic and can straightforwardly be used for numerous
problems of this nature in materials informatics [43,44].

II. METHODOLOGIES

A. Machine learning
1. Data and “uncertainty”

The targeted data set contains 1346 crystal structures of
192 formulas assembled from 16 organic cations A, 3 group-
14 elements (Ge, Sn, and Pb) for cation B, and 4 halides (F,
Cl, Br, and I) for anion X [10]. These organic cations (10
ammonium, 2 amidinium, and 4 others), are made up from
C, N, H, and O. For each formula, low-energy structures
were predicted using the minima-hopping method [49,50],
and then several properties were computed using DFT (details
on the minima-hopping structure prediction method are given
in Sec. I B). Because the structure search was completely
unconstrained without any assumptions, this data set is ex-
tremely diverse in terms of geometry, containing numerous
3D, 2D, 1D, and 0D structural motifs [10]. Figure 1 shows
the band-gap E, computed for 122 atomic structures of 16
formulas ASnl;. For each of them, multiple low-energy struc-
tures lead to a distribution of E,, which somehow connects to
its actual energy landscape and how thorough it was explored
during the structure searches.

A screening over numerous formulas of ABX3 cannot rely
on the atomic details obtained from extremely heavy calcu-
lations like DFT-based structure predictions. Therefore, one
needs to evaluate the properties of interest (which is E, in our
case) solely from its formula given the identity of A, B, and X.
At this level of information, the targeted data set has only 192
distinct entries, each of which contains a chemical formula
and a distribution of E, whose mean is E;"" and standard
deviation is E3. For our learning purposes (see Sec. 11 A 3),
we compiled three data sets, each of which encodes a level
of details of the distribution. The first one, denoted by Si,
contains 192 values of ng“ea“ while the second one, i.e., S,,
contains 192 pairs of ng“e‘"‘" and E;‘d. The last data set, named
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TABLE 1. Three data sets (S;, S, and S3) and five models (M, M,, M3, My, and M) developed in this work. For NN-based models,
the number of hidden layers, the number of nodes per layer, and the choice of activation function are given.

Data set Content Size Model Algorithm Library Parameters

S Egen 192 M,y GPR SKL N/A

S Emealn 192 M, NN TF 1 layer, 5 nodes, selu
S} E; mean & E; std 192 M; NN TF 2 layers, 5 nodes, selu
S E; hean & E; S 384 My NN TF 2 layers, 4 nodes, tanh
Ss E, 1346 M PDL TFP 2 layers, 5 nodes, elu

&3, contains 192 distributions of E,. From a technical point of
view, the whole original data set of 1346 entries was actually
used on behalf of S3 and the probabilistic learning scheme will
recognize the underlying distributions. A summary of these
data sets is given in Table I. All data sets, i.e., S;, S (this data
set has in fact two versions, &3 used for M3 and 83 used for
My), and S3, are available at [51] and in the Supplemental
Material.

2. Features

Our data were featurized using Matminer [52], a pack-
age that offers a rich variety of material features at multiple
levels of details, e.g., compositions and atomic structures.
Because our screening will be performed over a set of new
HOIP formulas, only the features that can be obtained from
a chemical formula were selected. One deficiency of this
selection is that the chemical composition used by Matminer
is not enough to distinguish some organic cations. For ex-
amples, both ethylammonium and dimethylammonium are
represented by C,NHg in Matminer, although their chemical
structures are different, i.e., CH3-CH,-NHj3 for the former and
CH;-NH,-CHj for the latter. In other words, the concept of
“composition” in Matminer is not entirely identical with the
concept of “formula” needed for this work in which A, B,
and X must be unambiguously identified. Therefore we aug-
mented the Matminer composition features by a set of atomic
motif-based features introduced in Ref. [53] that can capture
such delicate differences. Within the development phase of
these models, optimal sets of features were determined using
the recursive feature elimination algorithm as implemented in
the Scikit-Learn (SKL) library [54].

