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General model for the kinetics of solute diffusion at solid-solid interfaces
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Solute diffusion through solid-solid interfaces is paramount to many physical processes. From a modeling
point of view, the discontinuities in the energy landscape at a sharp interface represent difficulties in predicting
solute diffusion that, to date, have not been solved in a consistent manner across length scales. Using an explicit
finite volume method, this work is the first to derive numerical solutions to the diffusion equations at a continuum
level while including discrete variations in the energy landscape at a bicrystal interface. An atomic jump
equation consistent with atomistic descriptions is derived and scaled up into a compendium of model interfaces:
monolayer energy barriers, monolayer interfacial traps, multilayered traps, and heterogeneous interfaces. These
can track solute segregation behavior and long-range diffusion effects. We perform simulations with data
for hydrogen diffusion in structural metals, of relevance to the assessment of the hydrogen embrittlement
phenomenon, and point defects in electronic devices. The approach developed represents an advancement in
the mathematical treatment of solute diffusion through solid-solid interfaces and an important bridge between
the atomistic and macroscopic modeling of diffusion, with potential applications in a variety of fields in materials
science and physics.
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I. INTRODUCTION

There are different solid-solid interfaces in crystalline ma-
terials, such as grain and twin boundaries, stacking faults
or interfaces between any two arbitrary phases, and they
influence the overall mass diffusion kinetics. For instance,
grain boundaries can affect the rate at which thermochemical
treatments, such as nitriding [1] or boriding [2] occur, or act
as channels of fast diffusion for other interstitial impurities
(e.g., [3–5]). In the context of ionic diffusion, interfaces can
also act as energy barriers for atomic migrations in solid-state
batteries [6,7] and proton conducting fuel cells [8]. In addi-
tion, often certain elements preferentially segregate to or away
from these interfaces, which can have an impact in materials
properties. For example, accumulation of hydrogen at these
regions can locally lower the cohesive strength, promoting the
formation of intergranular cracks [9,10] and interface decohe-
sion [11]. Similarly, elemental segregation to stacking faults
and microtwins in nickel-based superalloys facilitates creep
deformation by lowering the stress required to propagate these
faults [12,13]. A key factor to consider when studying the
kinetics of solute diffusion of a system, is that often the atomic
behaviours near interfaces are very different to those in the
bulk. Thus there is a need for models that can predict the
effects of solid-solid interfaces on both long-range diffusion
effects and localized segregation.

The interfaces considered here are those in which there
is a clear separation between the two neighboring crystals.
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These are assumed to remain immobile within the time frames
considered, either because the solute has a negligible effect on
the local phase stability or because the transformation kinetics
are considerably slower than diffusion of the solute. This is in
contrast with the behavior of diffuse interfaces that develop
via interdiffusion of atoms across two materials.

Diffusion of a component occurs in the direction of its
decreasing chemical potential, as first shown experimen-
tally over seventy years ago in the seminal work of Darken
[14]. Since then, multiple approaches have been suggested
to model diffusion in multiphase systems. Works by Cahn
[15] and Hillert [16] considered the effects of concentration
inhomogeneities by first determining the steady state solu-
tion which minimized the free energy of the system. The
kinetics were then built such that, in the absence of inhomo-
geneities, the models became consistent with the macroscopic
transport equations of Darken [17]. Atomic mobilities have
since been linked to comprehensive CALPHAD thermodynamic
databases to model diffusion in multicomponent solutions
[18,19]. These approaches excel at capturing the concentra-
tion dependencies of the driving forces over arbitrarily large
length scales but ignore the local variations in thermodynamic
and kinetic parameters intrinsic to interfaces.

At the atomic scale, diffusion is dictated by the energy
landscape of the solute species embedded in a crystal. The
thermodynamic principles of segregation at surfaces and in-
terfaces were first derived by McLean [20]. While variations
in the energy landscape often occur over a number of atomic
layers in the vicinity of interfaces, as shown in several
first-principle studies [21–23], a monolayer approximation
was adopted for simplicity. Models such as that by Lea and
Seah [24] attempted to capture the associated kinetics at a
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continuum level, which ignored any existing heterogeneity in
the energy barriers. To address this, Hofmann and Erlewein
[25] modeled diffusion at the atomic scale based on reac-
tion rate theory, using systems of equations that consider the
atomic jumping ratios layer-by-layer. Similar models coupled
this approach with the mobility based equations of Darken
for binary alloys [26–28] and multicomponent systems [29],
and stochastic derivations validated this approximation under
the assumption of a local average chemical potential [30].
However, all these models lack scalability for long-range dif-
fusion effects and cannot be generalized for arbitrary bicrystal
interfaces maintaining a thermodynamic equilibrium. The for-
mer has been improved upon by coupling the atomic jump
equations at grain boundaries with a finite element method in
the bulk [31], but only for bicrystal configurations of a single
material.

The modeling of hydrogen diffusion in structural alloys,
examples of which are developed in Sec. III of the current
work, often suffers from such drawbacks. This field is techno-
logically relevant due to the need to understand and mitigate
the phenomenon of H embrittlement, a process by which the
presence of H in the lattice results in a loss of ductility in the
material [32]. Grain boundaries and other bicrystal interfaces
influence its kinetics of diffusion, with important implica-
tions for alloy design and in-service life of components in
H-rich environments [33,34]. The thermodynamics of H at or
near such interfaces are often obtained via density functional
theory (DFT) (e.g., [21–23,35]), but their influence on the
transient behaviours of segregation and long-range diffusion
effects remains inaccessible at larger length scales for arbi-
trary energy landscapes.

The current work introduces a one-dimensional model of
diffusion and segregation at an immobile solid-solid interface
that is thermodynamically consistent, acknowledges the local
variations in the energy landscape and is fully scalable across
length scales. The monolayer approach is developed for the
cases of energy barriers and interfacial traps, and later gener-
alized for multilayered and heterogeneous interfaces. Finally,
we develop examples with diffusion data of H in structural
metals and point defects in electronic devices, as well as para-
metric analyses. The numerical methods developed capture
interfacial phenomena at the atomic scale for a variety of
scenarios in scalable computationally inexpensive algorithms.
This fills an important previously missing link between atom-
istic and macroscopic diffusion modeling.

II. MODELING

A. Thermodynamic equilibrium

Equations for interfacial segregation under equilibrium are
based on the seminal work of McLean [20], later expanded
upon by du Plessis and van Wyk [36,37] and Lejček [38],
amongst others. These were derived for a thin grain boundary
and semi-infinite bulk grains [36], although their application
to any two different regions is equally valid, as shown next.

Consider a system in thermodynamic equilibrium of two
neighboring regions, A and B, with m substitutional or m − 1
interstitial diffusing species. Note that all following equations
apply for both scenarios by substituting any term related to the

host element with a corresponding one for an empty interstitial
site. The Gibbs free energy of such system is

G =
m∑

j=1

μ
( j)
A n( j)

A +
m∑

j=1

μ
( j)
B n( j)

B , (1)

where n( j)
i is the number of moles of species j in region i and

μ
( j)
i their chemical potential. A minimum in the Gibbs free

energy characterizes the equilibrium point, i.e.,

∂G

∂n( j)
i

= 0, (2)

where all the terms containing ∂μ
( j)
i in the derivative cancel

out due to the Gibbs-Duhem equation. A couple of constraints
related to mass conservation reduce the number of equations
in relation (2) [36]. The total number of moles in each region
remains constant, so that of the host element (or the empty
interstitial site) n(m)

i can be expressed in terms of all others.
Its time evolution results in ∂n(m)

i /∂n( j)
i = −1 for any i �= m.

Similarly, all fluxes occur between regions A and B, which
can be expressed as ∂n( j)

B /∂n( j)
A = −1. Differentiating Eq. (1),

accounting for these constraints, and substituting into (2) re-
sults in m − 1 equations

(
μ

( j)
A − μ

(m)
A

) − (
μ

( j)
B − μ

(m)
B

) = 0 (3)

for j = 1, 2, . . . , m − 1. Equation (3) is analogous to that in
Ref. [36] but derived for any two regions of arbitrary size and
arranged by region rather than by species.

The multisolute Langmuir-McLean segregation isotherms
can be obtained by substituting into Eq. (3) the expression for
the chemical potential

μ
( j)
i = μ

( j)
i0 + RT ln a( j)

i , (4)

where μ
( j)
i0 is the standard chemical potential, a( j)

i = γ
( j)

i X ( j)
i

the thermodynamic activity, γ
( j)

i the activity coefficient, X ( j)
i

the atomic fraction, R the gas constant and T the absolute
temperature of the system, leading to

γ
( j)

A

γ
(m)

A

X ( j)
A

X (m)
A

= γ
( j)

B

γ
(m)

B

X ( j)
B

X (m)
B

exp

(
−

(
μ

( j)
A0 − μ

(m)
A0

) − (
μ

( j)
B0 − μ

(m)
B0

)
RT

)
.

