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Convective mitigation of dendrite growth
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The growth of metallic dendrites during the electrodeposition and solidification of metal films is a formidable
scientific and industrial problem. It is mostly known for hindering the use of high energy-density solid metal
electrodes in rechargeable batteries. Over a century ago, it was experimentally shown that metallic dendrites
may be mitigated under the action of mass advection in the liquid adjacent to a solid metal surface which
grows out of a melt. Similar observations were reported for electrochemical deposition four decades ago and
very recently. However, these insights proved inconclusive; dendrites appear to grow to different extents in
many advection-based deposition systems, such as flow batteries, augmented finger batteries, and convective
solidification. Here, we scrutinize the contribution of high Peclet metal ion convection in a dilute solution to the
growth rate of metal dendrites, emphasizing convective effects near the metal surface. We employ an ideal model
system for the isothermal flow of an ion solution along a duct where ions desorb from one solid surface of the
duct, transport through the solution, and adsorb (undergo deposition) onto the other side. To account for the limit
where metal-ion transport through the solution is the bottleneck for the rate of metal deposition (contributions to
dendrite mitigation from near equilibrium surface phenomena are assumed small), we employ the perspective of
kinetic stability to elucidate the contribution of ion convection to the mitigation of dendrite growth. We show that
while the convection of metal ions appears to enhance dendrite growth — an intuitive insight — it also enhances
the growth of the bulk solid metal on which the dendrites grow — a well-known phenomenon. We demonstrate
that for a fixed growth rate of the bulk solid metal, the rate of growth of dendrites is smaller in the presence of
convective flow compared to the case where ion transport is solely by diffusion. The difference in the relative
rate of growth in the presence and absence of convective flow may span orders of magnitude, which explains the
absence of significant dendrites in corresponding experiments.
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I. INTRODUCTION

Inhibiting the growth of micron to millimeter size tree-
like morphological structures, dendrites, is an old scientific
problem which still hinders many technological advancements
[1,2]. The growth of dendrites during the electrodeposition of
metal mass on electrodes for charging batteries or coating sur-
faces inhibits the use of high-energy density metal electrodes
in finger batteries [3], constrains the design and efficiency of
flow batteries [4], and inhibits exquisite control over surface
morphology in metallic coatings [5]. In particular, Li metal
is touted to be one of the most promising materials for the
next-generation rechargeable batteries [6]. Yet applications
are still not a practical technology due to the formation of
dendrites during the recharge process. Moreover, the growth
of dendrites during the precipitation of metal alloy mass in-
fluences the microstructure and thereby the mechanical and
chemical behaviors of materials [7], and degrades energy stor-
age capacity as latent heat [8,9].

Dendrites grow from interfacial irregularities like geomet-
rically or chemically nonuniform solid surface as in the case
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of a fractured solid-electrolyte interfacial (SEI) passivation
layer [10]. The growth of a dendrite may be divided into
three steps [11]. These are the nucleation of dendrites in
the metal, the protrusion or deformation of the metal surface
by the nucleus which serves as a hotspot for the third step:
macroscopic growth. Moreover, the lack of lithium salt to
create SEI on the deposited lithium causes the growth of initial
surface protrusions into dendrites, or a transition between a
mossy growth into dendritic growth [12–14]. In addition, the
generation of gas during the deposition of ions may further
affect the surface morphology [15,16]. It is difficult to control
surface growth in the first and third steps. Hence, we explore
the initial dendrite growth from a hotspot at the metal surface.

The growth of dendrites is driven by the transport of ions
and their adsorption to a solid surface. Their adsorption may
be resisted by near equilibrium surface phenomena, such as
the excess free energy at the metal surface and its curvature,
alongside pressure in the electrolyte solution and mechanical
stress in the solid [11,17,18]. Hence, the growth of dendrites
may be divided into two limits: one is reaction-limited and
the other is transport-limited. In the reaction-limited case, the
bottleneck for the rate of metal growth is the rate of adsorption
of metal ions to the metal surface. Dendrite-resisting mecha-
nisms, like the ones we mention above, play an important role
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in shaping the morphology of the metal surface. An example
for irregular growth of a lithium-metal electrode during elec-
trodeposition in this case is the growth of a mossy structure on
the electrode, which is caused by the release of stress beneath
the SEI. In the transport-limited case, the bottleneck for the
growth of the metal surface is the rate of metal-ion transport
through the electrolyte solution. This case is associated with
small contributions from dendrite resisting mechanisms in or
at the surface of the solid metal. An example for this case is
the limiting current condition in electrodeposition, which is
known to be susceptible to fast dendrite growth.

Many studies on the stability of dendrite growth assume the
diffusive and migrative transport of ion mass to a growing bulk
solid metal. Examples are studies [11,19,20] on electrodepo-
sition in liquid and solid electrolytes. Surface conduction is
another mechanism that has the potential to eliminate den-
drites [21]. However, the mass transport of metal ions to a
solid surface during both electrodeposition and solidification
from a solution (precipitation) may further undergo convec-
tive transport, such as forced convection, electroconvection,
and natural convection [22–24], where each mechanism may
contribute differently to morphological stability. The most
well-known corresponding systems are solidification [25],
flow batteries [26], and water desalination [27]. A flow field
in a liquid electrolyte may introduce a significant contribution
to the morphology of the solid metal and may corrugate or
smooth the metal surface [28,29].

In 1916, Czochralski et al. showed that to avoid den-
drite growth, it is advantageous to introduce stirring to the
melt during the procedure of silicon crystalization [25,30–32].
However, Tajima and Ogata [33] observed dendrites growing
in the direction of electrolye flow during the electrodepo-
sition of inert metals in aqueous solutions under various
concentrations of electrolyte, electrical current densities, and
temperatures. Following up on this work, Jorne et al. [18]
investigated the influence of flow on the morphology of zinc
electrodeposition atop a (flow-through) porous electrode. The
impinging flow appeared to significantly suppress dendrites.
A faster electrolyte flow velocity yielded a smaller surface
roughness. The stabilizing effect of the impinging flow shown
in the previous work was verified theoretically by Parekh [34].
Moreover, a recent work by Huang et al. [3], which explored
the actuation of microflows by acoustic excitation in Li metal
finger batteries, reported the elimination of dendrites during
battery recharge. Additional studies considered the influence
of Couette- and Poiseuille-type flows on morphological stabil-
ity [35,36], showing that this type of cross flow reduces metal
dendrite growth considerably, but does not entirely prevent
it [35].

Studies on an isolated, single, growing dendrite during
the solidification of solid melt, appear to observe that flow
in the liquid enhances its rate of growth [37]. Ananth and
Gill [38,39] used theory to observe that thermal convection
is significant in the case of a weak supercooling conditions,
where they suggested that the growth rate of the dendrites is
determined solely by the temperature gradient at its tip. In ad-
dition, studies on the stability of the shape of a single growing
dendrite under convective flow were performed by Bouissou
et al. [40] for small “growth Peclet numbers” and expanded
by Alexandrov et al. [41,42] to an arbitrary “growth Peclet

numbers,” binary mixtures, and antisotropic surface energy.
Considering both contributions from surface phenomena and
convective flow, they also observed that the convective flow
increases the rate of growth of the single dendrite.

