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Symmetry-enforced topological band crossings in orthorhombic crystals:
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We identify all symmetry-enforced band crossings in nonmagnetic orthorhombic crystals with and without
spin-orbit coupling and discuss their topological properties. We find that orthorhombic crystals can host a large
number of different band degeneracies, including movable Weyl and Dirac points with hourglass dispersions,
fourfold double Weyl points, Weyl and Dirac nodal lines, almost movable nodal lines, nodal chains, and
topological nodal planes. Interestingly, spin-orbit coupled materials in space groups 18, 36, 44, 45, and 46 can
have band pairs with only two Weyl points in the entire Brillouin zone. This results in simpler connectivity of
the Fermi arcs and more pronounced topological responses than in materials with four or more Weyl points.
In addition, we show that the symmetries of space groups 56, 61, and 62 enforce nontrivial weak Z2 topology
in materials with strong spin-orbit coupling, leading to helical surface states. With these classification results
in hand, we perform extensive database searches for orthorhombic materials crystallizing in the relevant space
groups. We find that Sr2Bi3 and Ir2Si have bands crossing the Fermi energy with a symmetry-enforced nontrivial
Z2 invariant, CuIrB possesses nodal chains near the Fermi energy, Pd7Se4 and Ag2Se exhibit fourfold double
Weyl points, the latter one even in the absence of spin-orbit coupling, whereas the fourfold degeneracies in
AuTlSb are made up from intersecting nodal lines. For each of these examples, we compute the ab initio band
structures, discuss their topologies, and for some cases also calculate the surface states.
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I. INTRODUCTION

The discovery of topological insulators more than ten
years ago [1–3] has kicked off a classification program of
topological band structures [4–6], which is still ongoing to-
day. Insulators as well as Dirac and Weyl-type semimetals
have been classified, both in terms of nonspatial symme-
tries [4,5] and crystalline symmetries [7–10]. The methods
used to establish these classifications are wide ranging, in-
cluding Clifford algebra extensions [5,11–14], minimal Dirac
models [8,9], K theory [5], compatibility relations between
irreducible representations [15–18], symmetry eigenvalue
analyses [17–25], symmetry-based indicators [26], as well as
the study of elementary band representations [27,28]. These
classification works lay down the basis for the study of
topological systems in general and can be used as guiding
principles for the design and discovery of new topological
systems. Indeed, when combined with materials databases,
such as the ICSD from FIZ Karlsruhe [29] and the Materials
Project database [30,31], these classifications have lead to the
prediction of new topological materials [17–19,26,32,33].
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Topological materials are not only of fundamental inter-
est, but are also sought after for their functional properties
that can be harnessed for applications [34]. For example, the
spin-momentum locking of the surface states could be used
for low-dissipation transport in future post-silicon devices
[35,36]. Moreover, the high mobility and large magnetore-
sistance of many Weyl semimetals could be useful for future
high-speed electronics and spintronics [10,37]. Hence, there
is a need for new topological materials with these proper-
ties. One strategy to discover new topological semimetals is
to focus on symmetry-enforced topologies, i.e., topological
features that are enforced to exist by symmetry alone, inde-
pendent of the band dispersion, orbital content, and chemical
composition of the material. Once the space group (SG) sym-
metries that enforce the desired band topologies are identified,
a suitable material can be found by browsing databases of
known materials by SG number.

Previously, we have applied this strategy to hexagonal,
trigonal, and tetragonal crystals [17–19]. These investigations
have uncovered, among other things, the accordion states in
trigonal Te [38], and identified ZrIrSn and NaSn5 as nodal
line materials with twofold and fourfold Weyl lines, respec-
tively [17,19]. In this paper, we continue this classification
program by investigating symmetry-enforced band crossings
in orthorhombic crystals. Our results are summarized in
Tables I–IV, which classify all symmetry-enforced topolog-
ical features in band structures of orthorhombic crystals with
time-reversal symmetry.

Tables I and III apply to band structures with time-reversal
symmetry that squares to +1, e.g., to electronic bands without
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TABLE I. Symmetry-enforced band crossings in spinless band structures of noncentrosymmetric orthorhombic SGs. The label of high-
symmetry points and axes corresponds to the BZs shown in Fig. 1. The second column shows all pointlike degeneracies. They can be on
a high-symmetry point (e.g., �), somewhere on an axis connecting two high-symmetry points (e.g., �-Z) or on one of several axes (e.g.,
�-[X�Y�Z]) with � indicating the exclusive OR. Numbers in brackets indicate the number of bands involved. The topological type of the deg-
eneracies are listed under notable features if it is different from a Weyl point. The third column lists all symmetry-enforced nodal lines.
High-symmetry lines are specified by the two TRIMs they connect according to Fig. 1, intersecting nodal lines are contracted, e.g., T-Z-U
specifies two nodal lines on Z-U = (u, 0, π ) and Z-T = (0, v, π ). The notation (A; B) indicates an hourglass nodal line between two point-
or linelike degeneracies A with eigenvalue pairing (+, −) and B with (+, +) or (−,−). The fourth column lists all twofold degenerate nodal
planes defined through Cartesian coordinates as shown in Fig. 1. The splitting of bands is linear to lowest order in momentum for all types of
degeneracies.

SG Points Lines Nodal planes Notable features

16 (P222)
17 (P2221) kz = π

18 (P21212) kx/y = π

19 (P212121) �-[X�Y�Z](4), R(4) kx/y/z = π fourfold double Weyl point
20 (C2221) kz = π

21 (C222)
22 (F222)
23 (I222)
24 (I212121) �-[X�Y�Z](2), W only four Weyl points
25 (Pmm2)
26 (Pmc21) kz = π

27 (Pcc2) Z-U-R-T-Z
28 (Pma2) X-U-R-S-X
29 (Pca21) (U -X-S-R;U -R) kz = π

30 (Pnc2) Z-U-R-S-Y-T-Z
31 (Pmn21) U-X-S-R kz = π

32 (Pba2) X-U-R-T-Y-S-X
33 (Pna21) (S-X-U ;U -R), S-Y-T kz = π

34 (Pnn2) X-S-Y-T-Z-U-X
35 (Cmm2)
36 (Cmc21) kz = π

37 (Ccc2) U-Z-T
38 (Amm2)
39 (Aem2) R-S
40 (Ama2) A-Z-T
41 (Aea2) R-S, A-Z-T
42 (Fmm2)
43 (Fdd2) A-Z-T-Y
44 (Imm2)
45 (Iba2) R-W-S
46 (Ima2) R-W

spin-orbit coupling (SOC). This type of time-reversal sym-
metry is present in materials with light elements, where SOC
can be neglected. It also occurs in the excitation spectra of
bosonic quasiparticles, e.g., phonon or magnon bands [39,40],
and in synthetic materials, such as photonic crystals [41]
and electric circuit networks [42,43]. We find that without
SOC the band structures can exhibit movable Weyl points,
due to screw rotations, movable and almost movable nodal
lines, due to mirror symmetries, and nodal planes, due to the
combination of screw rotations with time-reversal symmetry.
By the bulk-boundary correspondence, the Weyl points and
nodal lines lead to Fermi arc and drumhead surface states,
respectively.

Tables II and IV list all symmetry-enforced topological
features in band structures with time-reversal symmetry that
squares to −1, e.g., in electronic bands with strong SOC. We
find that with SOC the bands can possess various types of

different point degeneracies, namely, Kramers-Weyl points,
fourfold points with zero Chern number (C = 0), movable
Weyl and Dirac points with hourglass dispersions, and four-
fold double Weyl points with |C| = 2. Line degeneracies in
the presence of SOC also exist in different varieties: (al-
most) movable Weyl lines with hourglass dispersion, Dirac
lines protected by off-centered symmetries, and nodal chains.
Finally, there are nine SGs with nodal planes at the BZ bound-
ary, of which the chiral SGs 17–19 and 20 can have a nonzero
topological charge. Remarkably, in SG 19 the nodal planes
must always be topological by symmetry, irrespective of the
orbital content and dispersions of the bands (Sec. IV C).

Furthermore, we identify two SGs, namely, 56 and 62,
which in the presence of SOC exhibit symmetry-enforced
nontrivial weak Z2 invariants (Sec. VI G). The same holds for
SG 61, assuming that elementary band representations with
different inversion eigenvalues do not mix. Similarly, SGs 52
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TABLE II. Symmetry-enforced band crossings in band structures with SOC of noncentrosymmetric orthorhombic SGs. The notation is
identical to the one in Table I. Additionally, almost movable lines are indicated by (A;−) with A being the high-symmetry point they run
through as described in Sec. V E. The splitting of bands is linear to lowest order in momentum for all types of degeneracies.

SG Points Lines Nodal planes Notable features

16 (P222) all TRIMs
17 (P2221) �, X, Y, S,

�-Z(4), X-U(4),
Y-T(4), S-R(4)

kz = π only four Weyl points

18 (P21212) �, Z, �-X(4),
�-Y(4), Z-U(4),

Z-T(4), S(4),
R(4)

kx/y = π fourfold double Weyl points (n even), only
two Weyl points (n odd)

19 (P212121) �, �-Z(4),
�-X(4), �-Y(4),
S(4), T(4), U(4),
R-[S�T�U](8)

kx/y/z = π top. nodal plane trio, fourfold double Weyl
points

20 (C2221) �, S, Y, �-Z(4),
Y-T(4), S-R(4)

kz = π only four Weyl points

21 (C222) all TRIMs
22 (F222) all TRIMs
23 (I222) all TRIMs, W
24 (I212121) all TRIMs,

W-[R�S�T](4)
25 (Pmm2) �-Z, X-U, Y-T, S-R
26 (Pmc21) (�-Z ,Y-T ;Z-T ), (X-U ,R-S;U -R) kz = π

27 (Pcc2) Z(4), T(4),
U(4), R(4)

�-Z-U-R-T-Z, X-U, S-R, Y-T fourfold points (C=0)

28 (Pma2) (�-Z;X,U), (Y-T;S,R), X-S, U-R
29 (Pca21) (�-Z;Z-U,X), (Y-T ;S,R-T ),

(X-S;U-R)
kz = π

30 (Pnc2) Z(4), U(4) (�-Z-T;Y), (X-U -R;S), (Y-S;T,R),
Z-U

nodal chain, fourfold points (C=0)

31 (Pmn21) (�-Z,T-Y;Z-T ), (�-Z-U;X),
(Y-T -R;S), X-S

kz = π

32 (Pba2) R(4), S(4) (�-Z;Y,T), (�-Z;X,T), X-S-Y,
U-R-T, S-R

fourfold points (C=0)

33 (Pna21) S(4) (R-S-X;R-U), (�-Z;Z-U,X),
(�-Z-T;Y), Y-S

kz = π fourfold point (C=0)

34 (Pnn2) Z(4), S(4) (�-Z-T;Y), (Y-S-R;T), (�-Z-U;X),
(X-S-R;U)

nodal chain, fourfold points (C=0)

35 (Cmm2) R, S �-Z, Y-T only four Weyl points
36 (Cmc21) S, R-S(4), (�-Z ,Y-T ;Z-T ) kz = π only two (four) Weyl points for n odd (even)
37 (Ccc2) R, S, Z(4), T(4) �-Z-T-Y, Z-U fourfold points (C=0), only four Weyl points
38 (Amm2) (R;−), (S;−), �-X, Z-A
39 (Aem2) (�-X;S), (Z-A;R), R-S
40 (Ama2) (�-X;Z,T), (R;−), (S;−), Z-T
41 (Aea2) (�-X;Z,T), (�-X;S), (Z-T;R), R-S
42 (Fmm2) L �-Z, Y-T only four Weyl points
43 (Fdd2) L, Z(4) (�-Z-T;Y)kx=0, (�-A-Y;T)ky=0 nodal chain, fourfold point, only four Weyl

points
44 (Imm2) T (R;−), (S;−), �-Z only two Weyl points
45 (Iba2) T, T-W(4) (�-Z;S,R), R-W-S only two (four) Weyl points for n odd (even)
46 (Ima2) T (�-Z;R), (S;−), R-W only two Weyl points

and 60 have nontrivial weak Z2 invariants, albeit only with
weak SOC that does not induce band inversions. By the bulk-
boundary correspondence, spin-orbit coupled materials in all
these SGs exhibit helical surface states, that could potentially
be used for low-dissipation (spin) transport.

Lastly, we determine those SGs where the number of Weyl
points formed by a spin-orbit coupled band pair can be as
low as four (or even two), i.e., where only four (or two)
of the eight time-reversal invariant momenta (TRIMs) host
Weyl points, while the other TRIMs are part of nodal lines
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TABLE III. Symmetry-enforced band crossings in spinless band structures of centrosymmetric orthorhombic SGs. The notation is identical
to the one introduced in Tables I and II. Fourfold degenerate nodal lines are indicated by (4). The splitting of bands is linear to lowest order in
momentum for all types of degeneracies.

