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Grain boundary characterization from particle coordinates
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We present a method to locate and characterize grain boundaries in polycrystalline materials from the
real-space coordinates of their constituent particles. The method is robust against imperfections such as thermal
noise and vacancies. We apply the algorithm to experimentally found real-space coordinates to explicitly measure
local misorientations and structure at grain boundaries. We consider particle coordinates obtained from an
epitaxially templated colloidal �17 bicrystal, finding that, even though the bicrystal is predominantly �17
and face-centered cubic, small volumes of hexagonally closed-packed structure generate a mosaic of grain
boundaries, increasing the complexity of the templated grain boundary. We also consider a homogeneously
nucleated colloidal polycrystal and apply our method with no prior knowledge of grain boundary structure.
Accordingly, we reveal detailed misorientation distributions and grain boundary structures. The method may be
applied to any set of coordinates of atoms or particles in a polycrystalline system.
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I. INTRODUCTION

Most crystalline materials in nature are polycrystalline,
consisting of differently oriented crystallites packed together
to create a network of grain boundaries at their interfaces. The
structure of the grain boundary network has a profound impact
on the macroscopic material properties and underlie much
of our understanding of ductility, brittleness, electrical con-
ductivity, deformation and fracture mechanisms [1], melting
kinetics [2–4], and transport properties [5] in a wide range of
materials [6,7]. Much effort has been made in recent decades
to tune the grain boundary structure within materials by “grain
boundary engineering,” which can involve sintering, rolling,
and annealing of metals, alloys, and ceramics. In some cases,
materials with small grains and many grain boundaries are de-
sirable as they cause a dramatic increase in strength following
the Hall-Petch law [8,9]. In other cases, large single crystals
are required, with examples including structure solution in
single crystal crystallography and the manufacture of photonic
band-gap crystals [10–12].

The properties of the grain boundaries themselves are
governed by their degrees of freedom. In three dimensions
these consist of three for position, three for the orientation
difference between the different crystallites, termed misori-
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entation, and two for the plane of the boundary relative to
the crystal lattice, known as inclination [13]. The distribution
and type of grain boundary has been shown to affect the
migration kinetics of boundaries under stress [14] and during
grain growth [15,16]. Additionally, grain boundary mobility,
surface tension, and roughening transitions are affected by the
interplay between misorientation and inclination [17].

A wealth of research on materials yields structural infor-
mation in reciprocal space using scattering techniques, such as
orientation imaging microscopy [18,19], diffraction contrast
microscopy [20–23], electron backscatter diffraction [24,25],
and three-dimensional (3D) x-ray diffraction [26,27]. How-
ever, one is either required to destroy the sample by serial
sectioning, preventing dynamic measurements, or to prioritize
between spatial, angular, or time resolution [28]. The spatial
resolution of these techniques limits the size of the grains to
roughly 1 μm [23,28], orders of magnitudes larger than the
size of the atoms themselves, making it impossible to com-
ment on how the behavior of specific boundaries are tied to
atomistic dynamics or arrangements. Furthermore, achieving
measurements of grain boundaries in the bulk is difficult as
one must have a sample thick enough to render surface effects
negligible, but not so thick that scattering peaks from multiple
grains overlap [28]. Thus, there are significant advantages
to studying the real-space coordinates of atoms, molecules,
or mesoscopic particles over space. Real-space coordinates
are increasingly widely available, from electron microscopy
studies [29] and simulations [30,31], to mesoscopic model
systems such as colloidal dispersions [32,33], where optical
microscopy can give the coordinates of all particles in bulk
within a field of view [34]. There are advantages to the latter
two techniques over electron microscopy techniques. First, 3D
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reconstruction of structure using electron microscopy once
more requires serial sectioning which destroys the sample,
preventing dynamic measurements; and second, electron mi-
croscopy is necessarily a surface technique meaning that
surface effects must be ruled out from measurements.

With the availability of 3D coordinates, there is an in-
creasing need for a robust means to extract the location and
properties of grain boundaries from real-space data. However,
existing grain and boundary detection schemes offer only a
partial analysis. Some schemes use order parameters to locate
grain boundaries [35,36] and by doing so neglect to mea-
sure orientation. Polyhedral template matching [37], used in
the OVITO software [38], allows orientation measurement and
grain resolution, but neglects grain boundary surfaces or local
resolution of misorientations at the grain boundaries [39].
Many detection schemes are only useful in specific contexts,
e.g., where a system is constrained to only one or one type of
grain boundary and the orientation of one or more of the grains
is known beforehand [31,32,40–43]. Taming grain boundaries
like this is beneficial because it reduces their complexity.
However, the resulting boundary properties only apply to
themselves [16] because forces associated with ever-present
neighboring grain boundaries are neglected.

Here, we present a generally applicable method to fully
identify and characterize crystalline grains, crystalline struc-
tures, and to render grain boundaries using real-space particle
coordinates. We apply the method to real-space coordinates
of colloidal particles in dense crystalline dispersions. The
method is shown to be robust against thermal noise as well
as defects in the crystals, and to provide exhaustive informa-
tion on both the location and orientation of several kinds of
boundary. Importantly, we also provide a means to locally
characterize the degree of misorientation between grains at
different locations on the grain boundary surface, giving un-
precedented access to the range of structures present. This
paper is organized as follows. Section II details the grain
and grain boundary characterization method. Section III then
shows its application where we uncover unprecedented detail
in the grain and grain boundary structure of both a templated
colloidal bicrystal and a polycrystalline colloidal crystal from
experimentally obtained particle coordinates.

II. GRAIN AND GRAIN BOUNDARY
CHARACTERIZATION METHOD

To characterize grains and grain boundaries, we start with
real-space coordinates of particles in a region of interest, and
apply an analysis consisting of four steps: (i) the nearest
neighbors of each particle are identified; (ii) the orientation
and structure of each nearest-neighbor cluster is identified;
(iii) grains are identified and separated; (iv) grain boundary
locations and misorientations are found and visualized. The
method is compatible with periodic boundary conditions, so
may be directly applied to computational as well as experi-
mental data.

A. Nearest-neighbor identification

Correct identification of the nearest-neighbor shell is es-
sential for accurate structure and orientation assignment. For
a given particle, the parent, we locate up to Nmax nearest neigh-

bors within a cutoff distance using a k-d tree [44] to determine
neighbor distances. For close-packed monodisperse spheres,
Nmax = 12 due to geometrical constraints. The cutoff distance
is typically the first minimum in the radial distribution func-
tion of the particle coordinates. Each “cluster” that is formed
by a parent particle’s nearest neighbors is referred to as the
nearest-neighbor cluster (NNC). The number of particles in an
NNC may be fewer than Nmax to account for crystal vacancies.