Studies on the morphological stability of planar surfaces
during solidification and under the influence of crossflow
suggest otherwise: Delves [43] assumed a parabolic velocity
profile in the thermal boundary layer near the solid-liquid
interface and showed that flow in the liquid melt will sup-
press morphological instabilities. However, Coriel et al. [44]
suggested that strong mixing flow in the liquid melt may
enhance nonplanar growth in the likely case in which the
concentration of metal ions in the carrier liquid is smaller than
the concentration of metal atoms in the solid. They assumed
an effective flow-stagnant diffusion layer whose predefined
constant thickness near the solid-liquid interface is determined
by the shear rate of flow in the liquid.

Here, we solve a problem of dendrite growth at a surface
of a duct that undergoes a convective Poiseuille-type flow
in a solution of ions. The ions transport from one side of
the duct to the other. We employ this model system in an
attempt to resolve the distinct contradiction between different
studies as to the contribution of convective flow in a solution
to the rate of dendrite growth in the cases of solidification
from a solution and electrodeposition. We concentrate on the
question whether the convection of metal ions in a solution
supports or mitigates the growth of dendrites when compared
to the transport of ions in the solution by pure diffusion. In
particular, we assume an ideal model system to predominantly
concentrate on the direct contributions of ion convection to the
rate of dendrite growth. Hence, to avoid masking the dendrite
growth by the many additional mechanisms that take place
in industry-level electrodeposition and solidification systems,
we assume a dilute and isothermal solution of ions, small geo-
metrical protrusions that serve as hotspots for dendrite growth,
and avoid dendrite-stabilizing mechanisms at the solid surface
and within the solid metal by considering the regime where
the transport of ions through solution towards a solid metal
surface is the rate-determining mechanism for the rate of
growth of the solid. The above simplifying assumptions will
prove inadequate for most realistic systems in use but allow
us to concentrate on the pure distribution of convective flow
in a solution of ions to the rate of growth of dendrites with
relevance to both electrodeposition and solidification from
a solution of ions. Hence, in Secs. II and III, we suggest
and solve the model equations to our problem. In Sec. IV,
we employ the concept of kinetic stability to quantify the
contribution of the initial dendrite hotspot density and flow
velocity in the solution to the rate of growth of dendrites and
of the bulk solid metal. In Sec. V, we give a summary of our
work and insights.

II. MODELING

A. Problem description

We solve a problem of metal dendrite growth at a bottom
surface of a duct that undergoes a convective Poiseuille-type
flow while ions transport in a dilute solution from the upper
surface of the duct to its lower surface. Using this ideal model
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FIG. 1. Large Peclet (Pe) number convection of metal ions, which enter a 2D, rectangular, duct of an inner thickness d at a concentration
C = Cin by a Poiseuille-type flow of a center-line velocity U0, where The lower and upper sides of the duct serve as a sink and a source of metal
ions (a cathode and an anode in the case of electrodeposition), respectively, and where the lower side supports geometrical hotspots for dendrite
growth, which we illustrate in the inset by the sinusoidal protrusions (roughness) h(x, t ) of wavelength k. We assume that the ion solution is
dilute and isothermal, the dendrite protrusions are small, and that the rate by which ions adsrob to the bottom metal surface which serves as
ion sink is limited by the rate of ion transport through the solution. Upstream we illustrate a concentration boundary layer and downstream we
illustrate a concentration-developed region past the boundary layer.

system, we explore the contribution of forced mass convection
to dendrite growth in the regime where the rate of metal ion
attachment to the solid metal surface is determined solely
by the rate of ion flux, i.e., the rate of ion attachment to
the solid surface is transport-limited. Hence, we assume that
the contribution of near equilibrium surface phenomena to
the adsorption of ions to the solid surface, such as surface
tension and surface curvatures, is small. Our model system
may be associated with limiting cases of electrodeposition and
solidification from a solution (precipitation).

In the case of electrodeposition, reaction kinetics at the
electrodes are many times assumed to be governed by the
extended Butler-Volmer equation [20]. Sufficiently high cell
voltage difference between the electrodes reduces the ex-
tended Butler-Volmer equation to a statement in which the
rate of ion adsorption to the metal electrode is governed by
ion transport through the electrolyte solution. Assuming that
the voltage difference is not too large to invoke a signifi-
cant space-charge layer (whose contribution may be further
alleviated using the presence of supporting electrolytes) or
electroconvection [45,46], we may specify the concentration
at the electrode to be C ≈ 0, to leading order. This condition
is known as the limiting current condition. We assume an
isothermal solution of constant density and a simple surface
reaction of the adsorbing metal ions with no side products,
so that we avoid possible gas evolution effects. We further
assume small protrusions (hotspots for dendrite growth) at the
solid surface, which render their radius of curvature large and
electroconvection effects small.

Solidification systems exhibit dendrite formation in a sim-
ilar manner to electrodeposition, albeit in the absence of an
electric field. Similar assumptions may be taken to investi-

gate simple solidification from a solution. In particular, the
assertion of an isothermal solution is compatible with the as-
sumption of small protrusions in the solid surface in this case.
The Gibbs-Thomson effect, T = T0 − (T0/Q) × (σ/R), gives
the melting temperature of a curved solid surface, in which
σ , Q, and 1/R are the liquid-solid surface tension, latent heat,
and surface curvature of the solid, respectively, and T0 is the
flat interface melting temperature. That is, sufficiently small
protrusions in the solid surface, which satisfy large radius of
curvature, 1/R � 1, render σ/QR small and the nearly flat
solid surface isothermal to leading order.

The geometry for our model is depicted in Fig. 1. Metal
ions transport in a liquid phase through a Poiseuille-type flow
in a two-dimensional duct. The duct is initially of an inner
thickness d . Ions are advected by the flow of solution from
left to right, and are released from the upper side of the duct
and adsorb onto the lower side of the duct. In the case of
electrodeposition, the lower and upper sides are a cathode
and an anode, respectively. For simplicity we assume that the
metal concentration in the solution at the entrance to the duct
C = Cin is the same as the one at the upper side of the duct.
Moreover, noted above, we ignore thermal effects which may
be considerably more important in the case of solidification,
however, we will devoid this work from the simple and generic
insights we seek.