SG Points Lines Nodal planes Notable features

47 (Pmmm)
48 (Pnnn) Z-U-X-S-Y-T-Z
49 (Pccm) Z-U-R-T-Z
50 (Pban) X-U-R-T-Y-S-X
51 (Pmma) kx = π

52 (Pnna) U-Z-T, X-S, (U-X-S;S-R), (X-S,Y-S) ky = π precedes unstable Z2 invariant (with SOC)
53 (Pmna) U-X-S-R kz = π

54 (Pcca) (Z-U ;U -X), (T-R;R-S), (U -R;R-T-Z-U ) kx = π

55 (Pbam) kx, ky = π

56 (Pccn) (T -Z;Y-T ), (U -Z-T ;U -R-T ), (Z-U ;U -X) kx, ky = π precedes Z2 invariant (with SOC)
57 (Pbcm) R-T(4), (Y-T ;T -Z), (S-R;R-U) ky, kz = π

58 (Pnnm) T-Z-U kx, ky = π

59 (Pmmn) kx, ky = π

60 (Pbcn) U-R(4), (Y-T ;T -Z), (Z-U ;U -X), (R-S-Y-T ;T -R) kx, kz = π precedes unstable Z2 invariant (with SOC)
61 (Pbca) S-R(4), U-R-T(4), (Y-T ;T -Z), (Z-U ;U -X), (X-S;S-Y) kx/y/z = π

62 (Pnma) S-R(4), (X-S;S-Y) kx/y/z = π precedes Z2 invariant (with SOC)
63 (Cmcm) kz = π

64 (Cmca) S-R, (S;−) kz = π

65 (Cmmm)
66 (Cccm) A-Z-T
67 (Cmme) S-R, (S;−), (R;−)
68 (Ccce) A-Z-T, S-R, (S;−), (R;−)
69 (Fmmm)
70 (Fddd) A-Z-T-Y
71 (Immm)
72 (Ibam) S-W-R, (S;−), (R;−)
73 (Ibca) W(4) S-W-R, W-T, (S;−), (R;−), (T;−) fourfold point (C=0) at half filling
74 (Imma) W-T, (T;−)

or nodal planes. Assuming that there are no other accidental
Weyl points, band structures in these SGs have large Fermi arc
surface states with a simple connectivity. Moreover, the topo-
logical responses, such as the anomalous (spin) Hall effect,
are expected to be enhanced, since Weyl points with opposite
chiralities are separated by a large distance in reciprocal space
[44–46].

Using these classification results as an input, we perform
an extensive database search for materials crystallizing in
the relevant SGs (Sec. III and Fig. 2). This search yields
six candidate materials, whose band topology we study us-
ing DFT calculations and by determining the irreducible
representations at high-symmetry points. From this, we find
that Ag2Se and Pd7Se4 possess fourfold double Weyl points
and nodal planes (Sec. IV B 1). AuTlSb exhibits hourglass
nodal lines and a fourfold point with C = 0, while CuIrB has
nodal chains near the Fermi level. Both Sr2Bi3 and Ir2Si have
bands crossing the Fermi level with nontrivial Z2 invariants.

The remainder of the paper is organized as follows. We
start in Sec. II by defining our naming conventions and
by describing the six different orthorhombic BZs and their
TRIMs and high-symmetry lines. Our selection criteria for
the database search are described in Sec. III, which yields
six candidate materials. The band topologies and dispersions
of these materials are presented in those sections where the
corresponding SGs are discussed. In Sec. IV, we study the

band topologies for the rhombic disphenoidal SGs (SGs 16–
24), which are chiral due to the absence of both mirror and
inversion symmetries. Sections V and VI contain the analyses
of the rhombic pyramidal SGs (SGs 25–46) and the rhombic
dipyramidal SGs (SGs 47–74), respectively. Some concluding
remarks are given in Sec. VII. Additional ab initio band struc-
tures of the example materials are presented in Appendix A.
In Appendix B, we present low-energy models of the fourfold
degenerate points discussed in the main text. Appendix C
contains a minimal tight-binding model for SG 19, which
highlights the enforced features of chiral orthorhombic SGs
both with and without SOC.

II. CONVENTIONS

A. Symmetries

The orthorhombic SGs consist of all those SGs with only
twofold symmetries on the three mutual orthogonal symmetry
axes. Those symmetries are twofold (screw) rotations and
(glide) mirror symmetries. In case of three orthogonal mirror
symmetries, there is also inversion symmetry. Additionally,
we always assume time-reversal symmetry to be present.
Since we will make frequent use of these symmetries, we in-
troduce the notation with some examples by explicitly writing
out the transformed coordinates of a point (x, y, z) in Cartesian
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TABLE IV. Symmetry-enforced band crossings in band structures with SOC of centrosymmetric orthorhombic SGs. The notation is
identical to the ones introduced in Tables I and II. All degeneracies are linearly dispersing Dirac points and lines and the overall twofold
degeneracy due to PT is not counted in the number of involved bands. In the fourth column, we list planes with a nontrivial Z2 invariant via
the TRIMs they contain of which the TRIM with identical inversion eigenvalue pairing is shown in bold.

SG Points Lines Nontrivial planes Notable features

47 (Pmmm)
48 (Pnnn) S, T, U, X, Y, Z
49 (Pccm) R, T, U, Z
50 (Pban) R, S, T, U, X, Y
51 (Pmma) U-X, S-R
52 (Pnna) U, X, Z, X-S(4) R-S-Y ZURT, XUYT movable Dirac point
53 (Pmna) X, S T-Z
54 (Pcca) T, Z, U-Z(4), R-T(4) S-R-U-X
55 (Pbam) X-S-R-U, S-Y, R-T
56 (Pccn) Z, Z-U(4), Z-T(4) Y-T-R-U-X, S-R XUSR, YTSR movable Dirac points
57 (Pbcm) U-R, T-Z, (S-Y;R,T) only Dirac nodal line at half filling
58 (Pnnm) Z X-S-R, S-Y
59 (Pmmn) X-U, S-R, Y-T
60 (Pbcn) Y, T-Y(4) (X-U;R), (R-T-Z;U) XSTZ Dirac nodal chain
61 (Pbca) (U-X;S), (S-Y;T), (T-Z;U) XYRZ three Dirac nodal lines at half filling
62 (Pnma) Z-U, R-T, S-Y, (R-U-X;S) XUTY, ZURT
63 (Cmcm) (R;−), Z-T
64 (Cmca) S Z-A
65 (Cmmm)
66 (Cccm) T, Z
67 (Cmme) R, S
68 (Ccce) T, Z, R, S
69 (Fmmm)
70 (Fddd) T, Y, Z
71 (Immm)
72 (Ibam) R, S, W
73 (Ibca) R, S, T, W-[R�S�T](4) movable Dirac point
74 (Imma) T

coordinates aligned with the conventional unit cell. Addition-
ally, we include the action in spin space in terms of the Pauli
matrices σi, i ∈ {x, y, z}, and σ0 = 12×2. A translation by a
lattice vector (a, b, c) in real space is denoted by

t (a, b, c) :

(x, y, z) �→ (x + a, y + b, z + c) ⊗ σ0. (2.1)

A twofold rotation about the z axis with (fractional) transla-
tion vector (a, b, c) is written as

2001(a, b, c) :

(x, y, z) �→ (−x + a,−y + b, z + c) ⊗ iσz. (2.2)

Similarly, a mirror symmetry with xz mirror planes and (frac-
tional) translation vector (a, b, c) is written as

M010(a, b, c) :

(x, y, z) �→ (x + a,−y + b, z + c) ⊗ iσy. (2.3)

For SGs with inversion symmetry P , the origin choice is
always at an inversion center (origin choice 2 in Ref. [47]),

P : (x, y, z) �→ (−x,−y,−z) ⊗ σ0. (2.4)

Finally, time-reversal symmetry is denoted by

T : (x, y, z) �→ (x, y, z) ⊗ iσyK. (2.5)

Our analysis covers spinful and spinless band structures of
the orthorhombic SGs. The spinful symmetry groups are the
double SGs with a distinguished element for a 2π rotation,
1 ⊗ (−σ0).

Spinless representations are relevant for bosonic band
structures, including in metamaterials, and materials with neg-
ligible spin-orbit coupling. In the latter case, we make use of
the unbroken SU(2) symmetry. This allows us to use spinless
representations by removing the spin part of the symmetries in
Eqs.(2.1)–(2.5) using a properly chosen SU(2) rotation. This
way each spin degree of freedom can be treated independently
without the need of using double SGs. For our results in that
case, we will not include the resulting spin degeneracy, unless
it is mentioned explicitly. We use the parameter ζ = 0, 1 to
distinguish between the spinless and the spinful case, for
example the representation of a 2π rotation is always (−1)ζ .

B. Orthorhombic lattices and Brillouin zones

There are four Bravais lattices compatible with com-
binations of the above symmetries, primitive, side- or
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FIG. 1. Brillouin zones (BZs) for lattices with a < b < c in the orthorhombic SGs. Of the several types in the face-centered case, the one
for 1

a2 = 1
b2 + 1

c2 is shown. TRIMs are labeled in blue, rotation axes are shown in green and labeled by the points they are connecting.

base-centered, face-centered, and body-centered lattices. The
conventional cells of all orthorhombic lattices have right
angles and three independent lengths, a, b, and c. In the
following, we will omit lengths by expressing points in terms
of the reciprocal lattice vectors of the conventional lattice in
the crystallographic definition, i.e., excluding the factor 2π .

Note that in the orthorhombic crystal system, there is no
unique primary symmetry axis and there are various conven-
tions in choosing the primary, secondary and tertiary sym-
metry directions. Since our analysis is based on symmetries
alone, we align the symmetries according to their position
in the Hermann-Mauguin symbols in the conventional setting
[47] with the directions a, b and c. See the Hermann-Mauguin
symbols in the first column of Tables I to IV for the as-
signment of symmetries to the crystal axes. This convention
is also used by the Bilbao Crystallographic Server [16]. In
high-throughput calculations, the axes are often ordered such
that a < b < c regardless of symmetry [48] and labels need to
be interchanged accordingly to compare the results.

There are always eight TRIMs in the Brillouin zone (BZ).
In the BZ of primitive lattices, these are also the points of
maximal symmetry, i.e., their little group is identical to the
SG and they are invariant under all symmetry operations. Fig-
ure 1(a) shows the BZ of primitive lattices, where all possible
axes invariant under rotations are shown in green. An axis will
be denoted by the two labeled points on it, e.g., �-X for an
axis parametrized by (u, 0, 0). Contractions are possible, i.e.,
the two axes �-Z and Z-R are compactly written as �-Z-R.

In base- [side-] centered lattices, indicated by the lattice
symbol C [A], there is an additional lattice site at the center
of the (001) [(100)] face. Only four TRIMs have maximal
symmetry, �, Z, Y, and T. For the remaining TRIMs S and R
there are two nonequivalent copies only invariant under sym-
metries of the third (first) symmetry axis and the remaining
symmetries map the two copies onto each other, see Fig. 1(b).
There are now two rotation axes connecting � and Y, and
we introduce the additional labels X and A to distinguish the
axis �-Y = (0, v, 0) from �-X = (u, 0, 0) and equivalently
Z-T = (0, v, π

2 ) and Z-A = (u, 0, π
2 ). In the case a > b, the

first BZ extends to Y in [100] direction and the additional
points appear along [010]. Our results, however, hold always
in relation to the orientation of symmetries. Therefore the
points X and Y, as well as A and T should always be read
as shown in Fig. 1(b) and parametrized above. The BZ for
side-centered lattices is only relevant for SGs with crystallo-

graphic point group mm2. The rotation axis is always chosen
to be along the [001] direction, which requires the use of the
site-centered lattice for SGs 38–41. As convention for this
paper, we rotate the BZ in Fig. 1(b) around the ky axis. This
way, �-X and Z-A always correspond to the rotation axis
(0, 0, kz ) and ( 1

2 , 0, kz ), whereas the lines �-Y and Z-T are
to be understood as the lines perpendicular to it.

In face-centered lattices, we also find four TRIMs with
maximal symmetry, again �, Z, Y, and T. The remaining
four TRIMs are symmetry-related copies of L and have only
the identity in their site symmetry group. Depending on the
relative length of the conventional lattice constants a, b and c,
there are several distinct shapes the BZ can take, of which
we show the one for 1

a2 = 1
b2 + 1

c2 in Fig. 1(c). Again we
introduce additional labels to allow for a unique declaration
of directions, �-X = (u, 0, 0) connecting � and T, Y-T =
(0, 2π,w) ∼ (2π, 0,w) and Z-A = (u, 0, 2π ) connecting Z
with Y. The results presented in this paper do not depend on
the actual shape of the BZ, as long as the correct orientation is
chosen and high-symmetry lines should always be understood
as defined above and visualized in the exemplary BZ.