(5)

Rearranging terms and considering that
∑m

j=1 X ( j)
i = 1, this

equation can be rewritten as

X ( j)
A

1 − ∑m−1
k=1 X (k)

A

= X ( j)
B

1 − ∑m−1
k=1 X (k)

B

exp

(
−�G( j)

0 + �G( j)
E

RT

)
,

(6)
in agreement with previous studies [38,39]. The two terms
inside the exponential function in (6) are the molar Gibbs free
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energy of segregation for an ideal solution

�G( j)
0 = (

μ
( j)
A0 − μ

(m)
A0

) −
(

μ
( j)
B0 − μ

( jm)

B0

)
(7)

and an excess term

�G( j)
E = RT ln

(
γ

( j)
A γ

(m)
B

γ
(m)

A γ
( j)

B

)
(8)

that accounts for the solute-solute interactions in a real solu-
tion. See Ref. [40,41] for a more detailed explanation of these
parameters. A simplified form of Eq. (6) for a binary ideal and
dilute system is then

X (1)
A ≈ X (1)

B exp

(
−�G(1)

0

RT

)
, (9)

which will be useful for the derivation of the diffusion
kinetics.

An extension of the above derivation to more than two
neighboring regions in space follows the same relations from
Eq. (3) for each diffusing species, regardless of their relative
sizes. As such, this applies to specific sites (point traps), in-
terfaces and large volumes. As an ergodic system, the average
occupancy of a site is a function of the energy landscape [42].

B. Kinetics of diffusion

This section is restricted for simplicity to the case of one-
dimensional diffusion with one solute (species 1 and m, with
the superscript 1 avoided hereafter whenever possible). The
evolution of the concentration c(x, t ) at any given point in
space x and time t is given by Fick’s second law of diffusion

∂

∂t
c(x, t ) = − 1

ψ

∂

∂x
ψJ (x, t ), (10)

where ψ = 1 for cartesian coordinates, ψ = x for cylindrical
coordinates and ψ = x2 for spherical coordinates, x refers in
the latter two cases to the radial direction [43], and J (x, t ) is
the solute flux. Curved solid-solid interfaces are rarely homo-
geneous. Nonetheless, the derivations are also performed for
these coordinate systems as they may be useful simplifications
for the analysis of some scenarios, e.g., solute diffusion in
and out of fibres or spherical precipitates assuming that the
interface is homogeneous. The discontinuities at an interface
demand the use of chemical potential-driven equations, i.e..

J (x, t ) = −M(x)c(x, t )
d

dx
μ(x, t ), (11)

where M = D/RT is the mobility, D = D0 exp (−Q/RT ) the
coefficient of diffusion, D0 its maximum value possible, Q
the energy barrier between neighboring atomic sites, and
μ = μ(1) − μ(m). As expected from Eq. (3), a gradient in the
chemical potential that considers both species is the driving
force for diffusion, and combined with Eq. (4) and relation
X ( j) = c( j)/S it can be expressed as

μ(x, t ) = E (x) + RT ln
γ (1)(x)c(x, t )

γ (m)(x)(S(x) − c(x, t ))
, (12)

where S is the number density of available sites. The energy E
in Eq. (12) corresponds to the difference in standard chemical
potentials that appears in Eq. (7). As pointed out by Lejček
et al. [44], density functional theory and atomistic simulations
often calculate this energy difference from two computational
cells, with and without the solute, instead of the actual Gibbs
free energies G( j)

0 . However, the difference between these
parameters is negligible under normal pressures; thus

E ( j)
i ≈ G( j)

i0 = μ
( j)
i0 − μ

(m)
i0 . (13)

Assuming an ideal dilute solution, i.e., γ (1) = γ (m) = 1
and S � c, and combining Eqs. (11) and (12) yields

J (x, t ) = −D(x)

(
∂

∂x
c(x, t ) + c(x, t )

RT

∂E (x)

∂x
− c(x, t )

S(x)

∂S(x)

∂x

)
. (14)

It is the dilute solution assumption which later reduces
all the analytical expressions found back to the original
Fick’s laws of diffusion. The difficulty in obtaining the flux
from Eq. (14) lies in the discontinuity of the parameters
D, E , and S at a sharp interface. This renders analyti-
cal solutions to Eq. (10) infeasible. Numerical solutions
for the evolution of the concentration profiles are sought
instead.

Explicit finite volume methods (FVM) on equispaced grids
are implemented here to approximate the solution to this
partial differential equation (PDE) in cartesian, cylindrical
or spherical coordinates. This integral formulation has the
advantage of conserving the solute and accounting for the
discontinuities [45,46], while keeping the computational time
considerably small. The space domain is subdivided into con-
trol volumes of width �x denominated cells, with centres situ-
ated at coordinates xi, boundaries at xi± 1

2
, boundary areas Ai± 1

2

and volumes Vi (i = 1, 2,..., n). A weak formulation of Eq. (10)

becomes ∫
Vi

∂c

∂t
dV = −

∫
Vi

1

ψ

∂

∂x
ψJ dV (15)

for each cell. Using a forward difference in time intervals of
�t duration and employing Gauss’s divergence theorem on
the right-hand side of Eq. (15) results in

ck+1
i − ck

i

�t
=

Jk
i− 1

2
Ai− 1

2
− Jk

i+ 1
2
Ai+ 1

2

Vi
, (16)

where ck
i is the average concentration of cell i at time step k.

The fluxes at the individual boundaries Jk
i± 1

2
can in return be

reconstructed from the cell averages. When both cells next to
a boundary and the boundary itself belong to a homogeneous
material, the flux is

Jk
i− 1

2
= −D

ck
i − ck

i−1

�x
(17)
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FIG. 1. Energy landscape (top) and cell discretization (bottom)
of an atomic jump configuration.

which combined with Eq. (16) results in a numerical
method identical to an explicit finite differences scheme. As
such, the criterion for convergence and numerical stability
D �t/�x2 � 1/2 also applies for this FVM approach [43].
Note that Eq. (16) applies for the three coordinate systems and
accounts for the parameter ψ via the cell areas and volumes.
All that is left to complete the iterative solution is determining
the flux and solute redistribution at the cells in the vicinity of
the interface.

1. Atomic jumps

It is necessary to start the analysis at the smallest length
scale relevant to the study of diffusion in crystals, i.e., an
atomic jump. Unlike the models of Hofmann and Erlewein
[25], Martin [30], and Ilin et al. [31], all based in layer-by-
layer atomic configurations and jumping rates, the approach
here can be understood as a discretized form of the con-
tinuous Darken differential equations [17]. The prefactor
of the coefficient of diffusion is the link between the at-

tempt frequencies and the macroscopic diffusivities in these
approaches.

Consider two neighboring cells (i = 1,2) with thickness of
a single atomic layer �x = a and each with its own concen-
tration, thermodynamic (Ei, Si) and kinetic (D0i) parameters,
as shown in Fig. 1. These may correspond to any arbitrary
sites, be it in the bulk or at an interface. Diffusion between
these cells is affected by the difference in energy states �E =
E2 − E1 and the corresponding asymmetrical energy barrier
Eb12 = �E + Eb21. The saddle point � is assumed to be
situated exactly in the middle between both sites, which is re-
quired to address the ill-defined diffusivity prefactors between
two very different lattice (or interstitial) sites in a continuous
framework. This assumption has no effect on the diffusion in
the bulk.