We assume that the transport of mass by advection is
considerably more prominent than by diffusion, that is, a
large Peclet number, which is, for example, a characteristic of
flow batteries. Metal ions are consumed at the surface of the
metal sink, hence, we expect a concentration boundary layer
upstream and near the lower side of the duct. To leading order,
the concentration of mass between the boundary layer and the
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upper side of the duct is approximately the inlet concentration
C = Cin. The concentration of metal ions at the boundary layer
is reduced when approaching the bottom of the duct. The
thickness of the boundary layer increases downstream until
it reaches the upper side of the duct. Further downstream,
past the concentration boundary layer, the qualitative behavior
of the flux of mass to the lower side of the duct changes
considerably. To account for dendrite hotspots, we assume the
presence of minor harmonic deformities (protrusions) at the
solid surface, which alter the concentration field in the duct
and hence their own rate of growth. In what follows, we first
discuss the case of a concentration boundary layer near the
upstream edge of the metal surface (at the entrance to the duct)
and then we discuss the region past the boundary layer.

B. Concentration boundary layer

Here we consider the concentration boundary layer near
the upstream edge of the metal surface at the entrance to
the duct. Rendering the problem dimensionless, we employ
the transformations for the concentration field C → CinC the
Cartesian coordinates and the position of the metal surface
(x, h) → d (x, h), the velocity field u → Uu, and time, t →
(d2/DCinvs)Pe−2/3t , where U is the characteristic flow ve-
locity, vs is the molar volume of the solid metal, D is the
diffusion coefficient of the metal ions, Pe ≡ UCin/D � 1 is
the Peclet number, and the timescale is associated with the
rate of growth of the solid metal surface. Both x ≡ (x, y) and
u ≡ (u, v) are comprised of two components which are along
and transverse the duct, respectively. In particular, the scale of
time is chosen so that we concentrate on the rate of growth of
the solid metal at the bottom of the duct. The distribution of
metal ion concentration is governed by the transport equation

Cinvs Pe−1/3 ∂C/∂t + u · ∇C = 1

Pe
∇2C, (1)

where the absence of electrophoresis in the case of elec-
trodeposition is compatible with the presence of supporting
electrolytes, which are usually introduced to reduce ohamic
resistance. The dimensionless number Cinvs � 1 is the ratio
between the concentration of metal in the liquid solution and
in the solid, and is assumed to be a small number. Hence,
dynamic contributions to the transport of metal in the solution
may be neglected in our analysis. The dimensionless metal
concentration at the entrance to the duct and near its upper
side is C(x, y = d ) = C(x = 0, y) = 1 and near its lower part
is C(x, y = h) = 0.

The rate of metal growth is determined by the flux of metal
ions near the bottom solid surface

∂h/∂t = −∇C · n|y=h − CinvsPe2/3C|y=huI · n, (2)

where uI · n ≈ ∂h/∂t is the velocity of flow near the solid
surface to result from its rate of growth and n is the outer
normal to the metal surface. The limit of a dilute solution
of metal ions, where Cinvs � Pe−2/3, renders the right-most
convective term in the equation small.

We model the dendrite seeds as harmonic undulations
h1(x, t ) about the baseline of the metal surface at the bottom
of the duct, h0(x, t ). We assume that the thickness of the metal

solid at the lower part of the duct takes, at short times, the form

h(x, t ) = Pe−1/3h0(x, t ) + εh1(x, t ) + · · ·
≈ Pe−1/3h0(t ) + ε f (t ) sin(kd x) + · · · . (3)

The magnitude of the leading-order component in the se-
ries, given by Pe−1/3, is a consequence of the concentration
boundary layer, to be elaborated in the followings. In addition,
ε = l/d is a small parameter which gives the initial ratio
between the height of the dendrite seeds, l , relatively to the
duct thickness, d , and k is a wave number which corresponds
to the surface density of hotspotes for dendrite growth. We
further assume that at short times the geometry of the dendrite
hotspots may be considered harmonic and that the baseline of
the bulk solid metal is predominantly a function of time and
hence nearly flat, which simplifies the analysis of the velocity
field.

The flow in the duct is assumed to be an incompress-
ible Poiseuille-type flow of a constant density liquid. The
characteristic Reynolds number of convective flow in finger
batteries and in flow batteries is approximately of unity order
of magnitude. For simplicity we employ in our analysis Stokes
flow to model the perturbation of the flow by the dendrite
hotspots. The corresponding equation that governs the flow
in this case is ∇4ψ = 0, where the stream-function ψ satis-
fies the flow velocity along and transverse to the surface of
the duct u ≡ (u, v) = (ψy,−ψx ), respectively. The streamline
equation is rendered dimensionless by employing the trans-
formation ψ → Ud�. The conditions of no-slip flow and no
penetration of liquid at the solid boundaries u · n|y=h(x),d = 0
and u · t|y=h(x),d = 0, respectively, yield the velocity field [47]

ψ = y2

4
− y3

6
− ε sin(kdx)

2(−2kd2 + cosh(2kd ) − 1)

×{2kd (y − 1) sinh(kdy) + y cosh[kd (y − 2)]

− y cosh(kdy)}, (4)

where t is the tangent unit vector to the surfaces of the duct. In
particular, inline with Eq. (2), we ignore contributions to the
flow field from the moving metal surface ∂h/∂t subject to our
assumption of a dilute ion concentration in the solution, i.e.,
Cinvs � 1.

The leading-order problem O(1), which is comprised from
Eqs. (1) to (4), where we omit any term which is multiplied by
the small parameters ε and Cinvs, is a classic Leveque problem
[48,49] and is devoid of the presence of dendrites. The upper
part of the duct — the outer region — is dominated by ad-
vective ion transport. The bottom part — the inner region —
is a concentration boundary layer. In the boundary layer, the
relevant lengthscale transverse to the duct Y = yPe1/3 renders
similar contributions to the concentration field from both the
diffusion and advection of ions and is asymptotically smaller
than the duct thickness d . We expand the concentration dis-
tribution in the outer (outside the boundary layer) and inner
regions using the series C = C0 + Pe−2/3C1 + · · · and c =
c0 + Pe−2/3c1 + · · · , respectively, and further employ Eq. (4)
to write the velocity field in the form of an asymptotic series,
u = u0 + εu1 + · · · .

Expanding Eq. (1) in the outer region yields the lead-
ing order classic result u0 · ∇C0 = 0. The leading-order
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concentration boundary conditions at the entrance to the duct
yield the solution C0 = 1. The leading-order problem in the
inner region gives that

O(1) : Y ∂c0/∂x = 2∂2c0/∂Y 2,

c0(Y = h0) = 0, c0(x = 0) = 1,

c0(Y → ∞) = 1,

(5)

where we omit the dynamic term, which is proportional to
Cinvs � 1. In Eq. (5), we expand the velocity field u about
y → 0, retaining the leading-order terms, and using the trans-
formation of the outer coordinate y to the inner coordinate Y .
The problem in Eq. (5) is satisfied by a Leveque-type result
c0 = (3/2)1/3�(1/3)−1

∫ η

0 e−s3/18ds, where η ≡ Y/x1/3. The
leading-order growth rate of the solid metal body is then given
by

∂h0/∂t = ∂C0/∂Y |Y =h0 = (3/2)1/3�(1/3)−1x−1/3. (6)

Assuming that ε = O(Pe−1) renders a contribution of the
dendrites to the concentration field in the leading correction
to the ion transport problem along with the leading-order
corrections from the ion diffusion and advection mecha-
nisms. Collecting terms that are proportional to Pe−1 gives
the corresponding equations and boundary conditions. The
ion transport in the outer region is governed again by the
advection of ions, u0 · ∇C1 = 0, where we omit terms that are
proportional to the vanishing derivatives of C0. The correction
to the boundary conditions render the solution C1 = 0. The
equation and boundary conditions that govern the transport of
ions at the boundary layer (inner region) are given by

O(Pe−2/3) : Y ∂c1/∂x + 2u1∂c0/∂x + 2v1∂c0/∂Y

= 2∂2c1/∂Y 2 + 2∂2c0/∂x2,

c1(Y = h0) = −∂c0/∂Y |Y =h0 × h1,

c1(x,Y → ∞) = C1(y → 0) = 0, c1(x = 0,Y ) = 0.

