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Estimating disorder and its adverse effects in semiconductor Majorana nanowires
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We use the available transport measurements in the literature to develop a dataset for the likely amount of disor-
der in semiconductor (InAs and InSb) materials which are used in fabricating the superconductor-semiconductor
nanowire samples in the experimental search for Majorana zero modes. Using the estimated disorder in direct
Majorana simulations, we conclude that the current level of disorder in semiconductor Majorana nanowires is at
least an order of magnitude higher than that necessary for the emergence of topological Majorana zero modes.
In agreement with existing results, we find that our estimated disorder leads to the occasional emergence of
trivial zero modes, which can be post-selected and then further fine-tuned by varying system parameters (e.g.,
tunnel barrier), leading to trivial zero-bias conductance peaks in tunneling spectroscopy with ∼2e2/h magnitude.
Most calculated tunnel spectra in these disordered systems, however, manifest essentially no significant features,
which is also consistent with the current experimental status, where zero-bias peaks are found only occasionally
in some samples under careful fine-tuning.
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I. INTRODUCTION

Majorana zero modes (MZMs) are neutral zero energy
defect-bound localized excitations emerging in one- and
two-dimensional condensed matter systems and having the
property that they are their own antiparticles “by definition,”
because their associated creation/annihilation operators are
the same as a result of a self-adjoint property [1,2]. These
excitations are “topological”, with an intrinsic ground state
quantum degeneracy, belonging to the (SU2)2 algebra and
obeying non-Abelian anyonic braiding statistics [3]. The topo-
logical degeneracy and the associated non-Abelian braiding
statistics enable fault-tolerant topological quantum computa-
tion by suitably braiding isolated MZMs around each other.
Obviously, owing to these remarkable properties, there is a
great deal of interest in the subject across many communities
in physics and beyond (e.g., mathematics, computer science,
engineering, materials science). As a result, MZMs have been
studied intensively over the last 20 years [3–6]. The current
theoretical work focuses on the materials aspects of realizing
MZMs in the laboratory, in particular, on the critical question
regarding the role of disorder in compromising the experimen-
tal search for MZMs.

The most extensive experimental MZM search over the
past 10 years has focused on “Majorana nanowires”—1D
semiconductor nanowires proximity coupled to supercon-
ductors in superconductor-semiconductor (SC-SM) hybrid
structures—fueled by a number of precise theoretical pre-
dictions made in 2010 [7–10] and by the “convenience” of
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the semiconductor materials platform. The theory not only
proposed a specific MZM platform (a 1D semiconductor
nanowire made of materials, such as InSb or InAs, with strong
Rashba spin-orbit coupling and a large Landé g factor in
contact with a parent SC, e.g., Al or Nb, providing proxim-
ity effect and in the presence of an applied magnetic field,
in order to create a Zeeman spin splitting in the nanowire),
but also provided a specific protocol (see, e.g., Fig. 14 in
Ref. [10]) to find experimental MZM signatures in a normal
metal-superconductor (NS) tunnel spectroscopy experiment,
where the proximitized nanowire acts as the SC. A large
number of experiments has scrupulously followed the proto-
col proposed in Fig. 14 of Ref. [10], carrying out NS tunnel
spectroscopy measurements in InSb or InAs nanowires with
Al or Nb as the parent SC, with numerous reports [11–31] by
multiple different groups claiming evidence of MZMs based
on the observation of zero-bias conductance peaks (ZBCPs)
in the tunneling experiment, as expected based on the theo-
retical predictions (see, e.g., Fig. 15 in Ref. [10]). It has been
known for a long time that MZMs manifest perfect Andreev
reflection, which leads to a tunneling ZBCP with a quan-
tized conductance of 2e2/h at zero temperature under ideal
conditions [32–35]. However, under realistic tunneling condi-
tions involving finite temperatures and finite tunnel barriers,
the precise Majorana quantization may not apply [36,37],
as was already apparent in the predicted tunnel conductance
results (see, e.g., Fig. 15 in Ref. [10]), and thus the experi-
mental observation of (nonquantized) ZBCPs was extensively
touted as “signature” or “evidence” for MZM rather uncriti-
cally. Most of the early reported ZBCPs were very small in
magnitude (� 2e2/h), but very recently large ZBCPs with
conductance ∼2e2/h have been reported, often with great
fanfare [17,23,30,38].
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We have asserted in several recent publications [39–47]
that the experimentally observed phenomenology, including
the reported ZBCPs claimed as MZM signatures, are in fact
generated by nontopological (i.e., trivial) disorder-induced
tunneling features occurring close to zero energy in SC-SM
systems in the presence of spin-orbit coupling and Zeeman
splitting (sometimes alluded to as class D systems in the liter-
ature). We call these disorder-induced trivial ZBCPs “ugly”,
to be contrasted with the predicted topological “good” ZBCPs
arising from MZMs [40]. Our work shows [46] that even the
recently reported large ZBCPs [30] could arise generically as
disorder-induced ugly peaks. Other recent works have come
to similar conclusions about the key importance of disorder in
controlling the properties of Majorana nanowires [45,47,48].
It is useful to point out in this context that the possible
relevance of disorder in interpreting Majorana nanowire ex-
periments was pointed out early in the development of the
subject [49–53], but the fact that disorder may actually be the
dominant mechanism that controls the low-energy physics and
may even produce large ZBCPs was not realized until very
recently. It is now mostly accepted that disorder is the most
important impediment to the experimental realization of topo-
logical MZMs in the laboratory. An early important success
in controlling disorder was the development of a hard zero-
field superconducting proximity gap [54], following specific
theoretical predictions [55], but finite magnetic field still tends
to produce a soft gap and disorder-induced “ugly” ZBCPs.
The most serious consequence of the recent developments is
that all observed ZBCPs in hybrid nanowires [11–30], which
have been previously claimed to be signatures and evidence
for Majorana zero modes, are now thought to be associated
with trivial Andreev bound states (ABS) arising from disorder
[39,40,45–47]. Hence, eliminating disorder in the nanowire
samples is the primary obstacle to further progress in the field.
In fact, experimental claims of Majorana observation are no
longer meaningful unless it can be decisively shown that the
relevant samples are disorder-free.

In spite of the established importance of disorder in Majo-
rana experiments, almost no direct quantitative information is
available about the actual amount of in situ disorder present in
the hybrid superconductor-semiconductor nanowire samples
used in the Majorana experiments. For example, no transport
study has reported any mobility measurement in the nanowire
devices used in the Majorana tunneling spectroscopic experi-
ments. In fact, basic parameters, such as the carrier density, or
the Fermi level in the nanowires, or how many subbands are
occupied, are unknown. Basic transport measurements report-
ing carrier mobilities are unavailable not only for the hybrid
SC-SM structures, but even for the corresponding isolated
InSb or InAs 1D nanowires going into making the hybrid
Majorana device. By contrast, a compelling body of numerical
simulations of the tunnel spectroscopic measurements in the
SC-SM nanowire devices clearly shows that a considerable
amount of disorder is present in the system, preventing the
emergence of the topological Majorana zero modes. Already
at a qualitative level the dominant role of disorder in these
hybrid devices is obvious from the following experimental
facts: (1) most devices do not manifest zero bias peaks; (2)
most observed zero bias peaks are weak and unstable; (3) no
end-to-end ZBCP correlations are ever observed; (4) there is

no evidence for a re-opening of a bulk SC gap; (5) the induced
SC proximity gap becomes soft and very small in the presence
of the applied field; (6) there is strong direct evidence for
substantial subgap ABS at finite magnetic field; (7) the pre-
dicted Majorana oscillations are never observed, even when
the length of the nanowire is rather short; (8) the ZBCPs are
often irreproducible following any thermal cycling, even in
the same sample; (9) nominally identical samples manifest
generically different tunnel spectra with no sample-to-sample
reproducibility; and (10) many generic irreproducible features
of the tunneling data are consistent with the presence of sub-
stantial disorder in a SC system, where both spin symmetry
and time reversal invariance are broken (the so-called class D
behavior).

Considering the dominant role of disorder in the Majorana
nanowires and the lack of direct quantitative information re-
garding the actual amount of in situ disorder, in this work,
we have taken an indirect route to estimate the amount of
disorder in the samples. Then, using model simulations, we
have determined how this estimated amount of disorder would
affect the topological Majorana properties, so that we can
provide guidance on how much materials development and
improvement are necessary for the eventual practical Majo-
rana realization. In view of the absence of direct quantitative
information on the disorder amount in the nanowires, we do
the next best thing and simulate transport properties of the
corresponding 2D InSb and InAs materials from the same
materials groups that produce the Majorana nanowire samples
under similar conditions and in the same growth chambers
[56–58]. It is reasonable to assume that the corresponding
2D semiconductor materials provide a stringent lower limit on
the likely amount of disorder in the SC-SM hybrid platforms
used in Majorana experiments. This is because the nanowire
samples in the SC-SM structures undergo many more pro-
cessing steps than the 2D materials and are certainly more
disordered than the 2D systems. However, the 2D systems do
provide us with a valuable estimate of the minimum possible
disorder in the nanowire Majorana platforms. Given that there
is no available experimental information on the 1D nanowire
mobility, our procedure for estimating the effective disorder
by fitting our transport theory to the measured 2D mobility
in the same materials grown in the same laboratories under
similar circumstances would have to do at this point, until
direct information becomes available for the disorder in the
1D nanowires.

We emphasize that being able to properly characterize and,
eventually, reduce the effects of disorder in superconductor-
semiconductor hybrid structures and, more generally, in solid
state-based quantum nanostructures is a requirement of cru-
cial importance for the development of Majorana qubits and,
in general, of solid state-based quantum technologies. Satis-
fying this requirement will involve systematic and sustained
efforts in materials growth, device engineering and exper-
iment, and theory. The characterization component of this
effort includes three distinct but interrelated critical tasks: (i)
identify and characterize the physical sources of disorder. This
implies identifying the type of disorder that is relevant in a
given structure (e.g., charge impurities, point defects, atomic
vacancies, surface roughness, patterning imperfections, etc.)
and determining the relevant disorder parameters (e.g.,
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impurity concentration, spatial distribution, etc.). (ii) Given
a specific (physical) source of disorder, determine the cor-
responding effective disorder potential. This involves taking
into account screening effects associated with the electrostatic
environment (e.g., screening by the parent superconductor and
the metallic gates, as well as the free charge in the semi-
conductor wire) and determining the effect of the screened
potential on the specific modes that control the low-energy
physics (e.g., determining the transverse profile of the topmost
occupied subband in a Majorana wire and calculating the
corresponding matrix elements of the screened potential). (iii)
Given a specific effective disorder potential, characterize the
low-energy properties of the system within the correspond-
ing effective model. This involves calculating the low-energy
BdG spectrum and the corresponding eigenstates, as well
as relevant measurable quantities (e.g., the charge tunnel
conductance) that might contain information regarding the
low-energy modes and the underlying disorder.

Task (i) involves a massive experimental effort, which is
yet to be accomplished. It is, in fact, surprising how little
experimental information is available about the quality and
disorder content of the nanowires used in the hybrid SC-SM
structures for Majorana experiments. In the absence of de-
tailed experimental data, we provide here a contribution to
accomplishing this task using an indirect route to estimating
the (physical) disorder in Majorana wires based on avail-
able 2D transport data in similar semiconductor systems (see
Sec. II). Task (ii) was addressed in Ref. [47] for charge impuri-
ties randomly distributed within the semiconductor nanowire,
assuming a low/intermediate impurity density [47]. Here, in
Sec. III, we use the methodology of Ref. [47] together with
the estimates of physical disorder in Sec. II to evaluate the
expected strength of the effective potential consistent with
experimentally available samples. In addition, we address task
(ii) in Sec. IV, in the context of InAs nanowires with surface
charge impurities. This evaluation of the effective disorder po-
tential is based on an estimate of physical disorder consistent
with, but independent of the results in Sec. II. This calculation
also addresses the low/intermediate impurity density situa-
tions discussed in Ref. [47]. Finally, task (iii) was addressed
in numerous works, but starting with ad-hoc, essentially ar-
bitrary model effective disorder potentials. This has clearly
established that disorder is highly detrimental for Majorana
physics if the (effective) disorder potential is strong-enough,
yet determining whether or not the potential characterizing
experimentally available structures is “strong-enough” (while
also being realistic enough) remained an outstanding problem
in the absence of quantitative results associated with tasks
(i) and (ii). Here, we accomplish task (iii) based on explicit
quantitative estimates of the effective disorder potential con-
sistent with the available experimental data. In Sec. III we
perform model simulations of the differential conductance
using an effective model potential determined based on the
estimates of physical disorder in Sec. II and the realistic re-
sults of Ref. [47], while in Sec. IV, we study the low-energy
physics of a hybrid structure in the presence of surface charge
impurities using an effective disorder potential calculated
self-consistently within the same section. Both calculations
provide conclusive evidence that the level of disorder likely
to be present in experimentally available superconductor-

semiconductor structures is inconsistent with the presence of
topological superconductivity and the emergence of MZMs.

The remainder of this paper is organized as follows. In
Sec. II, we present our 2D transport calculations, comparing
them with the 2D transport measurements on semiconductor
nanowire materials (i.e., InSb and InAs) available in the lit-
erature. We obtain a rough estimate of the relevant impurity
density (i.e., effective disorder) to be used in the Majorana
simulations. To keep the number of parameters to a minimum
we fit the experimental 2D mobility data to our transport
theory using one effective charge impurity density, which
is then used in the Majorana simulations. In Sec. III, we
first use the estimated disorder extracted in Sec. II and the
self-consistent results of Ref. [47] to determine the effective
disorder potential corresponding to a 1D minimal model of
the wire. Then, using this effective potential, we perform a
model Majorana simulation to obtain the tunneling spectra
corresponding to the SC-SM hybrid structures in the presence
of (strong) disorder. In Sec. IV A, we carry out a semi-realistic
self-consistent simulation of the nanowire in the presence
of realistic surface disorder, consistent with that estimated
in Sec. II, calculating the effective disorder potential and
investigating its impact on the low-energy physics. We con-
clude in Sec. V by providing a critical discussion of the
prospects for the realization of topological Majorana zero
modes in semiconductor-superconductor nanowires, based on
our disorder estimates, and emphasizing the necessary mate-
rials improvement, which is essential for future progress in
the field. A set of appendices provides the technical details
for the transport theory, the minimal model Majorana theory,
and the self-consistent hybrid wire theory, while the main text
focuses on the results of the calculations and their physical
implications for the practical laboratory realization of the
topological Majorana zero modes with non-Abelian braiding
properties. Some additional results that complement the main
results are also presented in the appendices.

II. ESTIMATING DISORDER BASED ON 2D TRANSPORT
PROPERTIES

In this section, we develop a minimal transport theory in-
volving scattering by random quenched impurities as the only
resistive carrier scattering mechanism for 2D carriers con-
fined in semiconductor (InAs and InSb) layers and compare
our results with the available experimental information on
2D systems, which are structurally close to the 1D nanowire
samples used in the fabrication of SC-SM Majorana systems.
Since the large disorder scenario is detrimental to topological
superconductivity, our goal is to obtain the most optimistic
disorder estimates that are also realistic at some level of
practicality. Therefore we discard any part of the carrier
density-dependent 2D mobility data where the mobility is
decreasing with increasing carrier density, which indicates the
activation of additional scattering mechanisms (e.g., strong
interface roughness scattering, intersubband scattering as the
Fermi level is pushed into the second 2D subband, etc.) caus-
ing the effective disorder (mobility) to increase (decrease).
More specifically, our goal is to model the peak 2D sample
mobility as accurately and faithfully as possible using very
few (in fact, just one) disorder parameters, so that the trans-
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port theory and the Majorana simulations do not degenerate
into hopeless detailed device simulations, where the physics
disappears into a bunch of unknown (and often, unknowable)
fit parameters. Such a multiple parameter fit approach would
be completely unhelpful in the current situation, where little
is known about the details of the SC-SM hybrid systems,
except that disorder is playing a key role in suppressing the
topological MZMs and producing trivial ZBCP. We are there-
fore aiming, as much as possible, at finding a single impurity
parameter that describes the disorder in the system accurately
enough. We note that the transport model can be easily gen-
eralized to include many disorder parameters representing
multiple resistive scattering mechanisms, but at this point in
the development of the subject such a detailed modeling is an
overkill and is completely unnecessary. As we show below,
a single disorder parameter, namely, a bulk charged impurity
density, is capable of giving reasonable fits to the available
(and highly limited) transport data. We use the published 2D
mobility data in the literature from the materials groups at
Eindhoven (InSb), Purdue (InAs), and Copenhagen (InAs),
which are also the growers that produce the 1D nanowire
samples being used in the Majorana SC-SM hybrid systems.
Our conjecture that the estimated disorder in the 2D samples
grown in these laboratories is a likely lower bound on the
realistic disorder in the 1D nanowires used in the SC-SM
hybrid structures for Majorana search is consistent with how
the growers themselves see the materials situation at this point
in the development of the subject.