The last lattice type found for the orthorhombic SGs
has a body-centered conventional cell. Only � and Z =
(0, 0, 2π ) ∼ (2π, 0, 0) ∼ (0, 2π, 0) have maximal symme-
try. The other TRIMs S, R, and T have the symmetry of the
first, second and third symmetry axis, respectively, and exist
in two symmetry related copies. Additionally, there is the
high-symmetry point W, which is invariant under all rotations,
but not under T , see Fig. 1(d). In all cases, we specify high-
symmetry planes through parametrization in the Cartesian
coordinates, e.g., kz = π .

III. SCREENING FOR CANDIDATE MATERIALS

For 14 of the orthorhombic SGs (SGs 18, 19, 24, 30, 33, 34,
43, 52, 56, 57, 60, 61, and 62) that exhibit some of the most
notable symmetry-enforced features listed in Tables I–IV, we
perform a computationally-assisted screening of the Materials
Project (MP) database [30,31] for real material examples.
We restrict our search to phases which have corresponding
entries in the Inorganic Crystal Structure Database (ICSD,
FIZ Karlsruhe)—essentially, the space of known, ordered,
inorganic crystals. The distribution of these phases by SG is
depicted in Fig. 2(a), with incidence varying by three orders
of magnitude.
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FIG. 2. (a) Distribution of ordered, orthorhombic phases in the
Materials Project and ICSD by SG number (MP ∩ ICSD, N =
12,292). 14 SGs of particular interest are indicated, as well as the
number of phases in these SGs passing the automated screening
criteria described in the text. The crystallographic point groups are
indicated above the plot. (b) 2D histogram of phases passing the au-
tomated screening criteria by fraction of the projected DOS near the
Fermi energy contributed by heavy atoms (see Ref. [49]) and number
of atoms in the primitive unit cell (N = 1259). We note that all the
phases that passed the screening have an even number of atoms in
the primitive cell, since all orthorhombic SGs with nonsymmorphic
symmetries have even Wyckoff multiplicities. The specific example
materials discussed in the text are highlighted by the stars.

We apply several preliminary screens on thermodynamic
stability (formation energy � 50 meV atom−1 off the convex
hull), structural complexity (� 50 atoms in the primitive unit
cell, as larger unit cells tend to have more crowded and flatter
bands), and electronic band gap (�0.1 eV by the generalized
gradient approximation). We note that many insulating crys-
tals have the desired SG symmetries, but their more localized
bands tend to diminish the importance of the symmetry-
enforced crossings, for instance by making crossings poorly
isolated in momentum and energy from other states. In addi-
tion, many insulating crystals may be difficult to degenerately
dope to position the Fermi energy near crossings of interest.
As a result, we focus here on metals, semimetals, and nearly
gapless semiconductors. Together, these preliminary screens
narrow the search to ∼1540 phases across these 14 SGs (rang-
ing from zero phases for SGs 24, 30, 34, and 56 to ∼1400
phases for SG 62). To isolate cases of both strong and weak
SOC near the Fermi level, we use the electronic densities
of states (DOS) computed without SOC in the MP database
(present for ∼1260 of the remaining phases, or 82%) to assess
what fraction of the orbital character is due to heavy atoms.
Specifically, we define a heavy atom DOS fraction near EF

as the integral of the DOS projection onto orbitals from atoms
indium or heavier (Z � 49) divided by the integral of the DOS
projection onto all orbitals, evaluated on the energy window

[EF − 1 eV, EF + 1 eV]. Typical of plane-wave codes, the to-
tal projections onto these atom-centered spherical harmonics
are not quantitative due to the arbitrary definition of the atomic
radii, but this ratio is nonetheless indicative of the contribution
from heavy atoms. The phases passing the screening are given
in Ref. [49], the distribution of these phases by heavy atom
DOS projection near EF and number of atoms in the primitive
cell is given in Fig. 2(b). Since all SGs of interest contain at
least one nonsymmorphic symmetry, the lowest multiplicity
for a Wyckoff position is two or four. Therefore there are no
phases with an odd number of atoms in the unit cell among the
results. Several example materials are annotated which will be
discussed subsequently. As a last step to identify high-quality
material examples, we examine the experimental literature to
assess synthesizability, evaluate whether the computed GGA
band structure is consistent with experimental observations
(e.g., color and luster, resistivity, magnetization) and confirm
that the crystal structure model in the desired SG has not
been superceded by one of a different symmetry in subsequent
investigations.

For these example materials, we performed electronic
structure calculations using the VASP code [50,51], which
implements the Kohn-Sham formulation of density functional
theory (DFT) using a plane wave basis set and the projector
augmented wave formalism [52,53]. All calculations were
performed with the PBE exchange-correlation functional [54],
and optimized structures from the MP database were used
directly. The band structures calculated along high-symmetry
paths are presented in Appendix A. Surface states were cal-
culated via a Wannier model using WANNIER90 [55] and
WANNIERTOOLS [56].

IV. RHOMBIC DISPHENOIDAL: SG 16–SG 24

The chiral SGs in the orthorhombic crystal system, SGs 16
to 24, have the crystallographic point group D2, or 222 in the
Hermann-Mauguin notation, consisting of three perpendicular
twofold rotations. Since neither mirror planes nor inversion
are present, these SGs are chiral.

Symmetry-enforced features are (movable) Weyl points,
nodal planes and fourfold degenerate points with a topological
charge of |C| = 2, called fourfold double Weyl points [19].

A. Weyl Points at high-symmetry points

Time-reversal symmetry T squares to a 2π rotation and
therefore −1 in spinful representations. Kramers theorem
implies twofold degeneracies at all TRIMs in spinful band
structures. Without further restrictions from additional sym-
metries, these degeneracies are Weyl points with linear
dispersion and a chirality C = ±1 [24,25,57]. In the chiral
orthorhombic SGs 18–24 with strong SOC, every Kramers
degeneracy at a TRIM that is not part of a nodal plane (see
Sec. IV C below) is such a Kramers-Weyl point. They are
listed in the column “Points” of Table II.

In spinless representations, T squares to the identity and
Kramers theorem does not apply. Consequently, the bands at
TRIMs are in general not degenerate. There is however one
case of a symmetry enforced Weyl point at a high-symmetry
point in SG 24. The symmetries in this body-centered SG are

124202-7



ANDREAS LEONHARDT et al. PHYSICAL REVIEW MATERIALS 5, 124202 (2021)

three orthogonal, off-centered rotations. While twofold rota-
tions without translational components always commute, the
resulting translation in the combination of two off-centered
rotations depends on their order. For the generators of SG 24,
we find, for example,

2100
(
0, 0, 1

2

)
2001

(
0, 1

2 , 0
)

= (−1)ζ t(0,−1, 0)2001
(
0, 1

2 , 0
)
2100

(
0, 0, 1

2

)
. (4.1)

There are three points in the Brillouin zone with maximal
symmetry, of which only W has translation eigenvalue −1
for the above translation by one lattice constant in the con-
ventional cell. Therefore the spinless representations of the
rotations U2001 and U2100 anticommute and must be at least
two-dimensional [58,59]. For an eigenstate |±〉 of U2001 with
eigenvalue ±1, we find

U2001U2100 |±〉 = −U2100U2001 |±〉
= ∓U2100 |±〉, (4.2)

which implies that for example |+〉 and U2100 |+〉 ∝ |−〉 are
two distinct states. Because the Hamiltonian commutes with
U2001 and U2100 , they will be degenerate. In comparison, SG 23
has no translational parts in its rotations and the translation
eigenvalue of −1 is missing in the commutation relation.
Instead, Eq. (4.2) holds for spinful representations. In both
cases states with opposite rotation eigenvalues are paired at
W, the gap opens linear to lowest order in momentum and the
point degeneracy carries a topological charge of C = ±1 [25].
Notably, this Weyl point is enforced even in the absence of
time-reversal symmetry.

If the spin degrees of freedom in SU(2)-symmetric band
structures in SG 24 are considered, the topological charges
of the Weyl points at W in each spin space are identical and
the total topological charge is C↑ + C↓ = ±2. Including SOC
requires the use of spinful representations, where the above
relation does not hold, due to an additional sign change from
the spin part of the symmetries in the commutation relation.
As we will show in the next chapter, there is a weaker require-
ment in that case for two separate Weyl points on a rotation
axis connecting to W. As long as SOC is small, these two Weyl
points remain close to W, and the Chern number calculated on
a surface enclosing the two Weyl points is not changed by
SOC.

B. Movable Weyl points on rotation axes

A movable Weyl point is not fixed to a high-symmetry
point. Such Weyl points are enforced when compatibility
relations between representations at high-symmetry points
and the axis connecting them requires an exchange of bands
with different symmetry eigenvalues [60]. The resulting band
crossing is therefore symmetry protected, but its position on
the axis is not fixed, hence it is called movable.

Twofold screw rotations square to lattice translations in
the direction of the rotation axis. Hence, their eigenvalues
are the square roots of translation eigenvalues and therefore
k-dependent. For example, 2001(a, b, c) has eigenvalues

U2001 |±〉 = ±iζ exp(ikzc)|±〉, (4.3)

(a)

(b)

FIG. 3. (a) Scheme of an hourglass dispersion along a path be-
tween two degenerate points K1 and K2 along a twofold rotation axis
or in a mirror plane. Colors indicate the sign of the symmetry eigen-
value of the twofold symmetry. (b) Band structure for Pd7Se4 in SG
18 with SOC showing hourglass states on �-X (less clearly at �-Y)
colored in gray and fourfold double Weyl points at S, highlighted by
the orange line.

where c = 1
2 for a screw rotation. Along the rotation axis

the eigenvalue of each band evolves smoothly with kz, and
a state can be labeled uniquely by the sign ± according to
this definition. Throughout the paper, we will use blue and
orange in plots for states with positive and negative signs,
respectively. Kramers partners at TRIMs have complex conju-
gate eigenvalues. For a TRIM on the axis invariant under the
rotation with kz = 0, the spinful eigenvalues ±i are paired. We
label such a pair in terms of the signs (+,−). At TRIMs with
kz = π the eigenvalues are ±(−1) and identical eigenvalues
are paired, (+,+) or (−,−). Connecting these pairs smoothly
along the rotation axis requires four states in total and at least
one band crossing in between the two TRIMs, leading to a
so-called hourglass dispersion [61], see Fig. 3(a) for an illus-
tration. Without further restrictions from other symmetries in
the SG, such a band crossing is a Weyl point. The rotation
axes on which these movable Weyl Points occur are listed in
the column “Points” in Table II by specifying the rotation axis
with the number of bands involved given in brackets. Movable
Weyl points enforced by this mechanism are found in spinful
band structures of the chiral SGs 17–20 on all screw axes.

In spinless systems, T squares to the identity and there
are in general no Kramers degeneracies at TRIMs and no
symmetry-enforced hourglass states. In the case of three screw
rotations in SG 19 and 24, however, a movable crossing is
still enforced by an extended compatibility relation, meaning
the combined compatibility relations on all three rotation axes
together with the group structure at their intersections [21].
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(a) (b)

FIG. 4. Band crossings enforced by compatibility relations com-
prising three rotation axes. (a) Movable Weyl point in spinless band
structures of SG 19 on one of the three rotation axes connecting to
�. Blue (orange) colored bands correspond to bands labeled + (−)
according to the definition in Eq. (4.3). (b) Possible arrangement of
spinless bands in SG 24 with rotation eigenvalue +1 in blue and −1
in orange of the corresponding axis. The product of eigenvalues is
fixed to +1 at � and −1 at Z, enforcing a movable Weyl point on one
of the axes.

Starting with SG 19, we note that spinless representations
have eigenvalues ±i at the TRIMs X, Y, and Z according
to Eq. (4.3) for 2100, 2010, and 2001, respectively. There they
are paired as (+,−) by time-reversal symmetry. At �, all
three rotation eigenvalues are ±1 and simultaneously good
quantum numbers. We label a state |s100, s010, s001〉 using the
signs si = ± of all three rotations. The product of all three
rotations result in a translation with eigenvalue 1, and there-
fore the product of rotation eigenvalues ±1 must also be +1.
Consequently, only the combinations |+,+,+〉, |+,−,−〉
and permutations thereof are valid. Connecting these states
smoothly to the pairs (+,−) at the other TRIM on each axis,
i.e., X, Y, or Z, requires all four possible combinations to be
present at � and at least one crossing on one of the rotation
axes [62], see Fig. 4(a). Since crossings of bands with differ-
ent eigenvalues are symmetry protected, exchanging the bands
can only move the crossing to another axis, but not eliminate
it, and additional crossings can only be introduced pairwise.
These movable Weyl points on one of the three rotation axes
are indicated in the column “Points” by �-[X�Y�Z]. Here,
the symbol � stands for “exclusive or” between the different
high-symmetry points, as only one crossing on one of the three
rotation axes is symmetry enforced. In the absence of addi-
tional accidental crossings, which might appear on any of the
rotation axes, SG 19 has only three pointlike degeneracies for
4n + 2 filled bands and the topological charge from the two
symmetry-related copies of the movable point is compensated
by the fourfold double Weyl point at R. See Sec. IV D below.