(7)

The growth rate of dendrites is then given by

∂h1/∂t = ∂C1/∂Y |Y =h0 . (8)

Both Eqs. (7) and (8) are solved by numerical analysis, which
we discuss in the Appendix.

Following our previous insights and as a last note in this
part of the paper, it is of value to give a rough estimate of the
dimensional length of the boundary layer along the duct. This
is to highlight the validity of the two ion transport regimes
— the ion concentration boundary layer regime and the de-
veloped ion concentration regime to appear past the boundary
layer. We define the upper limit of the concentration boundary
layer where the concentration field differs by 1% from the
outer region concentration: C0 = 0.99Cin. By further using
the Leveque-type solution to the leading-order boundary layer
concentration field in Eq. (5), we obtain that the upper limit
of the boundary layer is found at ζ ≡ (y/d )Pe1/3/(x/d )1/3 ≈
3.7, where we use dimensional notation. Further equating y =
d , where the boundary layer approximately reaches the upper
side of the duct, gives that the length of the boundary layer
region, relatively to the thickness of the duct, is approximately
x/d = (Pe1/3(y/d )/ζ )3 ≈ Pe/50. For example, assuming that

the characteristic flow velocity is U = 10 mm/s, the height
of the duct is d = 1 mm and the diffusion coefficient of the
metal ions is D = 10−3 mm2/s, gives that Pe = 104. The
approximate length of the concentration boundary layer is
x ≈ 200 mm. Hence, most convective deposition systems sup-
port a concentration boundary layer throughout their length.
However, it is of value to further consider the physics of
dendrite growth past the ion concentration boundary layer.

C. Past the concentration boundary layer (developed region)

Past the concentration boundary layer, we solve an ana-
log of the Graetz problem [50]. The scaling for the vertical
coordinate remains the same as before. However, the mass
conserving scaling for the horizontal coordinate and vertical
velocity in this case are given by d Pe and U0 Pe−1, re-
spectively. In addition, our requirement that the timescale is
associated with the growth of the metal solid at the bottom of
the duct, which translates to keeping both sides of the equality
in Eq. (2) of similar magnitude, gives the scaling transforma-
tion for time, t → (d2/Dcinvs)t . The dimensionless equation
for metal transport in the duct becomes

Cinvs ∂C/∂t + u · ∇C = ∂2C/∂y2 + Pe−2 ∂2C/∂x2, (9)

where the velocity field u is similar to the one in the previous
problem and is given in Eq. (4). Moreover, as before, the
small parameter Cinvs � 1 renders dynamic contributions to
our transport problem irrelevant. The corresponding bound-
ary conditions are C(y = h) = 0, C(y = 1) = 1, C(x = 0) =
R(y), where R(y) is a function which represents the concentra-
tion distribution of metal in the liquid following the passage
of the liquid through the boundary layer region and where
we take the obscure entrance to this region to be at x → 0.
Moreover, the rate of solid growth is assumed proportional to
the diffusive flux of metal to its surface, as in Eq. (2).

We model the growth of the solid surface as previously

h(x, t ) = h0(x, t ) + εh1(x, t ) + · · ·
≈ h0(t ) + ε f (t ) sin(kdPe x) + · · · , (10)

albeit in the absence of the Pe−1/3 contribution to the leading
rate growth of the solid surface, which, as noted before, is a
characteristic of ion transport through a boundary layer.

We solve the problem using a regular asymptotic expan-
sions in ε = O(Pe−1), so that C = C0 + εC1 + · · · , and u =
u0 + εu1 + · · · The leading-order problem is then given by

O(1) : u0∂C0/∂x = ∂2C0/∂y2,

C0(y = h0) = 0, C0(y = 1) = 1,

C0(x = 0) = R(y). (11)

We show in the Appendix that the problem in Eq. (11) is satis-
fied by a series solution that accounts for the initial condition
C0(x = 0) = R(y) at the entrance to this region. However, the
series solution fast decays to a linear concentration distribu-
tion along the duct

C0(x > 0) = y +
∑

n

βne−λ2
nxg1,n(λn) ≈ y, (12)

which renders the initial distribution of concentration R(y) at
x → 0 irrelevant to the transport of ions to the solid surface
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at the bottom of the duct in this region, where βn and g1,n

are constants and polynomial eigenfunctions of the eigen-
values λn, respectively. Briefly, the eigenvalues are positive
and increase in size with their index. For example, the first
three eigenvalues are λ0 = 9.5125, λ1 = 20.7736, and λ2 =
32.0735. Hence, the solution of C0 is a superposition of the
linear term y and a fast decaying series of exponents. The
first and slowest decaying term in the series of exponents
consists of the term e−λ2

0x ≈ e−100x. Dimensionally, the later
translates to an exponentially decaying function with a de-
caying length of 1/100 of the characteristic length of the
duct, dPe. Other terms in the series for g(y) decay faster.
Hence, the initial condition for the concentration field past the
boundary layer C0(x = 0) = R(y) converges incredibly fast to
a linear concentration field, which is a function of the bound-
ary condition at the upper and lower sides of the duct and is
independent of R(y). Further details are given in the solution
of the leading-order problem in the developed region in the
Appendix. Following the above analysis, the corresponding
rate of growth of the solid metal body at the bottom of the
duct is largely independent of the concentration field near the
entrance to the developed region R(y) and is given by

∂h0/∂t = ∂C0/∂y|y=h0 ≈ 1. (13)

The leading correction to the above problem, which ac-
counts for the growth of dendrites and requires a numerical
solution, detailed in the Appendix, is given by

O(ε) : u0∂C1/∂x + u1∂C0/∂x + v1∂C0/∂y

= ∂2C1/∂y2,

C1(y = h0) = −∂C0/∂y × h1(x),

C1(y = 1) = 0, C1(x = 0) = 0, (14)

and

∂h1/∂t = −∂C0/∂x × h′
1 + ∂C1/∂y|y=h0

+ ∂2C0/∂y2|y=h0 × h1, (15)

where contributions from the first and third expressions on the
right-hand side of the equation vanish since C0 ≈ y.

