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Colloidal crystals formed by size-asymmetric binary particles coassemble into a wide variety of colloidal com-
pounds with lattices akin to ionic crystals. Recently, a transition from a compound phase with a sublattice of small
particles to a metal-like phase in which the small particles are delocalized has been predicted computationally
and observed experimentally. In this colloidal metallic phase, the small particles roam the crystal maintaining the
integrity of the lattice of large particles, as electrons do in metals. A similar transition also occurs in superionic
crystals, termed sublattice melting. Here, we use energetic principles and a generalized molecular dynamics
model of a binary system of functionalized nanoparticles to analyze the transition to sublattice delocalization
in different coassembled crystal phases as a function of temperature (T ), number of grafted chains on the
small particles, and number ratio between the small and large particles ns:nl . We find that ns:nl is the primary
determinant of crystal type due to energetic interactions and interstitial site filling, while the number of grafted
chains per small particle determines the stability of these crystals. We observe first-order sublattice delocalization
transitions as T increases, in which the host lattice transforms from low- to high-symmetry crystal structures,
including A20 → bct → bcc, Ad → bct → bcc, and bcc → bcc/fcc → fcc transitions and lattices. Analogous
sublattice transitions driven primarily by lattice vibrations have been seen in some atomic materials exhibiting
an insulator-metal transition also referred to as metallization. We also find minima in the lattice vibrations and
diffusion coefficient of small particles as a function of ns:nl , indicating enhanced stability of certain crystal
structures for ns:nl values that form compounds.
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I. INTRODUCTION

Binary colloids of size-asymmetric particles have been
shown to coassemble into a diverse set of binary crystals
[1–8]. These crystals are compounds akin to atomic ionic
crystals because the smaller particles occupy interstitial sites
of a lattice formed by the large particles. Recently, the
exploration of binary colloidal crystals with highly size-
asymmetric functionalized nanoparticles (NPs) has yielded
the observation of crystal assemblies where the small NPs
delocalize, rather than remaining fixed at interstitial sublattice
sites [9–11]. This phenomenon was also observed in sim-
ulations of colloidal crystals of oppositely charged, highly
size-asymmetric, and highly charge-asymmetric nanoparticles
with screened Coulomb interactions [12,13]. In all these sys-
tems, the delocalized and diffusive small particles keep the
large particles in fixed lattice positions, as electrons do in
crystalline metals. The result is a metal-like colloidal crystal.

The degree of sublattice delocalization was quantified us-
ing a normalized Shannon entropy, termed metallicity, by
Girard and Olvera de la Cruz [9,14]. They used simulations
of coassembled DNA-functionalized NPs that were highly
asymmetric in size and grafting density of complementary
linkers. These showed that sublattice delocalization, and con-
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sequently metallicity, increased with T , changing the crystal
from ionic to metallic. Furthermore, Girard and Olvera de la
Cruz discovered a minimum in metallicity as a function of
the ratio of the number of small NPs (ns) to the number of
large NPs (nl ) in the crystal. They used simple band structure
construction concepts from solid-state physics to explain the
observed minimum in metallicity and equated metallicity to
conductivity in metals [14]. In this analogy, the value ns/nl

is the “valency,” and the metallicity, akin to conductivity,
decreases with increasing ns/nl as interstitial sites are filled
until it reaches a minimum at the compound values of the
lattice, when the interstitial sites are saturated (i.e., ns/nl = 6
for a body-centered cubic (bcc) crystal). Upon further increase
of ns/nl , the metallicity increases as the conductivity does in
atomic systems with increasing number of electrons in the
conduction band. They also highlighted that the minimum
in metallicity becomes sharper with an increase in the in-
teraction energy between the small and large NPs, achieved
by increasing the number of linkers on the small NPs. They
also suggested that the localization-delocalization transition
in colloidal crystals can be described as a classical analog to a
Mott-type insulator-metal transition (IMT) in atomic systems.