B. Registration, orientation, and structure assignment

To identify the orientation and structure of each NNC, we
require a quantitative comparison of experimentally observed
specimen NNCs and a set of reference NNCs from perfect
crystal structures. To do this, each point in a specimen NNC
must be paired with their corresponding point in a reference
NNC by aligning the two point sets. This process is known as
point set registration and is a common procedure in computer
vision processes [45]. Methods for point set registration that
involve only translation and orientation transformations are
called rigid registrations, which we will use here to dramat-
ically simplify the process. This approach is valid because
other small transformations have little effect on orientation
measurements. In fact, the registration process can be further
simplified by using the translational invariance property of
crystal lattices. This is achieved by aligning the central point
from the specimen NNC and the reference NNC. In doing
so, the translation is removed from the registration calculation
and the central parent points are registered. This simplification
is valid for small displacements of the points from their lattice
sites in the specimen NNC.

Point set registration is challenging because, to align two
point sets, the corresponding pairs of points must be known,
but to find the corresponding pairs of points the sets must be
aligned. Only by chance will the reference and specimen sets
align, and if we wish to calculate the orientations for many
different crystallites, it is almost guaranteed that there will
be some specimen sets that do not align with the reference
set. There are two options for registration: (1) trials over
orientations and (2) trials over corresponding pair permuta-
tions. Iterative methods are unreliable for NNC set alignment
because there are many local maxima in the set alignment,
where one point is aligned and others are not. Therefore, a reg-
istration scheme must span all possibilities to find the global
maximum set alignment. Trials over orientations, considering
option 1, requires a large number of trials for good angular
resolution, which makes the computation prohibitively costly.
It is important to have as small a number of trials as possi-
ble, particularly for large sets of real-space coordinates. For
example, recent confocal microscopy studies have regions of
interest containing in excess of 10 000 particles (and therefore
10 000 NNCs). Thus, we propose a method using option 2:
trials over corresponding pair permutations. We increase the
efficiency by significantly reducing the number of permuta-
tion trials.

The method proceeds as follows. Let the reference NNC
and the specimen NNC have Nr and Ns elements, respectively.
Note that the central parent points are registered from the
translation step so they are not included. Set alignment is
quantified by the sum of the Ns smallest distances between
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FIG. 1. (a) Flow chart of the point set registration process. Ovals denote the start or end, parallelograms are inputs or outputs, diamonds
represent decisions, where Y and N stand for yes and no, respectively, and rectangles indicate processes. The detail for each number is given
in the text. (b) Cartoon showing the grain boundary rendering process. The positions of particles in two different grains in three dimensions
are shown by white and grey circles, respectively. They are not positioned in a crystalline arrangement for the purpose of clarity. Delaunay
triangulation edges are shown as dotted lines (thickness for perspective) and grain boundary points are shown as black crosses. The grain
boundary lines are shown in two colors, either side of a perpendicular bisector. (c), (d), and (e) show the NNCs for FCC, HCP and BCC,
respectively. The black crosses mark the positions of particles and the black circle, the parent particle.

the point sets of the specimen NNC and the reference NNC.
Maximum set alignment is achieved for the minimum value
of this sum. A brute force approach would require trialing
all permutations of pairs of points between the specimen and
reference sets, equal to Ns!. For a close-packed crystal this
is 12! ≈ 4.8 × 108, which is prohibitively costly. However
this number may be significantly reduced by taking advan-
tage of the fact that for an orientation to be specified in D
dimensions it is enough to select only D linearly independent
vectors [46]. If the reference NNC and specimen NNC are
related by a rigid transformation, as is the case for a perfect
polycrystal where the reference and specimen NNC have the
same structure, the sets can be aligned by considering only
three corresponding pairs of points. Thus, in three dimensions,
instead of Ns! trials, the number is reduced to the permutations
of three from Nr , Nr P3, lowering the number of trials by a
factor of (Nr − 3)!. Therefore, corresponding pair trials are
generated from the permutations of three points from the Nr

reference NNC points paired with the same three randomly
selected points from the specimen NNC. For a close-packed
crystal, (Nr − 3)! = 9! ≈ 105, cutting the computational cost
by five orders of magnitude. This number may be reduced
further with consideration of the symmetry of the reference
NNCs, as certain permutations of three particles from Nr are
equivalent. For example, the number of trials required for
face-centered cubic (FCC), hexagonal close-packed (HCP),
and body centered cubic (BCC) NNCs reduces to 39, 223, and

17, respectively. A method to select symmetry in-equivalent
permutations is given in Sec. I of the Supplemental Material
[53].

The point set registration is laid out in the following se-
quence and illustrated in the flow diagram in Fig. 1(a) where
Y and N represent yes and no, respectively.

(1) Input trials of in-equivalent permutations of three cor-
responding pairs.

(2) Is the number of completed loops equal to the number
of trials of corresponding pairs? If no go to step 3, if yes go to
step 5.

(3) The next trial of three corresponding pairs is converted
to an orientation by the Kabsch algorithm [47,48], which
minimizes the squared distance between the pairs of corre-
sponding points. Note we modify the Kabsch algorithm to fix
the center of rotation to the parent particle. Each orientation
is applied to all points in the specimen set in an attempt at set
alignment.

(4) Calculate the sum of the Ns smallest distances between
pairs of points, one from each NNC set. Return to step 2.

(5) The trial that produced an alignment with the mini-
mum sum of the Ns smallest distances between pairs of points,
one from each NNC set, establishes the corresponding pairs.
Points are paired when the distance between them is one of
the Ns smallest. The registration is formed by this set of pairs
where every point in the specimen NNC has a corresponding
point in the reference NNC.
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(6) Is any point paired with more than one other? If no go
to step 7, if yes go to step 8. To enhance the accuracy of the
method, registrations are only accepted if no point is paired
with more than one other. This means that only specimen
NNCs with a structure approximately equal to the reference
are registered.

(7) Output accepted registration.
(8) Registration fails.
Although success in finding the global minimum in the sum

of Ns smallest distances between the specimen and registered
NNC points is only guaranteed for perfect polycrystals, this
approach will still pair corresponding points in each set for
specimen NNCs with small deviations from a perfect struc-
ture. The global minimum is found by using the accepted
registration from step 7, where corresponding pairs for all
points in the specimen NNC are used (instead of just three)
as the input for the Kabsch algorithm [47]. Again, we modify
the Kabsch algorithm so the rotation center is fixed to the
central parent particle, regardless of the center of mass of
the NNC, to allow for robust orientation measurement when
vacancies create incomplete NNCs. Furthermore, using all
points ensures that deviations from perfect crystal positions
in the specimen NNCs caused by thermal noise are accounted
for. The reported orientation for each NNC is calculated from
this complete registration.

Structure assignment is performed by minimizing the sum
of the Ns smallest distances between corresponding pairs of
points from the accepted registrations over reference NNC
structures of interest. For example, a hard sphere system may
have an FCC or HCP crystal structure, whereas a BCC crystal
structure is expected for spheres with long-range repulsion.
Therefore, one may wish to assign the set of references to
contain three reference NNCs, one each for FCC, HCP, and
BCC where Nr = 12, 12, or 8, respectively. The reference
NNCs for FCC, HCP, and BCC are shown in Figs. 1(c), 1(d)
and 1(e), respectively. The procedures in Sec. II.B can be par-
allelized over each specimen NNC individually for efficient
computation.