Within the context of a continuous function that is dis-
cretized in a FVM model, the variation in chemical potential
across the saddle point will not be linear, as it is often wrongly
assumed (e.g., Ref. [47]), unless both sites are identical in
nature. Instead, a condition of equal flux on both sides of
J� = J�− = J�+ is necessary [48,49], where

J�− = −D01 exp

(
−Eb12

RT

)
c�− − c1

a/2
, (18a)

J�+ = −D02 exp

(
−Eb21

RT

)
c2 − c�+

a/2
, (18b)

and the concentrations c�± are those on each side of the
interface, given by Eq. (4) as

c� = S exp

(
μ� − E

RT

)
(19)

with their respective E and S values. Solving Eqs. (18a) and
(18b) yields the chemical potential at the saddle point

μ� = E1 + RT ln

(
c1D01 exp

(−Eb12
RT

) + c2D02 exp
(−Eb21

RT

)
S1D01 exp

(−Eb12
RT

) + S2D02 exp
(−Eb21+�E

RT

))
(20)

and the flux through it

J� = −D̂b

c2
S2

− c1
S1

exp
(−�E

RT

)
a

, (21)

with

D̂b = 2S1S2D01D02

S1D01 + S2D02
exp

(
−Eb21

RT

)
. (22)

The flux in Eq. (21) consists of an equivalent coefficient
of diffusion D̂b for the atomic jumps and a dimensionless
form of the driving force. Note that these concentrations are
normalized with respect to their solubilities and the energies
referenced to cell 2 via the exponential factor. Hereafter, all
dimensionless driving forces will be referenced to the right-
most energy level for consistency, unless otherwise specified.
Their associated equivalent coefficients of diffusion, with
units mol m−1 s−1, will be denoted by the caret symbol(ˆ).

2. Monolayer energy barrier

Consider the simplest bicrystal interface between two dis-
similar materials, shown in Fig. 2(a). A common approach
consists in employing the conditions of equal flux and chem-
ical potential at the interface used in the previous section, but
over arbitrarily large cells of length �x. Having the interface
situated at point x� between two cells, this results in two equa-
tions J�− = −D1

c�− −c1

�x/2 and J�+ = −D2
c2−c�+
�x/2 , which yield

an overall flux

J� = −D̂bi

c2
S2

− c1
S1

exp
(−�E

RT

)
�x

(23)

with an effective coefficient of diffusion for the bicrystal in-
terface of

D̂bi =
(

1

2S1D1
exp

(
−�E

RT

)
+ 1

2S2D2

)−1

. (24)
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FIG. 2. Energy landscapes (top) and cell discretizations (bottom)
of a bicrystal interface (a) without an additional energy barrier and
(b) with an arbitrary energy barrier.

However, this result does not consider the atomic jump at the
interface. More importantly, it does not allow for the consid-
eration of any localized variation in the energy landscape near
the interface.

Thus we tackle the more general geometry in Fig. 2(b),
where the interface � separating two crystals 1 and 2 has an
arbitrarily large energy barrier. By aligning the interface and
the cell boundary we ensure that there are no large variations
in the properties within the cells, so that the weak formulation
in Eq. (15) holds. To the knowledge of the authors, there is
currently no model that accounts for such variation in the
energy landscape while capturing other long-range diffusion
effects in the neighboring crystals. Note that the case of
Eb2 = 0 is equivalent to that in Fig. 2(a), so all cases can be
treated in the same way.

Similar to the analysis in Sec. IIB1, a condition of equal
flux must be attained in the vicinity of the interface. The
length fractions of the three relevant regions are φ1 = 1

2 − a
2�x

for crystal 1, φb = a
�x for the length of an atomic jump

through the interface and φ2 = 1
2 − a

2�x for crystal 2. The
corresponding fluxes are

J1 = −D1
c�1 − cI−1

φ1�x
, (25a)

Jb = −D̂b

c�2
S2

− c�1
S1

exp
(−�E

RT

)
φb�x

, (25b)

J2 = −D2
cI − c�2

φ2�x
, (25c)

where c�1 and c�2 are the concentrations at the first sites
to the left and right of the interface, respectively, and D̂b is
given by Eq. (22) with Eb12 = Q1 + Eb1 and Eb21 = Q2 + Eb2.
Equating these fluxes J1 = Jb = J2, solving for the unknown
concentrations and substituting back into Eq. (25) results in a
flux

J� = −D̂eb

c2
S2

− c1
S1

exp
(−�E

RT

)
�x

, (26)

where

D̂eb =
(

φ1

S1D1
exp

(
−�E

RT

)
+ φb

D̂b
+ φ2

S2D2

)−1

(27)

is the effective coefficient of diffusion for an arbitrary energy
barrier.

Compared to Eq. (24), the coefficient of diffusion in
Eq. (27) has an additional term that accounts for the energy
barrier at the interface. This does not disappear even as Eb2

tends to zero, as a barrier Eb1 > 0 remains in place. Further
discussions on the validity of both approaches are given in
Sec. III A.

3. Monolayer interfacial trap

An additional complexity arises when considering a mono-
layer trap of thickness a, as two discontinuities are situated in
close proximity to each other, i.e., the energy barriers on both
sites of the interface. Tackling this with an intermediate cell
of size equal to the trap width would converge to the solution,
but at the expense of scalability due to the dependence of the
convergence parameter on �x. Instead, the approach pursued
subdivides the interface cell to make sure that the weak for-
mulation in Eq. (15) holds.

Consider a constant mesh spacing with an interfacial trap
of energy Et = E1 − �E1t (or Et = E2 − �E2t ), diffusivity
prefactor D0t and site density St , placed at x = xI at the center
of cell I , with the geometry and energy landscape shown in
Fig. 3(a). Arbitrary energy barriers on each side of the trap,
Eb1t and Eb2t , are added for generality. To determine the flux
through its left boundary JI− 1

2
, the length fractions of the

two regions to consider are φ1 = 1 − a
�x for crystal 1 and

φb1 = a
�x for the length of an atomic jump through the left

interface of the trap. Equating the fluxes through both regions
yields

c�1 = SI−1
(
ct D̂b1φ1 exp

(−�E1t
RT

) + cI−1St DI−1φb1
)

St D̂b1φ1 + SI−1St DI−1φb1
(28)

and

JI− 1
2

= − SI−1DI−1D̂b1

D̂b1φ1 + SI−1DI−1φb1

ct
St

exp
(−�E1t

RT

) − cI−1

SI−1

�x
,

(29)
where ct is the concentration at the trap site (the notation cI

is avoided as it could be confused for a concentration in the
entirety of cell I). A similar analysis for the right boundary of
cell I , where the regions φ2 = φ1 and φb2 = φb1, leads to

c�2 = SI+1
(
cI+1St DI+1φb2 + ct D̂b2φ2 exp

(−�E2t
RT

))
SI+1St DI+1φb2 + St D̂b2φ2

(30)
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FIG. 3. Energy landscapes (top) and cell discretizations (bottom)
of (a) a bicrystal interfacial trap with positive segregation and (b) a
bicrystal interfacial energy barrier with sites that undergo negative
segregation.

and

JI+ 1
2

= − SI+1DI+1D̂b2

SI+1DI+1φb2 + D̂b2φ2

cI+1

SI+1
− ct

St
exp

(−�E2t
RT

)
�x

. (31)

The coefficients of diffusion D̂bi (i = 1, 2) are those obtained
from Eq. (22) for the corresponding crystal, trap energies, and
energy barriers.

The total solute content of cell I at time step k + 1

Hk+1
I = Hk

I + (
Jk

I− 1
2
AI− 1

2
− Jk

I+ 1
2
AI+ 1

2

)
�t (32)

is immediately obtained from Eqs. (16), (29), and (31). How-
ever, it is distributed in the different subregions of cell I

HI = H1 + Ht + H2, (33)

where Hi (i = 1, 2) and Ht are the amounts of solute to each
side of the interface and trapped inside it, respectively. Forcing
the solute in this cell to all be at the same chemical potential
ignores the large discontinuities, which produces noticeable
deviations from the correct solution. Instead, the amounts
of solute in each subregion are obtained by integrating the
concentration profiles between the evaluated points, assumed

to be linear within the FVM scheme adopted. That is,

H1 =
∫ xI−1+φ1�x

xI−1+�x/2
�(x)

(
c�1 − cI−1

φ1�x
(x − xI−1) + cI−1

)
dx

(34)
and

H2 =
∫ xI−1+3�x/2

xI−1+(2−φ2 )�x
�(x)

(
cI+1 − c�2

φ2�x
(x − xI+1) + cI+1

)
dx,

(35)

where �(x) comes from the integration of dV in the dif-
ferent coordinate systems; thus � = A, � = 2πLx (L is the
length of the cylindrical segment) and � = 4πx2 for cartesian,
cylindrical and spherical coordinates, respectively. Substitut-
ing Eqs. (28) and (30) into (34) and (35), performing the
integration and evaluating the limits leads to Eqs. of the form
Hi = mici + bi. Similarly, the amount of solute at the inter-
face can be expressed as Ht = mt ct . Solving these equations
together with (33) leads to the analytical solution

ct = HI − b1 − b2

mt + m1 + m2
, (36)

where mt = Vt is equal to the volume of the trap and the
missing coefficients mi and bi are given in Appendix for the
different coordinate systems.