Interestingly, sublattice delocalization is also observed in
nonmetallic atomic systems, specifically superionic materials
[15], and the transition to superionic sublattice delocalization
is often termed “sublattice melting.” A canonical superi-
onic material is AgI, in which the larger atomic species I
forms a bcc host lattice through which Ag ions diffuse. The

2475-9953/2021/5(11)/115601(14) 115601-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2721-4466
https://orcid.org/0000-0002-4276-7432
https://orcid.org/0000-0002-9802-3627
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.115601&domain=pdf&date_stamp=2021-11-11
https://doi.org/10.1103/PhysRevMaterials.5.115601


EHLEN, LOPEZ-RIOS, AND OLVERA DE LA CRUZ PHYSICAL REVIEW MATERIALS 5, 115601 (2021)

FIG. 1. Graphical representation of the MD model. All beads
have excluded volume interactions with each other, and there is an
attractive interaction between the large particles (turquoise) and the
interactive end of each chain (orange), as described in [10]. Note
that there is no attractive interaction between large particles. There-
fore, assemblies of these particles are held together exclusively by
the attraction between the small particles’ interactive beads and the
large particles. Because the large particles represent densely grafted
large particles, some overlap is permitted.

Ag ions have been identified as diffusing between neighboring
bcc tetrahedral sites [16,17], and diffusion has been seen to be
strongly coupled to the dynamics of the host lattice [18,19].

Recently, we have observed similar behavior in colloidal
systems by using a generalized molecular dynamics (MD)
model of a binary, size-asymmetric system of functionalized
NPs with ns:nl = 6:1. We reported the formation of stable
colloidal bcc crystals with a diffusive sublattice of small par-
ticles translating between neighboring tetrahedral sites [10].
Similar to AgI, we observed a strong correlation between dif-
fusion and lattice vibrations as a function of T , but we noted
that the transition to sublattice delocalization is described by
a smooth change, rather than a true phase transition. This
suggests that phonons play an important role in the delocal-
ization transition, and that an atomic analog to this classical
localization-delocalization transition should include the effect
of the interactions of the phonons with metallic electrons as in
the Peierls IMT.

Here, we study the transition to sublattice delocalization
at different values of the number ratio ns:nl , as a function
of T and the number of grafted chains per small particle,
and we examine the origin of the delocalization transition.
We highlight the similarities with the IMT and with superi-
onic sublattice melting and analyze the effect of the phonons
in the localization-delocalization transition. We use the MD
model established in [10] in the NPT ensemble at near zero
pressure to ensure that the resulting assemblies are due to
interactions between small and large particles alone. The
model, consisting of mutually attractive and size-asymmetric
NPs, is visually depicted in Fig. 1. The turquoise sphere is
a coarse-grained representation of a large particle with either
densely grafted chains or a functionalized surface. The small
particle is represented by a central sphere (purple) and ex-
plicitly modeled grafted chains (white), each of which has an
interactive terminus (orange) that is radially attractive only to
large particles. The generality of the model implies that we
can represent a variety of experimental systems [5,6,20–23],

and the tunability of NPs enables us to find a rich variety of
lattices and multiple types of delocalization transitions.

Using this model, we find that the crystal structure is de-
termined by ns:nl and the lattice stability is determined by the
number of grafted chains per small particle. We observe a va-
riety of crystals, including A20 and body-centered tetragonal
(bct) lattices, and we confirm that the low-T (localized sub-
lattice) positions of the small particles can be understood by
analyzing their potential energy landscape. Almost all studied
systems undergo a transition to sublattice delocalization with
increasing T , and the type of transition is also determined by
ns:nl based on energetic interactions and interstitial site fill-
ing. For some ns:nl ratios, the sublattice smoothly delocalizes
without undergoing a phase transition. This occurs for cubic
lattices with nearly or completely full sublattice sites, near 6:1
and 10:1. For other number ratios, we observe a first-order
sublattice delocalization transition accompanied by a first-
order host lattice transition to a crystal of higher symmetry
with inherent sublattice vacancies. This is seen in transitions
from A20 to bct, bct to bcc, and bcc to face-centered cubic
(fcc), which all occur upon increasing T . We present evidence
that these transitions are entropic and driven by lattice vibra-
tions, similar to the metallization of atomic materials driven
by phonons, as in the Peierls IMT [24]. Finally, we identify
minima in the lattice vibrations and diffusion coefficient of
the small particles as a function of ns:nl . Crystals at the min-
ima are those whose interstitial sites are saturated with small
particles, except the high-ns:nl fcc crystals.