C. Separation of grains

After the orientation of all NNCs have been measured,
these may be used to separate different grains. First, a De-
launay triangulation between all parent particles with NNCs
assigned the same structure forms a graph where each particle
is a node and each pair of connected particles is a link. Since
each link connects two different particles each with their own
NNC orientation, a misorientation may be found. Like an
orientation, a misorientation may be expressed as a rotation
θ about an axis. Two thresholds are then applied to eliminate
links and separate grains. The first is a distance cutoff Rcut for
NNCs with the same orientation, but separated in space. The
second is θcut, a maximum misorientation angle for adjacent
NNCs in the same grain. This leaves disparate “clusters” of
links between particles; each of these clusters form a single
grain. A high θcut runs the risk of including particles that
have intermediate orientation and position between grains,
thus preventing grain separation. However, a low θcut may
split grains to produce low-angle grain boundaries within.
Particles with no neighbors within these thresholds are not
assigned to a grain; they are not considered as a grain them-

selves. As a result, the smallest grain possible consists of
two particles. Note that this is much smaller than the typical
size of critical crystal nuclei (hundreds of particles) [49,50]
demonstrating that this method may be useful in nucleation
studies. This step also serves to confirm or reject the structure
assigned in Sec. II B and suppresses the spurious identifica-
tion of orientation and structure. Any particles not belonging
to a grain are considered to have a structure different to
the reference NNCs considered, which may include particles
with a liquid-like local environment. Thus, this method also
provides a way to distinguish crystalline from noncrystalline
particles.

D. Grain boundary location, misorientation,
and visualisation

Boundaries between grains may be resolved using a
method similar to that used by Lavergne et al. [51], but ex-
tended to three dimensions. First, a Delaunay triangulation
over particles belonging to a grain is calculated. The mid-
points of Delaunay edges which connect particles in different
grains form a surface of grain boundary points. Figure 1(b)
shows a schematic of a triangulation of particles in two grains
where the members of each grain are shown as white or grey
circles, respectively. The dotted lines show the triangulation
edges and the black crosses show the grain boundary points.
Note that these points do not lie on a particle coordinate.
Furthermore, a “local” misorientation may be calculated for
each grain boundary point using the orientation of the particles
on either end of the triangulation edge, yielding a spatial map
of misorientations over the boundary surface. Grain boundary
particles may be identified as those within a cutoff distance
to a grain boundary point and not a member of a grain. In
this way, grain boundary particles may be identified with-
out searching for a particular arrangement of particles at the
boundary, which is especially useful when searching for un-
structured grain boundaries.

The geometry of the surface may be visualized in more de-
tail by again considering the Delaunay traingulation. For every
tetrahedron with vertices in two grains, the grain boundary
points formed from its edges may be linked by lines to form
edge-sharing triangles, as shown in Fig. 1(b). It is convenient
to render the local misorientation by coloring the lines instead
of the grain boundary points. This is done by bisecting each
line and coloring each half by the misorientation of the closest
grain boundary point. This can be seen in Fig. 1(b) where each
line has two colors, one either side of the bisecting line. In this
way grain boundaries are rendered as a triangle mesh where
local misorientation information is represented by color. In
this work we choose to map the color to the misorientation
angle using an angle axis representation.

Note that the location of misorientations in three-
dimensional rotation space may be presented using vectorial
representation. Here we use Rodigues-Frank vectors, �RF =
(RFx, RFy, RFz ) within fundamental zones containing the
smallest misorientation angle, within a standard stereographic
traingle as defined in Ref. [52]. Rodrigues-Frank vectors are
built from angle axis representation of rotations as �RF =
�A tan( θ

2 ), where �A is a normalized vector parallel to the ro-
tation axis and θ is the rotation (misorientation) angle.
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FIG. 2. Templated colloidal bicrystal. (a) Rendering of the colloidal crystal from particle coordinates. (b) Two largest FCC grains, either
side of the �17 boundary. (c) Normal projection of the �17 boundary. (d) Rodrigues-Frank fundamental zone of misorientation containing the
local misorientation for the boundary. The black cross shows the mean misorientation �RF M = (0.2497, 0.0088, 0.0002).

III. RESULTS AND DISCUSSION

To demonstrate the utility and capabilities of this method,
we study two colloidal crystals, a templated bicrystal us-
ing a patterned surface and a homogeneously nucleated
polycrystal. We characterize misorientations of grain bound-
aries with particle level detail; one should note that single-
particle resolution is often presented as a key strength of
colloidal models. Our method broadens this strength to grain
boundary studies.

A. Grain boundary structure in a templated colloidal bicrystal

Here, we repurpose particle coordinates from a colloidal
bicrystal produced to study grooves at grain-boundary-liquid
triple junctions [32]. We use these data as a test case to
demonstrate the method on a grain boundary of known loca-
tion and misorientation. The sample was produced by slowly
sedimenting a colloidal dispersion of monodisperse, 1.6 μm
diameter silica spheres onto a glass slide [32]. The glass slide
was pretemplated using stereolithography, drilling dimples in
positions corresponding to the first plane of a �17 (a type of
coincident site lattice) grain boundary between two compact
planes. During slow sedimentation, the first layer of deposited
particles sits in the dimples; subsequent layers grow by epi-
taxy by completing compact planes. The aqueous dispersion
is index matched to allow deep penetration of the light without
scattering; it also contains fluorescein so that the matrix can be
easily distinguished from the nonfluorescent glass spherical
particles. The sediment is imaged using 3D laser scanning
confocal microscopy. Appropriate postprocessing finally al-
lows the determination of the center of mass of each colloidal

particle [32]. The cutoff distance for nearest neighbors is set to
2.0 μm, the first minimum of the radial distribution function,
which sits at roughly 1.25 times the particle diameter. The
distribution for the number of nearest neighbors is found in
Sec. II of the Supplemental Material [53]. All NNCs with at
least three neighbors of the parent particle were considered for
orientation measurement, comparing against both FCC and
HCP reference NNCs, which were scaled such that the aver-
age nearest-neighbor separation was 1.63 μm, the same as the
first peak in the radial distribution function. The misorienta-
tion angle cutoff was set empirically to be θcut = 2◦, which is
small enough to separate the grains in this data set. Section IV
of the Supplemental Material [53] provides a discussion on the
effects of different values of θcut. The distance cutoff for grain
boundaries was set to be the same as for nearest-neighbor
detection, i.e., Rcut = 2.0 μm. The total computation time for
the grains and grain boundaries in the following discussion
from 38 977 particle coordinates was 172 s using a quadcore
Intel Core i5-6500 with 16 GB of RAM. The rendering was
performed using open source PYMOL software [54].