The description of the current section can also be used
to model an interface with a negative segregation, such as
that shown in Fig. 3(b). While this is often described by a
simpler energy barrier model like that of Sec. II, there could
be a potential advantage in cases where the evolution of the
concentration at the interface needs to be tracked.

4. Multilayered interfaces

All the previous effective coefficients of diffusion arise
from a condition of equal flux throughout multiple regions of
the atomic energy landscape. The results are consistent with
the relation D−1 = ∑

i φiD
−1
i [50], also observed in multilay-

ered materials [51–53], but also account for the difference in
energy levels on both sides of the interface. By equating the
fluxes within a domain of length L consisting of n individual
atomic jumps between two energy levels, each of length φbiL,
the following relationship is reached:

Jmult = −D̂b,mult

cn
Sn

− c1
S1

exp
(−En−E1

RT

)
L

, (37)

where the subindinces 1 and n denote the properties at the two
ends of such domain, and

D̂b,mult =
(

n−1∑
i=1

φbi

D̂bi
exp

(
− En − Ei+1

RT

))−1

. (38)

This can be thought of as the coefficient of diffusion for a
configuration in series. Moreover, Eq. (38) reduces to the
coefficients of diffusion in Eqs. (22), (27), (29), and (31) for
the specific energy landscapes described before. Similarly, if
the whole domain belongs to a single homogeneous material,
Eqs. (37) and (38) become Fick’s first law of diffusion.

A multilayered interface with arbitrary energy landscapes
on both sides can be described with this approach and
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FIG. 4. Energy landscape (top) and cell discretization (bottom)
of a multilayered interfacial trap. The individual atomic sites of the
interface are labeled (I, i) (for i = 1,..., t ,..., n).

incorporated into the diffusion PDE. Consider, for instance, an
interface like that in Fig. 4, where the center of cell I at x = xI

coincides with the atomic site with the lowest energy level at
the interface. The concentration at that specific site is denoted
ct . The interface consists of n different atomic sites, each at
position xI,i with its corresponding volume VI,i, site density
SI,i, diffusivity prefactor D0I,i segregation energy �E1,i =
E1 − EI,i (where �E1,i = E1 − EI,i), and concentration
cI,i (i = 1,..., t ,..., n). The energy levels of the saddle points in
between are denoted Eb,i (where �Eb1,i = E1 − Eb,i). Points
I, 1 and I, n have the energy values of the neighboring
crystals. The procedure of Sec. IIB3 can be followed by
accounting for the thickness of the modeled interface L =
L1 + L2, where L1 < �x/2 and L2 < �x/2. To determine the
flux through the left boundary JI− 1

2
, the new relevant length

fractions become φ1 = 1 − L1
�x for crystal 1 and φb1 = L1

�x for
the left segment of the interface. Solutions (28) and (29) are
still valid, but require substituting the atomic jump coefficient
of diffusion D̂b1 for an equivalent one calculated via Eq. (38)
between points xI,1 and xI,t . The same can be done with the
right segment of the interface, with the equivalent interface
coefficient of diffusion between points xI,t and xI,n.

A solute redistribution step is still required. The amount of
solute trapped at the interface is

Ht =
n−1∑
i=2

cI,iVI,i. (39)

Points 1 and n are not included in the summation because they
belong to the neighboring crystals rather than to the interface.
For the sake of simplicity, a uniform chemical potential at
the interface is assumed. This reasoning is sensible given the
small thickness of the region where it is applied in comparison
with the larger spatial domain modeled, plus being confined
to the interfacial trap means that the inherent error associated
does not scale with �x. This assumption gives a set of equa-
tions of the form

cI,i

SI,i
= ct

SI,t
exp

(
−EI,i − EI,t

RT

)
. (40)

FIG. 5. Energy landscape (top) and cell discretization (bottom)
of an heterogeneous interfacial trap. Two distinct interfacial site
types are superimposed (dotted and solid lines), each with its respec-
tive segregation energies and energy barriers.

Solving Eqs. (39) and (40) leads to Ht = mt ct , with

mt = 1

SI,t

n−1∑
i=2

SI,iVI,i exp
(
−EI,i − EI,t

RT

)
. (41)

The previously derived solution to update the trap concentra-
tion, Eq. (36), is still valid by considering the value of mt in
Eq. (41).

5. Heterogeneous interfaces

Many bicrystal interfaces are not homogeneous, and they
instead possess recognizable regions with different proper-
ties. For instance, think of semicoherent interfaces with both
coherent regions and regularly spaced dislocations that make
up for the lattice misfit of the crystals. Segregation will be
favoured at the latter, while the former regions may behave in
different ways.

A series of assumptions are suggested for this approach.
Firstly, it is clear that heterogeneous interfaces would result in
inhomogeneous lattice strains and corresponding segregation
energies over a number of atomic planes. For simplicity, we
consider the heterogeneities to be constrained to the mono-
layer interface, where we keep track of the concentrations at
the different sites. Secondly, we assume that all sites at the
interface are at thermodynamic equilibrium. This is promoted
by energy barriers of similar heights and diffusion paths that
interconnect the different interfacial sites, both of which are
frequently present in real interfaces (e.g., Ref. [21]). The
resulting energy landscape is schematically shown in Fig. 5,
with a monolayer interface at the center of cell I at x = xI .
The interface consists of n distinct types of sites, each with
its site density SI,i, segregation energy �E1,i (where �E1,i =
E1 − EI,i), energy barriers on both crystals Eb1,i and Eb2,i, and
concentration cI,i (i = 1,..., n), all within the volume Vt of the
trap atomic layer.

Before considering diffusion across cells, the atomic jumps
in the vicinity of the interface are required. Analogous to
Eq. (21), there will now be n fluxes from the left side (and
also from the right side) of the interface into the individual
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sites, with the form

J�,i = −D̂b,i

cI,i

SI,i
− cI−

S1
exp

(−EI,i−E1

RT

)
a

, (42)

where cI− is the concentration at the atomic plane to the left of
the interface and Db,i the individual atomic jump coefficient of
diffusion calculated via Eq. (22). The driving forces of these
equations are all the same, as an equal chemical potential
is assumed at the interface. The total flux is the sum of all
individual fluxes; thus, an equivalent coefficient of diffusion
between the interface and the neighboring atomic layer is

D̂b,het =
n∑

i=1

−D̂b,i. (43)

This can be thought of as the coefficient of diffusion for a
configuration in parallel.

Lastly, the steps followed in Sec. IIB3 can be followed
without major changes. Solutions (28) and (29), and equiv-
alent ones for the segment to the right of the interface, are
valid for the current approach, as long as the atomic jump
coefficient of diffusion D̂b1 is substituted for an equivalent
one calculated via Eq. (43). Note the subindex t in such
equations must also be swapped for that of whichever site
in the heterogeneous interface, in this case site n, to match
nomenclatures. In a similar fashion to the redistribution step
in Sec. IIB4, updating of the trap concentration after every
step can be done with Eq. (36), but with a slope mt equal to

mt = Vt

SI,n

n∑
i=1

SI,i exp
(
−EI,i − EI,n

RT

)
. (44)

III. RESULTS AND DISCUSSION

Multiple scenarios have been modeled in the current work,
and the rationale behind their validation is as follows. We first
examine in detail the atomic jump model, which represents
the basic building block for all other cases. Then, for valida-
tion purposes, the results of simulations with the remaining
cases are compared to those of the atomic jump model for a
variety of energy landscapes obtained from reported literature
of H segregation in metals (often studied to understand the
deleterious phenomenon of H embrittlement [32]). The scala-
bility of these approaches is investigated by tracking multiple
fluxes and interfacial concentrations, where applicable, as �x
increases in size. Relative errors are calculated with respect
to the atomic jump model to determine the validity of the
solutions. For generality, the models are also applied to some
examples of O segregation in electronic devices. Lastly, para-
metric analyses and further discussions are given.

A. Atomic jumps

The derivation followed in Sec. IIB1 to determine the ki-
netics equation for the atomic jump model is consistent with
classical approaches, although it is applied at the smallest
length scale possible. While it considers fluxes at a continuum
level, which subsequently enables its scalability, it recov-
ers the solutions from atomistic derivations based on jump
attempts [25,31] previously done only in single materials.

TABLE I. Parameters used by Du et al. [54] for the kMC
simulations.

Parameters

a = 0.71 Å
D0 = 6.68 × 10−8 m2 s−1

Energy barriers:
Bulk ↔ bulk 0.088 eV
Bulk → interface 0.088 eV
Interface → bulk 0.6 eV
Interface ↔ interface 0.25 eV

Yet, further validations are required for more complex energy
landscapes.