III. RESULTS

A. Ion concentration fields and fluxes

The concentration boundary layer is characterized by
intense concentration gradients. The leading order and sec-
ondary fluxes of metal ions — the secondary fluxes are the
correction to the ion flux in the presence of dendrite hotspots
— are proportional to the third root of the Peclet number
Pe1/3. We plot in Fig. 2(a) the contribution of the dendrite
hotspots, of the order of magnitude O(ε), to the ion concen-
tration field at the boundary layer C1 for a dendrite surface
density of kd = 40. We further magnify the concentration
field away from the upstream entrance to the duct in Fig. 2(b).
The arc-like contours that can be seen in the later figure
emerge from the harmonic deformation of the metal surface
(dendrite hotspots). We observe lower and greater levels of
concentration above protrusions and depressions, respectively,
in the metal surface, which are associated with the transport
of metal ions to the dendrite hotspots.

(a) (b)

(c) (d)

FIG. 2. Concentration correction, C1, contour plots (relatively to
the leading-order concentration fields C0), where the surface concen-
tration of hotspots for dendrite growth is kd = 40 in (a) the boundary
layer where we further give (b) a magnification of the contours near
the bottom side of the duct, in (c) the absence of flow in the duct, and
(d) past the boundary layer where we further assumed Pe = 30. The
“+” and “−” signs and arrows indicate the direction of increasing
absolute values, respectively, of the contours, which obtain the scaled
values of (red) C1 = −0.2, −0.15, −0.1, −0.05, and (blue) C1 = 0,
0.05, 0.1, 0.15, 0.2.

It is of value to compare these results to the diffusive con-
centration field. The dimensionless number Cinvs � 1 renders
the problem steady to leading order as before. Keeping the
parameters the same as in the ion convection problem and us-
ing the same scaling transformations which give Eq. (1), one
obtains that the trivial dimensionless ion diffusion problem
is governed by the equation and boundary conditions, ∇2c =
0, c(y = h(x)) = 0, c(y = 1) = 1. The diffusion problem is
satisfied by the solution C = y + ε[coth(kd ) sinh(kd y) −
cosh(kd y)] sin(x) + O(ε2). The first and second terms on the
right-hand side of the equation are the concentration field in
the absence of dendrite hotspots and the correction to the
concentration field due to the presence of the hotspots, respec-
tively. The flux of metal ions to the bottom metal surface is
given by Eq. (2).

In Fig. 2(c), we give the order O(ε) correction to the con-
centration field due to the presence of dendrite hotspots. In the
absence of flow, the concentration contours are symmetrical
about the protrusions (hotspots) and depressions at the metal
surface. In this case we do not observe “tilted” concentration
contours. In the presence of convective flow, the “tilted” iso-
concentration contours in Figs. 2(a), 2(b) (boundary layer) and
2(d) (past the boundary layer), indicate convective dispersion
in the ion field and hence mixing of ions between low and high
concentration regions. The “stretch” or “tilt” in the concentra-
tion field is due to ion convection by the Poiseuille-type flow
along the duct in Eq. (4).

We further indicate the tendency of the concentration
fields in the different ion convective cases to support den-
drite growth by plotting the flux of ions to the metal surface
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(a) (b)

FIG. 3. Spatial (x) variations of ion flux at the bottom side of the duct in the (a) boundary layer and (b) past the boundary layer, where the
leading-order solutions for the flux are given in the outset and the second-order solutions, where we account for the presence of hotspots for
dendrites, are given in the inset. In the outset of (b) we demonstrate the rapid exponential decay of the leading order flux, which following the
concentration field in Eq. (12), is given by J0(x > 0) = −1 − ∑

n βne−λ2
nxd[g1,n(λn)]/dy, where in the plot we use the first three terms in the

plot and assume βn = 1/3. In the inset we demonstrate that an increase in the surface density of hotspots for dendrite growth, kd , renders an
increase in the harmonic amplitude of the second-order flux, given here for Pe = 100.

in Fig. 3. We show the leading- and second-order fluxes of
ions at the boundary layer in Fig. 3(a) and the inset, respec-
tively. The inset is given for different density concentration
of hotspots kd . The dimensional leading-order and second-
order fluxes j0 ≈ −D∂C0/∂Y |Y =0 and j1 ≈ −D∂C1/∂Y |Y =0

(note the stretched Y coordinate), where we omitted vanishing
terms, decay along the duct. This is a correction to the ion flux
due to the presence of dendrite hotspots.

In the same figure, we further plot the ion fluxes to the
metal surface past the boundary layer. This time, the ion fluxes
are defined as j0 ≈ −D∂C0/∂y|y=0 and j1 ≈ −D∂C1/∂y|y=0

(note the unstretched y coordinate), and are given for Pe =
100 and a hotspot surface density of kd = 40. We demonstrate
the fast spatial decay of the leading-order flux J0 to a constant
value, using the first three terms in the eigenfunction series
in Eq. (12). The eigenfunctions transfer information about
the concentration of ions at the boundary layer. Their fast
decay demonstrates the independence of the ion flux past the
boundary layer from its counterpart at the boundary layer,
discussed earlier. In the inset we demonstrate the correction to
the ion flux C1, which indicates spatial harmonic variations of
the ion concentration along the duct. The harmonic variations
of ion flux match the harmonic distribution of hotspots at the
metal surface in Eq. (14).

B. Rate of surface growth

In Fig. 4 we isolate the scaled rate of dendrite growth
ḣ1, [omitting the gauge function ε in the second term in the
asymptotic series in Eqs. (3) and (10)] as a function of the
dendrite density kd . The scaled rate of dendrite growth ḣ1 is
independent of Pe at the concentration boundary layer and
moderately increases with kd in a manner proportional to
kd1/3. Past the boundary layer, we observe that the scaled
quantity ḣ1 increases in magnitude with Pe and with kd . It
is proportional to Pe1/3 and kd1/3. Further details are given in
the Appendix.

Hence, in the limit where the rate of dendrite growth
is predominantly governed by ion transport, the solid metal
surface is inherently unstable. Stabilizing near-equilibrium

contributions from surface phenomena, such as surface energy
and curvature, are small. Dendrites grow unopposed. How-
ever, while the goal of fully eliminating dendrites renders
strict requirements, which are usually evaluated by methods
of linear stability and are unattainable when employing the
ion transport limit for the growth of metal surface in our
model, we relax the requirements for dendrite mitigation by
employing the concept of kinetic stability.

We employ the concept of kinetic stability to compare be-
tween the rate of growth of dendrites εh1 and of the bulk solid
metal (the baseline for dendrites growth) h0 in the presence
and absence of ion convection. Kinetic stability is a measure
which is widely used in the field of colloidal science [51] for
analyzing the rate of change in systems whose base states
are thermodynamically unstable. Should the change be suf-
ficiently slow at the timescale of interest, the corresponding
system may be designated kinetically stable. A reminiscent
study [52] employed similar ideas for performing advection
diffusion limited aggregation simulations of a growing den-
drite under the influence of advection in a potential flow.