Figure 2(a) shows a reconstruction of the coordinates of
all particles. A boundary may be roughly identified by eye.
Applying our method, the two largest FCC grains detected
are shown in Fig. 2(b), colored by grain, sitting on either
side of the nominal �17 boundary. Initially, we consider
only these two major grains, and identify a grain boundary
between them. The misorientation is found to be �RF M =
(0.2497, 0.0088, 0.0002); in agreement with the value for
a �17 boundary in an FCC crystal, �RF�17 = (0.25, 0, 0)
[55]. Note that this average misorientation is calculated
from the average orientation of each large FCC grain using
an implementation [56] of the rotational averaging method
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described in Ref. [57]. If we render the geometry of the grain
boundary surface and color code misorientations over the
edges (see Sec. II D) as shown in Fig. 2(c), a broad spatial
variation in misorientation is revealed. This is accordingly
seen in the Rodrigues-Frank misorientation fundamental zone
in Fig. 2(d), where points are scattered around the misorienta-
tion expected for a �17 boundary, shown as a black cross.
Thus, we show the method characterizes grain boundaries
correctly and resolves spatial variation in misorientation at the
particle level. Details of the grain boundary particles within
Rcut of the �17 boundary may be found in Sec. III of the
Supplemental Material [53]; the following grain boundary
discussions will focus on the grain boundary surfaces, rather
than the particles themselves.

Templating techniques such as those used to create this
bicrystal [32] are designed to create a single boundary with a
pre-engineered misorientation. However, the two major grains
and the boundary between them do not account for all the
grain and grain boundary structures present: this manufac-
tured boundary is far more complex than a single surface
with a single misorientation and contains both FCC and HCP
crystal structures. Using our method we proceed to identify
all FCC and HCP grains composed of 50 or more particles
and characterize the multitude of unique boundaries which are
present.

We first consider the range of FCC-FCC boundaries
present in the system, in particular the twin boundaries.
Twinning is of interest as particular twin geometries have
consequences for grain growth kinetics [15]. To this end,
HCP grains are omitted during the FCC-FCC grain boundary
generation (as explained in Sec. II D) so that triangulation
edges connect FCC grains on either side of a stacking fault.
This prevents FCC twin boundaries being replaced by two
grain boundaries between the two twinned FCC grains and the
bisecting HCP layer. A particularly salient example of a twin
boundary is shown in Fig. 3(a), where a smaller FCC grain,
labeled Gt is surrounded by one of the major FCC grains. It
is wrapped in an envelope-like grain boundary whose misori-
entation is located around �RF = ( 1

3 , 1
3 , 1

3 ) in the FCC-FCC
Rodrigues-Frank misorientation fundamental zone [see inset
in Fig. 3(a)], as expected for a twin boundary in an FCC crys-
tal. This boundary is composed of two different inclinations,
one where the boundary plane has a normal perpendicular
to the hexagonal plane direction, marked i in Fig. 3(a), and
another where the normal is contained in the hexagonal plane,
marked ii. Here we see how the spatial resolution of our
method reveals the fine details of grain boundaries. If we
add the HCP stacking, we indeed find that the parts of the
boundary parallel to the hexagonal planes, i, are coincident
with single, isolated HCP layers. However, this is not case
for the parts of the boundary that wrap around the small twin
grain to connect these planes, ii. In principle, one might also
identify isolated FCC-HCP boundaries, as we will see below,
but the ability to freely calculate the misorientation angle
between grains of selected structure makes the detection of
twin grain boundaries much simpler.

We proceed to consider the HCP crystalline regions and
FCC-HCP boundaries. As shown in Fig. 3(b), the nominally
“simple” �17 boundary has a significant number of HCP
layers extending into the FCC grains. The corresponding mis-

orientations are plotted in the Rodrigues-Frank fundamental
zone in Fig. 3(c) with a color depending on the misorientation
angle θ . Projecting the distribution of points in misorientation
space onto a probability distribution in misorientation angle,
P(θ ) [see Fig. 3(d)], we see that there are multiple peaks.
The distribution is magnified in the inset so that the peaks
with smaller probabilities may be seen more clearly. The
largest peak at misorientation angle θ ≈ 56.6◦ corresponds
to Blackburn [58] boundaries between HCP and FCC grains
either side of a stacking fault. The energy associated with
stacking fault creation is very low so it is no surprise to see
the highest probability at this position. Figure 3(c) shows the
local misorientation distribution of these boundaries, scattered
about the Blackburn position marked with an black cross at
position �RF B = (0.414, 0.318, 0.132).

Note the presence of a smaller peak at θ ≈ 49◦, marked
iii in Fig. 3(d). In fact, these correspond to the portion of
the boundaries running approximately perpendicular to the
hexagonal planes, which wrap around the HCP grains to con-
nect two in-plane FCC-HCP boundaries. They are marked iii
in Fig. 3(b), where they appear as a lighter shade of red. Their
location in the Rodrigues-Frank misorientation fundamental
zone is also marked iii in Fig. 3(c). Figure 3(e) shows how
particle positions vary across this FCC-HCP boundary, where
the boundary adopts this lower misorientation angle. There is
no abrupt change from HCP to FCC; instead, the hexagonal
planes gradually shift relative to one another. This results in
NNCs in the vicinity of the boundary being distorted. Here,
NNC particles are displaced in a concerted manner with their
counterparts from the same hexagonal plane, but differently
from members in other hexagonal planes. This results in a
net rotation of the NNCs near the boundary. Note that the
Blackburn boundaries have the maximum misorientation pos-
sible, i.e., the full misorientation between the two structures.
Thus, the misorientation angle is necessarily reduced for the
distorted NNCs. This kind of boundary has been identified
before in colloidal crystals by Hilhorst et al. [59], although
without a specific detection scheme.

Having located both FCC-FCC and FCC-HCP boundaries
over all grains in the system, we are now in a position to
characterize the �17 boundary in more depth. The “single”
boundary identified in Fig. 2(c) using the two major FCC
grains now looks very different [see Fig. 3(f)]. The blue
portion marked as �17 corresponds to FCC-FCC bound-
aries, nominally the “remnants” of the original �17 boundary.
However, there are now other contributions including FCC-
HCP boundaries with different misorientation where the HCP
grains meet FCC grains at the boundary. These are marked
iv and shown in yellow; they also appear as surfaces in
Fig. 3(b) and in the misorientation distribution Fig. 3(c).
The misorientation angles of these boundaries peak at θ ≈
39◦, marked iv in the misorientation angle distribution in
Fig. 3(d).