Diffusion through model energy landscapes were studied
by Du et al. [54] via a kinetic Monte Carlo (kMC) approach.
These intended to mimic H diffusion through a combination of
bulk bcc Fe and grain boundary configurations. They modeled
different one-dimensional regions consisting of l site layers,
three of which at a lower energy level and with a different
energy barrier between them representing the grain bound-
ary. Employing periodic boundary conditions, they estimated
effective diffusion coefficients Deff as time-weighted aver-
ages from the mean square displacements of the individual H
atoms. The results of their simulations, using the parameters
in Table I, are shown in Fig. 6(a). A constant site density was
employed throughout the material, and results are independent
of it.

Two approaches were followed to compare these results
with the atomic jump model developed in the current work,
both using the same parameters from Table I. Firstly, diffusion
was simulated layer-by-layer with Eqs. (21) and (22) in large
domains consisting of repeating units identical to the regions
studied by Du. The initial concentration was set equal to zero
everywhere except for a single point at the center situated in a
bulk region, i.e., a Dirac delta function c(x, 0) = δ(x), and the
simulated region was large enough to ensure the solute never
reached the boundaries. The coefficient of diffusion was then
calculated from the spread of the solute via the summation
over all cells

Deffδ =
∑

i

ci
x2

i

2t
. (45)

Secondly, an estimation is made with the results from the mul-
tilayered interface model. Note that the diffusivity in Eq. (38)
relates the flux with the concentration gradient in a given
phase, whereas the one calculated by Du et al. is related to
the average displacement of the H atoms. For both definitions
to be equal, the former equation must be related to the gra-
dient in the total concentration instead (a similar discussion
was done by Jönsson et al. [55]). Thus, for a dilute solution
in thermodynamic equilibrium in a material consisting of n
distinct regions each with volume fraction φi,

Deff,mult = D̂b,mult

(
n∑

i=1

φiSi exp

(
− Ei − E1

RT

))−1

, (46)

where the subindex 1 is here assigned to the bulk region.
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FIG. 6. (a) Effective coefficients of diffusion of the model land-
scapes simulated by Du et al. [54] and the estimates via a Dirac delta
simulation and the multilayered approach. (b) Convergence of the
Dirac delta simulation.

The results from both approaches, plotted in Fig. 6(a),
should coincide. The estimated diffusivities from the Dirac
delta approach are initially that from the bulk material but
converge to lower values with time, as shown in Fig. 6(b).
Despite of the long times of 2 μs these values did not reach
saturation, particularly for the simulations with more layers
pre repeating unit. Overall, there is a good agreement with
Du’s results. The small deviations may develop from the ideal
and dilute approximations in the current model (interactions
between H in nearby sites were included in the original work)
or from not reaching saturation in the kMC simulation (just
as in the Dirac delta case). Regardless, these results validate
the use of the atomic jump flux equations (21) and (22) for
heterogeneous energy landscapes.

The atomic jump model is key to modeling the remaining
approaches in Sec. II. The best example is the case of a simple
bicrystal interface, which results in either Eqs. (27) or (24),
whether the atomic jump at the interface is included or not.
The only difference accounts for the energy barrier over the
length of a single site layer. When �x becomes larger, this
effect becomes negligible as the coefficient of diffusion is
weighed over many layers. However, ignoring this interfacial
effects results in larger differences for small distances and
large values of �E . To the knowledge of the authors, (26) and

(27) are the first fully scalable equations to include the effects
of the discontinuity at a solid-solid interface.

B. Bicrystal interfaces

1. H in metals

Diffusion of H through multiple bicrystal interfaces was
simulated following the approaches introduced in Sec. II, with
energy landscapes obtained from reported DFT studies. For
each case, iterative algorithms from the discrete numerical
solution (16) to the diffusion PDE (10) were simulated in
Cartesian coordinate systems of size L with the corresponding
bicrystal interfaces at x = L/2, Dirichlet boundary conditions
c(0, t ) = 1 mol m−3 and c(L, t ) = 0 mol m−3, and an initial
condition c(x, 0) = 0 mol m−3. Given the linearity of the ap-
proach employed, all the concentrations and fluxes calculated
are directly proportional to that at the former boundary. A
temperature of 573 K was arbitrarily selected for all cases.
Simulations with a cell size equal to the site layer spacing, i.e.,
�x = a, were performed employing the flux equations (21) at
the bicrystal interface and (17) elsewhere. The length of the
domain and the simulated time tend were chosen to ensure that
the steady states were practically reached (with the exception
of the heterogeneous interface case) while keeping the com-
putation time reasonable. Additional simulations were then
performed for larger values of �x using the corresponding
flux equations for each case. The outputs ym of these models
were assessed by calculating their relative errors compared to
the outputs of the atomic jump model ya j as (ym − ya j )/ya j .
The relative errors from good performing models must remain
low during the transient stage and converge to zero in the
steady state. The time step sizes �t of each run were chosen
to ensure that the convergence criterion D�t/�x2 < 1/2 was
fulfilled.

Different grain boundary characters have multiple ef-
fects on the H diffusion in pure fcc Ni, as investigated by
Di Stefano et al. [23]. H preferentially sits at octahedral in-
tersticial sites in the bulk, and a �3(1 1 1)[1 1 0] symmetric
tilt grain boundary behaves as an additional energy barrier
to diffusion of 0.18 eV. This was modeled as a monolayer
energy barrier with an energy landscape shown in Fig. 7(a),
where the layer thickness corresponds to the distance between
planes of octahedral interstitial sites. The parameters used are
displayed in Table II. For the energy barrier model, Eq. (25)
was employed to calculate the flux through the interface. Fig-
ure 7(a) shows concentration profiles developed after different
times, with remarkable agreement between those from the
atomic jump model and the one with the largest �x. A small
discontinuity produced by the grain boundary is observed at
the center of the profile. The evolution of the fluxes through
the bicrystal interface and the rightmost boundary are plotted
in Figs. 7(b) and 7(c), both reaching the same steady state
value as expected. The profiles from all the simulations were
considerably close, so only that of the atomic jump is shown.
The relative errors of all others with respect to that one are
displayed in the inserts. These begin at −1 when the flux of
the atomic jump model first appears and quickly stabilize at
zero. The initially large errors occur only because the output
of the atomic jump model ya j is very small. Note that the
flux through the right boundary is calculated at the interface
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FIG. 7. Simulations of H diffusion through a �3(1 1 1)[1 1 0] grain boundary in fcc Ni acting as an energy barrier to diffusion. (a) Con-
centration profiles and energy landscape, (b) evolution of the flux through the grain boundary and (c) through the right boundary. The inserts
in (b) and (c) correspond to the relative errors of the simulations with larger �x with respect to that calculated via individual atomic jumps.

TABLE II. Parameters used in the H diffusion simulations.

Case Material parameters Simulation parameters

Energy barrier: a = 1.615 Å [23] L = 5001 a
fcc Ni �E = 0 �x = (a, 4.99a, 49.5a, 238.1a)
�3(1 1 1)[1 1 0] D01 = D02 = 7 × 10−7 m2 s−1 [56] tend = 1.5 ms

Q1 = Q2 = 0.37 eV [23]
S1 = S2 = 1.51 × 105 mol m−3 [23]
Eb1 = Eb2 = 0.18 eV [23]

Interfacial trap: a = 0.713 Å [22] L = 5000 a
bcc Fe �E = 0 �x = (a, 5a, 50a, 250a)
�3(1 1 2)[1 1 0] D01 = D02 = 1.38 × 10−8 m2 s−1 [57] tend = 0.1 ms

Q1 = Q2 = 0.088 eV [22]
S1 = S2 = 8.61 × 105 mol m−3 [22]
�E1t = 0.43 eV [22]
D0t = D01

b

St = 2.39 × 105 mol m−3 [22]a

Eb1t = Eb2t = 0 eV b

Multilayered trap: a = 0.713 Å [22] L = 5000 a
bcc Fe �E = 0 �x = (a, 5a, 50a, 250a)
�5(3 1 0)[0 0 1] D01 = D02 = 1.38 × 10−8 m2 s−1 [57] tend = 0.2 ms

Q1 = Q2 = 0.088 eV [22]
S1 = S2 = 8.61 × 105 mol m−3 [22]
�E1,i = (0.13, 0.5, 0.13) eV [22]
D0I,i = (D01, D01, D01) b

SI,i = (1.07, 1.07, 1.07) × 105 mol m−3 [22]a

Eb1,i = (0.7, −0.7, −0.7, 0.7) eV [22]