3. Learning algorithms and technical details

A major task of this work is to learn a data set with in-
evitable (intrinsic) uncertainty. Toward this goal, a hierarchy
of three data sets encoding three levels of information were
prepared. Learning small data sets with a single target like S
is typical in materials informatics, and regression methods like
GPR [41,42] are highly preferable [53,55,56] because they
are explicitly similarity based and intuitive. Herein we used
GPR as implemented in Scikit-Learn and a simple feedfor-
ward fully connected neural network (NN) as implemented
in TensorFlow (TF) and Keras to develop two baseline mod-
els, namely, M, and M, on &). Data set S, is also small,
but because both Eé“ea“ and E;‘d should be learned, NN is
more suitable [57]. This data set has two versions, S§ with
192 entries and 85’ with 384 entries. In &2, ng“ea“ and Eg‘d

are separate while in 8'23 they are stacked together by us-

ing an additional vector whose value is either (1,0) or (0,1).
Two multitask learning models, namely, M3 and My, were
developed by learning S5 and S?, respectively. For the afore-
mentioned four models, root-mean-square error (§™*¢) was
used as the loss function.

The uncertainty of E, distribution buried in S3 can be
approached directly using a PDL approach as supported by
the TensorFlow Probability (TFP) library [47,48]. A typical
probabilistic NN contains a probabilistic layer stacked with
the last hidden layer of a regular NN, treating the output as a
probability distribution but not a single value. Because §™%¢
does not weight different points in a distribution properly, the
negative log-likelihood [48] was used as the loss function in
the development of Ms. This model does not require E;"*"

and E; s: instead, it accepts the whole data set of 1346 ﬁnger—
prlnted data entries, although there are only 192 of them that
are distinct in terms of (composition) features. An illustration
of a probabilistic NN model is given in Fig. 2, while technical
details of this approach can be found in Refs. [47,48].
Among five models, M; and M, do not capture the data
uncertainty. At the next level, M3 and M, were designed to
simultaneously learn both the mean and the standard deviation
of the data. Finally, M5 targets at the possible distribution
buried in the data and thus does not need these parameters
to be determined beforehand. This is an important advan-
tage because in practice, categorizing data and computing the
distribution parameters are often challenging themselves. For

(a) Hidden Iayers Output layer Target
I_ ____I
- !
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(b) Hidden layers Probabilistic layer
—>
—>
—>

FIG. 2. (a) A feedforward fully connected NN with 1 output (as
used for M, and M, with some different parameters) and (b) a
probabilistic NN (as used for M5 with some different parameters).
The NN used for M3 is just a 2-output version of (a).
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FIG. 3. Training/test predictions of (a) M, (b) M, (c) M;,
and (d) My, four models developed by learning S; and S,. Learn-
ing curves of these models can be found in the Supplemental
Material [58].

all five models, which are summarized in Table I, overfitting
and underfitting were meticulously evaluated and prevented
by fivefold cross-validation and searching for optimal model
parameters. Within this procedure, the test data are completely
unseen to the model, which was developed by repeatedly
training and validating trial models in an inner loop of five
cross-validation folds, and the best one was then selected.

In this work, the development of M5 aims specifically at
aleatoric uncertainty, an intrinsic attribute of the computed
band-gap data set of HOIPs observed from the chemical
formula standpoint. Different from aleatoric uncertainty, epis-
temic uncertainty has its roots in the sparsity of the data in
a given domain and thus having more data in this domain
could reduce the uncertainty. A classic method to handle this
kind of uncertainty is GPR, a Bayesian learning technique
[41,42]. In fact, the error bars shown in Fig. 3(a) are a measure
of the epistemic uncertainty quantified by M, a GPR-based
model. TFP does support GPR by using a variational Gaus-
sian process layer [47,48]; thus both aleatoric and epistemic
uncertainties can be handled with this package, and this could
be an interesting future topic within the domain of materials
informatics. A Jupyter Notebook detailing the development of
five ML models is available in the Supplemental Material [58]
and as an example (ex4_hoips) of matsML, a ML toolkit for
materials science, available at [59].

B. First-principles computations

The main goal of our DFT calculations is to validate
E, predicted for new HOIP formulas identified during the
screening process. Therefore the numerical scheme used for
developing the original data set [10] was replicated. In partic-

ular, the Vienna Ab initio Simulation Package (VASP) [60,61]
was used, employing a basis set of plane waves with kinetic
energy up to 400 eV to represent the Kohn-Sham orbitals. The
van der Waals (nonbonding) dispersion interactions between
the organic cations A and the inorganic BX3 frameworks were
estimated using the nonlocal density functional vdW-DF2 [62]
while refitted Perdew-Wang 86, the generalized gradient ap-
proximation functional associated with vdW-DF2, was used to
estimate the exchange-correlation (XC) energy. The Brillouin
zone was sampled by a I'-centered equispaced Monkhorst-
Pack k-point mesh with the spacing of 0.2 A~!. Convergence
in optimizing the structures was assumed when the atomistic
forces become less than 0.01 eV/A. The reported electronic
band gap was computed on top of the structures optimized
using the Heyd-Scuseria-Ernzerhof XC functional [63]. The
spin-orbit coupling was not included in our calculations be-
cause it was also not included in the preparation of the original
data set [10].