Another contribution to the boundary in Fig. 3(f) is the
FCC-HCP boundary between the twin grain Gt from Fig. 3(a)
and HCP layers on the other side of the �17 plane. This is
shown in green on the left-hand side and marked v. This is
also visible at peak v at θ ≈ 30◦ in Fig. 3(d). Finally, there
is a contribution from the junction between Gt and the major
FCC grain on the other side of the �17 plane, marked vi.
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FIG. 3. A selection of other grain and grain boundary structures within the templated colloidal bicrystal, the numbered labels, i through v,
included in several panels are explained in the main text. (a) FCC twin boundary and twin grain Gt . The inset shows the local misorientation
distribution. (b) HCP grains and FCC-HCP grain boundaries. The particles are colored by grain identity and the grain boundaries by local
misorientation angle θ [see color bar in (c)]. (c) Rodrigues-Frank misorientation distribution within the fundamental zone for boundaries
between FCC and HCP grains, colored by misorientation angle (see color bar). (d) Local misorientation angle distribution for FCC-HCP
boundaries. The inset shows a magnified portion. (e) In-plane stacking sequence change from FCC to HCP. The black line is a visual guide. (f)
A mosaic of grain boundary structures including the �17 boundary and the contributions of other boundaries.

With our method we characterized the grain and grain
boundary structure of a pre-templated �17 boundary [32] in
great detail. Despite the misorientation between the major
grains being as designed, the microstructure of the boundary
itself is far more complex, with a combination of defects
and highly curved grain boundaries with misorientations that
do not exactly conform to the angles predicted for simple
stacking faults. Furthermore, the difference in structure of
the boundary can contribute to a difference in the properties,
which may go unexamined without particle level structural
characterization.

B. Characterization of homogeneously nucleated
polycrystalline structures

We extend the analysis to a sample where we have
no preknowledge of the position or misorientation of the
grain boundaries. We demonstrate this by analyzing a
homogeneously nucleated colloidal polycrystal. The finer
grain structure showcases the spatial resolution of our method
for grain and grain boundary detection. We apply the al-
gorithm to coordinates of particles in a polycrystalline
colloidal sample composed of ≈2.4 μm, 3% polydisperse,
polydimethylsiloxane stabilized core-shell PMMA spheres.

123605-7



ORR, YANAGISHIMA, MAIRE, AND DULLENS PHYSICAL REVIEW MATERIALS 5, 123605 (2021)

The synthesis of the particles is based on the methods pre-
sented in Refs. [60,61]. The particles are suspended in a
density and index matching mixture of cyclohexyl bromide
and cis-decahydronaphthalene saturated with tetrabutylam-
monium bromide (TBAB) to achieve electrostatic screening.
The particles are dyed with trace amounts of Cyanine 3 in the
particle core for laser scanning confocal microscopy imaging
with a Leica SP5 scanhead. The particle coordinates are re-
covered from the confocal images using conventional particle
identification software [34].

To prevent heterogeneous nucleation, the glass walls of the
sample cell were coated with polydisperse colloidal PMMA
particles to create a uniform but rough surface on the length
scale of the colloidal particle. To this end, a 22 × 22 mm num-
ber 1 cover slip was spin coated with a dense, polydisperse
suspension of PMMA particles (20% volume fraction, 30%
polydispersity in size) in cis-decahydronaphthalene, taking
care to avoid bulges on the outer rim of the cover slip. This
is immediately transferred to a 120 ◦C hot plate to dry the
solution rapidly and avoid de-wetting. This cover slip forms
the imaging wall of a glass sample cell. A small glass bottle
with the bottom removed is attached to the cell to allow the
placement of the colloidal dispersion via pipette. The cell is
sealed by attaching screw top lid with a teflon liner to the
bottle top. The colloidal sample is left for several hours to
crystallize, after which a field of view far away from the flat
walls of the container is investigated.

As in the case of the templated bicrystal, the nearest-
neighbor and grain boundary cutoff distances are set to equal
the first minimum of the radial distribution function, in this
instance, Rcut = 3.0 μm (once more roughly 1.25 times the
particle diameter), and the reference NNCs are scaled to have
a nearest-neighbor distance equal to the first peak of the radial
distribution function (2.35 μm). The distribution of numbers
of nearest neighbors for the particles is given in Sec. II of the
Supplemental Material [53]. The misorientation angle cutoff
is set to θcut = 2◦. However, this time we do not impose a
cutoff for the size of grains; thus, the smallest grains can
now consist of as few as two NNCs. The total computation
time was 234 s for 44 025 particle coordinates on the same
quadcore Intel Core i5-6500 with 16 GB of RAM.

Figures 4(a) and 4(b) show the FCC and HCP grains, re-
spectively, where each grain is assigned a unique color. Some
colors may appear indistinguishable because there are many
colors for the many grains: 866 FCC grains and 964 HCP
grains, with grain sizes range from 2 to approximately 500
particles. The number of particles in FCC and HCP grains,
respectively, are 8606 and 5368, showing a random hexagonal
close-packed structure with a slight preference for FCC and,
in general, HCP grains that are smaller than FCC grains. A
striking feature of both Figs. 4(a) and 4(b) are the planar
gaps, and flat, narrow grains. These are formed by faults,
where FCC changes to HCP or vice versa and serve to break
up the crystallites parallel to the hexagonal layers. We may
subsequently identify FCC-FCC, FCC-HCP, and HCP-HCP
boundaries. Each row of Fig. 4 from Fig. 4(c) to 4(e) contains
three panels that present from left to right the location of
grain boundaries, the misorientation within the fundamental
zone, and a misorientation angle distribution, respectively. As
before, grain boundaries and their distributions are colored by

their misorientation angle θ and the colors are consistent for
each row. The color maps used to label the boundary points in
Figs. 4(c) to 4(e) in both real and misorientation space span
angles between 0◦ and the maximum misorientation angle.

Again, we start by looking at FCC-FCC boundaries, omit-
ting the HCP grains [see Fig. 4(c)]. The boundary structure
is dominated by low angle and twin grain boundaries, in
approximately equal measure. They occur where an even or
odd number of HCP stacked hexagonal layers, respectively,
separate two FCC grains. Accordingly, these boundaries are
flat and lie parallel to the local hexagonal plane direction as
seen in Fig. 4(c1). The corresponding misorientation distri-
bution is shown in Fig. 4(c2) where the misorientations at
low angle and twin boundaries are concentrated around the
points �RF 0 = (0, 0, 0) and �RF T = ( 1

3 , 1
3 , 1

3 ), respectively, in
the Rodrigues-Frank fundamental zone. Accordingly, these
boundaries appear as peaks in the misorientation angle distri-
bution in Fig. 4(c3) at θ ≈ 0◦ and θ ≈ 60◦. The peak at θ ≈ 0◦
and the twin peak at θ ≈ 60◦ have approximately equal prob-
abilities relative to the random misorientation distribution,
showing that stacking faults contain an equal proportion of
even and odd hexagonally close-packed layers. Note that the
form of the misorientation distribution highlights the single-
particle resolution, resolving stacking faults that separate FCC
grains of the same orientation and that separate twin FCC
grains. Note that all these twin boundaries are planes, un-
like the example shown in the templated bicrystal where an
FCC-FCC boundary bends around to encapsulate an FCC
crystallite as in Fig. 3(a). None of the grains in this sample are
large enough to support the in-plane stacking fault required
to generate such a boundary. Figures 4(c2) and 4(c3) show
that there are also a significant proportion of misorientations
located between the peaks at θ ≈ 60◦ and θ ≈ 0◦. These
misorientations are a hallmark of a polycrystalline sample,
displaying many differently oriented grains. The surface area
of these boundaries is far smaller than the twin and low angle
boundaries so they appear with lower probabilities.