We use the Boltzmann theory at T = 0 to obtain the
2D mobility as a function of carrier density following the
well-established (and highly successful) procedure for the
calculation of the disorder-limited 2D transport, which has
been extensively used in the literature for the calculation of
2D transport in Si- and GaAs-based 2D systems [59,60]. For
completeness, we provide the details of the transport theory in
Appendix A.

To model the mobility as a function of carrier density, we
start by first assuming that there are both short-range and
long-range impurity scattering centers randomly distributed
in the 2D layer, as well as at interfaces and inside the sur-
rounding layers (when such sample details are available).
We also include impurities located at the interface with the
dielectric, since they often act as a strong scattering source for
the shallow 2D materials used for producing 1D nanowires.
However, such a detailed model necessitates having many free
parameters, which is pointless in the absence of additional
material information, as discussed above. Our goal is not
to attempt a precise quantitative fit to the sample-dependent
experimental 2D mobility, but to obtain a rough estimate of
the effective disorder level, which we can then use for our
nanowire Majorana simulations. It is, therefore, a huge relief
that a reasonable quantitative theoretical transport fit to the
measured 2D mobility can be obtained using just a single
disorder parameter, namely, the 3D charged impurity density
in the 2D layer, (or an equivalent 2D or 1D impurity density).
As our results presented below show, there is one caveat to this
reasonable fitting with one disorder parameter, which is that
the one-parameter fitting works well only in the intermediate
carrier density regime where the mobility is close to its peak
value. This is, of course, our regime of interest. We focus

on the realistic minimal disorder scenario, since very large
disorder would completely suppress topological superconduc-
tivity and MZMs anyway. Once the sample quality improves
substantially in future devices, it may be necessary to do
more quantitatively precise simulations for specific devices
in specific laboratory setups using a multiparameter transport
simulation focused on specific samples.

We start with the measured InSb mobility as presented in
Fig. 6 of Ref. [56] We show in Figs. 1–4 different theoretical
fits to the experimental InSb mobility as a function of car-
rier density, taking all the sample parameters from Ref. [56]
and other parameters as appropriate for 2D InSb. The val-
ues of these parameters are provided in the figures and the
corresponding captions. We use transport models involving
up to five different scattering mechanisms, which may be
operational at various levels. More specifically, we consider
both long-range charged impurities and short-range defects,
impurities both in the 2D layer itself and in the materials
surrounding it, as well as impurities localized at interfaces.
It turns out that the important intermediate carrier density
regime, where the mobility is increasing toward the peak
value, can be well-described by our theory using a single
parameter, the 3D density of effective long-range impurities
randomly distributed within the (quasi) 2D layer. This prop-
erty is revealed by the fit in Figs. 1(a) and confirmed by the
comparison with other fits shown in Figs. 1–4 involving dif-
ferent scattering scenarios. Note that this satisfies our need for
characterizing the physical disorder using a single (effective)
parameter, in this case, the 3D density of long-range (charge)
impurities.

We note that, generically, the mobility decreases at high
carrier density (both for InSb and InAs 2D samples), and
this is known to arise from intersubband scattering processes,
which become operational as the 2D Fermi level pushes
into higher subbands with increasing density. This can be
simulated within our charged impurity scattering model by
generalizing the theory to a multisubband situation. However,
this would not provide any new disorder parameter; basi-
cally, new scattering channels are being triggered, as the same
charged impurities can now cause scattering between differ-
ent subbands, suppressing the mobility. Therefore we do not
include this higher density regime in our transport modeling.

At very low density, when the carrier density is compa-
rable to the effective charged impurity density, the system
becomes insulating due to a percolation transition driven by
the failure of screening leading to an inhomogeneous density
landscape beyond the validity of the Boltzmann transport
theory, as is well-established for 2D semiconductor systems
[61–76]. Our Boltzmann transport theory is obviously not
applicable in this low density percolative insulating regime
where the conductivity vanishes below a sample-dependent
critical or threshold density. In Appendix B, we provide the
details of our low-density analysis of the 2D mobility data,
extracting the percolation density and showing that it corre-
lates approximately with the peak mobility value, since the
peak mobility and the percolation critical density are both
determined by the effective charged impurity density in the
system. This percolation fit provides an additional justification
for our single parameter disorder analysis of the 2D mobility
data, reinforcing the basic idea that unintentional background
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FIG. 1. Experimental mobility of an InSb quantum well from the group of Bakkers [56] (solid line) plotted as a function of carrier density
and theoretical fits using the Boltzmann transport theory. (a) The best fit to the increasing part of the mobility assuming only charge impurities
randomly distributed in the InSb quantum well (dashed line, referred to as 3D long-range impurity). (b) The best fit to the flat part assuming
short-range scattering by impurities randomly distributed either in the 2D layer itself (dotted line, referred to as 2D short-range impurity) or
throughout the whole sample (dashed line, referred to as 3D short-range impurity). Note that the 2D short-range impurity model yields a much
better fit than the 3D short-range impurity model. (c) The best fit over the entire range of mobility data using two fitting parameters (one for
long-range scattering and the other for short-range scattering). Here Vshort is the short-range impurity disorder potential and nlong(short) is the
long-range (short-range) impurity density. We use the background dielectric constant κInSb = 18, the InSb quantum well width a = 80nm, and
the effective mass m = 0.013me where me is the bare electron mass. The experimental data are smoothed for visual clarity. The actual fit is
performed to the noisy original data.

doping by random charged impurities is the main disorder
mechanism in the Majorana nanowires. We note that short-
range disorder would not lead to such a percolative transition
since nonlinear screening and the failure of screening leading
to density inhomogeneity are intrinsic to long-range charged
Coulomb disorder potential. We reiterate that the Boltzmann
theory applies above the percolation transition, hence our
theoretical fit is used to extract the effective impurity density
in the intermediate regime where the carrier density is neither
too low nor too high, i.e., the density regime leading up to the
peak mobility. In this regime, the mobility should be approx-
imately linear in carrier density because of the dominant role
of charged impurity scattering [77], as we find theoretically in
agreement with the experimental data.

We emphasize that the basic qualitative features of a mo-
bility peak (at high density) as a function of increasing carrier
density and of a percolative insulating transition (at low carrier
density) as a function of decreasing density are generic in all
the 2D systems analyzed here (i.e., systems from all three

laboratories and covering both InSb and InAs). Our Boltz-
mann transport theory applies only in the intermediate density
and peak mobility region between these high- and low-density
regimes. Fortunately, however, this is precisely the regime of
interest for estimating the disorder content through theoretical
transport calculations. We use this same intermediate density
data fitting strategy to analyze all three data sets (from Eind-
hoven, Copenhagen, Purdue).

Figures 1(a) and 1(b) show that our single-parameter
theoretical fits to the increasing and flat parts of the mea-
sured mobility are in good agreement with the experimental
data. For simplicity, we refer to impurities distributed two-
dimensionally (three-dimensionally) as 2D (3D) impurities.
The best fit to the entire range of the measured mobility
presented in Fig. 1(c) is manifestly worse than the fit to the
increasing part presented in Fig. 1(a), since different scat-
tering mechanisms are involved at different density regimes,
as discussed above. In Fig. 2, we show our results based
on two fitting parameters n3D

long and n2D
shortV

2
short. By compar-

FIG. 2. Same as Fig. 1, but using a two-parameter fitting procedure, with n3D
short and n2D

shortV
2

short being the effective disorder parameters.
(a) Best fit to the linearly increasing part of the measured mobility. The dashed line is the best fit without any constraint on the fitting
parameters, while the dotted line is obtained by imposing the constraint n3D

long < 1019 cm−3. The constraint reduces the quality of the fit, which
shows that n3D

long needs to be larger than 1019 cm−3 for a reliable fit. (b) The best fit to the flat part of the data. (c) The best fit to the decreasing
part of the mobility at high density (n > 3 × 1012 cm−2).
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FIG. 3. Same as Fig. 1, but focusing on the increasing part of the measured mobility and assuming scattering by (a) 2D remote charged
impurities at the interfaces of the quantum well and short-range impurities, (b) 3D charged and 2D short-range impurities, and (c) all of the
mobility-limiting impurities discussed throughout Figs. 1–3.

ing Figs. 2(a) and 2(b) with Figs. 1(a) and 1(b) one notices
that the quality of the two-parameter fit is almost the same
as that of the one-parameter fit, giving similar estimated
background impurity densities. This indicates that our one-
fitting-parameter model is essentially good enough to capture
the transport physics of the 2D InSb sample. Also note that
our transport model does not fit the decreasing mobility
[see Figs. 1(c) and 2(c)], because we do not include scat-
tering mechanisms responsible for the decreasing mobility
behavior in the high-density regime (such as intersubband
scattering).

In Figs. 3 and 4, we consider an additional realistic scatter-
ing scenario where the mobility is limited by the remote 2D
charged impurities at the quantum well interface. In the inter-
mediate density regime where the mobility increases linearly,
which is our main focus, the mobilities limited by 2D remote
charged impurities [Fig. 3(a)] and 3D long-range impurities
[Fig. 3(b)] have almost the same carrier density dependence,
μ ∼ n3/2, since the system is in the strongly screened limit
due to a small effective mass (i.e., qTF > kF) [77]. Thus
the experimental mobility data are fit almost equally well
within both scenarios. Note, however, that the estimated 2D
interface charged impurity density obtained in Fig. 3(a) is
unrealistically large (∼5 × 1014cm−2), implying that remote
2D charged impurities cannot be the only scattering source
in the sample. In Fig. 3(c), we present the results using our
most realistic transport model that includes all the scattering
mechanisms discussed above, with a constraint that n2D

long lies
within a reasonable range (<1014 cm−2). Note that even using
this transport model with five-fitting parameters, our results

FIG. 4. Same as Figs. 3(a) and 3(b), except that here we fit the
flat part of the measured mobility.

show that n3D
long ∼ 1019 cm−3, which is consistent with our one

fitting parameter result.
For the InSb sample from the Bakkers group in Eind-

hoven (Figs. 1–4 in this paper), our extensive theoretical
fits provide an effective 3D background charged impurity
density of 1018–1019 per cm3, with the larger number for
the impurity density definitely being a better fit parame-
ter. This is consistent with the measured peak mobility of
∼20 000 cm2 V−1 s−1, which corresponds to a rather large
level broadening, � = h̄

2τ
∼ 2 meV, where τ is the scattering

time appearing in the mobility, τ = mμ/e, with m being the
carrier effective mass. This is a rather large broadening for
MZM studies, given that the topological SC gap is likely
to be <0.1 meV. In addition, our extracted impurity density
of >1018 per cm3 is more than three orders of magnitude
larger than the limit of ∼1015 per cm3 recently provided in
Ref. [47] as necessary for the manifestation of topological
SC in SC-SM hybrid structures. We note that our estimated
disorder levels are consistent with the rough estimates made
by the experimentalists themselves based on their knowledge
of the compensation levels in the InSb materials [78].

Next, we analyze the available transport data for 2D InAs
samples to obtain rough estimates of the effective disorder
in InAs-based SC-SM platforms. In contrast to the InSb
mobility data, where only one data set is available from
the Eindhoven Bakkers group (i.e., the data analyzed in
Figs. 1–4), for 2D InAs structures, experimental mobility data
are available from two different Majorana materials growers
(Copenhagen and Purdue). We discuss each data set separately
below.

We start with the recent InAs transport data from the
Copenhagen group of Krogstrup as presented in Ref. [58]. In
Fig. 5, we show our theoretical fit to this experiment following
the same procedure as that described above for InSb, except
for using system parameters corresponding to the InAs sample
measured in Ref. [58]. As shown in Fig. 5, the best fit produces
a background 3D charged impurity density of ∼5 × 1017 to
4 × 1018 per cm3, depending on whether the fit emphasizes
the peak mobility itself or the intermediate density regime
leading to the peak mobility. We note that the fit in Fig. 5
involves some short-range disorder. If we assume an effective
disorder arising entirely from random Coulomb disorder, the
likely background charged impurity density would be slightly
higher, making it comparable to that in the InSb system
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FIG. 5. Best fit (dashed line) to the experimental InAs mobility
data (solid) reported in the recent paper by the Krogstrup group [58].
The carrier density dependence of the mobility is assumed to be the
same as that of the Bakkers’s InSb mobility, except that the peak
mobility is set to be 1.2 × 104 cm2 V−1 s−1, which is the maximum
mobility reported in Ref. [58]. Here we use a background dielectric
constant κInAs = 15, an effective mass m = 0.023me, and an InAs
quantum well width a = 30 nm.

analyzed in Figs. 1–4. The peak mobility of 12 000
cm2 V−1 s−1 in InAs, with its higher effective mass (as com-
pared to InSb) corresponds to essentially the same level
broadening of ∼2–3 meV as for the InSb Eindhoven sample
discussed above. We mention that very recent unpublished
work from Copenhagen finds a direct experimental level
broadening of ∼2 meV in the 1D subbands of InAs nanowires,
providing strong support for our approach toward estimating
disorder by analyzing 2D sample mobility [79]. Similar to
our analysis of the Eindhoven InSb data, the Copenhagen
InAs data can be reasonably well explained by assuming a
background charged impurity density, which is about three
orders of magnitude larger than the level of quality necessary
for the practical realization of topological MZMs in nanowires
in this system (i.e., typical InAs-Al or InSb-Al SC-SM hybrid
structures).

Finally, we consider the InAs 2D samples in Ref. [57],
which are the most extensive transport data available in the
context of Majorana nanowire materials growth. We present
our extensive theoretical analysis of the Purdue data in
Figs. 6–10, focusing on the best fitting in the intermediate
carrier density regime, where our transport theory applies
well. The Purdue experiment involves extensive processing
of samples with various techniques modifying the effective
mobility, providing an additional variable (i.e., processing)

that directly affects the peak mobility. The goal of the grow-
ers here is to identify ideal processing to suppress disorder
and enhance mobility, but from our theoretical perspective,
the processing provides a test for our characterization of the
effective sample disorder through modeling. As described
below in detail and as shown in Figs. 6–10, we find that
random long-range charged impurity scattering dominates
the transport properties, our fitting showing a clear corre-
lation between the extracted charged impurity density and
the measured peak mobility. More specifically, we find that,
depending on the processing details, an effective background
unintentional charged impurity density of 2-9 ×1017 per cm3

provides a very good fit to the measured density-dependent
mobility in the intermediate density regime. This corresponds
to a peak mobility of ∼25 000–50 000 cm2 V−1 s−1— the
lower impurity density (and the higher peak mobility) of the
Purdue samples (as compared with the ones from Eindhoven
and Copenhagen) implying a higher sample quality associated
with the MBE technique used in growing the Purdue 2D
samples. Nonetheless, the effective disorder level, as reflected
in the extracted charge impurity density, is still much higher
(by a factor >100) than the 1015 per cm3 level necessary for
the realization of the topological MZMs.

In Fig. 6, we present the best-fit results to the intermediate
regime of the mobility using the Boltzmann transport theory
including 3D charged impurities in the quantum well and 2D
short-range disorders. During the fitting procedure, we find
that the short-range fitting parameter n2D

short is driven to a very
small value close to zero, and thus the best fit results are
identical to those obtained with only 3D charged impurity,
which are shown in Fig. 7. This implies that the long-range
charged impurity scattering is the dominant scattering mecha-
nism in the intermediate density regime leading to the peak
mobility. Since each sample is processed using a different
technique, which may affect the remote charged impurities
at the interface or inside the surrounding dielectric material,
we present our best fits involving scattering by those types of
impurities in Figs. 8–10. We find that the overall best fit for
all samples (even though differences in fitting quality are not
significant) corresponds to the background charged impurity
density (n3D

long) being the same for all samples, with only the
remote charged surface impurity density (n2D

long) varying from
sample to sample. The estimated background charged impu-
rity density is n3D

long ∼ 2 × 1017 cm−3 (see Fig. 8).

FIG. 6. Experimental InAs mobility from the Purdue group [57] plotted as a function of carrier density for five different samples, which
are labeled according to Table I of Ref. [57]. The dashed line is the best fit to the linearly increasing part of the measured mobility using the
Boltzmann transport theory and assuming two scattering mechanisms associated with 3D long-range impurities in the quantum well of width
a = 30 nm and 2D short-range impurities. See Fig. 1(a) of Ref. [57] for details of the sample structure. The experimental data are smoothed
for visual clarity. The actual fit is performed to the noisy original data.
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FIG. 7. Same as Fig. 6, but considering only background 3D charged impurities randomly distributed within the InAs quantum well.

We have also carried out an extensive analysis of the Pur-
due data by estimating the percolation density and the density
scaling exponent of mobility, which are presented in-depth in
Appendix B. Basically, the percolation density decreases with
increasing peak mobility, since higher peak mobility implies
lower background impurity density.