Next, we consider SG 24, which has a body-centered BZ
where three rotation axes connect � to Z, see Fig. 1(d). Both
TRIMs � and Z are nondegenerate in spinless representations
of SG 24. Because of the translational parts of the rotations,
the product of all three rotations results in a lattice translation,

2100
(
0, 0, 1

2

)
2010

(
1
2 , 0, 0

)
2100

(
0, 1

2 , 0
) = t

(
1
2 ,− 1

2 , 1
2

)
.

(4.4)

At �, the translation eigenvalue is 1 and the product of all
three rotation eigenvalues ±1 has to be positive, as before.
Note that the rotation eigenvalues of these off-centered rota-
tions are not k-dependent, cf. Eq. (4.3) with c = 0. At Z on the
other hand, the eigenvalue of the translation is −1, therefore
the only valid combinations are |−,−,−〉 and |+,+,−〉 and
permutations thereof. The two different requirements can only
be fulfilled simultaneously by two bands exchanging on at
least one rotation axis. An example for states |+,+,+〉 and
|+,−,−〉 at � and |+,−,+〉 and |−,+,+〉 at Z is shown
in Fig. 4(b). While the band representation at � and Z in a
real material is induced from the orbital present at a certain
Wyckoff position [16] and the ordering of states in energy
is dependent on material parameters, the restriction on the
dispersion is always the same as in the example. The charge
of this movable Weyl point is, in the absence of accidental
crossings, compensated by the pinned charge at W, which also
appears in two symmetry-related copies.

The above relations leading to the movable crossing hold
for spinless representations only. However, treating weak
SOC as a perturbation to a spin-degenerate band structure will
not remove the Weyl points. As seen from a closed surface sur-
rounding the band crossing, the Chern number evaluated on
this surface is not changed by SOC, as long as the gap on the
surface remains open. The two copies of the Weyl point might
split and leave the rotation axis, but only a large perturbation
can remove them from the band structure altogether.

In addition, we find in spinful bands of SG 24 a movable
Weyl point on one of the three axes W-R, W-S, or W-T.
The compatibility relations require the same connectivity as
shown in Fig. 4(a), just with inverted eigenvalues, because
all three rotation eigenvalues at W multiplied equal to −i. If
SOC vanishes exactly, the Weyl point in each spin subspace is
pinned to W, as has been shown above. With increasing SOC,
they can split up and move onto an axis, where they are still
related by symmetry.

1. Material example Pd7Se4

An example of a movable Weyl point with hourglass dis-
persion is found in Pd7Se4, which crystallizes in SG 18 [63],
exhibiting metallic conductivity [64]. Single crystals large
enough for diffraction were obtained by annealing the prod-
uct obtained from the melt [63], but larger crystals may be
challenging as it is incongruently melting with a very small
exposed liquidus (e.g. for flux growth) [65]. The bands of
Pd7Se4 are shown in Fig. 3(b) and exhibit, as expected, an
hourglass structure on the axes �-X and �-Y. The full band
structure along high-symmetry paths is shown in Fig. 12(a).
As we will discuss in Sec. IV D the compound also hosts
fourfold double Weyl points.

C. Topological nodal planes

The combination of time-reversal symmetry and a twofold
screw rotation leads to twofold degeneracies on a plane. These
so called nodal planes can contribute to the band topology
[66,67]. After discussing the mechanism forming these nodal
planes, we identify cases where the nodal planes are enforced
to be topologically nontrivial.
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The combined symmetry of a screw rotation and time-
reversal symmetry is antiunitary and squares to a full lattice
translation along the rotation. The action on a point k in the
BZ is similar to a mirror symmetry with its invariant plane
orthogonal to the rotation axis. For example, 2001(0, 0, 1

2 )T
squares to t (0, 0, 1) and transforms a point k according to
(kx, ky, kz ) → (kx, ky,−kz ). In the BZs of primitive and base-
centered lattices, the plane kz = π is equivalent to kz = −π

up to a reciprocal lattice translation and the eigenvalue of the
translation is eikz = −1. Any antiunitary symmetry squaring
to −1 enforces degeneracies on invariant momenta through
an extended Kramers theorem [19]. Consequently, the whole
plane kz = π is twofold degenerate. Note that this holds
equally for spinless and spinful representations, since both
time reversal and the rotation square to a 2π rotation such that
the eigenvalue of the latter contributes no overall sign. These
nodal planes split into nondegenerate bands linear in the mo-
mentum component normal to the nodal plane. We list nodal
planes in the fourth column of Tables I–III. Notably, in SG 18,
two such nodal planes exist on perpendicular planes, called a
nodal plane duo. In SG 19, there are three screw rotations and
the resulting nodal plane trio encloses the whole BZ.

Like a pointlike degeneracy, a nodal plane can act as a
source or sink of Berry curvature and carry a topological
charge. In that case, we refer to it as a topological nodal plane.
All nodal planes in chiral SGs can carry a topological charge.

For band structures with strong SOC in SG 19, this is not
only a possibility, but required by symmetry for the nodal
plane trio. In order to find the nodal charge, it is sufficient
to analyze all Weyl points that close the same gap as the
nodal plane trio. Because of the Nielsen-Ninomiya theorem
[68], their chiralities sum up to the negative topological
charge of the nodal plane trio. In each elementary band
representation, there is a Kramers-Weyl point at � with a
chirality of ±1 [27,28]. Every additional Weyl point can only
be at a k-point with a star of order 2, 4, or 8, because all
other points of maximal symmetry reside within the nodal
planes. Because the different points of a star are related by
time-reversal symmetry or rotations, the Weyl points have the
same chirality. In total, we find

Ctotal = ±1 + 2n 
= 0 n ∈ Z. (4.5)

Therefore the topological charge of the nodal plane trio has
to be odd and |CNP| � 1 [69].

D. Fourfold double Weyl points

Fourfold double Weyl points are fourfold degenerate points
with a Chern number of C = ±2 [19] and linear dispersion at
lowest order in momentum. Their topology is equivalent to
two superimposed Weyl points with equal Chern number and
they have therefore also been called double-spin-1/2 Weyl
points [70]. They should not be confused with the twofold
degenerate double Weyl points with chirality C = ±2, which
can be stabilized only by higher order rotations [24] and
have quadratic dispersion perpendicular to the rotation axis.
An example of the dispersion in the proximity of a fourfold
double Weyl point in Pd7Se4 is shown in Fig. 5.

Two different mechanisms need to be at play simulta-
neously to enforce such a feature. First, the representations

FIG. 5. Dispersion of the fourfold double Weyl point in Pd7Se4

within the kz = 0 plane around S= (π, π, 0). The colors indicate the
two Weyl cones, related by the rotation 2100 or 2010. The twofold
degenerate lines along (kx, π, 0) and (π, ky, 0) are part of nodal
planes.

of the three twofold rotations at a TRIM need to anticom-
mute and secondly, their eigenvalues must be real, such that
time-reversal symmetry T relates identical eigenvalues. In or-
thorhombic SGs they are found in band structures with strong
SOC in SG 18 at the TRIMs S and R, and in SG 19 at the
TRIMs S, T, and U.

We illustrate the mechanism for S in SG 18, where the
symmetries T , 2100( 1

2 , 1
2 , 0), and 2010( 1

2 , 1
2 , 0) are present at

all TRIMs. A direct calculation shows the relation

2100
(

1
2 , 1

2 , 0
)
2010

(
1
2 , 1

2 , 0
)

= (−1)ζ t (1,−1, 0)2010
(

1
2 , 1

2 , 0
)
2100

(
1
2 , 1

2 , 0
)

(4.6)

and at the TRIMs S and R we find therefore U2100U2010 =
−U2010U2100 in spinful representations, since there the trans-
lation eigenvalue is 1 for t (1,−1, 0). Applying U2010 to a state
with a positive 2100 eigenvalue results in a new state with neg-
ative eigenvalue and vice versa. This requirement alone leads
to a Weyl point with chirality |C| = 1 [25]. Because 2100 is a
screw rotation, the eigenvalues at R and S are ±ieikx/2 = ∓1.
Kramers partners therefore have the same symmetry eigen-
value. In terms of 2100-eigenvalues, we therefore find the
quadruple degeneracy (+,+,−,−). The chiralities of both
time-reversal related copies are identical and add up to ±2.

The dispersion around a fourfold double Weyl point is
linear to first order [70,71]. Because of the necessary presence
of time-reversal symmetry and screw rotation, all fourfold
double Weyl points reside at intersections of nodal planes.
Within these planes, the states remain twofold degenerate,
otherwise they will split into four nondegenerate bands, see
Fig. 5 for the dispersion in the plane kz = 0 of a fourfold
double Weyl point in Pd7Se4.

In spinless band structures there is one case of a symmetry
enforced fourfold double Weyl point at the TRIM R in SG 19
[62]. The principle remains the same, with the difference that
the commutation relation for the screw rotations reads

2100
(

1
2 , 1

2 , 0
)
2010

(
0, 1

2 , 1
2

)
= (−1)ζ t (1,−1,−1)2010

(
0, 1

2 , 1
2

)
2100

(
1
2 , 1

2 , 0
)
. (4.7)

124202-10



SYMMETRY-ENFORCED TOPOLOGICAL BAND CROSSINGS … PHYSICAL REVIEW MATERIALS 5, 124202 (2021)

(a)

(b)

FIG. 6. (a) Compatibility relations at R in SG 19 for spinful
bands. Colors indicate the sign of the rotation eigenvalue according
to Eq. (4.3). Note that on the paths shown all bands are twofold
degenerate with identical rotation eigenvalues paired. The figure
adapted from Ref. [21]. (b) Fourfold double Weyl point in Ag2Se
without SOC at R (black). Including SOC (red) moves the fourfold
double Weyl point to the axis R-T. In both cases, bands are twofold
degenerate.

In the case ζ = 0, the negative sign is provided by the transla-
tion eigenvalue of t (1,−1,−1) at the TRIM R. Additionally,
Kramers pairs are created by the combination of a screw rota-
tion with time-reversal symmetry, e.g., 2001( 1

2 , 0, 1
2 )T . Even

though the eigenvalues of U2100 and U2010 at R are purely
complex, identical eigenvalues are paired, since U2001 anti-
commutes with both representations, U2100 and U2010 , and this
cancels the sign change from complex conjugation. In the
spinful case with nonzero SOC, there are fourfold double
Weyl points at the TRIMs S, U, and T, and the fourfold double
Weyl point at R moves to one of the three axis S-R, U-R,
and T-R [21]. This movable point is required to exist due to
the compatibility relations of the band structures that must be
satisfied on the three rotation axes simultaneously. Figure 6(a)
shows an example of an arrangement of bands fulfilling the
compatibility relations on the three rotation axes through R.
All three axes are part of nodal planes, therefore all bands are
twofold degenerate. Each pair is formed by two bands with
the same eigenvalue, as indicated by the double lines in the
same color.

1. Material example: Ag2Se

We have identified Ag2Se in SG 19 as an example of a
material with fourfold double Weyl points and nodal plane
trios. Ag2Se is a narrow gap semiconductor whose room

temperature polymorph crystallizes in SG 19 [72]. As with the
corresponding sulfide and telluride, it has been examined for
its thermoelectric properties and fast ion conduction at high
temperatures. In the vicinity of R, the splitting of bands in
Ag2Se is small with respect to the bandwidth. By comparison
of DFT band structures without and with SOC, the connec-
tion between the pinned fourfold double Weyl point in the
spinless case and how it splits into two movable ones upon
including SOC is demonstrated in Fig. 6(b). The black lines
show bands excluding contributions from SOC in which case
there is a fourfold degeneracy pinned at R. Note that all bands
are twofold degenerate because they are part of nodal planes.
Taking SOC into account removes the spin degeneracy, but
the twofold degeneracy in the nodal planes remains. There are
now two fourfold double Weyl points at the axis R-T, related
by time-reversal symmetry. Thus, the total topological charge
is conserved. The band structure along the full high-symmetry
path is shown in Fig. 12(b).