We may also look at HCP-HCP boundaries by omitting
the FCC grains [see Fig. 4(d)]. Again, the structure is dom-
inated by boundaries arising from stacking sequence changes
of hexagonal planes. The most probable peak appears at
θ ≈ 0◦ in Fig. 4(d3) and the corresponding boundaries are
shown in blue in Figs. 4(d1) and 4(d2). These boundaries are
created where one or more FCC layers intersect two HCP
grains, exposing a gap between two HCP grains of the same
orientation. The other dominating feature of the distribution
in Fig. 4(d3) is at θ ≈ 70◦. This is again a consequence of
stacking sequence changes, only this time along different
hexagonal plane normal directions. Specifically, they are the
different hexagonal plane normal directions in the FCC struc-
ture. The angle between these planes is equal to 70.53◦ and
accordingly, boundaries with misorientation θ ≈ 70◦ appear
with a significant probability.

Finally, considering FCC-HCP boundaries [see Fig. 4(e)],
we see a grain boundary structure dominated by the Black-
burn misorientation relationship, corresponding to very high
stacking disorder. Again, this is evidence for the random
close-packing structure of the polycrystal. Figure 4(e1) shows
mostly planar boundaries coloured in red corresponding to a
Blackburn misorientation of �RF B = (0.414, 0.318, 0.132) as
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FIG. 4. The grain and grain boundary structures within the colloidal polycrystal. (a) and (b) show FCC grains and HCP grains, respectively.
Each grain is given a unique color. The remaining panels of the image are organised as follows. Rows (c), (d), and (e) show characterization
for grain boundaries between FCC grains omitting HCP grains, between HCP grains omitting FCC grains, and between FCC and HCP
grains, respectively. Column (1) shows the spatial distribution of grain boundaries. Column (2) shows the misorientation distribution in the
Rodrigues-Frank fundamental zone. Column (3) contains probability distributions of misorientation angles. The dotted lines show distributions
for randomly oriented grains. The color bar extends from the smallest rotation angle to the largest and governs the colors for the panels in the
same row.

shown in Fig. 4(e2). The distribution has a proportionately
large peak at θ ≈ 56◦ in Fig. 4(e3). However, there is now no
small peak at θ ≈ 49◦ due to the absence of in-plane stacking
faults. These grains are smaller than in the bicrystal discussed
in Sec. III A. Much like the absence of any curved FCC-FCC
twin boundaries in the polycrystalline sample there is also
an absence of curved FCC-HCP boundaries. In the templated
bicrystal of Sec. III A, the stacking changes over roughly six
particle spacings as shown in Fig. 3(f), similar in lengthscale
to the in-plane stacking faults of Hilhorst et al. [59]; this is
too large a lengthscale for the finer grains of the polycrystal.
Hence, no boundaries due to in-plane stacking faults are seen

in either FCC-HCP boundaries or indeed FCC-FCC bound-
aries as presented earlier.

IV. CONCLUSION

A complete method is presented to convert real-space par-
ticle coordinates of polycrystalline materials to the location
and character of grains and grain boundaries. Heterogeneity
in misorientations may be characterized with single-particle
resolution over boundaries without a priori knowledge of
local crystal structure, giving unprecedented insight into a
wide range of faults and defects, and how the degree of

123605-9



ORR, YANAGISHIMA, MAIRE, AND DULLENS PHYSICAL REVIEW MATERIALS 5, 123605 (2021)

misorientation might affect physical properties. Here, we ap-
ply this to colloidal crystals, finding an unexpected degree
of structural complexity in a nominally “tame” [16] tem-
plated system and how the distribution of misorientations
change when similar particles are instead allowed to homoge-
neously nucleate crystals and grow. Importantly, we identify
features such as twin boundaries, the Blackburn orientation
relationship and low angle grain boundaries without targeting
different portions of the structure. Our method may be ap-
plied to both experimental and numerical data with minimal
knowledge of crystal orientations in a region of interest and
would serve as a useful tool in future studies of polycrystals,

nucleation, and grain growth. The routines are freely available
[62] to other users.

ACKNOWLEDGMENTS

We acknowledge F. Spaepen for facilitating the acquisition
of the colloidal bicrystal data shown in Sec. III A. We also
acknowledge F. A. Lavergne, A. E. Stones, P. J. Lu, and H.
Tanaka for insightful discussions and comments. The ERC
(ERC Consolidator Grant No. 724834 OMCIDC) is acknowl-
edged for financial support.

[1] Z. W. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M.
Follstaedt, and S. X. Mao, Grain boundary-mediated plasticity
in nanocrystalline nickel, Science 305, 654 (2004).

[2] A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, and
A. G. Yodh, Premelting at defects within bulk colloidal crystals,
Science 309, 1207 (2005).

[3] R. Lipowsky, Melting at Grain Boundaries and Surfaces, Phys.
Rev. Lett. 57, 2876 (1986).

[4] J. Q. Broughton and G. H. Gilmer, Thermodynamic Criteria for
Grain Boundary Melting - A Molecular Dynamics Study, Phys.
Rev. Lett. 56, 2692 (1986).

[5] H. Hilgenkamp and J. Mannhart, Grain boundaries in high-Tc

superconductors, Rev. Mod. Phys. 74, 485 (2002).
[6] S. Gokhale, K. H. Nagamanasa, R. Ganapathy, and A. K. Sood,

Grain growth and grain boundary dynamics in colloidal poly-
crystals, Soft Matter 9, 6634 (2013).

[7] K. H. Nagamanasa, S. Gokhale, R. Ganapathy, and A. K. Sood,
Confined glassy dynamics at grain boundaries in colloidal crys-
tals, Proc. Natl. Acad. Sci. 108, 11323 (2011).

[8] E. O. Hall, The deformation and ageing of mild steel: III Dis-
cussion of results, Proc. Phys. Soc. B 64, 747 (1951).

[9] N. J. Petch, The cleavage strength of polycrystals, J. Iron Steel
Inst., London 174, 25 (1953).

[10] K. Busch and S. John, Photonic band gap formation in
certain self-organizing systems, Phys. Rev. E 58, 3896
(1998).

[11] G. A. Ozin and S. M. Yang, The Race for the Photonic Chip:
Colloidal Crystal Assembly in Silicon Wafers, Adv. Funct.
Mater. 11, 95 (2001).