We define the dendrite growth measure

S1 =
∣∣∣∣

˙εh1/‖εh1‖
ḣ0/‖h0‖

∣∣∣∣, (16)

where ḣ0 ≡ ∂h0/∂t , ḣ1 ≡ ∂h1/∂t , and ‖εh1‖ and ‖h0‖ are
the orders of magnitude of the dendrite and overall metal
electrode thicknesses εh1 and h0, respectively. The condition
S1 is reminiscent to a measure employed in a previ-
ous analysis [53]. To leading order ‖εh1‖ = ε and ‖h‖ ≈
‖Pe−1/3h0‖ = Pe−1/3, respectively, at the boundary layer re-
gion, and ‖εh1‖ = ε and ‖h‖ ≈ ‖h0‖ = 1, respectively, past
the boundary layer. In particular, smaller values of S1 indicate
smaller-scaled rates of growth of dendrites relatively to the
scaled rate of growth of the bulk solid metal. Thus, smaller
values of S1 indicate greater kinetic stability of an ion deposi-
tion system to dendrite growth.

When estimating S1 at the boundary layer, we ignore the
leading edge of the duct at x < kd (first hotspot along the
duct) to avoid the vicinity of the theoretical singular ion flux
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(a) (b)

FIG. 4. Scaled rate of dendrite growth (divided by the scaled characteristic dendrite thickness, ε) versus the scaled surface concentration
of hotspots for dendrite growth (kd) in the presence of (a) the boundary layer and (b) past the boundary layer, where at the boundary layer the
result is independent of Pe and approximately proportional to kd1/3, and past the boundary layer the result is proportional to kd1/3 and Pe1/3

and is given for Pe = 1, 100, and 200. Dots are the product of numerical analysis, and the solid lines are the product of approximate analytical
analysis in the Technical Details.

near x = 0, where the leading order analytical Leveque-type
solution for the concentration boundary layer fails. One may
further compare the rate of growth ratio in the presence of
convection S1(convection) and in the absence of convection
S1(diffusion) using the ratio

S2 = S1(convection)

S1(diffusion)
. (17)

In the presence of convective flow in the solution, both S1 (in
the case of convective flow) and S2 appear in our analysis to
mildly vary along the duct at the boundary layer. That is, S1

varies along the duct in our computational domain by approx-
imately 7%. Outside the boundary layer, S1 varies along the
duct by approximately 0.01%. In the absence of convective
flow, S1 does not change along the duct. Hence, in Fig. 5,
we represent S1 and S2 as scalars (not as functions of their
position along the duct), and consider its variation with the
scaled hotspot surface density kd and the Peclet number, Pe.

The ratio between the scaled rates of growth of dendrites
and the bulk solid metal (base line), S1, is independent of
the Peclet number Pe at the boundary layer. We plot S1 in

Fig. 5 (a) against the scaled surface density of hotpots for
dendrites kd . A first insight to appear in the figure is that
S1(convection) is characteristically smaller than S1(diffusion)
in predominantly convective flow regimes Pe � 1. This is
emphasized by S2, which gives the ratio between the two and
is characteristically smaller than unity. For example, an ion
convective flow in the duct will result in smaller dendrites
compared to the case where the ions’ transport is solely by
diffusion for a specific growth of the bulk solid metal.

In Fig. 5(b), we plot S1 and S2 past the boundary layer
versus the surface density of dendrite hotspots kd and for
different values of the Peclet number, Pe. We find that, in a
similar manner to the analysis in the concentration boundary
layer, a diffusive transport of ions supports greater rates of
growth of dendrites relatively to the rate of growth of the bulk
solid metal when this is compared to convective ion transport.
Namely, S1(convection) < S1(diffusion) for the same level of
kd , as in the case of the boundary layer. Their ratio S2 is
characteristically smaller than unity. Moreover, increasing Pe
increases the magnitude of S1(convection) and S2. In fact,
S1(convection) and S2 are linearly proportional to Pe1/3.

(a) (b)

FIG. 5. The measure S1 for the ratio between the scaled dendrite growth rate and scaled bulk solid metal growth rate in the presence
[S1(convection)] and absence [S1(diffusion)] of a ion convection and the measure S2 ≡ S1(convection)/S1(diffusion) versus the scaled surface
concentration of hotspots for dendrite growth (kd) at (a) the boundary layer and (b) past the boundary layer, where at the boundary layer,
S1(convection) is independent of Pe and approximately proportional to kd1/3, and past the boundary layer, S1(convection) is proportional to
kd1/3, and Pe1/3 and is given for Pe = 1, 100, and 200 alongside S2. Dots are the product of numerical analysis, and the solid lines are the
product of approximate analytical analysis in the Technical Details.
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IV. DISCUSSION

Electrodeposition and solidification out of a solution of
metal ions support the growth of a bulk solid metal, which
is usually accompanied by unwanted dendrite growth on the
metal surface. To realize the problem of dendrites one must
consider both the growth of metal and the growth of dendrites.

The results obtained for the rate of growth of dendrites
ḣ1 and their relative growth rate compared to the bulk solid
metal in the presence and absence of diffusion S1 and S2

may now shed light on the controversy about the contribu-
tion of convective flow to dendrite growth in the literature.
For this analysis one must consider the dimensional rates
of growth of dendrites and in particular their timescales t ∼
(d2/DCinvs)Pe−2/3 and t ∼ (d2/Dcinvs) at the boundary layer
and past the boundary layer, respectively. The dimensional
rates of growth of dendrites at and past the boundary layer are
given by (lDCinvs/d2)εPe2/3ḣ1 and (lDCinvs/d2)εḣ1, respec-
tively, where ḣ1 is dimensionless as in Fig. 4. Hence, while
we expect an unopposed rate of growth of dendrites from
the scaled data, we further expect an increase in the rate of
growth of dendrites when increasing Pe, when considering its
dimensional representation.

In detail, at the concentration boundary layer, the scaled
magnitude of the rate of dendrite growth at short times ḣ1 is
independent of Pe. However, its dimensional representation,
(lDCinvs/d2)εPe2/3ḣ1 is proportional to Pe2/3, assuming for
this discussion that we may treat the initial scaled size of the
hotspots for dendrite growth ε ≡ l/d constant. Moreover, at
the developed region, following the concentration boundary
layer, we observe that while the dimensional representation
(lDCinvs/d2)εḣ1 lacks an explicit connection to Pe, the scaled
quantity ḣ1 is proportional to Pe1/3. Our insights are compati-
ble with our mathematical analysis as long as ε is of the same
order of magnitude as Pe−1, i.e., ε = O(Pe−1).