V. RHOMBIC PYRAMIDAL: SG 25–SG 46

SGs 25 to 46 have the crystallographic point group C2v

(mm2), consisting of a twofold rotation in the [001] direction
and two mirror planes with normal along [100] and [010].
Because of the presence of mirror symmetries, these SGs are
not chiral, but they are polar in [001] direction.

A. Weyl points

There cannot exist any point degeneracies with nonzero
Chern number in mirror planes, since the Berry curvature
transforms as a pseudovector under reflections and the con-
tributions to a closed surface integral on either side of a
mirror plane cancel. In base-, side- and body-centered lat-
tices however, not all TRIMs reside in mirror planes. In band
structures with strong SOC, these TRIMs host Kramers-Weyl
points whenever they are not in a nodal plane. The difference
to chiral SGs lies in the relative sign of Chern numbers for
symmetry-related Weyl points. If two Weyl points are mapped
onto each other by a mirror symmetry, they have opposite
chirality. Consequently, the nodal planes kz = π in SGs 26,
29, 31, 33 and 36 cannot be topological, because the chiralities
of all Weyl points in the interior of the BZ will always add up
to zero.

Band structures in SGs 36 and 45 with SOC have addition-
ally movable Weyl points. In the base centered lattice of SG
36, the axis R-S has only the screw rotation and translations
in its little group and an hourglass dispersion along this axis
is enforced by the same mechanism as in the chiral SGs, see
Sec. IV B. Because this axis is the only place for Weyl points,
SG 36 has only two symmetry-enforced Weyl points at S for
an odd number of filled bands n within a group of bands, while
R is part of a nodal plane. For n even, there are four Weyl
points in total on the two axes S-R. Note that while there can
be additional accidental Weyl points, it is in principle possible
to have only two Weyl points in materials with SG 36. The
existence of additional accidental Weyl points depends on the
particular band dispersions and needs to be checked for a
given material by inspection of the DFT bands.
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The rotation axis T-W in SG 45 gets an hourglass dis-
persion from a slightly different mechanism. The twofold
rotation is not a screw rotation, therefore the eigenvalues are
±i on the whole axis. However, W is not a TRIM, instead
it is invariant under the combined symmetry M010( 1

2 , 1
2 , 0)T .

This symmetry is antiunitary as well and enforces Kramers
pairs on the axis R-W, equivalently M100( 1

2 , 1
2 , 0)T with the

invariant axis S-W. Because the representation for the mirror
symmetry anticommutes with the one for the rotation at W,
the sign change from complex conjugation is compensated
and identical eigenvalues are paired, (+,+) and (−,−), as
opposed to (+,−) at T. Connecting these pairs leads again to
the hourglass dispersion shown in Fig. 3(a).

In the spinful case, SGs 36, 45, and 46 have only two
Weyl points connecting pairs of bands. This is the lowest
possible number of Weyl points in any band structure and
makes these SGs interesting candidates for investigating the
effects from such topological point degeneracies. There are
however additional degeneracies closing the gap along lines
and, in the case of SG 36, a nodal plane. Additionally it can
be noted, that SGs 36 and 45 have four Weyl points connecting
pairs of bands. Note that there are two nonequivalent copies
of S-R in the BZ, related by a mirror symmetry. Therefore the
topological charges of the two Weyl points will cancel in all
cases. Four Weyl points at TRIM can also be found in SGs
35 and 37 at R and S, and in the face-centered lattices of this
group, namely in SG 42 and 43 at the TRIM L. A material
example for the movable Weyl points in SG 36 is AsPb2Pd3,
where the enforced Weyl points occur within about 300 meV
above and below the Fermi energy [73].

B. Pinned nodal lines

As shown above, there are no Kramers-Weyl points in mir-
ror planes. However, Kramers theorem still holds and spinful
band structures at TRIMs must be at least twofold degenerate.
These degeneracies are always part of nodal lines and in most
cases, these nodal lines are pinned to high-symmetry lines.
Nodal lines split linearly into nondegenerate bands and are
characterized by a Z2 invariant, namely, a Berry phase of
π picked up by any path encircling the nodal line. Pinned
nodal lines can be readily identified from tables of irreducible
representations for the little groups of the high-symmetry line,
e.g., using the Bilbao Crystallographic Server [16]. For com-
pleteness and quick reference, we included them in Tables I to
IV in the column “Lines.”

For example, the rotation axis �-Z with little group mm2
is always twofold degenerate in spinful band structures, even
in the absence of T . Because the spin parts of the symmetries
anticommute, all irreducible representations must be at least
two-dimensional and eigenvalues of all symmetries are paired
as (+,−).

Another mechanism for pinned nodal lines results from the
combination of glide mirror symmetries with time-reversal
symmetry. A glide mirror symmetry has a translational part
1
2 t⊥ within the mirror plane. In double groups, mirror symme-
tries square to a 2π rotation and in the case of a glide mirror
symmetry an additional lattice translation t⊥ within the mirror
plane. The eigenvalues are therefore of the form

UM |±〉 = ±iζ exp( i
2 k · t⊥)|±〉. (5.1)

The combination of the glide mirror with T acts like a rota-
tion in k space with its invariant axis parallel to the mirror
normal and running through TRIMs in the mirror plane, see
the green lines in Fig. 1. On an axis through a TRIM K
with K · t⊥ = ±π , the combined symmetry squares to −1 and
enforces Kramers pairs by the extended Kramers theorem. For
example, the glide mirror symmetry M010( 1

2 , 0, 0) in SG 28
combined with T enforces the lines X-S and T-R to be twofold
degenerate.

C. Movable nodal lines

The k-dependent eigenvalues of glide mirror symmetries
defined in Eq. (5.1) lead to the possibility of pairing identi-
cal and opposite eigenvalues at different points in the same
mirror plane. This leads to an hourglass dispersion as shown
in Fig. 3(a) for any path in the mirror plane between these
points [60]. The movable crossings on all these paths form a
nodal line, which might either form a closed loop around one
of the points or extend through the BZ. For example, in SG 28
with strong SOC, the glide mirror symmetry M010( 1

2 , 0, 0) has
eigenvalues ±i at �-Z and Y-T, paired on the whole line, and
eigenvalues ±1 for kx = π , forming Kramers pairs (+,+) and
(−,−) at X, U, S and R. The movable nodal line in the ky = 0
plane therefore runs between �-Z and X or U. A movable line
is given in Tables I and II in terms of a tuple, e.g., (�-Z;R,U),
where the entries left of the semicolon are the degeneracies
with opposite eigenvalue pairing and the entries on the right
the points where identical eigenvalues are paired. The mirror
plane can be inferred from the high-symmetry points and lines
in the bracket, otherwise it is specified explicitly. If a point
appears left and right of the semicolon, there is a fourfold
degeneracy with eigenvalues (+,+,−,−) and the point is
written in italic font. See Sec. V F below for a discussion of
fourfold degenerate points.

Monolayer GaTeI can be considered as a subset of the
3D SG 31 with SOC, which exhibits hourglass nodal lines
that correspond to (�-Z-U;X) in our notation [74]. While this
feature is at about 1.2 eV above the Fermi energy, it has been
suggested that due to the two-dimensional geometry it may be
possible to introduce a significant number of charge carriers
by electrostatic gating.

D. Nodal chain

When two mirror planes with movable nodal lines inter-
sect, it can be required that the nodal lines touch on the
intersection and form a nodal chain [20]. TRIMs at the inter-
section of two glide mirror symmetries might have different
eigenvalue pairing, i.e., (+,−) for one mirror symmetry and
(+,+) for the other. If the pairing is different for both mirror
symmetries at another TRIM on the same intersection, the
requirements of an hourglass dispersion need to be fulfilled
for both mirror symmetries simultaneously. Because the total
number of crossings must be odd, the two movable nodal lines
have to meet at one point on the axis. In case the TRIMs on
the high-symmetry axis have opposite eigenvalue pairing as
mentioned above, the two loops form a so called nodal chain,
found in SGs 30, 34, and 43 with SOC [20]. In Table II, they
can be identified by two entries for movable nodal lines with
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the two TRIMs changing sides with respect to the semicolon.
For example, in the hourglass relations for SG 43, T and Y
appear on each side once. In the kx = 0 plane, the relation
reads (�-Z-T;Y) and Y has identical M100 eigenvalues paired.
On the other hand we find Y as part of the line Z-A on the
left in the relation for the ky = 0 plane, (�-Z-A;T), and T has
identical M010 eigenvalues paired. On the line Y-T, both eigen-
values are good quantum numbers and both have to exchange
as part of nodal lines. Consequently, the two nodal lines have
to intersect and form a chain.

1. Material example: CuIrB

Our search has identified CuIrB as an example of a material
with nodal chains. CuIrB, obtained from the elements either
by heating in quartz ampules or by arc-melting and annealing,
crystallizes in SG 43 and exhibits metallic resistivity [75]. The
nodal chain made from lines in the ky = 0 and kx = 2π planes
are shown in Fig. 7(a) and the dispersion along the intersection
of the mirror planes is presented in Fig. 7(b). The dispersion
along the full high-symmetry path as defined in Fig. 13 is
shown in Fig. 12(d).

E. Almost movable lines

There is one case of symmetry-enforced nodal lines not
covered by the above discussion. The Kramers pairs at the
TRIMs S and R in SG 44 and S in SG 46 have only a mirror
symmetry in their little group and are not part of a pinned
nodal line. The mirror eigenvalues are ±i and T creates pairs
(+,−). In the vicinity of such a TRIM K, a state at K + δ

in the mirror planes is mapped by T to a state with opposite
eigenvalue at K − δ with the same energy. Consequently, the
two bands with opposite mirror eigenvalues have to exchange
somewhere on any path within the mirror plane connecting
these two points. The exchange of bands is protected by the
different symmetry eigenvalues and the resulting nodal line is
only pinned to the TRIM K. Otherwise it can be moved freely
through the mirror plane and is therefore called an almost
movable line [19]. Similar to movable nodal lines, we indicate
these nodal lines also with a bracket containing the point
of opposite eigenvalue pairing, but instead of a counterpart
with equal eigenvalues we just leave a dash, e.g., (S;−). The
corresponding mirror symmetry and its invariant plane with
the nodal line is always the one leaving the high-symmetry
point invariant. Movable and almost movable nodal lines re-
side both in mirror planes and are made up of two opposite
mirror eigenvalues. The splitting into nondegenerate bands is
linear to lowest order and their topology is captured by a Berry
phase of π .

F. Fourfold degeneracies in mirror planes

In Sec. V B, we have discussed two different types of
pinned nodal lines. If they intersect a fourfold degeneracy
follows. These fourfold degeneracies occur in two distinct
types. The first type appears as a pointlike degeneracy in the
gap between the nodal lines, whereas the second is crossed
by an additional hourglass nodal line and a sphere in the BZ
enclosing the fourfold degeneracy will be gapless for every
number of filled bands. In both cases, bands disperse linearly

(a)

(b)

FIG. 7. (a) Nodal chain in CuIrB formed by the 10th and 11th
valence band counted from the band gap at the Fermi energy. The
green line is within the ky = 0 plane and encircles Y, the red line
is restricted to the other mirror plane kx = 2π and winds around T.
(b) Dispersion on the intersection of both planes, shown in turquoise
in (a). Blue and orange indicate positive and negative signs of the
mirror eigenvalues according to Eq. (5.1), the upper color belongs to
M100 and the lower to M010.

to lowest order in momentum in the vicinity of the fourfold
degeneracy.

In the first type, the anticommutation relation of the two
mirror symmetries M1 and M2 creates always eigenvalue
pairs (+,−). For the second type, at least one of the mirror
symmetries, say M1, needs to be nonsymmorphic with real
eigenvalues at a TRIM. Time-reversal symmetry then pairs
identical eigenvalues, requiring the fourfold degeneracy. The
combined symmetry M1T creates a twofold degeneracy along
its invariant axis. Both pinned nodal lines are within the
invariant plane of M2. If its eigenvalues are also real at the
fourfold degeneracy, then the combined antiunitary symmetry
M1T pairs opposite eigenvalues because of the anticommu-
tation relation of mirror symmetries. In that case, the fourfold
degeneracy is pointlike, but with vanishing Chern number. We
list such cases in the column “Points” in Table II with the
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(a) (b)

FIG. 8. Dispersion of the two different types of fourfold degenerate points in AuTlSb in the ky-kz-plane. Colors indicate the relative sign
of M100 eigenvalues. (a) Around S all lines are made of pairs (+, −) and a pointlike degeneracy is formed. (b) At R, the nodal lines on
R-Z = (π, v, π ) are paired (+, +) and (−, −), and an additional hourglass nodal line closes the gap, and thus the fourfold degenerate point is
not a point crossing but part of several twofold degenerate nodal lines.

degeneracy given explicitly in brackets. An example is shown
in Fig. 8(a) and the linearized low-energy Hamiltonian around
such a point is given by Eq. (B9) in Appendix B 2.