When new HOIP formulas were identified, their low-
energy atomic structures were predicted using the minima-
hopping method [49,50,64], the same approach used to create
the original data set [10]. For each formula, its energy
landscape was constructed and explored at the DFT level
of computations. Because MHM allows for unconstrained
searches with a strong bias toward the low-energy domains,
it is powerful in identifying low-energy structures of solids,
specifically those with exotic/unusual structural motifs at the
atomic level [9,10,35,65,66]. Methods of this kind are com-
putationally expensive and should be used for a limited set of
candidates selected from large-scale screening over numerous
formulas.

III. MACHINE-LEARNING MODELS

As shown in Fig. 3 and the learning curves given in the
Supplemental Material [58], M, and M, perform very well
in learning and predicting E;"". The §"™° of the training
and test data is ~0.2 eV for M; and ~0.1 eV for M,,
significantly lower than the range of ~0.2 — 0.5 eV of any
previously reported works [16,67] when features at the ele-
mental and composition levels were used. The error bars in
Fig. 3(a) were predicted by GPR as a measure of the epis-
temic uncertainty, which should be smaller when more data
are available; within this approach, data are assumed to be
the groundtrust with no uncertainty. Regarding learning algo-
rithm, we found that NN, when being meticulously calibrated,
can work well with small data sets and steadily outperforms
GPR. Two multitask models, i.e., M3 and My, also yield
similar small 6™*¢, ranging from ~0.1 to—0.2 eV. This ob-
servation shows that if we can assume a given distribution
of the target, its parameters can be learned and the obtained
predictive models can be used for new cases. For all four mod-
els, the R? score of all of the training and test data sets is no
less than 95%, indicating that the material features generated
by MATMINER capture very well the underlying physics and
chemistry of the materials while the learning procedure could
efficiently unravel the targeted formula—property relationship.

The predictions performed by the probabilistic model M,
which was trained on the entire data set Sz, are shown in
Fig. 4. Compared with the approach of learning £;"**" and E;td
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FIG. 4. Computed band-gap E, (dark-blue circles) in data set

S;3, which includes 1346 entries arranged in 192 chemical formulas

and sorted in the ascending order of E;**" (dark-golden squares).

Predictions of EM* and the interval EM" 4+ 2E§td using model M

g
are given by the red curve and the shaded area, respectively.

(either simultaneously or separately in the previous models),
the probabilistic learning approach with TFP does not require
a cumbersome preprocessing step in which the original data
are categorized into different chemical formulas and then
EJ*" and EgStd are computed. This advantage becomes im-
portant in numerous practical cases of continuous categories
because some kinds of clustering methods will then be needed
for the preprocessing. More importantly, the predicted dis-
tribution of E, shown in Fig. 4 does capture very well both
the mean and the variation of the data. For E;*", the cross-
validation §™¢ = (.14 eV while for E;‘d, this error metric

is 0.09 eV. Within the confidence interval of Eg“"a“ + 2E§‘d,
more than 95% of the original data set was indeed captured.
Figure 4 also reveals that for Ej**" < 4 eV, the original data
distribution is slightly asymmetric, i.e., the data points be-
low E;**" are distributed further down compared with those

residing above E;"“*". Therefore, the upper bound of the in-
terval of Eé“ea“ + 2Egs‘d, which is symmetric, seems to extend
further up. On the other hand, the distributions with Eg‘ea“ >
4 eV are also asymmetric, but in the reverse direction. There-
fore, the lower bound of E™ea" + 2E§td seems to overestimate
the variation of the data below E;"“". This observation indi-
cates that while M5 captures pretty well the data distribution
(or the uncertainty), M3 and M, will not be at the level
of M5 because the first two moments, Eénea“ and Egtd, are
not enough to represent arbitrary (asymmetric) distributions.
Overall, we believe that probabilistic learning is robust and
versatile and specifically, model M5 is reliable and suitable
for the HOIPs space exploration discussed in the subsequent
part of this work.