We note that a related measure of disorder, the single-
particle broadening or the quantum relaxation time, is
sometimes discussed in the literature [80–82]. This is the
single-particle level broadening associated with the imagi-
nary part of the self-energy and corresponds to a relaxation
process including forward scattering (i.e., without the ver-
tex correction, 1 − cos θ , factor in the scattering rate, which
suppresses forward scattering relaxation contributions to the
resistivity). For pure short-range s-wave disorder, the scatter-
ing is isotropic, and the transport relaxation is the same as
the single-particle relaxation, and hence in regular 3D metals,
the single-particle level broadening is simply given by the
transport scattering rate since impurity scattering in metals is
primarily of short-range nature. However, in semiconductor
systems of our interest, the main disorder scattering arises
from highly anisotropic long-ranged charged impurity scatter-
ing which is poorly screened by the carriers in InSb and InAs
by virtue of the very small electron effective mass making
the screening wave vector very small. Therefore the single-
particle quantum scattering rate should be much larger than
the transport relaxation rate determining the mobility, thus en-
hancing the quantum level broadening substantially above the
transport level broadening (∼2–4 meV) estimated above. This
is indeed true as we find that the calculated single-particle
quantum level broadening in the 2D InSb and InAs samples
of interest in the current work is substantially (by more than
a factor of 10) larger than the transport broadening entering
the mobility calculation. Such large estimated single-particle
broadening values, which should manifest in large experimen-
tal Dingle temperatures, are another stark reminder of the poor

quality of the currently utilized Majorana materials. These
results are presented in Appendix C.

In Table I, we summarize our results for the InSb (from
Eindhoven) and InAs (from Copenhagen and Purdue) 2D
samples, providing disorder estimates obtained from the com-
parison between our theory and the experimental mobility
data, as described above. The effective disorder in these sam-
ples can be modeled by a background random 3D charged
impurity density of 1.4 × 1017 to 3.4 × 1019 per cm3, which
strictly on dimensional grounds is equivalent to a charge im-
purity density of 10 × 105 to 70 × 105 cm−1 for a 1D system.
In a nanowire, this disorder range corresponds, roughly, to
100 charged impurities to 600 charged impurities per micron,
far too high for the realization of topological Majorana zero
modes, as we explicitly show in our simulations below. This
reinforces the view that signatures of topological MZMs have
not yet been seen in hybrid SC-SM systems because the nec-
essary condition for system purity has not yet been achieved.
The disorder needs to come down below 10 charged impurities
per micron for topological MZMs to emerge in nanowires
[47].

The estimates of the (physical) disorder level summarized
in Table I represent the main result of this section. The
next critical task is to evaluate the corresponding effective
disorder potential to be used in our simulations of SC-SM
nanowires. We note in this context that the quantum level
broadening, rather than the 2D transport broadening, may ap-
pear as the appropriate quantitative measure of the strength of
the effective disorder potential in nanowires, since essentially
all transport scattering in 1D systems is forward scattering.
This possibility would be rather disturbing, as our calculated
level broadening (see Appendix C) is 20–100 times larger
than the transport broadening, which is itself 2–5 meV in
the 2D samples, as quantified by the peak mobility. We do,
however, believe that the mobility broadening rather than the
single-particle broadening is the appropriate measure for the

FIG. 8. Same as Fig. 6, but considering background 3D impurities randomly distributed within the InAs quantum well and 2D long-range
remote charged impurities at the dielectric interface separated by d = 10 nm from the surface of the quantum well.
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FIG. 9. Same as Fig. 6, but considering only 2D long-range remote charged impurities at the dielectric interface separated by d = 10nm
from the surface of the quantum well.

nanowire quality since in 1D systems, the impurity scattering
is always in the forward direction with no vertex correction.
In any case, the physical quantity characterizing the disorder
is the impurity density which is uniquely determined by the
measured mobility. Also, we have to take into account the fact
that in hybrid superconductor-semiconductor structures addi-
tional screening of charge impurities distributed throughout
the semiconductor nanowire (or on its surface) is provided
by the parent superconductor, as well as the nearby metallic
gates. In addition, the effective potential used in model cal-
culations is not the screened potential itself, but corresponds
to matrix elements of the screened potential with (transverse)
wave functions associated with the low-energy subbands,
as explained in detail below. Consequently, neither the 2D
transport broadening nor the corresponding quantum level
broadening can provide good estimates of the effective po-
tential strength. What really matters is the estimated impurity
density, which serves as the key disorder parameter. The actual
task of evaluating the effective disorder potential associated
with a given level of physical disorder (i.e., impurity concen-
tration) has been carried out in Ref. [47] for charge impurities
randomly distributed throughout the semiconductor nanowire
and below, in Sec. IV, for charge impurities on the surface
of the semiconductor nanowire. In the next two sections we
provide simulations of SC-SM nanowires based on a minimal
1D model in the presence of realistic disorder. In Sec. III,
the effective disorder potential is evaluated based on the es-
timates of the physical disorder level obtained above and the
self-consistent results of Ref. [47]. In Sec. IV A, the effective
disorder potential is calculated self-consistently starting from
a microscopic model of the hybrid device. For our Majorana
simulations using the estimated disorder in the rest of this
paper, we use InAs nanowire parameters simply because the
current disorder is lower in InAs than in InSb as discussed
above (and also because InAs is the experimental focus right

now for Majorana search). The results for InSb would look
qualitatively identical, and producing results just by changing
the parameters to those of InSb is a useless overkill at this
point.

III. MAJORANA SIMULATIONS BASED ON THE
MINIMAL 1D NANOWIRE MODEL IN THE PRESENCE OF

STRONG DISORDER

In this section, we evaluate the effect of disorder on the
low-energy physics of hybrid semiconductor-superconductor
devices based on a minimal 1D nanowire model with ran-
dom onsite disorder. (The disorder range is approximately
incorporated in the theory through a judicious choice of the
lattice spacing in the 1D model, so the onsite disorder model
roughly corresponds to the appropriately screened Coulomb
disorder.) In Sec. III A, we estimate the strength of the ef-
fective onsite disorder potential based on (i) the estimates
of the physical disorder levels (i.e., impurity concentrations)
in Sec. II, (ii) the results of Ref. [47], where the effective
disorder potential associated with charge impurities has been
determined explicitly using a self-consistent approach, and
(iii) the concept of “equivalent disorder potentials”, which
is introduced below. In Sec. III B, we calculate conductance
spectra as functions of the applied Zeeman field for differ-
ent disorder realizations and disorder strengths comparable
to or lower than our estimates in Sec. III A. The results
suggest that the estimated disorder strength corresponding to
experimentally available hybrid wires is inconsistent with the
presence of topological superconductivity and with topologi-
cal MZMs localized at the ends of the system. The most likely
low-field features emerging in these systems are (relatively
rare and essentially random) disorder-induced, topologically
trivial zero-bias conductance peaks (ZBCPs) generated by
(trivial) Andreev bound states. These findings are strength-

FIG. 10. Same as Fig. 6, but considering only remote impurities distributed three dimensionally (i.e., 3D long-range impurities) in the
dielectric layer of thickness aoxide = 8 nm located 10 nm away from the interface of the quantum well.
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TABLE I. Summary of the estimated impurity densities presented through Figs. 1–10 for the InSb (from Eindhoven [56]) and InAs (from
Copenhagen [58] and Purdue [57]) samples. Here, a is the width of the corresponding quantum well. ∗ InAs sample from Copenhagen. ∗∗
InAs sample from Purdue.

ened by the results in Sec. III C, where we calculate the “phase
diagrams” corresponding to the zero-bias conductance as a
function of Zeeman field and chemical potential. We believe
that it is likely that all existing experimental Majorana ob-
servations are reporting these strong disorder-induced trivial
subgap Andreev features.

A. The effective disorder potential

The low-energy physics of a (clean) semiconductor-
superconductor hybrid structure can be accurately described
using a multiorbital 1D effective model with “orbitals” given
by the transverse wave functions ϕα associated with the
confinement-induced subbands [83]. These “orbitals” incor-
porate electrostatic effects generated by the environment (e.g.,
potential gates, superconducting layer, etc.) and by the free
charge. Within this framework, disorder can be incorpo-
rated as a subband-dependent effective potential, V αβ

eff (z) =
〈ϕα|φdis|ϕβ〉, where z represents the position along the wire
and φdis(r) is the (screened) potential generated by the “phys-
ical” sources of disorder, e.g., by charge impurities. A major
simplification occurs when the intersubband spacing is large
compared to the effective disorder potential, since the off-
diagonal terms V αβ

eff , with α �= β, can be neglected and the
subbands become independent. Furthermore, since Majorana
physics is controlled by the subband αo closest to the chem-
ical potential, one can focus on the relevant subband and
reduce the model to a single orbital effective model, i.e., the
well-known minimal 1D nanowire model. Within this approx-
imation, the effective disorder potential becomes Vdis ≡ V αoαo

eff .
We add here that, if many subbands participate in transport,
with intersubband scattering being important, the effective
disorder is substantially enhanced, since the presence of inter-
subband coupling acts as an additional source of randomness.
Thus neglecting intersubband scattering and focusing on a

single subband is in the appropriate spirit of our focus on
the most optimistic realistic disorder model. We also note
that including orbital effects [84–88] (in addition to Zeeman
splitting) typically results in a reduction of the topological
gap[84], which makes the system more susceptible to disor-
der. For consistency with our general approach of considering
the effects of disorder within otherwise optimal conditions,
we do not include orbital effects.

The first problem that we address concerns the features of
Vdis that are most relevant in relation to Majorana physics. In
essence, since Majorana physics is controlled by the topmost
occupied subband (i.e., the subband closest to the chemical
potential), the low-energy states have relatively small char-
acteristic momenta, i.e., long-wavelength oscillatory features,
typically on the order of tens to hundreds of nanometers. More
specifically, we can define the characteristic Majorana “oscil-
lation length” λM ∼ π h̄/

√
2m∗εo, where εo, the characteristic

energy associated with Majorana physics, is on the order of
1 meV. We note that λM is different from (and should not be
confused with) the Majorana “localization length” ξ , which
characterizes the (exponential) decay of the wave function
describing the Majorana bound state. For an effective mass
m∗ = 0.026mo, the characteristic Majorana length is λM ≈
25–60 nm. In general, Vdis has features characterized by mul-
tiple length scales. The key property of the disorder potential
is that only the components characterized by length scales
comparable to or larger than λM are relevant for Majorana
physics. Indeed, the rapidly varying components of Vdis having
characteristic length scales smaller than λM get “averaged out”
and have a minimal impact on the low-energy physics [48].
By contrast, components of the disorder potential with char-
acteristic length scale comparable to or larger than λM have a
major impact on the low-energy physics once their amplitude
becomes comparable to or exceeds the Majorana energy scale
εo. In particular, long-wavelength components having length
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FIG. 11. “Equivalent” disorder potentials. (a) Onsite random po-
tential drawn from an uncorrelated Gaussian distribution with zero
mean and standard deviation σμ = 2.5 meV. (b) Smoother potential
obtained by removing the highly oscillating components of the po-
tential in (a). (c) Fourier components of the two potentials as given
by Eq. (1). Note that the low wave vector (i.e., long wavelength)
components of the two potentials coincide, i.e., the orange and dark
blue lines are on top of each other for wave vectors smaller than about
0.35 nm−1. The low-energy BdG spectra generated in the presence of
the two “equivalent” disorder potentials are shown in Fig. 12.

scales much larger than λM can act as effective “smooth po-
tentials” [89,90], which leads to local Majorana physics and
the emergence of partially separated Majorana modes, instead
of a topological superconducting phase supporting well sepa-
rated MZMs [48]. Furthermore, if the dominant component
of the disorder potential has a length scale comparable to
λM , even the emergence of local Majorana physics can be
suppressed.

To illustrate this key property of the disorder potential,
we consider a system of length L = 2 μm described by the
minimal 1D model [see, for example, Eq. (10)] with Vdis

corresponding to an onsite random potential drawn from an
uncorrelated Gaussian distribution with zero mean and stan-
dard deviation σμ = 2.5 meV. The (fixed) model parameter
values are: effective mass m∗ = 0.03me (where me is the
bare electron mass), Rashba spin-orbit coupling coefficient
αR = 250 meV Å, and superconducting pairing amplitude
� = 0.3 meV. The system is discretized on a lattice with
lattice constant a = 3.33 nm. The position dependence of Vdis

corresponding to a specific disorder realization is shown in
Fig. 11(a). The Fourier components of the effective disorder

FIG. 12. Low-energy spectra as functions of the Zeeman field for
a system with chemical potential μ = 1.5 meV and effective disorder
potentials given by Fig. 11(a) (dark blue lines) and Fig. 11(b) (orange
lines). Note that the two spectra are, practically, on top of each other,
which establishes the “equivalence” of the two disorder potentials.
Also note that, while in a clean system the bulk gap closes (and
then reopens) at a critical Zeeman field slightly above 1.5 meV,
simultaneously with the emergence of a MZM, in the disordered
system a near-zero energy (topologically trivial) mode emerges at
a significantly lower field.

potential defined as

Ṽd (kn) = 2a

L

∑
i

Vdis(zi ) sin(knzi ), (1)

where kn = nπ/L is the wave vector and zi is the position
corresponding to lattice site i, are given by the blue line in
Fig. 11(c). Note that the edge of the Brillouin zone is at
π/a ≈ 0.94 nm−1 and that the typical values of Ṽd (kn) are
independent of kn, reflecting the local nature of the disorder
potential.

Next, we remove the components of the Fourier spectrum
with kn larger than about 0.35 nm−1, while retaining the
low-wave vector components, as shown by the orange line
in Fig. 11(c). The position dependence of the corresponding
(real space) disorder potential is shown in Fig. 11(b). Using
this procedure, we obtain two rather different looking disor-
der potentials [see Fig. 11, panels (a) and (b)] characterized
by identical low-k Fourier spectra. We then solve the BdG
equation corresponding to the two disorder potentials and
calculate the low-energy spectrum as a function of the Zeeman
field for a system with chemical potential μ = 1.5 meV. The
results are shown in Fig. 12, with the blue and orange lines
corresponding to the two disorder potentials from Figs. 11(a)
and 11(b), respectively. Note that the two spectra are, prac-
tically, on top of each other, revealing the fact that the two
(rather different) disorder potentials have the same effect on
low-energy physics. Hence, we can view the disorder poten-
tials as being “equivalent” from the point of view of their
impact on low-energy physics. Furthermore, if we focus on
the qualitative features relevant for Majorana physics (e.g., the
emergence of well-separated MZMs, versus the presence of
partially separated Majorana modes, or of “standard” Andreev
bound states), without considering the quantitative details
(e.g., the exact value of the Zeeman field associated with the
emergence of a low-energy mode), we can relax this definition
of “equivalent disorder potentials” by requiring the identity of
the Fourier spectra for kn less than about π/λM � 0.1 nm−1.
Hence, from the perspective of their impact on the Majorana
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physics, the effective disorder potentials can be divided into
equivalence classes defined by the property that two equiv-
alent potentials have the same Fourier spectrum for wave
numbers lower than the inverse Majorana “oscillation length,”
i.e., lower than the characteristic Fermi momentum.

The second problem that we want to address concerns
the relationship between the spectral properties of the effec-
tive disorder potential and the characteristics of the physical
source of disorder, e.g., the impurity concentration and char-
acteristic length scale associated with the single-impurity
potential. We note that this type of analysis has to be car-
ried out for each type of disorder. Here, we focus on a
hybrid system with charge impurities randomly distributed
throughout the semiconductor nanowire, for which the critical
task of determining the effective disorder potential associated
with a given type of physical source of disorder has been
accomplished in Ref. [47]. For simplicity, we consider a phe-
nomenological modeling of charge impurity-induced disorder
corresponding to the effective disorder potential [47]

Vdis(z) =
∑

j

A jVimp(z, z j ), (2)

where Aimp is an amplitude having random sign, average
absolute value 1.7 meV, and variance of the absolute value
0.7 meV, while Vimp(z, z j ) = exp(−|z − z j |/λ), with λ =
15 nm and z j representing the position along the wire of the
jth impurity. The values of these parameters are based on the
numerical results of Ref. [47]. A specific disorder realization
corresponds to a set of impurity locations, {z j}, and single-
impurity amplitudes, {Aj}, where Aj carries information about
the type of impurity (i.e., positive or negative charge) and its
transverse location (which determines the magnitude of |Aj |
[47]). The number of impurities is determined by the linear
impurity concentration nimp, i.e., the number of impurities per
unit length. Here, we assume charge neutrality, i.e., an equal
number of positive and negative charge impurities.

Two examples of effective disorder potentials generated by
charge impurities that correspond to impurity concentrations
nimp = 5 (blue line) and 20 μm−1 (red line) are shown in
Fig. 13(a). The corresponding Fourier transforms are shown
in Fig. 13(b). Note that, in striking contrast with the Fourier
spectrum of the onsite random potential [dark blue line in
Fig. 11(c)], the components of the charge impurity potential
with wave numbers larger than about 0.2 nm−1 are negligible.
This reflects the presence of a finite length scale (λ = 15 nm)
associated with this type of potential. Also notice that the
typical amplitude of Ṽd corresponding to nimp = 5 μm−1 [blue
line in Fig. 13(b)] is manifestly smaller than the typical am-
plitude of the potential corresponding to nimp = 20 μm−1 [red
line in Fig. 13(b)]. To make this observation more quantitative,
it is useful to define the disorder-averaged absolute value of
the Fourier transformed disorder potential, 〈|Ṽd (kn)|〉. Note
that this quantity characterizes the type of disorder under
consideration, rather than a specific disorder realization, and
can be viewed as a spectral signature of that type of disorder.