While it appears that the presence of convective flow in the
solution of ions will increase the rate of growth of dendrites,
a judicious assessment of the contribution of convective flow
to the ion deposition system should further account for the
contribution of ion deposition to the growth of the bulk solid
metal. The dimensional rate of growth of the latter at the
boundary layer [given in dimensionless terms in Eq. (15)] is
proportional to Pe2/3. Their ratio, which we quantify using the
measure S1(convection) in Eq. (16) and demonstrate in Fig. 5,
is independent of Pe and may be smaller than S1(diffusion)
(in the absence of convective flow) by orders of magnitude.
Hence, while convective flow in the solution enhances the rate
of growth of dendrites, it also enhances the rate of growth of
the bulk solid metal. Our results indicate that for a fixed rate
of growth in the bulk solid metal, one should expect smaller
dendrites rate of growth in the presence of convective flow
when compared to the case where ions translate though the
solution solely by diffusion. Similar insights appear when
considering the case of the developed concentration region,
past the boundary layer, albeit in the latter case, the measure
S1(convection) is proportional to Pe1/3.

V. CONCLUSION

We solve a problem of dendrite growth at a surface of
a duct that undergoes a convective Poiseuille-type flow in a

dilute solution of ions. This is a model system, which we
employ to resolve the distinct contradiction between different
studies as to the contribution of convective flow in a solution
to the rate of dendrite growth in the cases of solidification
from a solution and electrodeposition.

We assume an ideal model system to predominantly con-
centrate on the direct contributions of ion convection to
the rate of dendrite growth to avoid masking convective ef-
fects by the many additional mechanisms that take place in
industry-level electrodeposition and solidification systems. In
particular, we assume a dilute and isothermal solution of
ions, small geometrical protrusions that serve as hotspots for
dendrite growth, and avoid dendrite stabilizing mechanisms
at the solid surface and within the solid metal by considering
the regime where the transport of ions is the rate-determining
mechanism for the growth of the solid metal. The last assump-
tion is compatible with far from equilibrium conditions at the
metal surface and is akin to the limiting current condition in
the case of electrodeposition. An implication of our ion trans-
port limited surface growth assumption is that system-specific
dendrite stabilizing mechanisms [11,19,54,55] to appear at
near-equilibrium conditions do not contribute to dendrite mit-
igation in our case.

Our key finding is that ion convection is unequivocally
preferable for the mitigation of dendrite growth when com-
pared to the transport of ions by pure diffusion, at least in
the ion transport-limited (far from equilibrium) limit consid-
ered in this study. We assert the intuitive expectation that the
convection of ions in the solution should enhance the growth
of dendrites [33,37–42,44]. However, we demonstrate that to
further realize the contribution of ion convection to the mag-
nitude of dendrites to appear following metal deposition, one
should further compare the rate of growth of dendrites to the
rate of growth of the bulk solid metal. We consider the growth
rate ratio between the dendrites and the bulk solid metal by
employing a measure devised in a previous study [53] S1.
It quantifies the ratio between the relative rate of growth of
dendrites h1 and the relative rate of growth of the bulk solid
metal, i.e., the baseline of the metal surface, h0.

We demonstrate that the relative rate of growth of dendrites
always exceeds that of the bulk solid metal in the presence
and absence of convective ion transport, i.e., S1 > 1, at least
in the far from equilibrium limit. However, we find that
the measure S1 further indicates that the rate of growth of
dendrites relatively to the rate of growth of the bulk solid
metal is greater in the absence of convective flow, i.e., S2 ≡
S1(convection)/S1(diffusion) < 1. Hence, one may expect the
growth of smaller dendrites for a fixed growth of the bulk
solid metal in the presence of convective flow compared to
the case of ion transport by diffusion. Moreover, increasing
the rate of flow, i.e., Pe, will increase the rate of dendrite
growth. However, it will not alter the ratio between the rate
of growth of dendrites and the bulk solid metal S1 in the
boundary layer regime, and will weakly alter that ratio in a
manner proportional to Pe1/3 in the developed region, past the
boundary layer.

The benefit in mitigating dendrites by employing the con-
vective transport of ions appears to increase when increasing
the surface density of hotspots for dendrite growth. This may
be connected to our observation that convective flow in the ion
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solution appears to disperse ion concentration in the vicinity
of arrays of dendrites. Hence, the convection of ions in the
solution appears to mix ion concentration near protrusions
and valleys at the solid surface. Hence, ion convection may
reduce gradients in ion concentration near the solid surface.
Thus, ion convection reduces the enhanced rate by which ions
transport to protrusions in the solid substrate, which otherwise
supports the autocatalytic mechanisms of dendrite growth.
Our conclusions should hold when further accounting for the
presence of dendrite stabilizing mechanisms, which explains
previous findings about the mitigation of dendrite growth by
convective flow [3,18,25,30–32,43].
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APPENDIX: TECHNICAL DETAILS

1. Numerics

We solve Eqs. (7) and (14) using the implicit Euler method
for partial differential equations. The maximal numerical rel-
ative error in our calculations for the flux of ions is 8%. This
specific relative numerical error is obtained in the case of
kd = 1 in the concentration boundary layer. Other computed
cases are associated with smaller levels of relative numerical
error. Moreover, it is noteworthy that one will encounter a crit-
ical technical difficulty when solving Eq. (7) near the origin of
the duct. The concentration in the liquid differs from the con-
centration at the solid surface, which renders the derivatives
of the given analytical solution of the leading-order concen-
tration c0 singular at that point. Thus, one must alleviate the
singularity of the derivatives of the leading-order problem
before they are able to solve the second-order problem. The
origin of the singularity is the invalidation of the boundary
layer assumptions near the leading upstream edge of the duct.
Briefly the boundary layer assumption in the above analysis
requires that the concentration distribution transverse to the
duct surface changes much faster than along the surface. Thus,
the characteristic lengthscales transverse and along the bound-
ary layers are given by dPe−1/3 and d , respectively; the first is
asymptotically smaller than the second. However, sufficiently
near the leading upstream edge of the duct, one encounters a
region where x = O(dPe−1/3) away from the origin (upstream
edge of the duct). Hence, due to a geometrical constraint, the
lengthscale along the bottom surface of the duct is similar to
the one which is transverse to the boundary layer.

To alleviate the flux singularity at the upstream edge of the
duct, at x = 0, we commence our analysis using the transport
equation Cyy + Cxx = Pe y Cx in Eq. (1), where we omitted
the dynamic terms using the usual assumption that Cinvs � 1.
We Strain both coordinates using the transformations x →
X/Pe1/3, y → Y/Pe1/3. The transport equation transforms
to Pe−1/3(CYY + CXX ) = Y CX . Expanding the concentration
in the asymptotic series C = C0 + Pe−1/3 C1 + . . ., the leading
order O(1) component of the governing equation is Y C0X =
0. Hence, the concentration field C0 is in the outer region at
a characteristic separation of dPe−1/3 away from the solid.