Heterogeneous trap: a = 0.713 Å [22] L = 5000 a
bcc Fe + TiC �E = 0.68 eV [35] �x = (a, 5a, 50a, 250a)
(0 0 1)Fe/(0 0 1)TiC D01 = 1.38 × 10−8 m2 s−1 [57] tend = 0.5 ms
[1 0 0]Fe||[1 1 0]TiC Q1 = 0.088 eV [22]

S1 = 8.61 × 105 mol m−3 [22]
D02 = D01

b

Q2 = 0.47 eV [35]
S2 = 6.5 × 105 mol m−3 [35]
�E1,i = (0.32, 0.49) eV [35]
D0I,i = (D01, D01, D01) b

SI,i = (8.07, 0.54) × 105 mol m−3 [35]a

Eb1,i = (0, 0) eV b

Eb2,i = (0, 0) eV b

aCalculated from data in that reference.
bAssumed.
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FIG. 8. Simulations of H diffusion through a �3(1 1 2)[1 1 0] grain boundary in bcc Fe acting as an interfacial trap. (a) Concentration
profiles and energy landscape, (b) evolution of the concentration at the interface site and (c) the flux through the right boundary. The inserts in
(b) and (c) correspond to the relative errors of the simulations with larger �x with respect to that calculated via individual atomic jumps.

between the last two cells, the location of which slightly shifts
to the left for larger cell sizes. Even with this consideration,
the relative error remains considerably small.

The case of a �3(1 1 2)[1 1 0] grain boundary in α-bcc
Fe, investigated via DFT by Du et al. [22], is employed as
an example of a monolayer interfacial trap. In the bulk, H
sits preferentially at the tetrahedral sites, and there is a large
segregation energy of 0.43 eV at said interface, resulting in
the energy landscape in Fig. 8(a). The volume used to cal-
culate the trap site density St is that of the interfacial area
of the supercell employed in the original study times the
spacing between planes of tetrahedral interstitial sites. Note
that a site adjacent to the interface is reported to possess a
segregation energy of 0.15 eV [22], but this is ignored to
employ the monolayer approach and because no informa-
tion regarding the intermediate energy barriers is provided.
Again, simulations for different �x values were done with
the parameters given in Table II. The diffusivity prefactor
in trap sites is assumed to be equal to that in the bulk and
no additional energy barrier near the interface is considered.
Other than that for �x = a, the simulations employ the flux
equations (29) and (31), and the solute redistribution step in
Eq. (36). Concentration profiles at distinct times are shown in
Fig. 8(a), again with remarkable agreement, where the large
spikes extending in the vertical direction correspond to the
trap concentration. The evolution of this parameter and the
flux through the rightmost boundary are plotted in Figs. 8(b)
and 8(c), respectively, together with the relative errors for the
simulations with larger cell sizes. All these errors have the
same behaviours as those described before, quickly stabilising
around zero, which validates the scalability of the approach
employed.

A �5(3 1 0)[0 0 1] grain boundary in α-bcc Fe is modeled
here as a multilayered interface. The diffusion path to exit the
site with the highest segregation energy of 0.5 eV was also
investigated by Du et al. [22]. The energy landscape is shown
in Fig. 9(a), although this is still a simplification as other
interfacial sites with a lower segregation energy are neglected,
and the site density at the interface is also calculated from the
corresponding supercell in the original study. The parameters
employed for these simulations can be found in Table II. The
flux equations (29) and (31) with an interfacial coefficient of
diffusion calculated according to (38), together with the solute

redistribution equations (36) and (41), are used to update the
trap concentration. Some concentration profiles developed are
shown in Fig. 9(a), which resemble those from the monolayer
interfacial trap example. However, a larger concentration is
reached in the trap site with the largest segregation energy,
as shown in Fig. 9(b). The corresponding relative errors for
the larger cell sizes converge in this case to −2 × 10−4 due to
the assumption in Eq. (40) that imposes an equal chemical
potential for all interfacial sites. The error is considerably
small, but would be expected to increase for cases with larger
energy barriers between the interfacial site layers. The flux
through the rightmost boundary is shown in Fig. 9(c), with
equally small relative errors for the simulations with larger
cell sizes. This parameter saturates at a value almost identical
to that in the monolayer trap case regardless of the larger
segregation energy, indicating that the energy barrier to escape
the trap does not affect the overall coefficient of diffusion.
This is further explained in Sec. III C.

Lastly, the heterogeneous interface approach is validated
with reported data on the interface between an α-bcc Fe crys-
tal and a TiC carbide, where H tends to partition to the former.
A comprehensive DFT study by Di Stefano et al. [35] ex-
plored the energy landscape of the Baker-Nutting orientation
relationship, (0 0 1)Fe/(0 0 1)TiC and [1 0 0]Fe||[1 1 0]TiC, pre-
viously observed experimentally [58,59]. The interface is
composed of coherent regions, where the Fe and C atoms
are aligned, and dislocations spaced every 4.6 nm [35], which
corresponds to repeated units of one dislocation for every 15
atomic layers of α Fe. Only these two distinct regions are
considered in the simulations for simplicity, even though a
gradual transition between these would develop at the inter-
face. In the coherent regions only the main trapping site with
a segregation energy of 0.32 eV is considered for the present
analysis, as the original study did not explore the possibility
of simultaneously occupying nearby sites. Additionally, a seg-
regation energy of 0.49 eV to sites within the dislocation core
is considered. The parameters employed for the simulations
are given in Table II and the resulting energy landscape su-
perimposing the interfacial sites is shown in Fig. 10(a). Note
that a constant site layer spacing a (that of α Fe) was consid-
ered in the simulation because it only affects the coefficients
of diffusion at the interfacial sites, which happen to be on
the side of the iron crystal [35]. Besides, no value for the

123802-11



LEÓN-CÁZARES AND GALINDO-NAVA PHYSICAL REVIEW MATERIALS 5, 123802 (2021)

FIG. 9. Simulations of H diffusion through a �5(3 1 0)[0 0 1] grain boundary in bcc Fe acting as a multilayered interfacial trap. (a) Con-
centration profiles and energy landscape, (b) evolution of the concentration at the interface site and (c) the flux through the right boundary. The
inserts in (b) and (c) correspond to the relative errors of the simulations with larger �x with respect to that calculated via individual atomic
jumps.

diffusivity prefactor for TiC can be found in the literature,
so the same value as that in pure Fe is used considering
that the order of magnitude of the coefficient of diffusion
is predominantly dictated by the large activation energy in
this phase. Two simulations were performed for the smallest
cell size �x = a, one where thermodynamic equilibrium was
imposed between the two interfacial sites and another one
in which atomic jumps were individually considered to each
of the these, without any mass transfer between them. These
approaches are hereby denoted “equilibrium” and “nonequi-
librium”, respectively. Note that this terminology does not
refer to the thermodynamic equilibrium of the whole system,
but just to the different assumptions for the connectivity of
different sites at the interface. Simulations for larger cells
were also performed, based on the interfacial flux, diffusiv-
ity and solute redistribution equations (29), (31), (36), (43),
and (44).

There is a good agreement between all the simulations
for the heterogeneous interface. The concentration profiles
reached are shown in Figs. 10(a) and 10(b) at different mag-
nifications. The large interfacial trapping, compared to bulk
trapping in TiC, is readily seen. Note that even after 0.5 μs
a steady state has not been reached, which would look as a
straight line in the TiC side, due to the slow coefficient of

diffusion in this phase. The evolution of the total concentra-
tion at the monolayer heterogeneous interfacial trap is plotted
in Fig. 10(c), together with the relative errors with respect
to the atomic jump equilibrium approach. Interestingly, the
results of the nonequilibrium approach are very similar to
the equilibrium ones, with near to 67.6% of the H at the
interface located at the dislocation sites. This occurs as solute
in the trap sites interacts with the layers on both sides of the
interface, preventing large variations in the chemical potential
of individual sites. Larger cell sizes promote errors that start
at most at −0.097 and rapidly converge to zero, indicating a
good approximation.

The heterogeneous interface model is particularly effec-
tive for cases where a few distinct trapping site types are
responsible for the segregation behavior at the interface.
However, this is not always the case. If the interface is
considerably more heterogeneous and has no (or little) pe-
riodicity then this model would oversimplify the results.
For instance, grain boundaries with second phases in them.
Other potential problems for this model may be interfaces
where sites with large segregation energies can only be ac-
cessed via paths with high energy barriers, in which case
thermodynamic equilibrium with the neighboring atomic
planes cannot be achieved. Comprehensive characteriza-

FIG. 10. Simulations of H diffusion through a (0 0 1)Fe/(0 0 1)TiC and [1 0 0]Fe||[1 1 0]TiC bicrystal interface acting as a heterogeneous
interfacial trap. (a) Energy landscape and concentration profiles in the Fe and (b) the TiC crystals, and (c) evolution of the total concentration
at the interface. The insert in (c) corresponds to the relative error of the simulations with larger �x, and the atomic jump nonequilibrium
approach, with respect to the atomic jump equilibrium approach.
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TABLE III. Parameters used in the diffusion simulations of oxygen defects.