The second possibility is complex eigenvalues for M2. In
that case, identical eigenvalues are paired by M1T and there
will be an hourglass nodal line in between the two pinned
nodal lines [22]. Consequently, there is no gap, at which
the fourfold degeneracy appears point like and we list the
fourfold degeneracy in the columns “Lines” as an hourglass
nodal line with the fourfold degenerate point on both sides of
the semicolon and shown in italic, e.g., (X-U ;U -R). In this
scenario, the two mirror symmetries must differ in their in-
plane translation and their product is always a screw rotation.
See Fig. 8(b) for an example and Eq. (B13) for a linearized
low-energy Hamiltonian.

1. Material example: AuTlSb

As an example, we present AuTlSb crystallizing in an
anion-ordered pyrite-derivative structure in SG 33 and ex-
hibiting metallic resistivity [76], see Fig. 12(c) for the band
structure along the full high-symmetry path. Since the above
considerations depend on pairing of k-dependent mirror
eigenvalues, both types of fourfold degeneracies can occur in
the same SG at different TRIMs. In SG 33, there are nodal
lines at S-R with M100( 1

2 , 1
2 , 1

2 )-eigenvalues paired as (+,−),
because of the anticommutation relation of the two glide
mirror symmetries. On the lines X-S and U-R, the combined
antiunitary symmetry M010( 1

2 , 1
2 , 0)T creates pairs (+,−) and

(+,+)/(−,−), respectively. A fourfold point can therefore
be found in the band structure of AuTlSb at S, see Fig. 8(a),
whereas Fig. 8(b) shows the fourfold degeneracy with an
hourglass nodal line at R.

VI. RHOMBIC DIPYRAMIDAL: SG 47–SG 74

The centrosymmetric SGs in the orthorhombic crystal sys-
tem, SGs 47 to 74, have crystallographic point group D2h

(mmm). The combination of inversion and time-reversal sym-
metry requires all states to be spin degenerate throughout the
whole BZ via Kramers theorem. Any additional symmetry-
enforced degeneracy in spinful band structures is therefore a
Dirac point or line. This overall twofold degeneracy already
includes many of the degeneracies described above. For ex-
ample, there are no nodal planes in centrosymmetric spinful

band structures. Additionally, the Berry curvature must van-
ish identically at each point in the BZ and consequently no
degeneracy might carry a nonzero Chern number.

A. Dirac points at high-symmetry points

We call a fourfold point degeneracy a Dirac point, if and
only if its Chern number vanishes and it splits into twofold
degenerate bands in every direction. The latter criteria is not
always required in the literature for the definition of a Dirac
point in a band structure [77], which would also include
the fourfold point degeneracies in mirror planes discussed in
Sec. V F. To lowest order in relative momentum, the splitting
is also linear for all Dirac points stabilized by twofold symme-
tries. Dirac points pinned to TRIMs are also invariant under
inversion [78]. A fourfold degeneracy is enforced, whenever
the irreducible representation for inversion is two-dimensional
and has eigenvalues ±1. Their Kramers partner has to have the
same eigenvalue and T enforces the fourfold degeneracy. As
shown in Sec. IV A, the point W in the BZ of body-centered
lattices hosts a Weyl point in SG 23 and SG 24 in spinless
and spinful band structures, respectively, despite not being a
TRIM. There are two possibilities of adding inversion to these
two SGs. In spinless (spinful) band structures of SG 72 (SG
73), inversion combined with time-reversal symmetry doubles
this degeneracy. The other possibility for the inversion center
leads to SG 71 (SG 74). There, states at W remain only
twofold degenerate and are part of a nodal line (the overall
spin degeneracy). This leads to a single instance of a pinned
Dirac point at a non-TRIM in SG 73. In the spinless case
in SG 72, the fourfold degeneracy is not a Dirac point in
the sense mentioned above, because bands are nondegenerate
away from high-symmetry lines.

B. Movable Dirac points

In most cases, the overall Kramers degeneracy of band
structures in centrosymmetric SGs prevents the hourglass dis-
persion from occurring on screw rotations, because rotation
eigenvalues are paired as (+,−) on the whole rotation axis.

There are, however, instances where the representation of
PT anticommutes with the screw rotation. More concretely,
if the screw rotation is additionally off-centered with respect
to the inversion center, exchanging the order of the two differs
by a translation of a lattice vector [23]. This leads to a pairing
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of (+,+) and (−,−) on rotation axes where the eigenvalue
of this translation contributes an additional minus sign. With
Dirac points at the TRIMs, this leads again to the hourglass
dispersion shown in Fig. 3(a). The only difference is, that all
bands are twofold degenerate and eigenvalues appear twice.
The movable crossing on the axis forms a Dirac point. We find
these conditions to be met on at least one rotation axis in SGs
52, 54, 56, and 60. Following our previous notation, movable
Dirac points are given in Table IV in terms of the two TRIMs
on the rotation axis connected by a dash.

We find one additional movable Dirac point in SG 73 from
an extended compatibility relation on the three rotation axis
connecting W with R, S, and T. In SU(2)-symmetric band
structures, this corresponds to an eightfold degeneracy at W.
With nonzero SOC, this degeneracy is lifted and there are
two symmetry-related Dirac points on one of the rotation
axes. Each TRIM has one rotation in its site symmetry group
and eigenvalues are paired as (+,+,−,−) and (+,+) and
(−,−) on the axis. At W, all three rotation eigenvalues are
simultaneously present, but their overall sign is restricted to
+. This can only be arranged with a minimum of one band
crossing on one of the axes W-R, W-S, and W-T, equivalent to
the requirement shown in Fig. 4(a).

C. Movable and almost movable Weyl lines

In spinless band structures of centrosymmetric SGs, glide
mirror symmetries enforce movable nodal lines from an hour-
glass dispersion between high-symmetry lines and planes in
the mirror plane [22]. The mechanism is the same as described
in Sec. V C and we list them using the same notation in the
column “Lines” in Table III. In all instances, the pinned and
movable nodal lines cross in a common point, leading to a
fourfold degeneracy as described in Sec. V F and shown in
Fig. 8(b). Additionally, glide mirror symmetries might intro-
duce almost movable lines whenever their eigenvalues at a
TRIM are ±i, as described in Sec. V E.

D. Movable Dirac lines

In the spinful case, nodal lines can only be formed as a
fourfold degeneracy, splitting linearly into twofold degener-
ate bands, called Dirac lines. Since the Berry phase is a Z2

invariant, its topological invariant needs to be evaluated in a
spin subspace.

A movable Dirac line can only be enforced, if the Kramers
pairs formed by PT share the same mirror eigenvalue. This
is the case, if and only if the glide mirror symmetry is addi-
tionally off-centered with respect to the inversion center. As
an example we discuss SG 57, which has the glide mirror
symmetries M010(0, 1

2 , 1
2 ) and M100(0, 1

2 , 0), of which only
the former is also off-centered. For a state |±〉 with M010

eigenvalue ±i exp(i kz

2 ), we can calculate the eigenvalue for
its Kramers partner PT |±〉 via the commutation relation of
symmetries [79],

M010
(
0, 1

2 , 1
2

)
PT = t (0, 1, 1)PT M010

(
0, 1

2 , 1
2

)
, (6.1)

and therefore

UM010UPT K|±〉 = ei(ky+kz )UPT K
( ± iei

kz

2
)|±〉

= ∓eiky iei
kz

2 UPT K|±〉. (6.2)

From this it follows, that equal eigenvalues are paired in the
plane ky = π , where eiky = −1. Additionally, there are further
degeneracies at high-symmetry points in this plane even be-
fore taking time-reversal symmetry into account. On the axis
Y-S, the representations of M010(0, 1

2 , 1
2 ) and M001(0, 1

2 , 1
2 )

anticommute. This readily creates eigenvalue pairs (+,−),
and together with the pairing from PT a fourfold degener-
acy (+,+,−,−). At R and T however, the representation
of M010(0, 1

2 , 1
2 ) commutes with all other symmetries, but

the representations of the other two mirror symmetries
anticommute. This implies, that there are two orthogonal
states for each M010(0, 1

2 , 1
2 ) eigenvalue. They can be dis-

tinguished by their M001(0, 0, 1
2 ) eigenvalue, which is left

invariant by PT , therefore the Kramers partners have iden-
tical eigenvalues for both mirror symmetries. This leads to
a total of four degenerate states and the pairing in terms of
M010(0, 1

2 , 1
2 ) eigenvalues as defined in Eq. (6.2) is there-

fore (+,+,+,+) or (−,−,−,−). The movable nodal line
formed by the exchange of bands (+,+) and (−,−) on any
path connecting the differently paired states is fourfold de-
generate and called a movable Dirac nodal line. In spinful
centrosymmetric band structures, they are found in SGs 57,
60, 61, and 62. Following our previous notation for movable
nodal lines, we indicate them in Table IV by a bracket con-
taining the degeneracies with pairwise opposite eigenvalues
on the left of the semicolon and the ones with four identical
eigenvalues on the right. The example discussed above reads
(S-Y;R,T).

In analogy to the nodal chains mentioned in Sec. V D, the
two movable Dirac nodal lines in SG 60 both cross through
the shared axis U-R and form a Dirac nodal chain with loops
in the kx = π and kz = π planes. These Dirac nodal chains
occur, for example, in the band structure of the β phase of
ReO2 [79].

E. Nodal line arrangement in SGs 61 and 73

Space group 61 is a supergroup of SG 19 with inversion
as an additional generator. This adds further restrictions to
the compatibility relations for bands along the rotation axes
discussed in Sec. IV B.

In the spinless case, SG 61 also has a nodal plane trio
enforced by the three screw rotations. Within the other mirror
planes ki = 0, i = x, y or z, there is an hourglass nodal line in
between the twofold degeneracies on the intersections with
the nodal planes. For example, in the plane kx = 0 bands
form an hourglass dispersion for any path connecting the lines
Z-T and T-Y, where T is fourfold degenerate. This includes
the path from Z to Y via � along the rotation axes. The
segments of this path are always part of two mirror planes
and the dispersion along these axes has to accommodate for
the eigenvalue relations of both symmetries simultaneously.
No two bands paired at one of the TRIMs X, Y, or Z can be
paired again at some other point. This enforces three crossings
on two of the three lines. A possible arrangement is shown
in Fig. 9(b). Each irreducible representation along the axis is
completely determined by the two mirror eigenvalues of the
planes meeting along this line. This is shown by the double
lines, where the color indicates the positive (blue) or negative
(orange) eigenvalue. Note that the order of colors is important.
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(a) (b)

FIG. 9. Possible arrangement of bands along three rotation axes
in (a) SG 61 in the spinless case for the TRIMs without brackets and
the spinful case for the TRIMs in brackets, (b) SG 73 in the spinless
case. Blue and orange mark the sign of both mirror eigenvalues on
each axis according to Eq. (5.1).

A crossing can only be removed, when both eigenvalues are
identical. Each crossing is part of an hourglass nodal line,
extending into planes where the mirror eigenvalues differ.
Exchanging the order of bands at � moves the crossings to
other symmetry axis, but cannot change the overall picture.
The rotation eigenvalue is given by the product of both mirror
eigenvalues. At �, the product of all rotation eigenvalues
equals +1 as in SG 19, cf. Fig. 4(a).

In the spinful case, a similar situation unfolds on the BZ
edges. There are three hourglass nodal lines, (U-X;S) in the
kx = π plane, (S-Y;T) in the ky = π plane and (T-Z;U) in
the kz = π plane. When connecting two TRIMs out of U,T
and S via R, the eigenvalues of the mirror symmetry whose
invariant plane contains the three points need to exchange
for every possible combination. For example, the path from
S via R to T has to provide the eigenvalue exchange in
the ky = π plane, but the segments S-R and R-T must also
be compatible with the hourglass nodal lines in the kx and
kz planes, respectively. This is only possible with the same
connectivity diagram for the three axis R-S, R-U, and R-
T as described above for the spinless case and shown in
Fig. 4(a).

In SG 73, we also find an extension of the compatibility
relations of its subgroup SG 24. All mirror symmetries are
nonsymmorphic and their eigenvalues depend on k. Con-
sequently, an eigenvalue + changes into − when moving
along a path which changes the corresponding coordinate
by 2π modulo reciprocal lattice translations. For example,
the M010(0, 1

2 , 1
2 ) eigenvalue +1 at Z = (0, 0, 2π ) is labeled

with + according to the definition in Eq. (5.1), whereas at
the equivalent point Z′ = (2π, 0, 0) it is the one labeled −,
i.e., the bands with + and − have to exchange for any path
connecting Z to itself with a net displacement in ky of 2π .
At the same time, the TRIMs S, R, and T are the origin of
almost movable nodal lines in the kx = 0, ky = 0, and kz = 0
planes, respectively, which facilitate this exchange. Because
� connects to Z via all three rotation axes and the above
considerations are valid for all three glide mirrors, there are
fewer choices for arranging the states to avoid crossings. This
leads to at least six crossings, all being part of nodal lines
again. A possible arrangement is shown in Fig. 9(b).