Examples of spectral signatures corresponding to different
types of disorder are provided in Fig. 14. First, let us focus
on the blue, green, and red lines, which represent the spectral
signatures of effective disorder potentials generated by charge

FIG. 13. (a) Position dependence of the effective disorder po-
tential generated by charge impurities for two specific disorder
realizations corresponding to impurity densities nimp = 5 (blue line)
and 20 μm−1 (red line). The general form of this type of effective
disorder potential is given by Eq. (2).

impurities with λ = 15 nm and concentrations nimp = 5, 10,
and 20 μm−1, respectively. Let us notice that 〈|Ṽd |〉 has a peak
at low values of the wave number and becomes negligible
for kn larger than about 0.2 nm−1, which is consistent with
the features characterizing the specific disorder realizations
shown in Fig. 13(b). As discussed above, the values of 〈|Ṽd |〉 at
low wave vectors (below approximately 0.1 nm−1) determine
the impact of disorder on the Majorana physics. An important
property revealed by the spectral signatures is that the strength

FIG. 14. Spectral signatures, 〈|Ṽd (kn)|〉, corresponding to dif-
ferent types of disorder. The disorder averaging was done using
3000 disorder realizations for a system of length L = 2 μm. The
blue, green, and red lines correspond to the charge impurity-induced
disorder given by Eq. (2) with λ = 15 nm and impurity concen-
trations nimp = 5, 10, and 20 μm−1, respectively, while the dashed
green/black line corresponds to λ = 30 nm and nimp = 10 μm−1.
Note that all these curves collapse onto a single curve when using
the scaling given by Eq. (3). The (horizontal) black and gray lines
correspond to an onsite random potential drawn from an uncorre-
lated Gaussian distribution with zero mean and standard deviation
σμ = 2.5 meV. Note the dependence on the lattice constant a.
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of the disorder potential and, implicitly, its effect on the
low-energy physics, increase with the impurity concentration.
Specifically, 〈|Ṽd |〉 scales with

√
nimp. Of course, deviations

from this simple scaling law are expected in the limit of large
impurity concentrations, where interference effects become
important. A direct consequence of the practical importance
of this scaling property is that reducing the amplitude of
the charge impurity-induced disorder potential by a factor f
requires lowering the impurity concentration by a factor f 2.

Next, we consider the dashed green/black line in Fig. 14,
which corresponds to an impurity concentration nimp =
10 μm−1 (same as the green line), but involves a single
impurity potential Vimp with a larger characteristic length,
λ = 30 nm. The values of 〈|Ṽd |〉 at low wave vectors increase
by roughly a factor of two as compared with the green line
(λ = 15 nm). This implies that, given an impurity concen-
tration, the effect of the disorder potential on the Majorana
physics becomes stronger as one increases the characteristic
length scale λ. We note that the dependence of the spectral
signature on the characteristic length λ also follows a scaling
law. More specifically, and taking into account the dependence
on nimp discussed above, as well as the dependence on the wire
length L, one can collapse all spectral signatures associated
with charge impurity disorder (including the blue, green, red,
and dashed green/black lines in Fig. 14) into a single curve
using the scaling

λ0

λ

√
n0

impL

nimpL0

〈∣∣∣∣Ṽd

(
λ

λ0
kn

)∣∣∣∣〉, (3)

where λ0, L0, and n0 are (fixed) reference values for the
characteristic length scale, wire length, and impurity con-
centration, respectively. Finally, we note that the Fourier
components of the charge impurity-induced disorder potential
defined by Eq. (1), as well as the corresponding spectral signa-
ture 〈|Ṽd |〉 are independent of the lattice constant a, provided
it is small enough to correctly capture the relevant short length
scale physics, which, of course, is a general requirement for
Majorana simulations.

The third problem addressed in this section concerns the
legitimacy of using a random onsite potential as a model
for the effective disorder potential. We note that, while this
type of disorder potential is widely used in the literature, its
connection with a specific disorder mechanism (e.g., charge
impurities, point defects, atomic vacancies, etc.) and, ulti-
mately, its physical relevance remain unclear. We start by
noticing that the random onsite potential has a k -independent
spectral signature, consistent with its purely local nature. Two
examples are shown in Fig. 14 (black and gray lines). Note
the dependence on the lattice constant a, in sharp contrast
with the spectral signatures associated with charge impurity-
induced disorder. The “universal” spectral signature of the
onsite random Gaussian potential is a horizontal line of height
σ 0

μ/σμ

√
(La0)/(L0a)〈|Ṽd |〉, where σ 0

μ, L0, and a0 are (fixed)
reference values for the variance, wire length, and lattice con-
stant, respectively. Next, we exploit the “equivalence” relation
between different disorder potentials and the properties of the
charge impurity-induced disorder discussed above. Using the
examples shown in Fig. 14, we note that for small wave vector
values the gray line provides a good approximation for the red

line. More generally, the range over which an onsite random
potential can reasonably approximate the long-wavelength
(short kn) features of an impurity-induced potential increases
with decreasing λ. If this range is comparable to π/λM , the
two types of disorder can generate “equivalent” disorder po-
tentials. In other words, the onsite random potential represents
a good model for short-range disorder having characteristic
length scale(s) smaller than the Majorana oscillation length
λM . For longer range disorder, we expect the onsite random
potential to still capture some important qualitative features,
since one can always match the low-kn components of the two
types of disorder, which are of critical importance for the low-
energy physics, but it loses its quantitative relevance. Finally,
we emphasize that the actual strength of the random onsite
potential depends not only on the variance σμ, but also on the
size of unit cell a used in the discretization procedure. Using
the example in Fig. 14, an onsite potential with σμ = 2.5 meV
and a = 3.33 nm is approximately equivalent to a charge
impurity-induced potential with characteristic length scale
λ = 15 nm and impurity concentration nimp ≈ 6–7 μm−1.
By contrast, an onsite potential having the same variance,
but on a lattice with a = 10 nm is approximately equivalent
with a charge impurity-induced potential corresponding to
an impurity concentration nimp ≈ 18–20 μm−1, which has a
significantly stronger effect on the low-energy physics.

We conclude this section with an estimate of the variance
σμ characterizing an onsite random potential that would be
consistent (i.e., approximately “equivalent”) with a disorder
potential generated by charge impurities with densities given
by the estimates obtained in Sec. II. We assume that the
impurities are well screened, so that the typical amplitude of
the single impurity potential is about 1 meV and its char-
acteristic length scale λ = 7.5 nm, both values being near
the lower end of the ranges calculated in Ref. [47]. Such a
short-range potential would also justify the use of the onsite
random potential model, as explained above. If we consider
now the estimates of the impurity density obtained in Sec. II
(see Table I), focusing on the 3D densities for InAs (in the
quantum well), and assuming a wire geometry similar to that
in Ref. [47], we obtain nimp values that are larger by a factor
of 50–700 than the impurity density associated with the red
line in Fig. 14. Finally, under the assumption that the scaling
relation (3) still holds at large impurity densities, we estimate
the variance characterizing the approximately “equivalent”
onsite random potential on a lattice with lattice constant a =
10 nm as being σμ ≈ 5–20 meV. As shown below, this places
the experimentally available SC-SM hybrid structures in the
strong (or even extreme) disorder regime.

B. Charge tunneling spectra in the presence of strong disorder

Our estimates of the impurity density based on the 2D
samples analyzed in Sec. II suggest that the levels of physical
disorder (e.g., charge impurities) present in experimentally
available Majorana nanostructures could be up to three orders
of magnitude higher than the “intermediate” disorder regime
discussed in Ref. [47]. Moreover, the SC-SM hybrid struc-
tures might have even higher disorder than the 2D systems
because of additional processing and the existence of SC-
SM interfaces, which generate additional sources of disorder.
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This situation makes it imperative to understand in detail the
impact of strong disorder on the low-energy physics of the hy-
brid structures. What low-energy phenomenology should one
expect in the presence of strong disorder? Here, we address
this question by performing model calculations based on the
well-established 1D Majorana nanowire model in the presence
of strong disorder. Since details regarding the exact nature of
the sources of disorder, as well as the properties of the cor-
responding effective disorder potential are not available, we
work under the (rather optimistic) assumption that the relevant
type of disorder is short-range disorder (e.g., point defects,
well-screened charge impurities, etc.). Under this assumption,
it is appropriate to model the effective disorder potential as
random onsite disorder. This model describes accurately the
short-range disorder regime, as discussed in Sec. III A.

The theory (for details see Appendix D) includes the “stan-
dard” ingredients, i.e., proximity-induced superconductivity,
spin-orbit coupling, and Zeeman splitting, as well as onsite
disorder modeled by a random Gaussian potential with zero
mean and variance σμ. We focus on the lower end (5–8 meV)
of the range estimated in Sec. III A based on the results of
Sec. II. In addition, we also consider lower values of σμ

(1–4 meV) to make a connection with the known results cor-
responding to intermediate disorder. We note that the weaker
disorder situation (with disorder broadening <1 meV) has
already been studied extensively [40–42,46,52,53,91–97]. We
emphasize that the calculation is exact within the free fermion
BdG theory (see Appendix D) and provides the eigenstates
and eigenenergies of the system. Without any disorder, the
pristine results (not shown, since they are well-known) man-
ifest topological MZMs at the wire ends for Zeeman fields
larger than a critical value associated with the topological
quantum phase transition (TQPT), where the bulk gap closes.
Finite systems manifest (end-to-end-correlated) MZM oscilla-
tions [98], but these features were never seen experimentally,
most likely because the systems are not clean enough. Note
that the parent superconducting gap gets quenched by ex-
ternal magnetic fields exceeding a certain value B∗. This
field-induced bulk SC gap collapse, most likely arising from
the orbital effect of the applied field penetrating the par-
ent superconductor, is a persistent problem in all nanowire
experiments, preventing the high-field regime from being
experimentally accessible. We do not include this bulk gap
collapse in the theoretical simulations, since it is a nonessen-
tial effect that has little to do with disorder in this context.
However, we note that the Zeeman field V ∗

z corresponding to
B∗ sets the upper bound for the disorder strength consistent
with the emergence of MZMs since B > B∗ is experimentally
inaccessible. More specifically, any effective disorder poten-
tial having the amplitude of the relevant long-wavelength
components (see Sec. III A) larger than V ∗

z is inconsistent
with the presence of genuine MZMs localized at the ends of
the system. An optimistic estimate of B∗ = 2 T for a system
with effective g-factor g = 45 gives V ∗

z ≈ 5 meV. For most
experimentally available hybrid structures V ∗

z is probably on
the order of 1 meV.

Consistent with the existing Majorana nanowire experi-
mental studies, we focus on tunnel spectroscopy, where the
appearance of stable quantized 2e2/h zero-bias conductance
peaks (ZBCPs) is expected to represent a signature of topolog-

ical MZMs. Note, however, that all observed ZBCPs may very
well be generated by disorder-induced trivial Andreev bound
states, as none of them has passed a quantifiable stability re-
quirement, end-to-end correlation requirement, or any other of
the more MZM-specific criteria. Starting with a disorder po-
tential with σμ = 5 meV, we calculate the tunneling spectrum
as a function of the Zeeman field for fixed chemical potential,
μ = 5 meV, and different disorder realizations. Three cases
are shown in Fig. 15. We note that the corresponding clean
system is characterized by a finite gap for Zeeman fields below
the critical value, Vz < 5 meV, and by the emergence of an
MZM-induced ZBCP at higher fields, although the high-field
regime is probably irrelevant because Vz > V ∗

z , i.e., the parent
superconducting gap collapses. In the presence of disorder, the
tunneling spectra typically show no low-energy features, as
illustrated in Figs. 15(a) and 15(b). This is consistent with ex-
periments, where most samples manifest no sub-gap features.
Once in a while, there may be some disorder-induced, essen-
tially random subgap features, like the feature in Fig. 15(b)
near Vz ≈ 4 meV. However, these rare features are neither
stable nor generic, i.e., they do not occur inside well-defined
regions of the parameter space. Rarely, some low-field zero
bias features may manifest, as in Fig. 15(c), along with “gap
closing” features associated with Andreev bound states com-
ing together. Such disorder-induced ZBCPs are rare, unstable,
and typically have magnitudes different from 2e2/h, although
they may be fine-tuned to 2e2/h by varying the tunnel barrier.
These ZBCPs are neither topological (since they occur outside
the nominally topological region) nor nonlocal, and never
emerge simultaneously when tunneling from both ends. In the
simulations leading to Fig. 15, only 3 out of 120 disordered
“samples” (i.e., disordered configurations with the same vari-
ance) have manifested any kind of observable ZBCPs (from
either the left or the right end). This situation is strikingly
similar to the experimental situation, where most samples
show nothing in their tunnel spectra, while finding features
that mimic Majorana physics requires sample selection and
considerable fine-tuning.

These results suggest that σμ = 5 meV already represents
strong disorder, which is inconsistent with the emergence of
MZMs localized at the ends of the wire. This conclusion is
further supported by the results presented in Sec. III C, where
we explore the dependence of the low-energy features on the
chemical potential and Zeeman field. Since our estimate of
the disorder strength based on the 2D transport calculations of
Sec. II is σμ ≈ 5–20 meV, we conclude that existing SC-SM
hybrid structures are in all likelihood deep inside the strong
disorder regime.

Next, we lower the disorder strength below the range
estimated in Sec. III A, to make a connection with the
intermediate/low disorder regime and determine the max-
imum level of disorder consistent with the realization of
topological superconductivity and Majorana zero modes.
However, for σμ ∼ 3 meV the situation hardly changes, with
most samples still showing almost no zero bias features and
only 6 out of 120 configurations manifesting some (non-
generic) low-field ZBCPs, as shown in Fig. 16. Again, these
are nontopological disorder-induced ZBCP features that are
nongeneric, unstable, and characterized by a random ZBCP
strength. Note that we never find ZBCPs when tunneling from
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FIG. 15. Conductance as a function of the applied Zeeman field and bias voltage in the presence of three different disorder realizations with
σμ = 5 meV. These examples are selected from a set of 120 different disorder realizations. Most “samples” (i.e., disorder realizations) show
no low-energy features [similar to (a)], while occasionally one notices some disorder-induced, essentially random subgap features [see (b)].
For three disorder realizations times (out of 120) we have obtained low-field ZBCPs, one example is shown in (c). The parameters used in the
calculation are: chemical potential μ = 5 meV, parent superconductor gap �0 = 0.2 meV, superconductor-semiconductor coupling strength
γ = 0.2 meV, spin-orbit coupling strength 0.5 eVÅ, wire length L = 20 μm, barrier heights 20 meV. The details of calculation are provided
in Appendix D.

both ends in a given system, as must happen for topological
MZMs. All these ZBCPs are below the TQPT (associated
with the pristine wire), and most (>90%) of the tunnel spectra
manifest no ZBCPs at all.

Further reducing the disorder strength to σμ = 2 meV
leads, occasionally, to the possibility of ZBCPs appearing
above the TQPT, as shown in Fig. 17. We note that the ZBCPs
appearing above the TQPT, although rather weak and not
persistent as a function of the Zeeman field, are correlated
from both ends of the wire (see Fig. 17), which is a clear
signature of Majorana physics. We emphasize, however, that
almost all the low-field ZBCPs are still topologically trivial
ZBCPs occurring below the TQPT, with no correlations from

the two ends. Also, most tunnel spectra are still random,
with little zero bias features; note that in Fig. 17 we have
selected a few spectra that do manifest some ZBCP features
in the simulations. Nonetheless, since the possibility exists for
topological ZBCPs to manifest once in a while, we establish
σμ = 2 meV as the (approximate) upper bound of the disorder
strength consistent with Majorana physics in this system (i.e.,
typical InAs-Al or InSb-Al SC-SM hybrid structures).

Finally, we consider the case σμ = 1 meV, with a few
representative spectra being shown in Fig. 18. Note that topo-
logically trivial ZBCPs are still present below the TQPT, but
correlated features associated with the presence of MZMs
emerge consistently in the topological regime. The low-field
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FIG. 16. Conductance as a function of the applied Zeeman field and bias voltage in the presence of six different disorder realizations with
σμ = 3 meV. Only these six disorder configurations (out of 120) support a low-field ZBCP (at either the left or the right end of the system).
The chemical potential is μ = 3 meV, while the other parameters are the same as in Fig. 15.
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FIG. 17. Conductance traces measured from the left end (left
column) and the right end (right column) of the hybrid system
as functions of the Zeeman field and bias voltage in the pres-
ence of disorder with σμ = 2 meV. The pairs of spectra (a)-(b),
(c)-(d), (e)-(f), and (g)-(h) correspond to different disorder re-
alizations. The parameters used in the calculation are: chemical
potential μ = 1.5 meV, parent superconductor gap �0 = 0.2 meV,
superconductor-semiconductor coupling strength γ = 0.2 meV,
spin-orbit coupling strength 0.5 eVÅ, wire length L = 3 μm, and
tunnel barrier heights 10 meV.

conductance features emerging in the trivial regime (i.e., be-
low the TQPT) have a striking resemblance to similar features
characterizing higher disorder samples (see Figs. 15–17) and
to the best available experimental Majorana nanowire tun-
neling data [17,30]. Indeed, large ZBCPs with conductance
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FIG. 18. Conductances measured from the left end (left column)
and the right end (right column) as a function of the Zeeman field and
the bias voltage in the presence of disorder with σμ = 1 meV. The
parameters are: chemical potential μ = 1.5 meV, parent supercon-
ductor gap �0 = 0.2 meV, superconductor-semiconductor coupling
strength γ = 0.2 meV, spin-orbit coupling strength 0.5 eVÅ, wire
length L = 3 μm, barrier heights at the interface of the lead and
nanowire is 10 meV.