The requirements for the concentration field entering the duct,
C0(X = 0,Y ) = 1, is satisfied by the solution for the concen-
tration field, C0(X,Y ) = 1. The requirement for a vanishing
concentration field at the lower surface of the duct, c0(X,Y =
0) = 0, is to be satisfied by a boundary layer of the transverse
lengthscale dPe−1/2; the transverse lengthscale is asymptot-
ically smaller than the characteristic length of the boundary
layer downstream, discussed above, dPe−1/3. Using a proce-
dure equivalent to matched asymptotic expansion along the
surface of the duct, one may use the insight that ∂c0/∂x|x→0 =
∂C0/∂X |X→∞ = 0 and ∂c0/∂Y |x→0 = ∂C0/∂Y |X→∞ = 0 in
Eq. (7) to alleviate the singularity of these derivatives at x = 0.

2. Solution of the leading-order problem in the developed region

We solve the leading-order problem of the concentration
field past the boundary layer in Eq. (11) by a superposition of
two simpler problems, which are given by

u0CA,0x = CA,0yy,

CA,0(x, y = 0) = 0, CA,0(x, y = 1) = 1,

CA,0(x = 0, y) = y (A1)

and

u0CB,0x = CB,0yy,

CB,0(x, y = 0) = 0, CB,0(x, y = 1) = 0,

CB,0(x = 0, y) = R(y) − y. (A2)

The problem in Eq. (A1) is satisfied by the solution CA,0(y) =
y. We will show next that the solution of the superimposed
problem vanish near x = 0 and hence may be ignored to
leading order. We solve the problem in Eq. (A2) by the sepa-
ration of variables [50] CB,0 = p(x)g(y), which gives the two
problems

p′ + λ2
n p = 0, and g′′ + u0λ

2
n p = 0,

g(y = 0) = g(y = 1) = 0, (A3)

where the initial condition p(x = 0) is given as part of the
solution and λn is an eigenvalue of index n of the problem
on the right-hand side of Eq. (A3). The general solution of
the problem on the left-hand side of Eq. (A3) is given by p =
Pn e−λ2

nx, where Pn is a constant of integration in x. We rep-
resent the two linearly independent solutions of the second-
order ODE on the right-hand side of Eq. (A3) using the
power series g1,n(y; λn) = ∑∞

i=0 α1,i(λn)yi and g2,n(y; λn) =∑∞
i=0 α2,i(λn)yi, where α1,i and α2,i are functions of λn.

Substituting the two solutions in the problem, gives the
recursion relation α j,i = −(λ2

n/2)[(α j,i−3 − α j,i−4)/i(i − 1)],
wherein i = 4, 5, 6, . . . , and α j,0 and α j,1 are free parame-
ters, which may be determined from the boundary conditions.
The general solution of the problem is g(y) = α1,1g1,n +
α2,0g2, where g1,n = y + (λ2

n/12)y4 + . . . and g2,n = 1 +
(λ2

n/6)y3 + . . .. We discard the function g2,n since it does
not satisfy the boundary conditions at y = 0 in Eq (A3).
Using the additional condition, we obtain that g(y = 1) =
α1,1g1,n = 0; the requirement g1,n = 0 translates to a poly-
nomial equation in λn. We solve the polynomial by using an
iterative procedure, where one must employ a large number
of significant figures to maintain solution precision and where

123402-10



CONVECTIVE MITIGATION OF DENDRITE GROWTH PHYSICAL REVIEW MATERIALS 5, 123402 (2021)

we employ the connections g1,n|y=1 = 1 + α1,4 + α1,5 . . . and
∂g1/∂λ|y=1 = ∂α1,4/∂λ + ∂α1,5/∂λ + . . . in the framework
of the Newton-Raphson iterative approach λn,k+1 = λn,k −
g1|y=1/∂g1/∂λ|y=1. In the second of these, k is the index of
iterations. The eigenvalues, which we obtain using this proce-
dure, increase in magnitude with their index. For example, the
first three eigenvalues are λ0 = 9.5125, λ1 = 20.7736, and
λ2 = 32.0735. Ones we have obtained the eigenvalues λn we
are able to calculate the constants α1,i and define the eigen-
functions g1,n(y; λn). The solution of the problem in Eq. (11) is
given by the series C0 = y + ∑∞

n=0 βne−λ2
nxg1,n(y; λn), where

βn are constants that help satisfy the initial condition C0(x =
0, y) = R(y) in Eq. (11). The solution of C0 is a superposition
of the term y and a fast decaying series of exponents. The
first and slowest decaying term in the series of exponents
consists of the term e−λ2

0x ≈ e−100x. In dimensional terms, the
last term translates to an exponentially decaying function with
a decaying length of 1/100 of the characteristic length of the
duct dPe. Other terms in the series for g(y) decay faster. In
conclusion, the initial condition for the concentration field
past the boundary layer C0(x = 0) = R(y) converges incred-
ibly fast to the linear concentration field in Eq. (12)

C0(x > 0) = y + g(y) = y +
∑

n

βne−λ2
nxg1,n(y; λn) ≈ y.

3. Qualitative connection between dendrite growth
ratio Pe and kd

One may derive a semi-qualitative representation of
S1(Convection) as a function of the surface density of hotspots
for dendrite growth kd . In the case of the boundary layer,

the characteristic lengthscales which govern the leading-order
solution are the thickness of the duct d and the characteristic
thickness of the boundary layer dPe−1/3 along and trans-
verse to the duct surface, respectively. The corresponding
transformations x → dx, y → dPe−1/3Y and u → U0u give
the dimensionless and steady transport equation u0 ∂c0/∂x =
∂2c0/∂Y 2. Dendrite contributions to the concentration field
appear in the second-order transport problem, which is gov-
erned by the wavelength k−1 and the characteristic thickness
of the boundary layer, dPe−1/3, along and transverse to the
bottom surface, respectively. The corresponding transfor-
mations x → k−1x, y → dPe−1/3Y and u → U0u give the
homogeneous part of the dimensionless and steady transport
equation u0 ∂c1/∂x = (kd )−1∂2c1/∂Y 2, where we employed
the usual transformation y → d (Pe)−1/3Y to render the
problem dimensionless and stretch the y coordinate at the
boundary layer. Thus, to render advective and diffusive terms
of the same magnitude, we consider a different characteristic
boundary layer thickness in the second-order analysis and
employ the alternative transformation y → d (kdPe)−1/3Y .
This transformation gives u0 ∂c1/∂x = ∂2c1/∂Y2. Therefore
h1 = ∂c1/∂y ∼ (kdPe)1/3. Using scaling analysis, Eq. (2),
and remembering that ḣ0 = ∂c0/∂y ∼ (Pe)1/3, it is straight-
forward to demonstrate that S1 = ( ˙εh1/‖εh1‖)/(ḣ0/‖h0‖) =
(∂c1/∂y)/(∂c0/∂y) = kd1/3(∂c1/∂Y )/(∂c0/∂Y ). Hence, to
leading order, S1 ≈ γ × kd1/3, where γ is a function of the
rest of the parameters in the problem. In a similar man-
ner to the above, one may show that past the boundary
layer S1 ≈ γ × (Pe × kd )1/3. These expressions are used to
plot the continuous curves for S1(convection) and S2 in
Fig. 5.
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