F. Almost movable Dirac line

There is only one instance of an almost movable Dirac line
in centrosymmetric orthorhombic SGs with SOC, namely in
SG 63. Because M001(0, 0, 1

2 ) is off-centered, the representa-
tions UM001 and UP anticommute in the kz = π plane and the
mirror eigenvalues ±i are paired as (+,+) or (−,−) by PT .
At the same time, T relates (+,+) at R + (qx, qy, 0) to (−,−)
at R − (qx, qy, 0), requiring the eigenvalues to exchange on
any path in between these two points. This requires a fourfold
degeneracy along a line through R. Following our notation
in Sec. V E, we call this line an almost movable Dirac line.
The same argument applies, in principle, to every other TRIM
in the kz = π plane as well, but for them pinned nodal lines
facilitate the exchange.

1. Material examples

The compound LiBH may prove to be a valuable realiza-
tion of a material, where a twofold nodal line and a nodal
plane with a pinned fourfold nodal line coexist in the vicinity
of the Fermi energy [80]. Other known orthorhombic realiza-
tions of movable enforced nodal lines in the vicinity of the
Fermi energy include AgF2 (SG 61) [81], Ba2ReO5 (SG 62)
[73], and SrIrO3 (SG 62) [82]. Accidental nodal lines have
been found for BaLi2Sn (SG 59) [83], BaLi2Si (SG 59) [84],
ZrAs2 (SG 62) [85], Ta3SiTe6 and related compounds (SG 62)
[86,87], as well as 3D α′ boron (SG 63) [88].

G. Symmetry-enforced Z2 topology in planes

Topologically nontrivial insulators can be understood by
an inversion of bands, which means that the valence bands by
themselves cannot be expressed as a sum of trivial elementary
band representations [89]. Such a nontrivial topology is not
limited to topological insulators, but can also be found, and
even enforced, for gapped subsystems within a single set of
connected bands [19,90,91].

In the following, we will discuss the centrosymmetric SGs
56, 61, and 62 with strong SOC that enforce a nontrivial
weak topological invariant already within a minimal set of
connected bands. To identify whether an effective band in-
version must occur in a subset of the BZ, we calculate the
Z2 index from inversion eigenvalues [92], which can be ob-
tained for some SGs directly from the crystalline symmetries.
Furthermore, the argument can be extended by including SGs
for which a system inherits an actual band inversion from the
case without spin-orbit coupling that persists with sufficiently
small SOC.

First, we introduce the Z2 invariant and apply the for-
malism to SG 62, the symmetry group of Ir2Si, for which
a nontrivial weak invariant is enforced. We then discuss SG
52 for which a nontrivial topology follows from the case of
vanishing SOC, which is confirmed explicitly for Sr2Bi3.

The weak Z2 invariant can be calculated on a subset of the
BZ that includes four TRIMs �i. The invariant ν is given by
(−1)ν = ∏

�i
δ�i with δ�i = ∏N

m=1 ξ2m(�i), where the inver-
sion eigenvalue ξ2m(�i ) is taken for the band 2m at the TRIM
�i ∈ {�, X, Y, Z, U, S, T, R} [92]. N denotes the number of
occupied bands. Taking only the even-numbered occupied
bands is well-defined because time-reversal symmetry pairs
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(b)

(a)

FIG. 10. (a) Bulk bands of Sr2Bi3 in the kz = π plane with the
sign of the product of inversion eigenvalues for each set of band at
all TRIMs in the plane. (b) Surface density of states on the (100)
surface along a high-symmetry path in the surface BZ. The nontrivial
plane maps on the line Z-T, see inset in (a), with symmetry enforced
surface states crossing the projected bulk gap.

identical inversion eigenvalues ξ2m(�i ) = ξ2m+1(�i) at each
TRIM �i.

To illustrate the calculation of the inversion eigenvalues
ξ2m(�i ) and in extension the invariant ν, we consider SG 62
as an example. In SG 62, all TRIMs except � host four-
fold degenerate Dirac points and thus we must consider N =
2 + 4N0 occupied bands, for which δ�i can be well-defined.
Note that for N the bands are counted without their spin
degeneracy, while we consider all the states in our discussion
of inversion eigenvalues. A Dirac point may consist of either
four identical inversion eigenvalues or two of each possible
eigenvalue. If one takes into account that the mirror symmetry
M010(0, 1

2 , 0) anticommutes with the inversion operation at
TRIMs in the ky = π plane, one finds that these TRIMs con-
tain both inversion eigenvalues, yielding ξ2({Y, T, R, S}) =
±1 = −ξ4({Y, T, R, S}). An analogous argument holds for the
mirror symmetry M001( 1

2 , 0, 1
2 ), such that also at the TRIMs

Z and X different eigenvalues are paired. Since � does not
host a Dirac point, only the TRIM U remains to be consid-
ered. At U, the inversion commutes with the mirror symmetry
M010(0, 1

2 , 0), and thus the bands can be labeled simultane-
ously by the eigenvalues of both symmetries. While the mirror
symmetry M001( 1

2 , 0, 1
2 ) commutes with inversion at U, it

anticommutes with M010(0, 1
2 , 0). The composite symmetry

T M001( 1
2 , 0, 1

2 ) squares to −1 at U and relates the mirror
eigenvalues as (+,+) and (−,−). Since time-reversal sym-
metry by itself pairs (+,−), there are four distinct states. All
four states carry the same inversion eigenvalue, because it is
invariant under both M001( 1

2 , 0, 1
2 ) and time reversal. These

four orthogonal states form the Dirac point at U. In summary,
for SG 62, we have found the inversion eigenvalues for all
Dirac points at TRIMs with general arguments.

We can thus calculate the weak topological invariant for SG
62 using that δX = δY = δZ = δT = δS = δR = ξ2(X )ξ4(X ) =
±1(∓1) = −1 and δU = ξ2(U )ξ4(U ) = +1, which is true for
both possible eigenvalues ξ2(U ) = ξ4(U ) = ±1. One con-
cludes that the weak invariant of systems in SG 62 is fixed
by symmetry, whereas the strong topology remains material
dependent, because the order of bands at � is not fixed. The
latter would become relevant if there is a symmetry breaking
perturbation that gaps the enforced nodal line (R-U-X;S) such
that the system becomes insulating at the filling N = 2 + 4N0.
Thus the weak topological invariant on any plane that contains
U, but neither � nor the nodal line, is always nontrivial. This
argument is independent of the specific order of bands and
thus any material will exhibit the corresponding surface states
in the gap that is also crossed by the nodal line (R-U-X;S). Let
us consider for example the plane ZURT, where the invariant
is given by (−1)ν = δYδTδRδS = −1 and thus ν = 1 indicates
a nontrivial subsystem. Due to the nonzero topological invari-
ant ν, there are surface states for any termination that truncates
the plane ZURT, given that the projection of the bulk bands
into the surface BZ does not close the gap. For example, for
the (100) surface, there has to be a surface state that crosses a
bulk gap between Z̄ and T̄ in the surface BZ, while the bulk
bands of the nodal line only close the gap in the vicinity of
Ȳ. We discuss Ir2Si as a material realization for SG 62 in
Sec. VI G 2.

The described process for SG 62 also applies analogously
to SGs 56 and 61, where SG 61 is a special case because there
is no Dirac point at R. Nevertheless, the weak invariant is in-
dependent of the band order, because without SOC at R there
is only one Dirac point per minimal set of connected bands,
for which all inversion eigenvalues are identical. With SOC
this degeneracy of identical inversion eigenvalues splits into
four bands with the same representation regarding inversion.
We have listed the nontrivial planes in terms of their TRIMs
in the column “Nontrivial planes”, the TRIM with identical
eigenvalue pairing is highlighted in bold font.

In the following, we extend the previous approach to con-
sider cases, where the order of inversion eigenvalues is fixed
without SOC, which leads to a nontrivial weak invariant with
SOC as long as SOC is sufficiently small, such that the bands
are not inverted. We shall consider SG 52, for which by similar
arguments as before the inversion eigenvalues for the oc-
cupied bands must lead to δX = δY = δZ = δU = δS = δR =
ξ2(X )ξ4(X ) = ±1(∓1) = −1 and δT = 1 without SOC. Once
SOC is added to the system, the Dirac point at T splits into
two bands, but as long as no band inversion occurs the value
of δT does not change. Note that this induced arrangement
of inversion eigenvalues is less stable than for SG 61, where
a set of connected bands inherits only identical inversion
eigenvalues from the case without SOC. In other words, for
SG 52 an exchange of energy levels within a set of connected
bands may trivialize the Z2 invariant, whereas for SG 61 such
an exchange would not affect the topology. The topological
invariant ν induced by SG 52 is ν = 1 for any plane that
contains T but neither � nor the movable Dirac point on X-S.
An analogous argument also holds for SG 60.
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(a)

(b)

FIG. 11. (a) Bulk bands of Ir2Si in the kz = π plane with the
sign of the product of of inversion eigenvalues for each set of band
at all TRIMs in the plane. (b) Surface density of states on the (100)-
surface, where the nontrivial plane maps on the line Z-T, see inset
in (a). A pair of time-reversal symmetric surface states connect the
bands below the projected bulk gap to the upper ones.

To show the Z2 topology inherited from the case without
SOC more clearly, we discuss the material Sr2Bi3 correspond-
ing to SG 52 in Sec. VI G 1. In Sec. VI G 2, we present
a material in SG 62, namely, Ir2Si, which has a weak Z2

invariant enforced by symmetry alone.

1. Material example: Sr2Bi3

Sr2Bi3 crystallizes in SG 52 and was prepared by melting
the elements with a long, subsequent annealing step [93]. It is
very prone to oxidation in air, as expected based on the Bi–Bi
bonding. Growth of large single crystals may be challenging
as it appears to be incongruently melting with a small exposed
liquidus [94].

Projecting the bulk bands in [100] direction preserves the
gap between conduction and valence bands in the ZURT
plane, cf. the band structure along the high-symmetry path
in Fig. 12(e). The nontrivial topology in that plane enforces
surface states crossing that gap in the projection of the plane,
see Fig. 10. Because time-reversal symmetry is preserved, the
surface states form a Dirac point at TRIMs.

2. Material example: Ir2Si

Although some ternary iridium silicides have attracted at-
tention for superconductivity or heavy fermion behavior, very
little is known about the binary Ir2Si crystallizing in SG 62.
The initially reported structure [95] has been corroborated
at least once [96]. In the first four bands below the Fermi
energy, there is a gap between pairs of bands in the kz = π

plane with symmetry enforced nontrivial Z2 invariant, shown
in Fig. 11(a) and in the band structure along the full high-

symmetry path in Fig. 12(f). The bulk gap of this plane is
preserved for a (100) termination and the nontrivial topology
enforces a surface state traversing the gap on the line Z̄-T̄, see
Fig. 11(b). There are several additional surface states forming
Dirac cones in the bulk gaps. Nevertheless, a clear signature
of the nontrivial topology is the surface band that detaches
from the lower bands at the center of the line Z̄-T̄, crosses the
gap and connects to higher bands. In the process the partners
of Kramers pairs at TRIMs change when comparing Z̄ and T̄,
which would not be the case for trivial surface states.

VII. CONCLUSION

In summary, we have classified all symmetry-enforced
band topologies in orthorhombic crystals with time-reversal
symmetry, both in the presence and absence of spin-
orbit coupling. We have found a vast number of different
symmetry-enforced band crossings, as well as enforced weak
Z2 invariants (Tables I–IV). Weyl points exist in the absence
of inversion and are enforced to occur by Kramers theorem (or
generalizations thereof), by off-centered rotations (Sec. IV A),
or by screw rotations (Secs. IV B and V A). Fourfold double
Weyl points with |C| = 2 exist in the presence of several
screw rotations combined with time-reversal symmetry (Sec.
IV D). Dirac points at high-symmetry points are enforced by
the combination of inversion with time-reversal (Sec. VI A),
while movable Dirac points arise in the presence of screw
rotations together with space-time inversion PT (Sec. VI B).

Line degeneracies can be enforced by orthorhombic sym-
metries as well. For example, movable Weyl lines with
hourglass dispersion are generated by glide mirror symmetries
(Sec. V C). These Weyl lines can form nodal chains if several
glide mirror symmetries with orthogonal mirror planes are
present (Sec. V D). We find that such nodal chains exist in the
bands of CuIrB near the Fermi level. Almost movable lines oc-
cur in the presence of mirror symmetries whose mirror planes
contain TRIMs without any additional symmetries (Sec. V E).
Movable Dirac lines are enforced by mirror symmetries that
are off-centered with respect to space-time inversion PT
(Sec. VI D).