IV. MACHINE-LEARNING-ASSISTED EXPLORATION
OF HOIPs

A. Screening space

For the purpose of uncovering new HOIPs, a new data set
of 107 monovalent, positively charged (ammonium) organic
cations were obtained from small molecules synthesized and
reported in the literature. We first collected the molecules that
(1) have no more than 13 atoms; (2) contain at least C, H,
and N, and possibly O, as covered by 16 organic cations in
the learning data set [10]; and (3) have at least one N atom
with a lone pair of electrons. Then, a hydrogen atom was
added to create a covalent bond with this N atom, making
each molecule an ammonium cation. For example, the famous
methylammonium and the trimethylammonium [10] cations
can be obtained by using this procedure on methylamine,
i.e., CH3NH,, and trimethylamine, i.e., N(CHj3 )3, molecules,
respectively. In fact, this procedure mimics the reactions be-
tween these amines and some acids, e.g., hydrochloric acid,
to make respective ammonium salts [68]. Combining these
new organic cations with the three group-14 elements and
the four halides, a total of 1284 new chemical formulas of
HOIPs were obtained to define the screening space. Although
we limited ourselves in the cations that are closely related

(@ (b) 5[
50} 6l
40t 2 [

(2] o

@ o 4t

0o

S 30} 0

o + 3t
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o
20+ lE“oxz,
10f 1F
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0 250 500 750 1000 1250

Chemical formula index

FIG. 5. (a) Predicted E;**" distribution and (b) sorted predictions of E;"*" (red curve) and E;‘d (light green error bars). Results were
obtained by using the probabilistic model M5 on the screening space of 1284 HOIP formulas.
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TABLE II. Seven HOIP formulas with E™*" predicted to be in
the range of 1.25 — 1.50eV and selected for validation. For each,
details on cation A, cation B, anion X, the predicted £, (eV) and
E; sd (eV), and a list of E, (eV) computed for the predrcted atomic
structures are provided. The index given in this table was also used
for Fig. 6. In the Cation “A” column, C, H, N, and O atoms are shown
in dark brown, pink, cyan, and red, respectively.

Id A B X Ep g Computed Eg
A
1 T4 Sn Br 147 0.38 1.83, 1.98,2.00, 2.05
A 1.46, 1.75, 1.78, 2.01
[+4 » bl ) bl )
2 {4 Sn Br 147 0.36 2.03, 2.15
3 3{4 Sn I 150 0.83 1.34, 1.50, 2.10
4 0.62, 0.80, 1.22, 1.40,

4 y® Sn D146 083 g 65 911, 2.29

3 0.69, 0.99, 1.16, 1.36
P~ \ . bl . 9’ . 9 . b
ST S L LA6 065 e 6o, 177

6 @2 Pb I 129 0.37 1.63,1.89, 1.95, 2.18

A 1.54, 1.66, 1.74, 1.79
7 [ P ) ) ) 9

to the data set we used to develop the ML models, our data
set of 107 small ammonium cations, which are available in
the Supplemental Material [58], is larger than all the existing
counterparts. Moreover, we note that the technical approach
described in this work can be used for any set of organic
cations.

B. Candidates with targeted E,

The data set of 1284 HOIP formulas was featurized using
the approach described in Sec. Il A2 and predictions were
made using the probabilistic models M5 we developed. A
summary of E;" and Eg“d, the parameters of the predicted
distribution of Eg, is shown in Fig. 5. Within the screening
space, E,"“*" ranges from ~0.5 to 6.5 eV, and E;‘d provides
a confidence interval for the predictions. While this range of
E; may correspond to various technology applications, we
focused on the ideal window of solar cell applications, i.e.,
1.25eV < Eé“ea" < 1.50eV. Within this range, 34 new HOIP
formulas were identified and are given in the Supplemental
Material [58]. Seven of them, listed in Table II, were selected
for the validation. Within this step, low-energy atomic struc-
tures were predicted by the minima-hopping method, and their
E; was computed using the numerical schemes described in
Sec. I B.