[12] K. S. Napolskii, N. A. Sapoletova, D. F. Gorozhankin, A. A.
Eliseev, D. Y. Chernyshov, D. V. Byelov, N. A. Grigoryeva,
A. A. Mistonov, W. G. Bouwman, K. O. Kvashnina, A. V.
Lukashin, A. A. Snigirev, A. V. Vassilieva, S. V. Grigoriev, and
A. V. Petukhov, Fabrication of artificial opals by electric-field-
assisted vertical deposition, Langmuir 26, 2346 (2010).

[13] A. P. Sutton, E. P. Banks, and A. R. Warwick, The five-
dimensional parameter space of grain boundaries, Proc. R. Soc.
A. 471, 20150442 (2015).

[14] T. J. Rupert, D. S. Gianola, Y. Gan, and K. J. Hemker, Experi-
mental observations of stress-driven grain boundary migration,
Science 326, 1686 (2009).

[15] S. L. Thomas, A. H. King, and D. J. Srolovitz, When twins
collide: Twin junctions in nanocrystalline nickel, Acta Mater.
113, 301 (2016).

[16] J. Han, S. L. Thomas, and D. J. Srolovitz, Grain-boundary
kinetics: A unified approach, Prog. Mater. Sci. 98, 386
(2018).

[17] G. Gottstien and L. S. Shvindlerman, Grain Boundary Migra-
tion in Metals (CRC Press, Boca Raton, FL, 2009), pp. 513–533.

[18] B. L. Adams, S. I. Wright, and K. Kunze, Orientation imaging
- the emergence of a new microscopy, Metall. Trans. A 24, 819
(1993).

[19] B. L. Adams, Orientation imaging microscopy: Emerging and
future applications, Ultramicroscopy 67, 11 (1997).

[20] G. Johnson, A. King, M. G. Honnicke, J. Marrow, and W.
Ludwig, X-ray diffraction contrast tomography: A novel tech-
nique for three-dimensional grain mapping of polycrystals. II.
The combined case, J. Appl. Crystallogr. 41, 310 (2008).

[21] W. Ludwig, S. Schmidt, E. Mejdal Lauridsen, and H. F. Poulsen,
X-ray diffraction contrast tomography: A novel technique for
three-dimensional grain mapping of polycrystals. I. Direct beam
case, J. Appl. Crystallogr. 41, 302 (2008).

[22] M. P. Echlin, N. S. Husseini, J. A. Nees, and T. M. Pollock,
A New Femtosecond Laser-Based Tomography Technique for
Multiphase Materials, Adv. Mater. 23, 2339 (2011).

[23] P. Reischig, A. King, L. Nervo, N. Vigano, Y. Guilhem, W. J.
Palenstijn, K. J. Batenburg, M. Preuss, and W. Ludwig, Ad-
vances in X-ray diffraction contrast tomography: Flexibility in
the setup geometry and application to multiphase materials,
J. Appl. Crystallogr. 46, 297 (2013).

[24] M. D. Uchic, M. A. Groeber, D. M. Dimiduk, and J. P.
Simmons, 3D microstructural characterization of nickel super-
alloys via serial-sectioning using a dual beam FIB-SEM, Scr.
Mater. 55, 23 (2006).

[25] N. Bozzolo, L. Chan, and A. D. Rollett, Misorientations
induced by deformation twinning in titanium, J. Appl.
Crystallogr. 43, 596 (2010).

[26] J. M. Dake, J. Oddershede, H. O. Sørensen, T. Werz, J. C.
Shatto, K. Uesugi, S. Schmidt, C. E. Krill Iii, C. E. K.
Performed, and C. E. K. Ana-Lyzed, Direct observation of grain
rotations during coarsening of a semisolid Al-Cu alloy, Proc.
Natl. Acad. Sci. 113, E5998 (2016).

[27] A. King, P. Reischig, S. Martin, J. F. B. D. Fonseca, and M.
E. A. Preuss, Grain mapping by diffraction contrast tomog-
raphy: Extending the technique to the sub-grain information,
in Proceedings of the 31st Risø International Symposium on
“Challenges in Materials Science and Possibilities in 3D
and 4D Characterization Techniques”, edited by N. Hansen,

123605-10

https://doi.org/10.1126/science.1098741
https://doi.org/10.1126/science.1112399
https://doi.org/10.1103/PhysRevLett.57.2876
https://doi.org/10.1103/PhysRevLett.56.2692
https://doi.org/10.1103/RevModPhys.74.485
https://doi.org/10.1039/c3sm50401h
https://doi.org/10.1073/pnas.1101858108
https://doi.org/10.1088/0370-1301/64/9/303
https://doi.org/10.1103/PhysRevE.58.3896
https://doi.org/10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
https://doi.org/10.1021/la902793b
https://doi.org/10.1098/rspa.2015.0442
https://doi.org/10.1126/science.1178226
https://doi.org/10.1016/j.actamat.2016.04.030
https://doi.org/10.1016/j.pmatsci.2018.05.004
https://doi.org/10.1007/BF02656503
https://doi.org/10.1016/S0304-3991(96)00103-9
https://doi.org/10.1107/S0021889808001726
https://doi.org/10.1107/S0021889808001684
https://doi.org/10.1002/adma.201003600
https://doi.org/10.1107/S0021889813002604
https://doi.org/10.1016/j.scriptamat.2006.02.039
https://doi.org/10.1107/S0021889810008228
https://doi.org/10.1073/pnas.1602293113


GRAIN BOUNDARY CHARACTERIZATION FROM PARTICLE … PHYSICAL REVIEW MATERIALS 5, 123605 (2021)

D. Juul Jensen, S. F. Nielsen, H. F. Poulsen, and B. Ralph (Risø
National Laboratory, Roskilde, Denmark, 2010).

[28] H. F. Poulsen, An introduction to three-dimensional X-ray
diffraction microscopy 1, J. Appl. Crystallogr. 45, 1084
(2012).

[29] G. Lucadamo and D. L. Medlin, Geometric origin of hexagonal
close packing at a grain boundary in gold, Science 300, 1272
(2003).

[30] C. P. Race, J. von Pezold, and J. Neugebauer, Role of the
mesoscale in migration kinetics of flat grain boundaries, Phys.
Rev. B 89, 214110 (2014).

[31] C. P. Race, R. Hadian, J. von Pezold, B. Grabowski, and
J. Neugebauer, Mechanisms and kinetics of the migration of
grain boundaries containing extended defects, Phys. Rev. B 92,
174115 (2015).

[32] E. Maire, E. Redston, M. Persson Gulda, D. A. Weitz, and
F. Spaepen, Imaging grain boundary grooves in hard-sphere
colloidal bicrystals, Phys. Rev. E 94, 042604 (2016).

[33] Y. Liu, K. V. Edmond, A. Curran, C. Bryant, B. Peng,
D. G. A. L. Aarts, S. Sacanna, and R. P. A. Dullens, Core-
Shell Particles for Simultaneous 3D Imaging and Optical
Tweezing in Dense Colloidal Materials, Adv. Mater. 28, 8001
(2016).