>2e2/h have been reported. Typically, these observations
involve considerable post-selection and fine-tuning of the con-
trol parameters, consistent with our estimated low probability
of having such ZBCPs in high-disorder samples. Furthermore,
the observed features are uncorrelated from the two ends,
nongeneric, and unstable, existing only over narrow regimes
of magnetic field sweeps, which suggests that these features
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are topologically trivial, like the corresponding features in
our calculation. On the other hand, features similar to the
ZBCPs emerging above the TQPT in our theoretical results
shown in Fig. 18 have never been reported in the experimental
literature. In particular, no hint of Majorana oscillations (ap-
parent in some of our results above the TQPT) has ever been
reported experimentally. Also, there has been no report of the
experimental observation of end-to-end correlated low-energy
features, or of stable ZBCPs with conductance ∼2e2/h. Our
analysis suggests that the fundamental reason for not being
able to observe these basic Majorana features is that the
experimentally available nanowire samples are in the strong
disorder regime corresponding to σμ � 3 meV, consistent
with our estimate in Sec. III A. We note that nanowire samples
are expected to have higher disorder than the corresponding
2D materials. Also, we emphasize that, although in principle
one could access the topological regime even in the presence
of relatively strong disorder by sufficiently increasing the
Zeeman field (and going to sufficiently low temperatures), this
possibility is limited by the persistent experimental problem
associated with the high-field collapse of the bulk Al super-
conductivity.

The simulations presented in this section, which are based
on a minimal model of the hybrid device, show that in cur-
rently available samples disorder is strong enough so that it
prevents the system from achieving topological superconduc-
tivity. The typical low-energy features that emerge in currently
available samples are likely to be (occasional) ZBCPs associ-
ated with disorder-induced trivial Andreev bound state. Our
strong disorder simulations are completely consistent with
the experimental claims of occasional large fine-tuned trivial
ZBCPs, which are neither stable nor correlated from the two
wire ends and never manifest Majorana oscillations.

C. Zero-bias conductance “phase diagrams”

In the previous section, we have analyzed tunneling spec-
tra as functions of the Zeeman field for fixed values of
the chemical potential. The natural question is whether
or not our conclusions regarding the presence/absence of
Majorana-induced features in samples characterized by a cer-
tain disorder strength hold for arbitrary chemical potential
values within the relevant range consistent with the emer-
gence of topological superconductivity in clean samples. To
address this question, we focus on the zero-bias conductance
and investigate its dependence on Zeeman field and chemical
potential, which generates “phase diagrams” that, in the clean
limit, converge toward the well-known topological phase dia-
gram of the hybrid system.

Indeed, as shown in Figs. 19(a) and 19(b), the zero-bias
conductance of a pristine wire is exponentially small in the
trivial regime (i.e., for Vz �

√
μ2 + γ 2; see Appendix D for

details) and reaches the quantized value, 2e2/h (white in
Fig. 19), in the topological regime (Vz �

√
μ2 + γ 2). Note

that for Vz > 2 meV the quantized region breaks into stripy
features that disperse down in μ with increasing Vz. This is
the effect of finite size-induced Majorana oscillations; as a
result of these oscillations, the ZBCP splits and the zero-bias
conductance is quantized only in the vicinity of the “nodes”,
where the energy of the in-gap Majorana mode vanishes. The
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FIG. 19. “Phase diagrams” representing zero-bias conductance
maps as functions of the Zeeman field (Vz) and chemical potential
(μ) for systems with increasing disorder strength. The left and right
columns correspond to tunneling into the left and right ends of the
system, respectively. (a) and (b) correspond to the pristine case, σμ =
0; (c) and (d) correspond to a low-disorder sample, σμ = 1 meV;
(e) and (f) illustrate the intermediate disorder case, σμ = 2 meV;
(g) and (h) represent an example of strong disorder, σμ = 8 meV.
The other parameters used in the calculation are: parent supercon-
ductor gap �0 = 0.2 meV, superconductor-semiconductor coupling
strength γ = 0.2 meV, spin-orbit coupling strength 0.5 eVÅ, wire
length L = 3 μm, tunnel barrier height 10 meV above the chemical
potential in the nanowire.
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stripy (white) features simply trace the position of these nodes
in the Vz-μ plane. Also note that there is a perfect corre-
lation between the features characterizing the left and right
conductance, which clearly indicates that they are generated
by MZMs localized at the two ends of the system. We em-
phasize that the “phase diagrams” in Figs. 19(a) and 19(b)
reveal three basic features associated with Majorana physics,
none of which was observed experimentally: robust ZBCP
quantization (associated with the presence of finite, relatively
large white areas in the phase diagram), Majorana oscillations
(associated with the stripy features), and perfect end-to-end
correlation (associated with the perfect correlation between
the features characterizing the left and right conductance).

Introducing some weak disorder corresponding to σμ =
1 meV modifies the phase diagram, but does not destroy the
basic features associated with Majorana physics, as shown in
Figs. 19(c) and 19(d). In particular, one can clearly identify
the signatures associated with robust ZBCP quantization, Ma-
jorana oscillations, and end-to-end correlation. However, we
notice that these features are reduced or even absent in certain
areas of the nominally topological region. In addition, new
features emerge in the topologically trivial regime. Some of
these features correspond to small islands with conductance
exceeding the quantized value (and occasionally approaching
4e2/h); these features are generated by disorder-induced triv-
ial Andreev bound states consisting of strongly overlapping
Majorana components. We also notice the presence of a few
small quantized (white) islands, which indicate the presence
of disorder-induced partially separated Majorana modes that
mimic the local properties of MZMs [48]. We emphasize
that these trivial features are not end-to-end correlated, which
reveals their essentially local nature.

Further increasing the disorder strength to σμ = 2 meV has
a major impact on the phase diagram, as shown in Figs. 19(e)
and 19(f). On the one hand, the low-field region with 0 � μ �
4 meV is dominated by disorder-induced, uncorrelated, topo-
logically trivial features. On the other hand, for high-enough
Vz one can still observe correlated stripy features indicative
of Majorana oscillations and topological superconductivity.
Note, however, that for a (realistic) value of the maximum
field associated with the collapse of the parent superconduct-
ing gap V ∗

z = 2 meV, only a small region in the vicinity of
Vz ≈ 1.5 meV, μ ≈ 0 would contain such Majorana features.
Furthermore, this property is not generic, in the sense that
for certain disorder realizations the Majorana features occur
only above V ∗

z and, consequently, are not observable. These
properties are consistent with our results in Sec. III B (see,
in particular, Fig. 17 and the accompanying text) and justify
our identification of σμ = 2 meV as the (approximate) up-
per bound of the disorder strength consistent with Majorana
physics, or, in other words, as representing the “intermediate”
disorder regime, where signatures of topological supercon-
ductivity and Majorana physics may or may not be present,
depending on the specific disorder realization (i.e., nanowire
sample).

Next, we delve deep into the strong disorder regime and
consider an example corresponding to σμ = 8 meV. Note that
this is still within the lower half of our estimated disorder
strength based on the 2D transport calculations in Sec. II
(see Sec. III A for details). The “phase diagrams” for the left

and right conductances are shown in Figs. 19(g) and 19(h),
respectively. There is absolutely no feature associated with
topological superconductivity and Majorana physics. Further-
more, the only high-conductance (and low-field) features are
a few small, isolated islands characterized by conductance
values typically exceeding 2e2/h, which are clearly associated
with disorder-generated, topologically trivial Andreev bound
states. We emphasize that fine-tuning the control parameters
(i.e., Vz and μ) near the boundary of such an island can always
generate a quantized ZBCP with a value ∼2e2/h, particularly
since the tunnel barrier can be fine-tuned to change the con-
ductance at low temperatures. Of course, this has nothing to do
with Majorana physics, not even with local Majorana physics,
which is associated with the presence of partially separated
Majorana modes and leads to the emergence of quantized
islands in the “phase diagram” [48]. On the other hand, the
structure of the “phase diagram” is consistent with our find-
ings in Sec. III B, in particular with the small probability of
finding a (low-field) ZBCP in the presence of strong disorder,
and with the experimental situation, which involves sample
selection and fine-tuning. Unfortunately, these features are
also consistent with all the experimentally reported ZBCPs.

Finally, we consider a case of disorder strength σμ =
4 meV, which corresponds to the lower end of the strong
disorder regime. The results are shown in Fig. 20 using three
different scales for the magnitude of the zero-bias conduc-
tance: a “regular” scale, 0 − 4e2/h, in panels (a) and (b),
a low-conductance scale, 0 − 2e2/h (with conductance val-
ues larger than 2e2/h saturated to red), in panels (c) and
(d), and a high-conductance scale, 2 − 4e2/h (with conduc-
tance smaller than 2e2/h saturated to blue), in panels (e) and
(f). The results have the same general characteristics of the
strong coupling regime discussed above: no clear signature of
Majorana physics and a few small, uncorrelated (essentially
random) islands of large conductivity. Most of the features
have conductivity values lower than 2e2/h [see Figs. 20(c)
and 20(d)], with very few maxima exceeding the quantized
value [see Figs. 20(e) and 20(f)]. A few tiny quantized islands
may signal the presence of local (quasi-Majorana) physics.
This is similar to the experimental situation, where only a
small fraction of the parameter space consisting of (essentially
random) islands is consistent with large conductance values.
Observing such features requires a great amount of effort to
fine-tune various gate voltages to find them. On a quantitative
note, we point out that the density of zero-bias conductivity
features in Fig. 20 is higher than in Figs. 19(g) and 19(h),
which is consistent with an increased probability of having
low-field ZBCPs as disorder decreases. Qualitatively though,
Fig. 20 is characteristic of the strong disorder regime, with
all low-field features being associated with disorder-induced,
topologically trivial Andreev bound states.

We conclude this section with a summary of the main
results and a comment regarding their immediate relevance
to the experimental effort. We have introduced the concept
of “equivalent” disorder potentials, based on their long-
wavelength spectral properties. Using this concept, we have
argued that the random onsite disorder model is “equiv-
alent” to short-range disorder, e.g., disorder generated by
well-screened charge impurities. Based on the estimates of
physical disorder (i.e., impurity densities) from Sec. II and
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FIG. 20. “Phase diagrams” representing zero-bias conductance
maps as functions of the Zeeman field (Vz) and chemical potential
(μ) for a disordered system with σμ = 4 meV. The left and right
columns correspond to tunneling into the left and right ends of the
system, respectively. (a) and (b) maps generated using a conductance
range from 0 to 4e2/h; (c) and (d) same data represented using a
conductance range from 0 to 2e2/h (with conductance values larger
than 2e2/h saturated to red); (e) and (f) same data represented using
a conductance range from 2e2/h to 4e2/h (with conductance smaller
than 2e2/h saturated to blue). The system parameters are the same as
in Fig. 19.

the results of Ref. [47], we have evaluated the strength
of the “equivalent” random onsite potential corresponding
to experimentally available hybrid nanostructures as being
σμ ≈ 5–20 meV. This places the experimental samples in-
side the strong disorder regime, which is characterized by
disorder-induced, topologically trivial conductance features
that emerge as small, isolated and essentially random island
in the parameter space. Observing such features would re-
quire sample and data post-selection and fine-tuning, which
is consistent with the actual experimental situation, further
confirming our disorder strength estimate.

Considering this situation, one should make the experimen-
tal investigation of disorder, together with a systematic effort
to reduce it, the top priorities in this field. In this context, we

note that reaching the intermediate disorder regime (which
would enable the observation of some Majorana features)
would require a reduction of the effective disorder potential
amplitude by a factor of 2.5–10, which implies reducing the
impurity density by 1–2 orders of magnitude. Finally, we
note that generating experimental “phase diagrams” similar
to those in Figs. 19 and 20 for multiple nominally identical
devices, which are completely within the existing technical
capabilities, would provide valuable information regarding the
actual disorder strength in the available samples. In this con-
text, even finding that 98% of the samples show nothing (i.e.,
produce basically featureless phase diagrams), would repre-
sent a significant result. By contrast, showing (only) some
“interesting” ZBCPs that occur in 2% of the samples (after
significant fine-tuning) is not only potentially misleading, but
provides no information regarding the underlying disorder.
One definitive conclusion of our results is that experimen-
talists should be strongly discouraged from just publishing
claims of MZM observation through large ZBCPs, which are
never generic and always first post-selected and further fine-
tuned, but should be strongly encouraged to publish (or at least
make available) all their data including all tunnel conductance
spectra showing no subgap features.

IV. SELF-CONSISTENT THEORY OF NANOSTRUCTURES
WITH DISORDER INDUCED BY SURFACE CHARGE

IMPURITIES

In this section, we perform two critical tasks: (i) we evalu-
ate the effective disorder potential generated by the presence
of charge impurities on the surface of the semiconductor
nanowire and (ii) we investigate the fate of Majorana physics
in a hybrid system with surface charge disorder. The first
task is accomplished using a microscopic model of the nanos-
tructure that incorporates the electrostatic environment (e.g.,
gate potentials, free charge, etc.) by solving the corresponding
Schrödinger-Poisson problem self-consistently. Next, based
on the effective disorder potential calculated self-consistently,
we determine the Majorana separation length [47] defined
as the minimum distance between the leftmost Majorana
mode and the other Majorana modes associated with low-
energy BdG states within a certain energy window. We find
that, for typical values of the surface charge density char-
acterizing InAs nanowires, the Majorana separation length
is comparable to the characteristic length scale of the Ma-
jorana modes over the relevant range of control parameters
(i.e., Zeeman field and chemical potential). This implies that
the Majorana modes are strongly overlapping and shows that
Majorana physics is inconsistent with this level of surface
charge-induced disorder. We note that the calculation of the
charge impurity-induced effective disorder potential presented
below goes beyond the independent impurity approximation
used in Ref. [47]. More specifically, the potential generated
by multiple impurities is not calculated as a sum of single-
impurity potentials (calculated separately), but is determined
directly for a finite wire containing many surface impurities.
While the independent impurity approximation is expected to
be accurate in the low/intermediate disorder regime, the non-
perturbative multi-impurity calculation presented here is the
appropriate approach to strong disorder. The results confirm
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FIG. 21. Schematic representation of a hybrid device consisting
of a semiconductor (InAs) nanowire (red) of diameter D proximity
coupled to a thin superconductor (Al) layer (green). Metallic gates
(blue) control the electrostatic environment. Charge impurities (yel-
low squares), each carrying charge Q, are randomly placed on the
facets of the nanowire that are not covered by Al and produce a
nonuniform potential along the length of the device.

our conclusion in Sec. III, namely that experimentally avail-
able samples are most likely in the strong disorder regime.

A. Modeling

We consider the semiconductor-superconductor hybrid de-
vice shown schematically in Fig. 21, which consists of a
semiconductor (InAs) nanowire (red) of diameter D proximity
coupled to a thin superconductor layer (Al; green) deposited
on two facets of the nanowire. Three metallic gates (blue) are
used to control the electrostatic environment, specifically to
tune the band edges of the low-energy subbands of the InAs
nanowire close to the Fermi level, so that Majorana physics
may occur. This includes a bottom gate, which is separated
from the InAs nanowire by a dielectric of thickness d , and two
side gates placed at a distance W from the nearest vertices of
the nanowire. With the exception of small details, this setup
corresponds to the hybrid semiconductor-superconductor de-
vices most frequently used in the experimental study of
Majorana physics [11–13,22,24,54,99–103]. The final and
most important ingredient included in the model are charge
impurities (yellow squares) placed randomly on the facets of
the InAs nanowire that are not covered by Al. These impurities
form a charge accumulation layer that is known to occur on
the surfaces of InAs nanowires [104] and are believed to be
generated by either ionized hydrogen impurities attaching to
the surface or native point defects [105,106]. We note that
a surface charge has been included in a few previous theo-
retical investigations of Majorana nanostructures [107–110].
However, these studies assumed a uniform surface charge
density on the uncovered facets of the device, which yields a
translation-invariant potential along the length of the wire. In
stark contrast, our use of randomly placed impurities to model
the surface charge disorder produces an electrostatic potential
with large fluctuations along the length of the system. These
potential fluctuations act effectively as disorder within the
device, which can be detrimental to Majorana physics [40,46–
48,50,52,94,111–118].