As shown in Table II and Fig. 6, the obtained results of
E, fall very well within the 95% confidence interval rendered
using the probabilistic model Ms. Among seven cases con-
sidered, M slightly underestimates E,;"“*" by about 0.3 eV
for five cases (with indicies 1, 2, 3, 6, and 7), slightly overesti-
mates E;"*" by about 0.1 eV for one case (5), and correctly

predicts Eé“ea“ for one case (6). For some cases, the Eg‘d
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4r predicted EJ'eon + 2£5t4 ]
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Chemical formula index

FIG. 6. Predicted E;™" (red line), the interval of predicted
EQen £ 2E; sd (shaded area) and the computed Eg,, (dark blue cir-
cles) of the atomlc structures predicted for seven selected candidates.
Details on these candidates, including the chemical formula index,
are given in Table II.

seems to be slightly overestimated, probably indicating that
the training data are still not large and diverse enough. This
observation indicates that while M5 model can be used for
the designated screening of HOIPs based on Pb, Sn, and Ge
for B and F, Cl, I, and Br for X, it should be progressively
improved whenever new data become available.

V. REMARKS AND OUTLOOK

The key trademark of PDL is the standpoint from which
realistic data with irreducible uncertainty are treated. As dis-
cussed in Sec. I, it is very common in materials science to have
multiple values of a given materials property while the nature
of this divergence may never be entirely clear. Without further
information, these values define an uncertainty characterized
by a distribution function of which some characteristics like
the mean value are used within traditional approaches [43,44].
PDL offers a more appropriate and complete way to treat these
kind of data, directly recognizing the distribution functions.
While a specific data set of HOIPs was used herein for a
demonstration, PDL is a generic and far-reaching approach.

Let us consider two examples for which PDL is unmistak-
ably the best approach. After the P6;/mmc phase of CeHy
was synthesized in six experimental diamond anvil cells at
2290 GPa, these chambers were compressed to nearly 200 GPa
and then decompressed back to ~90 GPa [39]. Along
these trajectories, the superconducting critical temperature 7
measured for the P63/mmc phase of CeHy behaves signifi-
cantly different, i.e., at a given pressure, there are multiple
values of measured T;. of the same superconducting phase of
CeHpy [39]. Clearly there should be some delicate dissimilari-
ties among these systems that warrant further studies, within
which they may or may not be identified. However, given the
values of 7; measured for the P63 /mmc phase of CeHy at each
pressure, the best solution is to accept and process all of them.
Simply put, PDL is an ideal tool for the (currently active)
problem of predicting the 7; directly from material chemical
formulas [69-71].
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As another example, a data set of 1545 entries provides
some mechanical properties of 630 unique alloy compositions
[72]. For each entry, information on the microstructure and
processing method may or may not be available. A closer
look reveals that multiple entries can be found for the same
composition, microstructure, and processing method. For in-
stance, there are 31 entries of which the composition is
Co;CrFe;Mn;Ni,, the microstructure is FCC, and the pro-
cessing method is WROUGHT. There are six other entries of
which the composition is Al;Co;Cr;Fe;Ni;, the microstruc-
ture is BCC, and the processing method is CAST. In any case,
the mechanical properties are different across the available
entries, implying that the information we have is incomplete to
fully describe the mechanical properties of the alloys consid-
ered. While the mean value of these entries can be used, using
PDL to treat all of these data points as parts of a distribution
is clearly the most suitable approach.

VI. CONCLUSIONS

The main results of this work are the probabilistic stand-
point and approach to handling realistic materials data whose
uncertainty is inevitable. The traditional approaches are de-
terministic in nature, i.e., a representative is selected for a set
of indistinguishable observations whose outcomes may vary,
forming a reduced data set of distinguishable observations.
On the other hand, PDL accepts all available observations,

recognizing the entire outcome distribution for any set of
indistinguishable observations. We find that PDL is a robust
and complete method for directly utilizing all of the available
data and quantifying the aleatoric uncertainty.

For a demonstration, we have developed a probabilistic ML
model (Ms5s) on a data set of 1346 atomic structures of 192
HOIP formulas. This model was then used in a screening over
1284 new formulas, identifying those with targeted electronic
band-gap E,. Within this workflow, Ms must rely only on
the HOIP chemical formulas, not any atomic structures. At
this level of details, each formula corresponds to multiple
values of Eg, and this sort of irreducible data uncertainty
was properly handled within the PDL approach supported by
TFP. The predictions of M5 were validated against suitable
DFT computations and the list of HOIP formulas identified
should be subjected to further investigation on other properties
needed for specific applications.
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