[34] J. C. Crocker and D. G. Grier, Methods of digital video mi-
croscopy for colloidal studies, J. Colloid Interface Sci. 179, 298
(1996).

[35] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond-
orientational order in liquids and glasses, Phys. Rev. B 28, 784
(1983).

[36] E. A. Padston, Structure and dynamics of colloidal grain bound-
aries, Ph.D. Thesis, Harvard University, 2018.

[37] P. M. Larsen, S. Schmidt, and J. Schiøtz, Robust structural
identification via polyhedral template matching, Model. Simul.
Mater. Sci. Eng. 24, 055007 (2016).

[38] A. Stukowski, Visualization and analysis of atomistic simula-
tion data with OVITO - the open visualization tool, Model.
Simul. Mater. Sci. Eng. 18, 015012 (2010).

[39] M. Wagih and C. A. Schuh, Spectrum of grain boundary
segregation energies in a polycrystal, Acta Mater. 181, 228
(2019).

[40] A. Van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed
colloidal crystallization, Nature (London) 385, 321 (1997).

[41] J. L. Priedeman, C. W. Rosenbrock, O. K. Johnson, and
E. R. Homer, Quantifying and connecting atomic and crys-
tallographic grain boundary structure using local environment
representation and dimensionality reduction techniques, Acta
Mater. 161, 431 (2018).

[42] T. Frolov, D. L. Olmsted, M. Asta, and Y. Mishin, Struc-
tural phase transformations in metallic grain boundaries, Nat.
Commun. 4, 1899 (2013).

[43] A. Yamanaka, K. McReynolds, and P. W. Voorhees, Phase field
crystal simulation of grain boundary motion, grain rotation and
dislocation reactions in a BCC bicrystal, Acta Mater. 133, 160
(2017).

[44] J. L. Bentley, Multidimensional binary search trees
used for associative searching, Commun. ACM 18, 509
(1975).

[45] L. Cheng, S. Chen, X. Liu, H. Xu, Y. Wu, M. Li, and Y. Chen,
Registration of laser scanning point clouds: A review, Sensors
18, 1641 (2018).

[46] A. Morawiec, Orientations and Rotations (Springer, New York,
2004).

[47] W. Kabsch, A solution for the best rotation to relate two sets of
vectors, Acta Crystallogr. A32, 922 (1976).

[48] E. Schreiber, Kabsch algorithm (https://www.mathworks.com/
matlabcentral/fileexchange/25746-kabsch-algorithm), MATLAB

Central File Exchange. [Retrieved January 11, 2018], version
1.18.0.0.

[49] F. Leoni and J. Russo, Nonclassical Nucleation Pathways in
Stacking-Disordered Crystals, Phys. Rev. X 11, 031006 (2021).

[50] P. R. ten Wolde, M. J. RuizMontero, and D. Frenkel, Numerical
calculation of the rate of crystal nucleation in a LennardJones
system at moderate undercooling, J. Chem. Phys. 104, 9932
(1996).

[51] F. A. Lavergne, D. G. A. L. Aarts, and R. P. A. Dullens, Anoma-
lous Grain Growth in a Polycrystalline Monolayer of Colloidal
Hard Spheres, Phys. Rev. X 7, 041064 (2017).

[52] A. Heinz, P. Neumann, and IUCr, Representation of orienta-
tion and disorientation data for cubic, hexagonal, tetragonal
and orthorhombic crystals, Acta Crystallogr., Sect. A: Found.
Crystallogr. 47, 780 (1991).

[53] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.5.123605 for a description of how
symmetry inequivalent points are selected from the set of points
in the reference nearest-neighbor cluster, NNC. We also show
the number of particles within NNCs from both data sets. Ad-
ditionally, we discuss how grain boundary particles may be
identified and we provide an example. Finally, we explain how
the misorientation angle cutoff threshold effects the misorienta-
tion distribution and grain boundary identification.

[54] The PYMOL Molecular Graphics System, Version 2.4,
Schrödinger, LLC, (2020).

[55] H. Grimmer, W. Bollmann, and D. Warrington, Coincidence-
site lattices and complete pattern-shift in cubic crystals, Acta
Crystallogr. Sect. A 30, 197 (1974).

[56] T. Birdal, averaging_quaternions (https://github.com/
tolgabirdal/averaging_quaternions) [Retrieved July 15, 2021].

[57] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, Aver-
aging Quaternions, J. Guid. Control. Dyn. 30, 1193 (2007).

[58] R. Krakow, R. J. Bennett, D. N. Johnstone, Z. Vukmanovic, W.
Solano-Alvarez, S. J. Lainé, J. F. Einsle, P. A. Midgley, C. M.
F. Rae, and R. Hielscher, On three-dimensional misorientation
spaces, Proc. R. Soc. A 473, 20170274 (2017).

[59] J. Hilhorst and A. V. Petukhov, Variable Dislocation Widths in
Colloidal Crystals of Soft Thermosensitive Spheres, Phys. Rev.
Lett. 107, 095501 (2011).

[60] R. P. A. Dullens, M. Claesson, D. Derks, A. Van Blaaderen, and
W. K. Kegel, Monodisperse core-shell poly (methyl methacry-
late) latex colloids, Langmuir 19, 5963 (2003).

[61] S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange,
Preparation of monodisperse PMMA microspheres in nonpolar
solvents by dispersion polymerization with a macromonomeric
stabilizer, Colloid Polym. Sci. 282, 7 (2003).

[62] https://github.com/Dullens-Lab/BLoSSOM.

123605-11

https://doi.org/10.1107/S0021889812039143
https://doi.org/10.1126/science.1083890
https://doi.org/10.1103/PhysRevB.89.214110
https://doi.org/10.1103/PhysRevB.92.174115
https://doi.org/10.1103/PhysRevE.94.042604
https://doi.org/10.1002/adma.201602137
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1016/j.actamat.2019.09.034
https://doi.org/10.1038/385321a0
https://doi.org/10.1016/j.actamat.2018.09.011
https://doi.org/10.1038/ncomms2919
https://doi.org/10.1016/j.actamat.2017.05.022
https://doi.org/10.1145/361002.361007
https://doi.org/10.3390/s18051641
https://doi.org/10.1107/S0567739476001873
https://www.mathworks.com/matlabcentral/fileexchange/25746-kabsch-algorithm
https://doi.org/10.1103/PhysRevX.11.031006
https://doi.org/10.1063/1.471721
https://doi.org/10.1103/PhysRevX.7.041064
https://doi.org/10.1107/S0108767391006864
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.5.123605
https://doi.org/10.1107/S056773947400043X
https://doi.org/10.2514/1.28949
https://doi.org/10.1098/rspa.2017.0274
https://doi.org/10.1103/PhysRevLett.107.095501
https://doi.org/10.1021/la034636q
https://doi.org/10.1007/s00396-003-0915-0
https://github.com/Dullens-Lab/BLoSSOM