Case Material parameters Simulation parameters

O interstitials: a = 2.55 Å [60] L = 21.46 nm
�E = −3.61 eV [60] �x = 2.146 nm
D01 = 1.7 × 10−9 m2 s−1 [63]b T = 293 K
Q1 = 0.5 eV [60] tend = 2 min
S1 = 4.36 × 104 mol m−3 [60]a �t = 0.49 s
D02 = 2.1 × 10−5 m2 s−1 [64]
Q2 = 2.26 eV [60]
S2 = 1.63 × 105 mol m−3 [60]a

�E1t = 3.97 eV [60]
D0t = D02

b

St = S2 [60]a

Eb1 = Eb2 = 0

O vacancies: a = 2.55 Å [61] L = 21.46 nm
D01 = 1.7 × 10−9 m2 s−1 [63]b �x = 2.146 nm
Q1 = 1.95 eV [61] T = 1023 K
S1 = 4.36 × 104 mol m−3 [61]a tend = 10 min
�E1t = 1.08 eV [61] �t = 4.93 s
D0t = D01

b

St = S1 [61]a

Eb1 = −1.07 eV [61]
Eb2 = 1020 eV b

aCalculated from data in that reference.
bAssumed.

tions of the local energy landscapes are necessary to avoid
this.

The above analyses exemplify diverse situations where the
developed models can be applied. Besides, they demonstrate
the scalability of the approach, which recovers the evolution
of both segregation and long-range diffusion effects. For all
cases, increases in the cell size of ∼250 times, with their
corresponding larger values of �t , resulted in an average re-
duction of 99.997% of the computational time at the expense
of the minor deviations shown. While only results of conver-
gence for Cartesian coordinates were shown here, very similar
results were obtained for cylindrical and spherical geometries.

2. Point defects in electronic devices

For the sake of generality, we also model the diffu-
sion and trapping of point defects in electronic devices.
Tang et al. applied DFT to describe the segregation energies
and migration energy barriers of neutral oxygen interstitials
[60] and vacancies [61] at a monoclinic HfO2 and Si interface
for transistor applications. The heterostructure considered was
built by aligning the [001] directions of both crystals and
stretching the HfO2 crystal to match the lattice constant of Si.
The defects considered have their origin during the deposition
of HfO2, and their accumulation at the interface often results
in the formation of unwanted phases.

No full description of the energy landscape from inter-
face to bulk was developed in the original works, so the
monolayer trap model is preferred here. The interfacial seg-
regation energy of O interstitials has negligible dependence
on the number of trapped atoms, and that for neutral O va-
cancies increases only slightly with it [62], which validates
the use of the dilute solution approximation. No-flux Neu-

mann boundary conditions J (0, t ) = J (L, t ) = 0 mol m−2 s−1

are implemented to determine the post-deposition redistri-
bution of defects, with an initial reference concentration of
1 mol m−3 only in HfO2. The simulations are performed in
a domain with length of 21.46 nm with the interface in the
middle, which corresponds to about 84 Hf atomic layers. Such
small domains are of interest for electronic device applica-
tions. All the parameters employed are given in Table III.

Oxygen interstitials in HfO2 bound to threefold coordi-
nated lattice oxygen atoms have a migration energy barrier
low enough that their redistribution is expected to occur even
at room temperature. Unfortunately, the diffusivity prefactor
has not been reported, so we use that for neutral vacancies
considering that this does not affect the aim of these simula-
tions to exemplify the applicability of the model. Figure 11(a)
shows the energy landscape and the predicted kinetics of
segregation at the first layer of Si below HfO2. After 2 min-
utes, most of the interstitial O atoms have segregated to the
interface. Although further redistribution into the Si substrate
would be favoured thermodynamically, the large diffusion
energy barrier in this material prevents this from happening,
promoting also the formation of a thin interfacial SiOx (0 <

x < 2) layer [60].
Neutral vacancies of fourfold coordinated O atoms have

considerably larger migration energy barriers. Thus we model
their redistribution over an annealing stage at 1023 K.
Note that doubly positively charged vacancies diffuse faster
[65–67], but their interfacial segregation energy has not been
reported. The diffusivity prefactor of the neutral defect is also
assumed here to be that of the charged species. The insert in
Fig. 11(b) shows the energy landscape modeled. O vacancies
cannot exist in the Si side, so diffusion into this domain
is prevented in the simulation by artificially setting a large
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FIG. 11. Energy landscape and evolution of the concentration at
the HfO2 and Si interface of (a) neutral O interstitials at 293 K and
(b) neutral O vacancies at 1023 K.

energy barrier after the last HfO2 layer (Eb2 = 1020 eV). The
smaller energy barrier near the interface makes an explicit
atomic jump model (�x = a) prohibitively computationally
expensive as �t must take very small values to converge just
because of that individual cell. The monolayer trap can instead
capture the diffusion kinetics, shown in Fig. 11(b), with a con-
siderably larger time step. The segregation of vacancies to the
interface, which may promote the formation of an interfacial
layer of hafnium silicide [61], takes minutes in this scenario.

C. Parametric analyses

We now perform parametric analyses on key interfacial
parameters to clarify their effects and further validate the ap-
proach. The simulations are done in a model energy landscape
with the parameters from Table IV, with an interface situated
at the center x = L/2, where the diffusivity and site density
are the same on both crystals but the solute partitions to the
material in the left. The effects of varying energy barriers
for an interface without segregation are shown in Fig. 12(a).
For each simulation, the flux through the interface reaches
saturation, followed by that through the rightmost boundary.
As expected, larger energy barriers slow down the process
and diminish the steady state flux reached, although not by
the same amount. Clear effects can only be seen from 0.3 eV.
This is better explained by enquiring the equivalent coefficient

TABLE IV. Parameters used for the simulations of the model
bicrystals, unless otherwise specified.

Material parameters Simulation parameters

a = 0.713 Å L = 10000 a
�E = 0.5 eV �x = L/30
D01 = D02 = 1.38 × 10−8 m2 s−1 tend = 0.4 ms
Q1 = Q2 = 0.088 eV T = 573 K
S1 = S2 = 8.61 × 105 mol m−3 c(0, t ) = 1 mol m−3

c(L, t ) = 0
c(x, 0) = 0

of diffusion of the simulated region, obtained from Eq. (38)
and plotted as a function of the energy barrier in Fig. 12(b).
The effect of a small barrier is negligible, as its effect over
a single atomic layer is weighted against numerous (99 999
in this case) smaller jumps in the bulk of the crystals. With
Eq. (37) one can recover the steady state fluxes reached in the
simulations.

Consider now a monolayer interfacial trap instead, in
the same model bicrystal. Increased concentrations develop
for larger segregation energies, as expected, as shown in
Fig. 13(a). Regardless, these saturate nearly around the same

FIG. 12. (a) Effects of the interfacial energy barrier on the fluxes
through the bicrystal interface (solid lines) and the rightmost bound-
ary (dashed lines), and (b) on the equivalent coefficient of diffusion
D̂b,mult in the model bicrystal modeled.
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FIG. 13. Evolution of the [(a) and (c)] concentration at the interface and [(b) and (d)] fluxes through the rightmost boundary of the model
bicrystal as a function of [(a) and (b)] interfacial segregation energy (at 573 K) and [(c) and (d)] temperature (with �E1t = 0.3 eV).

time due to the dependence of the driving force on such en-
ergy. Only the simulation with the largest segregation energy
shows a noticeably slower saturation. This is better appreci-
ated when examining the flux through the rightmost boundary
in Fig. 13(b). It is important to note that the steady state flux
is the same for all cases. While larger segregation energies
imply bigger energy barriers to escape the interface, this effect
is counteracted by the larger concentration in this region, i.e.,
more jump attempts with a lower success ratio results in the
same original flux. The same can be deducted from Eq. (38).

The effects of temperature on the thermodynamic equi-
librium and diffusion kinetics are shown in Figs. 13(c) and
13(d) for a segregation energy of 0.3 eV. Higher segregations
develop at lower temperatures, consistent with Eq. (9). The
insert in Fig. 13(c) shows that trapping is slower at first, due
to the slower diffusion kinetics, but it later overcomes that at
higher temperatures due to the larger driving force. The solute
fluxes through the rightmost boundary in Fig. 13(d) are also
clearly larger at higher temperatures, as expected. Similar be-
haviours are anticipated for the multilayer and heterogeneous
interface models.