This paper is organized as follows. In the next section,
we will describe the range of crystal lattices observed in our
parameter space of 4, 6, 8, and 10 grafted chains per small
particle and number ratios ns:nl between 3:1 and 10:1, over
a wide range of temperatures. We will then further detail
the three delocalization behaviors we observe and discuss the
implications of the diffusion coefficient minima.

II. RESULTS

A. Determining crystal structure by number ratio ns:nl

At low temperatures, the large particles form a variety
of lattices with the small particles localized at interstitial
sites. These sites are always Wyckoff positions, which have
a unique set of symmetry operators associated with the host
lattice. The location of the small particles at these intersti-
tial sites is dependent only on crystal type. We find that the
symmetry of the resulting lattices depends on ns:nl , and the
stability of the lattice depends on the number of chains per
small particle.

Table I shows the most common crystals observed in our
systems and the number ratios ns:nl that produce them, and
Fig. 2 shows a phase diagram of all simulations studied
in this work. The phase diagrams demonstrate visually that
ns:nl determines crystal structure, and the crystal properties in
Table I help explain trends present in the phase diagrams.
For example, the value of ns:nl at which a crystal structure
is observed is consistent with the ratio of the number of lattice
points (large particles) to the number of interstitial points
associated with Wyckoff positions (small particles) of the unit
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TABLE I. Observed lattices, defined by large particles at lattice points and small particles at interstitial sites, and arranged by the ns:nl

at which they are observed with a localized sublattice. Lower-symmetry lattices appear in lower ns:nl systems, and the ns:nl ratio at which
we observe a crystal type corresponds to No. Wyckoff positions/No. lattice points, on a per-unit-cell basis (for example: 12/2 = 6 for a
bcc). In lower-symmetry lattices, small particles sit at Wyckoff positions with more nearest large-particle neighbors (NNs) than those in
higher-symmetry lattices. *12d positions in bcc crystals and 8c positions in fcc crystals are tetrahedral sites.

Lattice type, space group # lattice
pts/unit cell

Wyckoff position
(# NNs/site)

ns:nl ratios that result in
this lattice

A20
63 Cmcm

(3:1)

(4:1)

4 16h, 4c (3:1 systems)
or
16h, 8g (×2)
(4:1 systems)
(all 5 NNs)

3:1 and 4:1, resulting in
different parameter ratios

Ad

129 P4/nmm
4 2c (×2), 4f, 8j (4-5

NNs)
4:1

bct
139 I4/mmm

2 4d (4 NNs)
4e (5 NNs)

4:1 (with c/a = 2, as shown
here)

bcc
229 Im3m

2 12d* (4 NNs) 5:1, 6:1

fcc
225 Fm3m

4 32f (3 NNs),
8c* (3 NNs)

9:1, 10:1

cell. Explicitly, column 4 = column 3 divided by column 2
(5:1 and 9:1 cases both contain interstitial vacancies). Note
that some Wyckoff positions in A20 lattices are degenerate
based on the observed lattice parameter ratios, so the A20
16h Wyckoff positions map onto 8 unique points instead of
16 and one 8g set maps onto 4 points. Table I also demon-
strates that the number of large particle nearest neighbors
(NNs) interacting with each small particle decreases with
increasing lattice symmetry and ns:nl ratio. This is also an
important approximation to the average potential energy inter-
actions Uint. between the two species. In summary, the findings

demonstrated in Table I and Fig. 2 show that decreasing ns:nl

results in lower-symmetry lattices with small particles sitting
at lower-energy interstitial points.

The most common lattices are A20, Ad, high-symmetry
bcts, bcc, and fcc, though simple hexagonal (sh) and sim-
ple cubic (sc) are also observed. The noncubic nature of
bct, Ad, and A20 requires a larger set of defining lattice
parameters than the cubic crystals, and we observe multiple
parameter ratios for each structure. For example, most bct
lattices with ns:nl = 4:1 shown in Fig. 2 have the lattice
parameter ratio c/a = 2. This is the configuration shown in
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FIG. 2. Phase diagrams of different ns:nl values, as a function of reduced temperature T (see Sec. IV) and number of chains per small
particle. “Coex.” stands for “coexistence” and 129a is an unknown crystal type in space group 129 defined in the Supplemental Material,
Sec. II A [25]. The crystal structures observed only once are not analyzed in detail here. For the higher ratios where no data are shown for four
or six chains, it is because no stable lattices were found. All data plotted in this paper are taken from simulations represented in these phase
diagrams.