The first natural question that we address concerns the
magnitude and characteristic length scale of the effective dis-
order potential that one can expect in a typical hybrid device
containing an InAs nanowire due to the presence of surface
charge impurities. This is done by self-consistently solving

the Schrödinger-Poisson equations of the 3D hybrid system
shown in Fig. 21. The InAs nanowire is modeled using an
effective mass Hamiltonian,

H = − h̄2

2m∗ ∇2 − eφ(r), (4)

where m∗ is the effective mass, ∇2 is the Laplacian operator
in 3-dimensional space, and φ is the electrostatic potential
inside the wire. The electrostatic potential satisfies the Poisson
equation,

∇ · [ε(r)∇φ(r)] = −ρ(r), (5)

where ρ is the charge density and ε is a material dependent
dielectric constant taking different values inside the dielectric,
InAs nanowire, and surrounding vacuum. Additionally, the
electrostatic potential φ satisfies Dirichlet boundary condi-
tions on the metallic gates: φ = VL,VR,VBG on the surface of
the left, right, and bottom gates, respectively. In addition, the
Dirichlet boundary condition φ = VSC at the InAs-Al interface
is used to account for the band bending induced by the work
function difference between the two materials [83,119–121].
The charge density ρ can be written as the sum of two terms,

ρ(r) = ρ f (r) + ρimp(r), (6)

where ρ f is the free charge density within the wire and ρimp

is the charge density generated by the surface impurities. In
turn, the free charge depends upon the occupied states and is
explicitly given by

ρ f (r) = −2e
∑

n

|ψn(r)|2 f (En), (7)

where ψn is the nth eigenstate of the Hamiltonian in Eq. (4)
with energy En, f is the Fermi function, and the factor of 2
accounts for spin degeneracy. Equations (4), (5), and (7) are
collectively referred to as the Schrödinger-Poisson equations
and require a self-consistent solution [83,119]. Additional
details regarding the model, along with the method for self-
consistently solving the Schrödinger-Poisson equations, can
be found in Appendix E.

A key element of our modeling is the assumption that the
charge impurities are randomly distributed over the (uncov-
ered) surface of the semiconductor nanowire, which implies
that the impurity charge density ρimp explicitly breaks trans-
lation invariance along the wire (which we will take as
the z direction). It is convenient to separate the surface
charge density into the (translation invariant) average den-
sity, ρ̄imp(x, y), and a fluctuation component, ρ ′

imp(r), i.e.,
ρimp(r) = ρ̄imp(x, y) + ρ ′

imp(r). Thus the total charge density
can be rewritten as

ρ(r) = ρo(x, y) + ρ ′
imp(r) + ρred(r), (8)

where ρo is the (translation invariant) total charge density cor-
responding to ρ ′

imp = 0, i.e., the charge density for a system
with uniform surface charge and specified electrostatic envi-
ronment (e.g., gate voltage values, work function difference,
etc.), while ρred accounts for the redistribution of free charge
due to the presence of surface charge fluctuations, ρ ′

imp, (i.e.,
it represents the screening charge). Note that ρo includes both
ρ̄imp(x, y) and a translation-invariant component of the free
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charge. The solution of the Schrödinger-Poisson equations
yields all these components of the total charge density, as well
as the corresponding components of the electrostatic potential.
To investigate the effects of charge impurity-induced disorder,
the relevant quantities are the matrix elements of the potential
fluctuation with the transverse wave functions corresponding
to the uniform system (see Appendix E for details),

V αβ

eff (z) =
∫

ϕ∗
α (x, y)[φ′

imp(r) + φred(r)]ϕβ (x, y) dxdy, (9)

where φ′
imp and φred are the components of the potential

corresponding to ρ ′
imp and ρred, respectively, and ϕα is the

normalized transverse orbital of the α subband for a uniform
system (i.e., a system with with ρ = ρo). In particular, ne-
glecting the interband coupling, we can define the effective
disorder potential as Vdis(z) = V α,α

eff (z), with α corresponding
to the subband nearest to the Fermi level. Note that the average
disorder potential is approximately zero, i.e., 〈Vdis〉 ≈ 0. Using
the disorder potential provided by the self-consistent solution
of the Schrödinger-Poisson equations for a 3D structure with
a specific (random) distribution of surface impurities, we can
map the problem into an effective 1D model [8,9] defined by
the BdG Hamiltonian,

HBdG =
(

− h̄2

2m∗ ∂2
z − μ − iαRσy∂z + Vzσz

)
τz

+ �σyτy + Vdis(z)τz.

(10)

Here, μ is the chemical potential, αR is the Rashba spin-orbit
coefficient, Vz is the Zeeman energy, � is the superconducting
pairing amplitude, Vdis is the (effective) disorder potential,
and σi and τi, with i = {x, y, z}, are Pauli matrices acting
on the spin and particle-hole spaces, respectively. To better
understand the effects of disorder, we will also consider the
“reduced disorder” problem defined by the effective potential
Vdis(z; β ) = βV αα

eff (z), with β � 1 being an adjustable param-
eter. Note that β = 0 corresponds to a clean system, while
β = 1 corresponds to the “actual” disorder potential of a
system with a given distribution of surface charge impurities,
which is determined by the self-consistent solution of the
Schrödinger-Poisson problem, as described above.

B. Results

In this section, we solve numerically the Schrödinger-
Poisson problem corresponding to the system represented in
Fig. 21, calculate the effective disorder potential generated by
the surface impurities, and investigate the low-energy physics
described by the effective 1D Hamiltonian given by Eq. (10)
in the presence of this surface disorder. We focus on a hybrid
system with the following parameters: effective mass m∗ =
0.026me, with me being the bare electron mass, wire diame-
ter D = 100 nm, lateral gate spacing W = 30 nm, dielectric
thickness d = 50 nm, charge Q = e for each surface impurity,
supercell length L = 1 μm. Additionally, the relative dielec-
tric constants for the InAs nanowire, SiO2 dielectric, and
surrounding vacuum are εInAs = 15.15, εdiel = 3.9, and εvac =
1, respectively. The band-bending at the InAs-Al interface
corresponds to VSC = 0.25 V, which is similar to the value
reported in Ref. [122]. The average surface charge density is
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FIG. 22. Subband occupation as a function of back gate voltage
VBG for a uniform system with VL = VR = 0, VSC = 0.25 V, and
surface charge density σ = 0.5 × 1012 e cm−2, which translates to
a volume charge density ρ = 1.54 × 1017 e cm−3. Note that in this
calculation the surface impurity density fluctuations are assumed to
be zero, ρ ′

imp = 0. The dashed red line indicates the expected voltage
associated with the onset of holes near the bottom of the wire.

σ = 0.5 × 1012 e cm−2, which represents the lower end of the
range found in the literature [104] and used in other theoretical
studies of Majorana nanowires [107–110]. This translates into
a linear charge density of λ = 103 e μm−1 and a volume
charge density of ρ = 1.54 × 1017 e cm−3. We emphasize that
this represents an optimistic estimate of the impurity density,
if we take into account the previously used values, as well as
our results in Sec. II. This relatively “low” impurity density
puts this situation at the most optimistic end of our estimated
disorder based on the 2D mobility analysis of Sec. II.

We begin with a uniform system (i.e., a system with no
charge density fluctuations, ρ ′

imp = 0) and calculate the sub-
band occupation as a function of the applied back gate voltage
VBG. The potential of the side gates is set to zero, VL = VR = 0.
Since ρimp = ρ̄imp(x, y) is independent of z, the system is
translation invariant and the subbands are well defined. The
results are shown in Fig. 22 for a voltage range −5 V �
VBG � 0. Note that for VBG = 0 (no applied back gate volt-
age) there are 23 occupied subbands (each being double spin
degenerate), clearly placing the system in the high-occupancy
regime [109]. This is due to the presence of positive surface
charges, as well as the band bending at the semiconductor-
superconductor interface. The number of occupied subbands
can be reduced by applying a negative gate voltage. However,
there is a limit to how much the occupancy can be reduced
(i.e., a maximum |VBG| value) before the emergence of holes
localized near the bottom of the nanowire (i.e., close to the
back gate). Roughly, this occurs when the electrostatic poten-
tial becomes sufficiently negative to overcome the band gap
between the conduction and valence bands, i.e., for Egap ≈
−eφ(r), where Egap = 0.418 eV [123] and r is a position
near the bottom of the InAs nanowire. The dashed red line in
Fig. 22 indicates this limit; for more negative voltage values
holes are expected to emerge, creating a dissipative normal
channel parallel to the conduction subbands designed to har-
bor Majorana physics. Note that, unlike electrons, the holes
are localized away from the semiconductor-superconductor
interface and are not proximitized by the superconductor.
Hence, the dissipative nature of the hole channel.
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FIG. 23. Effective disorder potential Vdis(z) = V α,α
eff (z) for a sys-

tem with the bottom of the α subband tuned near the Fermi level,
where (a) α = 13, which corresponds to a back gate voltage VBG =
−2.78 V, and (b) α = 16, which corresponds to VBG = −1.90 V. The
side gates are at zero voltage, VL = VR = 0.

Next, we tune VBG so that the bottom of one of the sub-
bands is at the Fermi level and solve the Schrödinger-Poisson
equations again, this time explicitly including the surface
charge density fluctuations, ρ ′

imp, associated with the (ran-
dom) nonuniform distribution of surface charge impurities.
The effective disorder potential is then calculated from the
self-consistent solution using Eq. (9) with α = β correspond-
ing to the top occupied subband. Two examples of effective
disorder potentials for a system with the 13th and the 16th
subbands tuned near the Fermi level are shown in Fig. 23,
panels (a) and (b), respectively. The first relevant feature is the
relatively large magnitude of the effective potential, as com-
pared to the typical energy scale associated with Majorana
physics. Indeed, the potentials shown in Fig. 23, panels (a)
and (b), have maximum amplitudes of approximately 10 and
8 meV, respectively. This is larger than the pairing potential
� by a factor of 33 and 27, respectively. In addition, the root
mean square values 〈(V α,α

eff )2〉1/2 of the effective potentials in
Figs. 23(a) and 23(b) are 3.72 and 3.47 meV, respectively,
larger than � by a factor of about 12. Clearly, such a strong
disorder potential should have a major impact on the Majorana
physics. The second key feature of the disorder potential gen-
erated by surface charge impurities is its characteristic length
scale. To quantify this property, we calculate the correlation
length lc defined as the full width at half maximum for the
correlation function,

Cα (δ) =
√〈

V αα
eff (z)V αα

eff (z + δ)
〉
z, (11)

where α is the index of the subband tuned to the Fermi level
and 〈. . . 〉z represents averaging over the position z along the
wire for a given disorder realization. For the examples in
Figs. 23(a) and 23(b), the correlation length is lc = 64 and
70 nm, respectively. Note that this is roughly double the
correlation length found in Ref. [47] for a similar system
with an InAs nanowire of diameter D = 70 nm having charge
impurities placed within the wire.

At this point, we would like to reemphasize the key impor-
tance of the characteristic length scale of the disorder potential
in determining the impact of disorder on the low-energy
physics of the hybrid device. As discussed in Sec. III A,
the components of the disorder potential with characteristic
length scale comparable to or larger than the characteristic
Majorana “oscillation length,” λM ≈ 25–60 nm, have a major
impact on the low-energy physics once their amplitude be-
comes comparable to or exceeds the Majorana energy scale,
ε∗ ∼ 1 meV. From this perspective, the disorder potentials
shown in Fig. 23, which are characterized by length scales
comparable to λM and large amplitudes (well above ε∗) are
expected to have catastrophic effects on the Majorana physics.
The model calculations discussed below confirm this expecta-
tion.

Before we investigate the impact of surface-induced disor-
der on low-energy physics, we address an important technical
aspect regarding the calculated effective disorder potential,
namely the role of screening by the free charge in suppressing
the potential fluctuations. To quantify this effect, we define the
screening factor

Zα =
√√√√〈(

V αα
eff

)2〉
z〈(

V αα
imp

)2〉
z

, (12)

where V αα
imp is the effective potential given by Eq. (9) with

φred = 0, which does not take into account the contribution
from the redistribution of free charge. Note that V αα

imp in-
cludes the screening by the superconductor and the metallic
gates. For the effective potentials in Figs. 23(a) and 23(b),
the screening factors are Z13 = 0.37 and Z16 = 0.32, respec-
tively. Basically, the screening by the free charge reduces
the potential fluctuations by about 60−70%, but even the
screened charge fluctuations are strong. Finally, we note that
similar values for the effective potential amplitude, correlation
length, and screening factor were found for other disorder
realizations that we considered.

Turning now our attention toward the low-energy physics
of the hybrid device in the presence of surface disorder, we
incorporate the effective potential calculated self-consistently
into the 1D minimal model described by the BdG Hamiltonian
in Eq. (10) and determine the properties of the low-energy
modes. The additional system parameters characterizing the
disordered finite wire are the Rashba spin-orbit coupling,
αR = 200 meV Å, the induced superconducting pairing, � =
0.3 meV, and the length of the wire, Lz = 3 μm. Note that
the values for αR and � are rather optimistic for InAs/Al
hybrid structures. The effective disorder potential Veff used
in the finite wire calculations is shown in Fig. 24. We note
that this potential profile is obtained by “stitching” together
the effective potentials given by three separate self-consistent
calculations with a supercell of length L = 1 μm and cor-
responding to different impurity distributions. The system
has the 13th subband tuned near the Fermi level. To avoid
sudden jumps associated with stitching together the effective
potentials, they are overlapped within “boundary” regions of
length 100 nm; the resulting potential transitions linearly from
one potential realization to the other within each boundary
region. Note that this construction of the effective disorder
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FIG. 24. Effective potential profile Veff (z) for a wire of length
Lz = 3 μm having a surface charge density σ = 0.5 × 1012 e cm−2

in the presence of a back gate potential VBG = −2.78 V, which
corresponds to the chemical potential being at the bottom of the 13th

subband. The results in Fig. 25 are calculated using this profile and
different values of the “reduction coefficient” β, i.e., the disorder
potential Vdis(z; β ) = βVeff (z).

potential is based on the implicit assumption that the potential
is determined by the “local” distribution of charge impurities
within a neighborhood no larger than 1 μm.

To characterize quantitatively the Majorana physics in the
presence of surface charge disorder, we define the Majorana
separation length �sep as a measure of the spatial separation
of the Majorana modes associated with the low-energy BdG
states. More specifically, let ψε be an eigenstate of the BdG
Hamiltonian in Eq. (10) with energy ε > 0. As a result of
particle-hole symmetry, ψ−ε = τxψ

∗
ε is guaranteed to be an

eigenstate of the BdG Hamiltonian having energy −ε. We
define the Majorana wave functions

χε1 = 1√
2

(ψε + ψ−ε ), (13)

χε2 = i√
2

(ψε − ψ−ε ), (14)

which, by construction, satisfy the Majorana condition,
τxχ

∗
εν = χεν . Note that, in the language of the second quanti-

zation, this condition translates into γ †
εν = γεν , where γ †

εν is a
Majorana creation operator for the mode χεν . Next, we define
the Majorana center of mass (MCM),

〈zεν〉 =
∑
iστ

zi|(χεν )iστ |2, (15)

where i, σ, and τ are position (i.e., lattice site), spin, and
particle-hole indices, respectively. We calculate the MCMs
〈zεν〉 of all Majorana modes corresponding to ε < εcut, where
εcut < � is a cutoff energy, and order them so that 〈z〉1 �
〈z〉2 � . . . , where 〈z〉i is the ith smallest 〈zεν〉 value. Finally,
we define the Majorana separation length as �sep = 〈z〉2 −
〈z〉1. In other words, the Majorana separation length is de-
fined as the minimum distance between the leftmost Majorana
mode with ε < εcut and all other Majorana modes within the
cutoff energy window. Note that if a BdG state with |ε| < εcut

does not exist, the Majorana separation length is simply un-
defined. Also, note that there is an ambiguity in the definition
of the Majorana wave functions in Eqs. (13) and (14), since

multiplying ψε by an arbitrary phase creates two new Majo-
rana wave functions that are generically a superposition of the
two original Majorana wave functions. We choose the phase
so that |〈zε1〉 − 〈zε2〉| is maximized, i.e., the distance between
the two MCMs is largest.

The physical reason for defining �sep in this manner is
the following. First, by including 〈z〉1 in the definition we
make sure that any low-energy state capable of generating
a zero-bias conductance peak (ZBCP) for charge tunneling
into the left end of the system will be characterized by a
well-defined value of �sep. Note, on the other hand, that �sep

being well-defined does not guarantee the emergence of a
ZBCP (or even a split ZBCP) in charge tunneling, e.g., if the
leftmost Majorana mode is localized away from the end of the
wire and does not couple to the normal lead. Also note that one
can define a similar Majorana separation length involving the
rightmost Majorana mode and its “nearest neighbor”, which
would be relevant for charge tunneling into the right end of
the wire. Second, this definition of �sep provides a convenient
tool for distinguishing topologically protected Majorana zero
modes, which are characterized by �sep ∼ Lz (i.e., the MZMs
are localized at the opposite ends of the system), partially
separated Majorana modes associated with local (remnant)
Majorana physics, which correspond to ξ � �sep < Lz (i.e.,
the Majorana separation is smaller than the length of the
system, but larger than the Majorana localization length, ξ ),
and trivial Andreev bound states, which are characterized by
�sep < ξ (i.e., the two leftmost Majorana modes are, practi-
cally, on top of each other).