Finally, orthorhombic symmetries can also enforce nodal
planes, i.e., two-dimensional degeneracies of the bands at the
boundary of the BZ. These are enforced by the combination
of screw rotations with time-reversal symmetry (Sec. IV C).
Interestingly, in SG 19 with SOC there are three such nodal
planes (i.e., a nodal plane trio) which are sources (or sinks) of
quantized Berry flux, which is absorbed (emitted) by a single
Weyl point at �.

Besides band degeneracies, orthorhombic symmetries can
also enforce nontrivial Z2 topologies in two-dimensional,
gapped subspaces of the three-dimensional BZ. The cor-
responding Z2 indices are computed from the inversion
eigenvalues at the TRIMs within the two-dimensional sub-
spaces, whose values are fixed by symmetry in SGs 56 and
62, as well as in SG 61 provided that elementary band rep-
resentations with different inversion eigenvalues do not mix.
Similarly, we find that also SGs 52 and 60 enforce weak
Z2 invariants, however, only in the case of weak SOC that
does not invert the bands. We have identified two materi-
als, namely Ir2Si (SG 62) and Sr2Bi3 (SG 52), with such
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FIG. 12. DFT band structures including SOC along the high-symmetry paths for all examples discussed in the main text. The positions of
symmetry-enforced fourfold degenerate points are highlighted in orange and correspond to fourfold double Weyl points, fourfold degenerate
points with C = 0 and Dirac points in the first, second and third row, respectively. The movable fourfold double Weyl points in (b) are
highlighted with arrows. Gray areas highlight connected bands in path segments with an hourglass dispersion. Green areas indicate the set of
connected bands in a plane with nontrivial Z2-invariant.

symmetry-enforced weak invariants, which lead to surface
helical modes of topological origin.

Interestingly, there are also some orthorhombic SGs, where
the number of Weyl points of a given band pair can be as low
as two. For example, in SGs 36, 45, and 46 with SOC, there
can be only two Weyl points at two TRIMs, while the other
TRIMs are part of nodal planes or nodal lines. Remarkably, in
SG 24 without SOC a given band pair can have only four Weyl
points, while the TRIMs are nondegenerate. In SG 19 without

SOC, there are only three Weyl points for an even number of
filled bands, one of which is a fourfold double Weyl point.

Furthermore, we provide an example of how to use our
purely symmetry-based analysis as a guide to identifying
interesting new materials. The screening criteria mentioned
in Sec. III can be used as a starting point for identifying
candidates in known compounds, which in turn might act as a
starting point for synthesis of related new compounds of the
same SG. By explicitly including spinless band structures in
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FIG. 13. High-symmetry path for CuIrB in SG 43 used in
Fig. 12(d).

our analysis, our paper also applies to phonon bands and can
serve as a blueprint for constructing synthetic materials, e.g.,
photonic crystals, acoustic metamaterials or electric circuit
networks. The methods used have also been applied to the
hexagonal, trigonal, and tetragonal SGs [17–19] and can be
extended to further SGs and, in a similar manner, to magnetic
SGs. Another topic for further investigations is the ques-
tion of which symmetries, irreducible band representations,
and band orderings lead to enforced higher-order topological
insulators [90,97–99] or semimetals [100–103] with corner
states.

ACKNOWLEDGMENTS

The authors thank K. Alpin and W. Yau for useful discus-
sions. D.H.F. gratefully acknowledges financial support from
the Alexander von Humboldt Foundation.

APPENDIX A: ADDITIONAL BAND STRUCTURE
CALCULATIONS

For all the example materials, we present in this Appendix
the band structure along the full high-symmetry path, aligned
with the symmetries as specified in Sec. II. We use the stan-
dard path for all SGs with a primitive lattice, see Fig. 1(a).
Note that the path for CuIrB extends beyond the first full BZ
to show the full line T1-Y via A1, where the nodal chain is
formed. See Fig. 13 for the definition.

For each plot, we highlight the path segments with an
hourglass dispersion by coloring the space between bands in
gray, i.e., the hourglass dispersion appears always within the
gray area.

For the two SGs with crystallographic point group 222,
Figs. 12(a) and 12(b), the hourglass dispersion always en-
forces a movable Weyl point and the points highlighted by
orange lines host fourfold double Weyl points in all bands,
see Sec. IV D.

Figures 12(c) and 12(d) contain the two example mate-
rials with crystallographic point group mm2. The hourglass
dispersion there belongs always to movable Weyl lines and
the fourfold degenerate points carry no Chern number, as
described in Sec. V F.

The two materials shown at the bottom of Fig. 12 are cen-
trosymmetric and all bands are twofold degenerate. The points
highlighted in orange host pinned Dirac points. The hourglass

dispersion belongs to a movable Dirac point in Fig. 12(e) and
to a movable Dirac line in Fig. 12(f). Additionally, all bands
belonging to a set of connected bands with a nontrivial Z2-
invariant are filled in with green in the corresponding plane.
For these two examples, there is in principal another possible
plane running diagonally through the BZ. However, since no
path segment lies within this plane it is not shown.

APPENDIX B: LOW-ENERGY HAMILTONIANS FOR
FOURFOLD DEGENERATE POINTS

Here we give low-energy Hamiltonians for the fourfold
double Weyl points with Chern number ±2, and the fourfold
degenerate points formed by intersecting nodal lines, either
with an additional hourglass nodal line in between or as true
point defects.

1. Fourfold double Weyl point

To define the Hamiltonians describing fourfold double
Weyl points, we use the Pauli matrices σi and τi (i = 0, x, y, z),
acting in spin and orbital space, respectively.

The little group of a fourfold double Weyl point consists
of the three twofold rotations of the chiral orthorhombic
SGs and time-reversal symmetry. Their representations can be
given as

U2001 = iτ0τz, (B1)

U2010 = τ0τy, (B2)

U2100 = τ0τx, (B3)

UT K = iτyσxK. (B4)

Since two rotations are screw rotations, their eigenvalues are
±1, consistent with the requirement of squaring to the identity.

The Hamiltonian up to linear order in q around the TRIM
K, i.e., q = k − K, invariant under the above symmetries is
restricted to the form

H (q) = vxqxτzσx + vyqyτzσy + vzqzτ0σz

+λxqxτxσx + λyqyτxσy. (B5)

The real parameters vi define the velocities or slope of the
individual Weyl points. The splitting from SOC is introduced
from the real parameters λi, which renormalize the velocities
vi. The Chern number of this Hamiltonian is ±2 and it re-
produces the twofold degenerate nodal planes for qx = 0 or
qy = 0.

2. Fourfold degenerate points from multiple intersecting
nodal lines

As discussed in Sec. V F, fourfold degeneracies in the
rhombic pyramidal SGs are formed by intersecting nodal lines
and can either be pointlike or have an hourglass nodal line
running through the fourfold degeneracy.
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For the fourfold degenerate point, the representations for
the generators at the TRIM can be given by

U2001 = −iτ0σz, (B6)

UM010 = τ0σy, (B7)

UT K = iτyσxK, (B8)

and the linearized Hamiltonian is restricted to the form

H (q) = vzqzτzσ0 + vxqxτzσy + vyqyτzσx

+λxqxτxσy + λyqyτxσx + λzqzτxσ0, (B9)

with the real parameters vi and λi. The gap between the second
and third band closes only at the TRIM, i.e., for q = 0, but the
Chern number vanishes. In the case of an hourglass nodal line,
the representations are

U2001 = τ0σz, (B10)

UM010 = τ0σy, (B11)

UT K = iτyσzK, (B12)

and the linearized Hamiltonian reads then

H (q) = vzqzτzσ0 + vxqxτzσy + vyqyτ0σx

+λxqxτxσy + λzqzτxσ0, (B13)

again with purely real parameters vi and λi. There are twofold
degeneracies on the axes (qx, 0, 0) and (0, 0, qz ) and an ad-
ditional hourglass nodal line in between the second and third
band, running through q = 0.

FIG. 14. Elementary bands representations in SG 19 without
SOC (blue) and with strong SOC (orange). The upper bands are a
schematic band structure with minimal number of crossings, based
on compatibility relations alone. The lower set of bands are from
the minimal tight-binding model defined in Eq. (C1) with hop-
ping parameters t0 = −t5 = 0.25, t1 = −t4 = 0.55, t2 = −0.6, t3 =
−0.95, and li = 0 for vanishing SOC. For the case with SOC l0 =
l1 = l7 = 0, l2 = −l5 = 0, l3 = 0.7, l4 = −l8 = 0.2, l5 = −0.3, l9 =
l10 = −l11 = 0.1. Parameters were chosen for maximal visibility of
the features mentioned in the text.

APPENDIX C: MINIMAL TIGHT-BINDING MODEL
FOR SG 19

SG 19 enforces all notable features of chiral SGs, namely
Kramers and movable Weyl points, fourfold double Weyl
points and topological nodal planes. Therefore we present a
minimal tight-binding model to give a simple example and to
demonstrate the connection between spinless and spinful band
structures.

The minimal number of sites is four per unit cell and we in-
clude nearest neighbor hopping only. This implicitly excludes
terms in the Hamiltonian proportional to 1, i.e., a uniform
dispersion for the bands and lets us focus on the splitting of
bands.

H (k) =
(

H0(k) 
(k)


†(k) H∗
0 (−k)

)
, (C1)

H0(k) =

⎛
⎜⎜⎜⎝

0 (t0 + t1e+ikx )(1 + eikz ) (t2 + t3eiky )(1 + e+ikx ) (t4 + t5e+ikz )(1 + eiky )

0 (t4e−ikz + t5)(1 + eiky ) (t2eiky + t3)(1 + e−ikx )

0 (t0e−ikx + t1)(1 + eikz )

H.c. 0

⎞
⎟⎟⎟⎠, (C2)


(k) =

⎛
⎜⎜⎜⎝

(0 (l0 + l1e+ikx )(1 + e+ikz ) (l2 + l3e+iky )(1 + e+ikx ) (l4 + l5e+ikz )(1−e+iky )

−(l0 + l1e−ikx )(1 + e−ikz ) 0 (l4e−ikz + l5)(1−e+iky ) −(l2e+iky + l3)(1 + e−ikx )

−(l2 + l3e−iky )(1 + e−ikx ) −(l4e+ikz + l5)(1−e−iky ) 0 −(l0e−ikx + l1)(1 + e+ikz )

−(l4 + l5e−ikz )(1−e−iky ) (l2e−iky + l3)(1 + e+ikx ) (l0e+ikx + l1)(1 + e−ikz ) 0

⎞
⎟⎟⎟⎠

+i

⎛
⎜⎜⎜⎝

0 (l6 + l7e+ikx )(1 + e+ikz ) (l8 + l9e+iky )(1−e+ikx ) −(l10 + l11e+ikz )(1 + e+iky )

−(l6 + l7e−ikx )(1 + e−ikz ) 0 (l10e−ikz + l11)(1 + e+iky ) −(l8e+iky + l9)(1−e−ikx )

−(l8 + l9e−iky )(1−e−ikx ) −(l10e+ikz + l11)(1 + e−iky ) 0 (l6e−ikx + l7)(1 + e+ikz )

(l10 + l11e−ikz )(1 + e−iky ) (l8e−iky + l3)(1−e+ikx ) −(l6e+ikx + l7)(1 + e−ikz ) 0

⎞
⎟⎟⎟⎠.

(C3)
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Within each spin subspace, there are six independent real
hopping parameters ti in H0(k) and its time-reversal sym-
metric copy H∗

0 (−k). Including SOC adds additional 12 real
parameters li in the off-diagonal block 
(k).

In Fig. 14, we present a schematic and exemplary band
structure along the standard high-symmetry path, which can
be compared to the material example Ag2Se in the same SG
shown in Fig. 12(b). The nodal planes can be seen in the
twofold degenerate bands on all paths except for the ones in
the interior of the BZ, i.e., the ones connecting to �. On one
of these paths, a band crossing needs to exist in the absence of

SOC. In the example, it can be observed on �-X. The TRIM
R is fourfold degenerate.

Switching on SOC lifts spin degeneracy almost every-
where. The nodal planes and TRIMs remain at least twofold
degenerate, while the degeneracy at R is now only twofold, the
TRIMs S, U, and T and a movable point on the U-R axis re-
main fourfold degenerate. Further Weyl points are introduced
in the hourglass dispersion along the rotation axes �-X, �-Y,
and �-Z. Because of unbalanced Weyl points at �, the nodal
planes are topological, i.e., act as source or sink of Berry
flux.
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