Table I, and it creates favorable conditions for 8 small par-
ticles in the unit cell, each of which interacts with 4 or 5
large particles depending on the site. However, some 3:1 and
4:1 bct crystals in which the small particles have only 4 chains
have c/a = √

2/3 (not shown in Table I for simplicity). We
hypothesize that the interstitial sites in the more elongated
bct structure that allow for interactions with five large-particle
nearest neighbors require the small particles to have at least
five chains. Therefore, small particles with only four grafted
chains cannot stabilize those elongated structures. This is sup-
ported by Fig. S3 in the Supplemental Material [25], which
shows that small particles with four chains rarely interact
with five large particles at once. Generally, bct crystals only
take discrete c/a ratios corresponding to lattices of higher
symmetry. For more details, see the Supplemental Material,
Secs. II A and II B.

Ad lattices are also tetragonal and can be visually compared
to bct lattices in which an additional symmetry is broken
because the conventional unit cell’s central particle is not body
centered. The Ad unit cell is defined by parameters a and
c (similar to bct) and z, which determines the offset of the
central particles. When z = 0.5, bct symmetry is recovered.
For all observed Ad crystals c/a = 2. However, there is a
continuous increase of the z parameter with T , from z ∼ 0.4 at
low T to z = 0.5 at the transition to bct lattice with c/a = 2.
These local spatial changes as a function of temperature in-
dicate the capacity for these colloidal crystals to be used as
reconfigurable materials.

A20 crystals are orthorhombic and yet lower symmetry
and more complex than the bct or Ad crystals. Their unit
cells are defined by the ratios between a, b, and c, as well
as a parameter y that determines the lattice point placement
within the unit cell. We observe two A20 crystal types with
different lattice parameter ratios as a function of ns:nl . All
3:1 A20s have a consistent set of parameters c/a, c/b, and y,
while the 4:1 A20 have another. Each parameter set results in
different numbers of interstitial sites for the small particles.
Additionally, due to the low symmetry of the A20 lattice, its
parameters can be tuned to produce other lattices of higher
symmetry. These include those observed at other values of
ns:nl and temperatures in this study, such as bcc and fcc.
More details on all common lattices found in this study can
be found in the Supplemental Material [25].

For almost all crystals listed in Table I, a simple analysis
of the potential energy landscape of a unit cell demon-
strates why each lattice type is favorable at a given ns:nl

ratio. The landscapes were calculated with pairwise poten-
tials between the large particles and one interactive chain
bead, using the same method as described in [10]. The po-
tential energy of a given point in a unit cell is the sum
of the pairwise potential energy between a test particle
(one interactive bead) located at that point within the unit
cell and all large particles in the current and surround-
ing unit cells that contribute to the test particle’s energy.
This method only accounts for interactions between the
large-particle lattice and one interactive bead, and therefore
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does not take into account any small-particle–small-particle
interactions or lattice vibration. However, even with these sim-
plifications, the calculated energy landscapes can shed light on
the spatial distribution of the particles. Each energy landscape
shows potential energy wells (the most favorable locations for
the interactive beads) and potential energy plateaus near zero
(the least favorable locations for the interactive beads). For
almost every lattice, the simulation results show that when the
sublattice is localized, the interactive ends spend the most time
in the energy wells, and the centers of the small particles spend
the most time on the energy plateaus. This means we can
predict the location of small particles once we know the unit
cell of the large-particle crystal, by identifying the location of
the energy plateaus. The existence of these energy wells and
their nonspherically symmetric distribution around the energy
plateaus also highlights the importance of separation between
the attractive component of the small particles and their cores,
which in this case is due to the grafted chains.