Equipped with this definition of the Majorana separation
length, we investigate the presence of Majorana physics (or
remnant/local Majorana physics) in a hybrid system with dis-
order induced by surface charge impurities by calculating �sep

as a function of Zeeman field and chemical potential using the
1D effective model given by Eq. (10) with a disorder potential
Vdis(z; β ) = βVeff , where Veff is the self-consistent effective
potential shown in Fig. 24. The results corresponding to β =
0, 0.1, 0.25, 0.5, and 1 are shown in Figs. 25(a)–25(e),
respectively. In each panel the topological phase boundary
of the clean system, which is given by the condition Vz =√

μ2 + |�|2, is marked by a red line. The cutoff energy used
in the definition of �sep is εcut = 0.08 meV.

First, we point out that for the clean system [see Fig. 25(a)],
the Majorana separation length clearly distinguishes between
the topological superconducting phase, which is characterized
by values of �sep/Lz of order 1 (yellow region), and the trivial
phase, which is characterized by the absence of low-energy
states (�sep undefined, cyan region) or by the presence of
topologically trivial in-gap Andreev bound states (also called
intrinsic Andreev bond states [124]) that generate low val-
ues of �sep (black region). Next, we turn on the disorder
to one-tenth of its actual strength, β = 0.1. As shown in
Fig. 25(b), the region characterized by large Majorana separa-
tion (yellow) shrinks, while small “islands” of remnant (local)
Majorana physics characterized by �sep/Lz ∼ 0.2–0.5 emerge
both inside the nominally topological region as well as outside
it. Further increasing the disorder strength to β = 0.25 [see
Fig. 25(c)] and β = 0.5 [see Fig. 25(d)] results in the dis-
appearance of well-separated Majorana modes characterized
by �sep ∼ Lz, while the “islands” of remnant (local) Majorana
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FIG. 25. Majorana separation length as a function of chemical
potential μ and Zeeman energy Vz for a system of length Lz =
3 μm in the presence of a disorder potential Vdis(z; β ) = βVeff (z),
where Veff is the effective potential shown in Fig. 24, which was
calculated self-consistently for a wire with surface charge density
σ = 0.5 × 1012 e cm−2. The disorder reduction coefficient takes the
values: (a) β = 0 (clean system), (b) 0.1, (c) 0.25, (d) 0.5, and
(b) 1 (full disorder strength). The red line in each panel corresponds
to the topological phase boundary of the clean system, which is
given by the condition Vz =

√
μ2 + |�|2. Light blue regions indicate

the absence of any BdG state within the low-energy window |ε| <

εcut = 0.08 meV, which makes the Majorana separation length un-
defined. Yellow (�sep ∼ Lz) indicates the presence of well-separated
(topological) Majorana zero modes, black (�sep < 0.2Lz) corresponds
to trivial low-energy Andreev bound states, while the intermediate
regime corresponds to the presence of partially separated Majorana
modes associated with remnant (local) Majorana physics.

physics tend to migrate outside the nominally topological
region (marked by the red line) into the trivial region, toward
larger values of the chemical potential. Finally, in the presence
of the full strength disorder potential [β = 1; see Fig. 25(e)]
even the “islands” of remnant (local) Majorana physics associ-
ated with the presence of partially separated Majorana modes
shrink and practically disappear, signaling the absence of Ma-
jorana physics. Also, note that almost the entire parameter
space shown in Fig. 25(e) corresponds to small values of �sep

(dark region), indicating the ubiquitous presence of disorder-
induced low-energy trivial Andreev bound states consisting
of nearly overlapping Majorana modes. The maps in Fig. 25
should be compared with the “phase diagrams” in Fig. 19.
Note that in a clean system [Figs. 25(a), 19(a) and 19(b)], or in
the presence of weak disorder [Figs. 25(b), 19(c) and 19(d)],
the area characterized by large Majorana separation length

corresponds to conductance features associated with Majo-
rana physics (i.e., stable conductance quantization, Majorana
oscillations, and end-to-end correlations). By contrast, the
experimentally relevant strong disorder regime [Figs. 25(e),
19(g), and 19(h)] is characterized by the ubiquitous pres-
ence of disorder-induced (trivial) Andreev bound states with
�sep < ξ ; when the leftmost Andreev bound state happens to
be close enough to the end of the system to couple to the
tunneling probe (which is rather rare and purely random), a
large conductance feature emerges.

The analysis presented in this section has two significant
outcomes. First, we have calculated the effective disorder
potential generated by the random distribution of surface
charge impurities in a semiconductor-superconductor device
based on the self-consistent solution of a microscopic model
of the hybrid system. We found that the effective disorder
potential has amplitudes of the order of 10 meV, well above
the typical Majorana energy scale, and characteristic length
scales of the order of 50–80 nm, comparable to the typical
Majorana oscillation length. These results were based on a
rather optimistic estimate of the surface charge density (σ =
0.5 × 1012 e cm−2). Second, by determining the Majorana
separation length over a large window of control parameters,
we have shown that the calculated effective disorder potential
is inconsistent with the presence of Majorana physics. We note
that this result was obtained based on rather optimistic esti-
mates of the spin-orbit coupling and induced pairing potential.
Moreover, our results suggest that the presence of disorder
induced by surface impurities generates (topologically trivial)
low-energy Andreev bound states that are ubiquitous within
the relevant parameter space. By contrast, identifying an “ac-
cidental” Majorana island supporting local Majorana physics
and partially separated Majorana modes [similar to the “inter-
mediate” separation length features in Figs. 25(c) and 25(d)]
may require very significant sample selection and parameter
fine-tuning, if possible at all. Based on our results, a hybrid
system characterized by the systematic presence of remnant
Majorana islands requires the reduction of the disorder po-
tential amplitude by a factor of about 2–3 (i.e., amplitudes of
the order of 4–5 meV), assuming that the characteristic length
scale remains the same. Finally, obtaining genuine Majorana
zero modes would require the reduction of the disorder po-
tential amplitude by a factor of 5, or more, i.e., maximum
amplitudes below 2 meV. We mention that even the full dis-
order case here with β = 1 is an optimistic underestimate of
the currently prevailing InAs and InSb disorder as estimated
in Sec. II of this paper, and thus the emergence of topological
Majorana likely necessitates at least two orders of magnitude
reduction in the sample disorder.

V. CONCLUSION

We have carried out an evaluation of the disorder
that characterizes experimentally available superconductor-
semiconductor hybrid structures and a characterization of its
effects on the low-energy physics based on a multipronged
approach that addresses the three critical tasks associated with
this type of effort: estimating the (physical) disorder based
on available experimental data, calculating the corresponding
effective disorder potential, and simulating the low-energy
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physics in the presence of disorder. The physical disorder
estimates were obtained rather indirectly, from an analysis
of the transport data for corresponding 2D semiconductor
materials grown by the same growers who grow the nanowires
used in Majorana experiments (and using the same growth
chambers and processes). Since there is no direct experimental
information available on the amount of disorder in the SC-SM
Majorana structures, using our estimated disorder based on
the mobility data of the corresponding 2D materials is the best
one can do at this point in trying to develop some quantitative
feel for the realistic disorder level in hybrid superconductor-
semiconductor structures. In turn, this enables a more realistic
evaluation of the effects of disorder on the possible emer-
gence of topological superconductivity and Majorana modes
in semiconductor nanowire systems. To this end, we have
carried out two complementary Majorana simulations: the first
is based on the highly successful and widely used minimal
1D BdG model, with an effective disorder potential evaluated
based on our estimates of physical disorder (i.e., charge impu-
rity concentrations) provided by the 2D transport analysis and
on the results of Ref. [47] (regarding the effective potential
associated with charge impurities randomly distributed within
the semiconductor nanowire), while the second represents a
semi-realistic self-consistent calculation of the effective dis-
order potential associated with the presence of surface charge
impurities in a hybrid Majorana structure, as well as the im-
plications on the low-energy physics.

Our findings are sobering. Even assuming that the level
of disorder in the nanowires is the same as that estimated
from the measured 2D mobility (which is likely to be an
optimistic assumption, since the SC-SM structures should
have much more disorder arising from additional processing
and interfaces necessary in the multilayer SC-SM structures),
we conclude that topological superconductivity and Majorana
zero modes cannot emerge in systems with the currently
prevailing materials quality. We find that disorder-induced
trivial zero-bias conductance peaks associated with subgap
fermionic Andreev bound states do emerge in the nanowires
and occasionally mimic the local properties of Majorana zero
modes, but such trivial zero-bias peaks are neither generic nor
stable as a function of the control parameters, in contrast to
the Majorana zero modes. Observing these trivial zero-bias
peaks require post-selection and fine-tuning and they never
appear in tunneling from both ends, as nonlocal Majorana
zero modes do. Also, these disorder-induced trivial ZBCPs
do not manifest Majorana oscillations and do not manifest
stable 2e2/h quantization (as a function of the control pa-
rameters). This phenomenology is characteristic of what we
dubbed as the strong disorder regime and is strikingly similar
to the experimental situation, which strongly suggests that our
analysis does not overestimate the actual disorder strength, as
explicitly intended in this study.

In connecting our work with the existing theoretical work
in the literature, we mention that all the low-field zero-bias
peaks that we find in the strong disorder regime are so-called
“ugly” peaks, as dubbed in Ref. [40], which correspond to
disorder-induced trivial Andreev bound states. These peaks
can have large-conductance values, as observed in recent ex-
periments [17,30] and discussed in recent theoretical papers
[45–47]. Even in the most disordered samples, where most

simulations (i.e., simulations corresponding to most disorder
realizations) find nothing of interest, there are some trivial
ZBCPs showing up occasionally, which could be postselected
(and perhaps fine-tuned by adjusting the tunnel barrier po-
tential and other parameters) to produce ∼2e2/h zero-bias
peaks. Note, however, that such peaks are never generic or
stable and they are local, without manifesting in tunneling
from both ends. Also, these trivial peaks do not manifest
any Majorana oscillation patterns, which are a hallmark of
MZMs at high Zeeman fields and/or short nanowires, as used
mostly in current experiments. We also point out that partially
separated Majorana modes [48,90], which are associated with
local Majorana physics and interpolate continuously between
trivial ABSs and MZMs, are expected to emerge in the “in-
termediate” disorder regime, i.e., for impurity concentrations
significantly lower than our current estimates, but higher than
the levels required for the presence of topological super-
conductivity and MZMs. The features associated with these
modes [48] could provide practical landmarks that may be
useful in assisting the effort of reducing the disorder. In this
context, we point out that disorder potentials dominated by
long-wavelength components (like, e.g., the effective potential
calculated in Sec. IV) tend to favor the emergence of partially
separated Majorana modes, while short-range potentials (e.g.,
the onsite random potential model) tend to destabilize these
modes. Consequently, investigating theoretically the features
associated with partially separated Majorana modes, which
are expected to be observed once the intermediate disorder
regime becomes accessible, should be based on properly de-
termined effective potentials. We emphasize, however, that
our current work shows definitively that the disorder in the
currently available samples is far above this intermediate dis-
order regime, and no existing experiment has ever accessed
the regime of partially separated Majorana modes, let alone
approaching the weak disorder regime where the topological
MZMs exist.

For InAs- or InSb-based SC-SM hybrid structures with
Al as the parent superconductor, it has recently been shown
[47] that topological MZM realization requires a disorder
no stronger than a few (∼10) charged impurities per micron
length of the nanowire, which translates to an equivalent
3D impurity density of about 1015 cm−3. Of course, the
real systems are complex, and impurities/disorder arise from
various sources and at various interfaces, with no sim-
ple one-parameter disorder characterization being an exact
description. But, in view of a complete lack of any avail-
able disorder characterization information available for the
nanowire samples in the SC-SM platforms, our current work
shows, through a detailed mobility analysis of the corre-
sponding 2D semiconductor systems grown under similar
conditions, that a single parameter disorder characteriza-
tion using an effective 3D unintentional random background
charged impurity density of the semiconductor is an effective
disorder diagnostic capable of an accurate description of the
2D carrier density dependence of the measured mobility. The
effective disorder we extract from our detailed mobility anal-
ysis corresponds to a random background charged impurity
density ranging between 1017 and 1019 cm−3, which is 2 to
4 orders of magnitude larger than the limit consistent with
the realization of topological MZMs in InAs/Al and InSb/Al
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SC-SM platforms. Dimensional conversion of our 3D impu-
rity density to the 1D nanowires yields an estimated random
charged impurity concentration of 50–2000 impurities per mi-
cron, which is a factor of 10–400 larger than the expected limit
for MZM realization. In terms of the 2D mobility numbers, as
measured in the experiments analyzed in detail in the current
work, we need InAs and InSb 2D mobility to increase to
100 000–300 000 cm2 V−1 s−1, compared with the current 2D
mobility of 10 000–30 000 cm2 V−1 s−1 which we analyzed
in Sec. II. This of course involves the key assumption that in
going from 2D samples to 1D nanowires the effective disorder
remains the same, which is highly unlikely as the additional
processing steps and the additional interfaces in the SC-SM
platforms (as compared with the 2D systems) are likely to
degrade the sample quality in 1D nanowires. Our numbers
for the necessary 2D mobility values should therefore be
taken as an optimistic lower limit. An earlier analytical work
[53] came to a minimum 1D mobility estimate of ∼100 000
cm2 V−1 s−1 using the rather naïve criterion that the transport
level broadening should be less than the induced topologi-
cal gap estimated to be 0.1 meV, and our detailed theory is
approximately consistent with this simple estimate as well.
Perhaps the best single disorder number to keep in mind is
that the charged impurity density should be no more than 10
per micron of the nanowire, and the current samples appear to
have, based on our estimates in the current work, ∼50–2000
such impurities per nanowire, necessitating at least an order
of magnitude improvement in the nanowire quality before
topological MZMs are realized in the SC-SM platforms.

Very recent developments in Eindhoven have led to InSb
nanowire growth with mobilities ∼ 4 × 104 cm2 V−1 s−1 for
wires of approximate 1–2 μm length [125]. Unfortunately, the
carrier densities in these nanowires are unknown, and hence
it is not possible for us to figure out the sample quality or
the actual impurity content of these wires. Assuming the best
possible scenario, these new InSb wires are likely to have a 3D
impurity concentration of 1017 cm−3 bringing them in more
or less the same level of cleanliness as the InAs samples from
Purdue [57], both still roughly a factor of 100 too dirty for
the Majorana manifestation. It is, however, encouraging that
there have been improvements in growth conditions bringing
both InSb and InAs materials within a factor ∼100 of the
requisite impurity level. Given that ultrahigh mobility GaAs
samples exist with 3D impurity concentration <1013 cm−3

[126], we can be optimistic that further improvement in ma-
terials growth will lead to SC-SM hybrid Majorana platforms
with sufficient cleanliness leading to the manifestation of the
non-Abelian topological MZM modes.

Before concluding, we mention that our work leaves out
many effects, which may be relevant for the Majorana realiza-
tion in nanowires, as we focus on what is generally believed
to be the most significant obstacle hindering the experimental
observation of topological Majorana zero modes, namely ran-
dom unintentional background disorder in the system. Thus
orbital effects of the magnetic field are ignored in our the-
ory, although it is possible, perhaps even likely, that such
orbital effects lead to the eventual quenching of the bulk
superconductivity in the parent superconductor itself. If so,
then this orbital effect would lead to a stronger manifestation
of disorder than found in our current work because the in-

duced superconducting gap due to proximity effect would be
much lower, consequently making the disorder effects more
detrimental. Our results should thus be construed as the most
optimistic estimate of the minimal disorder necessary for the
experimental realization of the topological Majorana modes
in the currently used InAs or InSb based Majorana nanowires.
The fact that this minimal estimated disorder is already much
higher than that existing in current samples indicates that
a substantial materials effort is necessary leading to much
cleaner nanowires for further progress. In this context, it is
encouraging that the disorder content in the best MBE-grown
GaAs layers is at the level of ∼1013 cm−3 [127], which is
roughly two orders of magnitude lower than our estimated
minimal disorder necessary for the practical realization of the
Majorana modes, providing considerable optimism that the
laboratory realization of topological Majorana zero modes is
highly probable in the near future. We also mention that most
of the random disorder is likely to reside on the nanowire
surface, and therefore, it is possible that the superconductor it-
self may screen some of this disorder, effectively reducing the
disorder effect. Calculating the importance of such screening
by the superconductor is not possible at this point since even
the impurity density in the nanowire is unknown, let alone
their locations on the surface (and obviously, the details of
such screening would depend on the impurity distribution on
the nanowire surface), but the possibility of such a screening
certainly exists. On the other hand, it is also possible that
the superconductor will introduce effective additional disorder
from the metal through a “disorder proximity effect” [116],
somewhat nullifying the screening effect. These details of the
effects of the metal as well as the orbital effect of the magnetic
field can be included in future theories once more details
are available about the actual impurity content and its spatial
distribution in the nanowire. We believe that right now our
detailed quantitative considerations provided in the current
work should serve as a useful guide to Majorana experiments
with a goal of reducing the disorder content down to the
equivalent of 1015 cm−3 charged impurity concentration in the
system.