While the examples used are still simplifications, they take
us a step closer to the modeling of more realistic interfaces,
the energy landscapes of which are likely combinations of the
multilayered and heterogeneous models with numerous sites
and energy barriers in between. The effects of different types
of sites can be rationalized in the following way. Including in
the analysis the sites at lower energy levels helps to recover
the segregation kinetics at the interface. Alternatively, while
those at higher energy levels have a little effect on the local

concentration evolution, they act as paths of fast diffusion
between the two crystals. Lastly, the energy barriers between
all these sites at the interface will determine whether the
concentrations in them evolve maintaining the same chemical
potential.

D. Final remarks

The approach introduced in this work generalizes the
treatment of solute diffusion at immobile solid-solid inter-
faces. This combines the accurate treatment of discontinuities
in the energy landscape of reaction rate theory [25,26,31]
and mobility-based equations [17,19] at a continuum level.
In return, this allows for the calculation of diffusion and
segregation rates for arbitrary bicrystal interfaces, boundary
conditions and length scales. The effects intrinsic to the in-
terface must be considered in systems where the segregation
energy is not negligible, e.g., the local concentration at the
Fe + TiC interface becomes three orders of magnitude higher
than that in the bulk.

An advantage of this approach is that it captures the solute
kinetics accounting for first principle calculations of the en-
ergy landscape. The calculations performed for the different
interfaces are examples of this. This bridge between scales
opens the door to new applications of such atomistic data into
realistic material conditions.

The analyses performed also have implications for the
diffusion of H in structural alloys. Both types of grain bound-
aries, with energy barriers or interfacial trap sites, have a
small effect on the H diffusivity upon reaching a steady state.
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However, the latter slow down the process during the transient
regime as the segregation concentration evolves. These find-
ings further support the point trap homogenization schemes,
such as Oriani’s [9] and McNabb-Foster’s [68] models, for
grain boundaries and second phases with no (or low) volume
trapping. The difference in these models lies on whether the
concentration at the trap remains at equilibrium with that
in the bulk, which depends on the segregation rates to and
from these defects. The approach developed in the current
work could further investigate condition-specific rates and
determine the validity of the thermodynamic equilibrium as-
sumption in Oriani’s model. There is also value in estimating
the segregation rates to interfaces at smaller length scales.
In some systems, the accumulation of solute at bicrystal
interfaces impacts the formation of second phases (e.g., Ti
hydrides at α/β interfaces in Ti alloys [69]). The implemented
approach can be used to further study the nucleation of such
phases.

Regarding potential future work, a number of assump-
tions currently in the model could be relaxed. For instance,
the usage of the dilute and ideal solution approximation
makes the PDE linear and allows for simple analytical
equations to be obtained. This is an essential compo-
nent of the classical Fick’s laws of diffusion, although
the assumption should be challenged when dealing with
interfacial traps, as locally there is a lower number of
available sites to accommodate the solute. There is po-
tential to incorporate these effects by adapting the driving
forces for diffusion, while performing similar analyses
for the diffusivities at the interface. Moreover, diffusion
along grain boundaries has relevance for different phe-
nomena, and the corresponding energy barriers are often
also extracted from DFT studies [22,23]. The concepts
of diffusion in series and parallel in materials varying
energy landscapes could potentially be applied in differ-
ent directions to incorporate such effects. Full two- or
three-dimensional models could also be attempted by per-
forming further discretizations near the interfaces [70] and
extending the solute redistribution steps for more complex
geometries.

IV. CONCLUSIONS

A fully scalable and thermodynamically consistent nu-
merical solution was developed to model the diffusion and
segregation kinetics through immobile solid-solid interfaces.
This represents an important link between atomistic and
macroscopic modeling of diffusion, and can be employed

to investigate the effects of local variations in the energy
landscape on physical phenomena across length scales. The
approach works at a continuum level but includes discrete
discontinuities in the diffusion parameters at the interface. The
main findings are the following.

(1) An atomic jump kinetic equation is obtained from an
equal flux condition at the smallest length scale valid. This
is consistent with atomistic models based on individual jump
attempts.

(2) Scaling up the above approach results in the first ever
model to fully account for the discontinuity in the energy
landscape at a bicrystal interface, therefore bridging the gaps
in multiscale modeling of diffusion.

(3) The general models developed for arbitrary energy
barriers and monolayer traps at bicrystal interfaces are able
to track the evolution of the local solute segregation and
long-range diffusion effects. These approaches are extended
to deal with multilayered and heterogeneous interfaces, which
are basic features of more realistic interfaces.

(4) Reported DFT diffusion data of H in structural metals
and point defects in electronic devices are used as examples
of the introduced models. The analyses provide more reli-
able rates of trapping and further validate the homogenization
schemes that model grain boundaries as point traps.
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APPENDIX: EQUATIONS FOR THE SOLUTE
REDISTRIBUTION STEP

The equations for the parameters required in the solute
redistribution step, Eq. (36) in Sec. IIB3, are given here for
the three coordinate systems. To simplify the nomenclatures,
the subindices 1 and 2 in this Appendix represent the cells
to the left and right sides of the interface, respectively (e.g.,
S1 = SI−1 and S2 = SI+1).

(1) Cartesian coordinates (for i = 1, 2).

mi = AD̂biSi�x
(−1 + 4φ2

i

)
8St (D̂biφi + DiSiφbi )

exp

(
−�Eit

RT

)
, (A1)

bi = Aci�x(−1 + 2φi )[D̂bi(−1 + 2φi) + 4DiSiφbi]

8(D̂biφi + DiSiφbi )
. (A2)

(2) Cylindrical coordinates.

m1 = LπD̂b1S1�x
[
3x1

(−1 + 4φ2
1

) + �x
(−1 + 8φ3

1

)]
12St (D̂b1φ1 + D1S1φb1)

exp

(
−�E1t

RT

)
, (A3)
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b1 = Lπc1�x(−1 + 2φ1)[D̂b1(−1 + 2φ1)(3x1 + �x + φ1�x) + 3D1S1φb1(4x1 + �x + 2φ1�x)]

12(D̂b1φ1 + D1S1φb1)
, (A4)

m2 = LπD̂b2S2�x
[
3x1

(−1 + 4φ2
2

) + �x
(−5 + 24φ2

2 − 8φ3
2

)]
12St (D̂b2φ2 + D2S2φb2)

exp

(
−�E2t

RT

)
, (A5)

b2 = Lπc2�x(−1 + 2φ2)[D̂b2(−1 + 2φ2)(3x1 + 5�x − φ2�x) + 3D2S2φb2(4x1 + 7�x − 2φ2�x)]

12(D̂b2φ2 + D2S2φb2)
. (A6)

(3) Spherical coordinates.

m1 = πD̂b1S1�x
[
24x2

1

(−1 + 4φ2
1

) + 16x1�x
(−1 + 8φ3

1

) + 3�x2
(−1 + 16φ4

1

)]
48St (D̂b1φ1 + D1S1φb1)

exp

(
−�E1t

RT

)
, (A7)

b1 = πc1�x(−1 + 2φ1)
[
D̂b1

(−1 + 2φ1
)(

24x2
1 + 16x1�x(1 + φ1) + �x2

(
3 + 4φ1 + 4φ2

1

)) + 8D1S1φb1
(
12x2

1 + 6x1�x(1 + 2φ1) + �x2
(
1 + 2φ1 + 4φ2

1

))]
48(D̂b1φ1 + D1S1φb1)

,

(A8)

m2 = πD̂b2S2�x
[
24x2

1

(−1 + 4φ2
2

) + 16x1�x
(−5 + 24φ2

2 − 8φ3
2

) + �x2
(−67 + 384φ2

2 − 256φ3
2 + 48φ4

2

)]
48St (D̂b2φ2 + D2S2φb2)

exp

(
−�E2t

RT

)
,

(A9)

b2 =
πc2�x(−1 + 2φ2 )

[
D̂b2(−1 + 2φ2 )

(
24x2

1 − 16x1�x(−5 + φ2 ) + �x2
(

67 − 28φ2 + 4φ2
2

))
+ 8D2S2φb2

(
12x2

1 + 6x1�x(7 − 2φ2 ) + �x2
(

37 − 22φ2 + 4φ2
2

))]
48(D̂b2φ2 + D2S2φb2 )

.
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