Our work establishes that the current InAs/Al and InSb/Al
SC-SM nanowire samples are far too disordered for the
observation of Majorana signatures, and all experimentally
observed zero-bias conductance peaks so far arise from
disorder-induced Andreev bound states through careful post-
selection and fine-tuning. In some sense, this conclusion,
although disappointing, is not disastrous because we now
clearly know the reason underlying the absence of topological
Majorana zero modes in experiments. It is because the sam-
ples are far too disordered, and fortunately, this is a soluble
problem with improved materials, growth, and fabrication. An
order of magnitude or so decrease in the number of effective
impurities (to 10 or below per micron) in the nanowire should
be achievable and all experimental activity should focus on
studying improved samples. Our work shows that one can
always find impressive-looking zero-bias conductance peaks
in nanowires, no matter how disordered they are, through post-
selection of the data taken on many samples. This is because
even in the presence of extreme disorder, where most sam-
ples produce no subgap features, some samples will manifest
zero-bias peaks which may occasionally mimic Majorana zero
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FIG. 26. Plot of the experimental mobility as a function of n − nc.

modes, although they will always lack the key requirements
of stability, nonlocality, Majorana oscillations, and generic
appearance without fine-tuning. Further studies of such trivial
zero-bias peaks by themselves, without sample improvement,
will not take us closer to the goal of realizing true topological
Majorana zero modes. In this context, we point out that gen-
erating experimental “phase diagrams” over extended regions
of the parameter space and for multiple nominally identical
devices, which is completely within the existing technical
capabilities, would provide valuable information regarding the
actual disorder strength in the available samples. In addition
to improving disorder, experimental efforts must focus on
enabling the applied magnetic field to increase further without
the collapse of the parent superconductivity, as happens now
universally in all Majorana nanowire experiments. The serious
issue with this bulk gap collapse is that we have no way of
guaranteeing that such a vanishing of all superconductivity is
not happening already below the topological quantum phase
transition critical field, and if so, no Majorana will ever arise
in the system, even in a pristine clean sample with no disorder,
since the topological regime is then simply inaccessible. There
are several ways of assuring that the topological regime with
a critical field above the TQPT point is accessible: (1) Better
experimental design avoiding the bulk orbital penetration of
the applied magnetic field in the parent superconductor; (2)
using parent superconductors with very large Hc2 values; (3)
increasing the induced SC gap by better interface engineering
or by using a parent SC with a larger gap; and (4) increase
the g-factor of the nanowire material so that the TQPT critical
field decreases.

Finally, we mention that although we focus on the SC-SM
nanowire Majorana platforms because of the obvious reason
that it is by far the most-studied and the most-successful of
all MZM searches, our general results on the role of disorder
apply to all Majorana platforms. Typically, semiconductors
have much better electronic quality and much higher mobility

than metallic systems, and therefore, we believe that other
Majorana platforms such as ferromagnetic chains or Fe-based
superconductors, being metal-based, have hopelessly huge
amount of disorder with no hope of sample improvement as
there is for semiconductor-based Majorana devices. We be-
lieve that the disorder problem is far worse in any metal-based
Majorana platform than the SC-SM structures we focus on in
the current work.

ACKNOWLEDGMENT

This work is supported by the Laboratory for Physical
Sciences and the Microsoft Corporation.

APPENDIX A: TRANSPORT THEORY

In this section, we introduce the Boltzmann formalism used
to obtain the transport results in the main text. The central
quantity for the calculation of the transport mobility is the
transport relaxation time τt , which, at zero temperature, is
directly related to the mobility through the well-known Drude
formula μ = eτt/m. Within the leading order Born approxi-
mation, the relaxation time for 2D charge carriers at T = 0 is
given by

1

τ
(α)
t

= 2π

h̄

∫
N (α)

i (z)dz
∫

d2k′

(2π )2

∣∣V (α)
k−k′ (z)

∣∣2

× (1 − cos θk,k′ )δ[E (k) − E (k′)], (A1)

where α indicates the type of disorder limiting the mobil-
ity, N (α)

i is the 3D density of impurities, Vk−k′ (z) is the
electron-impurity interaction, θk,k′ is the scattering angle be-
tween the incoming state (k) and outgoing state (k′), and
E (k) = h̄2k2/2m is the energy dispersion of 2D charge car-
riers. For short-range scatterers (such as dislocation, point
defect, atomic vacancy), the impurity potential Vq is extremely
localized in real space, and thus is given by a constant in the

FIG. 27. Numerically extracted exponent obtained through α = d ln μ

d ln n from the InAs transport data from the Copenhagen group of
Krogstrup.
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FIG. 28. (a) Peak mobility and (b) percolation critical density for different samples. (c) Plot of the peak mobility as a function of the
percolation critical density.

momentum space, i.e., Vq = V0. Note that V0 can be factored
out of the integral since it is a constant, and thus V 2

0 N (α)
i can

be considered as a single parameter in transport calculations.
For long-range Coulomb scatterers, the disorder potential is
written as

|Vq(z)|2 =
∣∣∣∣ 2πe2

κ[q + qTFF (q)]

∣∣∣∣2

e−2q|z|Fi(q), (A2)

where q = |q|, qTF = 2me2/κ h̄2 is the 2D Thomas-Fermi
wave vector, κ denotes the background static dielectric con-
stant, and z is the separation of the charged impurities from the
2D layer of carriers. Here F (q) and Fi(q) are the form factor
of electron-electron interaction and electron-impurity inter-
action, respectively, arising from the finite thickness of the
quantum well associated with the electron confinement wave
function φ(z) = √

a/2 cos (πz/a) for |z| < a/2, and given by
[128]

F (q) = 3(qa) + 8π2/(qa)

(qa)2 + 4π2
− 32π4(1 − e−qa)

(qa)2[(qa)2 + 4π2]2
(A3)

and

Fi(q) = 4

qa

2π2(1 − e−qa/2) + (qa)2

(4π )2 + (qa)2
. (A4)

We emphasize that all of our transport results presented in
the manuscript are realistic in the sense that the finite width

FIG. 29. Plot of calculated ratio of the transport time τt to the
single-particle relaxation time τsp and the single particle level broad-
ening � as a function of density for the InSb sample from the
Bakkers group in Eindhoven. Here we consider only 3D background
impurities distributed in the 2D InSb quantum well with the width
a = 80 nm.

effects are taken into account in both the electron-impurity
interaction and the electron screening.

APPENDIX B: PERCOLATION ANALYSIS

The mobility near the percolation critical density behaves
as μ = A(n − nc)δ , where nc is the percolation critical density,
A is a constant of proportionality, and δ is the percolation
critical exponent, which is expected to be 4/3 for 2D by the
percolation theory. Figures 26 and 27 present the plot of the
mobility and its corresponding exponent α, respectively, as a
function of n − nc for various samples. Here nc is obtained
by extrapolating the measured experimental mobility up to
the point where the mobility vanishes, i.e., μ(nc) = 0, and
the exponent of the mobility α is numerically extracted from
the experimental mobility data through the relation α = d ln μ

d ln n .
Our results show that the extracted exponent near the critical
density is around 1.5 − 5.0, which is somewhat larger than the
theoretical 2D percolation exponent 4/3. This discrepancy is
unavoidable due to the experimental inaccuracy, but note that
the extracted exponent is close to the theoretical value 4/3
within a factor of 1–4, which is enough for our purpose of
verifying that the percolation transition occurs at around the
estimated critical density nc. Figure 28 shows (a) the peak
mobility and (b) the percolation critical density nc for each
sample. In Fig. 28(c), we plot the peak mobility as a function
of nc to highlight the correlation between them. The figure
shows that the peak mobility decreases with increasing crit-
ical percolation density because lower peak mobility implies
higher impurity density.

APPENDIX C: SINGLE-PARTICLE LEVEL BROADENING

The single-particle level broadening can be calculated from
the imaginary part of the self-energy in the presence of disor-
der and given by � = h̄/2τsp where τsp is the single particle
relaxation time. Within the leading-order approximation, τsp

is given by

1

τ
(α)
sp

= 2π

h̄

∫
N (α)

i (z)dz
∫

d2k′

(2π )2

∣∣V (α)
k−k′ (z)

∣∣2

× δ[E (k) − E (k′)], (C1)

which is the same as the transport relaxation time Eq. (A1)
but without the weighting factor that accounts for the
backscattering 1 − cos θ arising from the vertex correction.
In Figs. 29–32, we present the calculated � and the ratio of
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FIG. 30. Plot of the calculated ratio of the transport time τt to the single-particle relaxation time τsp and the single-particle level broadening
� as a function of density for InAs sample from the Krogstrup group in the Copenhagen. Here we consider only the remote surface impurities
at the dielectric interface placed 10 nm away from the surface of the 2D InAs quantum well layer.

the transport relaxation time τt to the single particle relax-
ation time τsp corresponding to the calculated mobility results
present in Figs. 1(a) and 8–10. It is important to note that
τt is much larger than τsp by a factor of at least from five
to several hundreds, and thus the quantum level broadening
determined by τsp is substantially larger (∼10–200 meV)
than that estimated from the measured transport mobility
(∼2–4 meV).

APPENDIX D: THEORY OF
SUPERCONDUCTOR-SEMICONDUCTOR NANOWIRE

In this Appendix, we briefly introduce the numerical de-
tails of the calculation of the tunnel conductance in the
semiconductor-superconductor nanowire. The Bogoliubov-de
Gennes Hamiltonian for the minimal model for a finite-length
1D wire is H = 1

2

∫ L
0 dx�̂†(x)HBdG�̂(x), where [7–10]

HBdG =
(

− h̄2∂2
x

2m∗ − iα∂xσy − μ

)
τz

+Vzσx − γ
ω + �0τx√
�2

0 − ω2
+ Vdis(x)τz (D1)

and �̂(x) = [ψ̂↑(x), ψ̂↓(x), ψ̂†
↓(x),−ψ̂

†
↑(x)]ᵀ. In Eq. (D1),

the first term is the Hamiltonian for the pristine semiconduc-
tor, the second term represents the Zeeman field, the third
term accounts for the proximitized superconductivity, and the
last term phenomenologically describes the potential disorder
arising from charge impurities and all various gate voltages,
which should be zero in the pristine limit. Unless otherwise
stated, we follow the parameters in InSb-Al hybrid nanowire
[129]: the effective mass m∗ = 0.015me (me is the electron
rest mass), Al superconducting gap �0 = 0.2 meV, chemical
potential μ ranges from −4 to 4 meV, Rashba-type spin-orbit

coupling α = 0.5 eV Å, superconductor-semiconductor cou-
pling strength γ = 0.2 meV, wire length L = 3 or 10 μm, zero
temperature, and zero dissipation.

In this paper, we only focus on the effect of the random
disorder in the chemical potential. Thus Vdis(x) is a short-
range random potential drawn from an uncorrelated Gaussian
distribution with zero mean and standard deviation σμ. Note
that all the numerical results in the main text are calculated
in the presence of a particular realization of disorder that
does not change as we tune the chemical potential or Zeeman
field.

To numerically simulate the tunnel conductance spectra in
experiments, we use Blonder-Tinkham-Klapwijk formalism
[130–132] with the help of a PYTHON package KWANT [133].
We first attach two semi-infinite normal leads on both sides
of the nanowire, where the Hamiltonians take the same form
as that of the semiconductor except for the superconducting
pairing term (i.e., the third term in Eq. (D1) is absent). Then,
we assume a propagating wave in the normal lead by setting
its chemical potential to 25 meV. To simulate the tunnel gate
at the interface, we model an effective barrier height which is
located in a few sites at the NS interface. The low (high) value
of the barrier height corresponds to the strong (weak) coupling
strength between the lead and nanowire, which controls the
high (low) transmission transparency. Here, we set the barrier
height to 10 or 20 meV depending on the chemical potential
in the nanowire. For phase diagrams in Figs. 19 and 20, we
particularly keep the relative barrier height with respect to
the chemical potential in the nanowire constant as we tune
the chemical potential to ensure that the effect of the barrier
height on the conductance is qualitative the same [36]. Since
the system has two normal leads, we can calculate the local
conductance from both ends of the wire simultaneously. It is
a well-established three-terminal measurement setup, where
more details can be found in Refs. [41,134].

FIG. 31. Same as Fig. 30, but here we consider only background impurities uniformly distributed in the 2D InAs quantum well with the
width a = 30 nm.
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FIG. 32. Same as Fig. 30, but here we consider only remote impurities uniformly distributed in the oxide(Al2O3) layer with the width
aoxide = 8 nm.

APPENDIX E: DETAILS ON MODELING HYBRID
STRUCTURES WITH SURFACE CHARGE IMPURITIES

AND SOLVING THE ASSOCIATED
SCHRÖDINGER-POISSON PROBLEM

In this Appendix, we provide details about the model used
in Sec. IV A, along with some discussion regarding the nu-
merical solution to the Schrödinger-Poisson equations. Note
that the method used in this work is a slightly altered version
of the method we used in Ref. [47]. We, therefore, refer the
reader to Ref. [47] for further details regarding the solution
method after some preliminary discussion below.

As discussed in the main text in Sec. IV A, the charge den-
sity has contributions from both the free charge density and
the immobile surface charge impurities. The impurity charge
density is simply the sum of many single charge impurities

ρimp(r) =
Nimp∑
j=1

ρ j (r), (E1)

where Nimp is the total number of surface charge impurities
and ρ j is the charge density of the jth surface charge impurity.
The charge of a single surface charge takes the form,

ρ j (r) = σ j (x, y)λ j (z), (E2)

λ j (z) =
{

1
�
, z j − �

2 � z � z j + �
2

0, otherwise
, (E3)

where z j is the z-coordinate at the center of the jth impurity,
� = 2 nm is the length of the impurity, and σ j (x, y) describes
the charge density profile in the transverse direction of the
nanowire. The transverse charge density σ j (x, y) is highly lo-
calized, completely resides within 2 nm of one of the facets of
the InAs nanowire not covered by Al, and is chosen such that∫

ρ j (r) dr = +e, where e is the elementary charge. It is useful
to break the impurity charge density into two components,

ρimp(r) = ρ̄imp(x, y) + ρ ′
imp(r), (E4)

where ρ̄imp is the average surface charge density, i.e.,

ρ̄imp(x, y) = 1

L

∫
ρimp(r) dz, (E5)

with L being the total length of the system, while ρ ′
imp repre-

sents fluctuations around the average. We then break down the
total charge density into three components,

ρ(r) = ρo(x, y) + ρ ′
imp(r) + ρred(r), (E6)

where ρo is the total charge density in the absence of surface
charge density fluctuations and ρred accounts for the redistri-
bution of free charge due to the presence of the surface charge
density fluctuations. Note that ρo is translation invariant along

the length of the wire. We stress that ρ̄imp is included in ρo

such that the effects of translation invariant component of the
surface charge density are included in the initial step of our
solution method that ignores ρ ′

imp and ρred. Also note that
the redistribution of free charge partially screens the potential
nonuniformities arising from the surface charge density fluc-
tuations. Similarly, we break down the electrostatic potential
into three terms,

φ(r) = φo(x, y) + φ′
imp(r) + φred(r). (E7)

Each of these components satisfy a Poisson equation of the
form,

∇ · [ε(r)∇φi(r)] = −ρi(r), (E8)

where the electrostatic potential and charge density pair
satisfy (φi, ρi ) ∈ {(φo, ρo), (φ′

imp, ρ
′
imp), (φred, ρred )}. The

Dirichlet boundary conditions for nonzero values of VBG, VL,
VR, and VSC are imposed on φo, while φ′

imp and φred are subject
to trivial boundary conditions.

With these aspects of the model discussed, we refer readers
to the section entitled “Self-consistent Schrödinger-Poisson
scheme” within our work in Ref. [47] for remaining details
regarding the self-consistent solution to the Schrödinger-
Poisson equations. One can follow the method in Ref. [47]
exactly, except ρimp → ρ ′

imp, φimp → φ′
imp, and ρo is now the

total charge density in the absence of impurity charge density
fluctuations instead of the free charge density in the absence
of all impurities. The final product from this calculation is
an effective disorder potential arising from the self-consistent
screened impurity potential, which is given by

V αβ

eff (z) =
∫

ϕ∗
α (x, y)(φ′

imp(r) + φred(r))ϕβ (x, y) dxdy, (E9)

where ϕα is the normalized transverse orbital of the α subband
satisfying,[

− h̄2

2m∗ ∇2
⊥ − eφo(r)

]
ϕα (x, y) = εα,oϕα (x, y), (E10)

with ∇2
⊥ = ∂2

x + ∂2
y . In other words, the clean system without

any surface charge density fluctuations allows us to define
subbands, where the α subband has a band-edge energy and
transverse orbital given by εα,o and ϕα , respectively. Note that
the effective potential in Eq. (E9) has both intrasubband cou-
pling (α = β) and intersubband coupling (α �= β). In the main
text, we only include intrasubband coupling in our 1D finite
wire calculations, which acts essentially as a disorder potential
for the subband near the Fermi level. Including intersubband
couplings only makes the system more disordered [39,117].
We are therefore being optimistic with regard to the fate of
Majorana physics by neglecting these couplings.
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