The fact that an analysis of a static energy landscape calcu-
lated with only small-particle–large-particle interactions can
accurately identify the locations of the small-particle centers
indicates that the small particles do not substantially interfere
with each other. A more detailed analysis of the bcc case
can be found in Lopez-Rios et al. [10], and a visual com-
parison between the energy landscape of a unit cell and the
location of small particles can be found in the Supplemental
Material [25]. There is one important exception: the fcc
energy landscape shows plateaus at the octahedral and tetra-
hedral sites (Wyckoff positions 4b and 8c, respectively).
However, we observe the small particles localizing at the 32f
sites, where the energy plateaus are much smaller. In our sys-
tems that result in fcc crystals, small particles never localize
at the octahedral sites, and they localize at the tetrahedral sites
only once the 32f sites are full (at ratios higher than ns:nl =
8:1). We hypothesize that this is because the distance from the
32f sites to the large particles is shorter than the other sites
which is needed to maintain a stable crystal with our system
of short-range interactions. Additionally, there are fewer 4b
and 8c sites in an fcc, and for the ns:nl ratio that would have
filled those sites (3:1), there are more energetically favorable
crystals available.

Finally, as the number of small particles in the lattice
increases (larger ns:nl ratios), the energetic interaction be-
tween each small particle and the surrounding large particles
becomes weaker and the packing density of large particles
decreases. This can be seen in Fig. 3, which shows the average
small-particle–large-particle interaction energy and system
density for each of the common crystal lattices observed in our
system. Almost all simulations shown in Fig. 2 are included.
The number of large particles with which each small particle
can interact decreases with increasing lattice symmetry; see
the Supplemental Material [25] for corresponding simulation
data. For example, a bct lattice with c/a = 2 has 8 interstitial
sites, at which the small particles can interact with 4 or 5 large
particles. Meanwhile, a bcc unit cell contains 12 interstitial
sites, and a small particle at any of those sites can interact
with 4 large particles. Because bct and bcc unit cells each
contain 2 lattice sites, the favorable sublattice sites are fully
occupied at a 4:1 number ratio for a bct and at 6:1 for a bcc. If
there are more small particles than can fit in the bct interstitial

FIG. 3. (a) Average interaction energy Uint/kBT per small
particle, which quantifies the potential energy due to small-particle–
large-particle interactions, and (b) number density of the large
particles ρlarge for each simulation that resulted in the most common
crystals (A20, Ad, bct, bcc, and fcc), arranged by crystal lattice type
and colored by the value of ns:nl to emphasize the effect of number
ratio on lattice structure. Each data point represents a simulation
under different conditions (temperature, number of chains, ns:nl ),
and the data shown come from nearly all simulations in Fig. 2 that
resulted in these common crystals. One very low-temperature simu-
lation with an A20 structure (Uint/kBT < −100) has been removed
for clarity. Values of temperature and number of chains per small
particle are not distinguished here.

sites, then the system’s equilibrium lattice cannot be a bct
and it will instead form a bcc. This pattern holds across all
number ratios: systems with larger ns:nl ratios form crystals
containing interstitial sites that are greater in number but less
energetically favorable.

B. Sublattice delocalization transition entropy
and dependence on interstitial site filling

We observe a transition to sublattice delocalization with
increased T for almost all assembled crystals. For some values
of ns:nl , the transition to sublattice delocalization is a phase
transition accompanied by a change in symmetry of the large-
particle lattice. For others, sublattice delocalization occurs as
a smooth change rather than a phase transition. In the subse-
quent subsections, we detail the signatures of each observed
transition behavior and corresponding lattice properties.

For all values of ns:nl , we see two overarching trends.
First, there is strong evidence that the transition to sublattice
delocalization is driven by entropy. This is expected based
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on the form of the Gibbs free energy �G = �H − T �S,
the minimization of which determines the equilibrium crystal
phase. �G is dominated by enthalpy �H at low T and entropy
�S at high T . Entropic effects have also been experimentally
shown to induce phase transitions of binary size-asymmetric
colloidal crystals from energetically to entropically favored
phases [26]. In our systems, we see this for all types of
transition to sublattice localization.

Second, increasing the chains per small particle increases
the temperature at which the entropic transition occurs, effec-
tively increasing the stability of the lattice. Crystal transition
and melting temperatures increase approximately linearly
with the number of chains per small particle for each value of
ns:nl . Therefore, the addition of chains in most cases simply
scales up the magnitude of the interaction between the large
and small particles. There are a few exceptions to this rule,
which will be discussed in following sections.

Note that the phenomenon of sublattice delocalization has
been quantified using metallicity [9] and occupied volume
fraction [10]. However, these metrics are difficult to use for
comparison between crystal phases due to convergence and
normalization issues. We have previously found that sublattice
delocalization is highly tied to small-particle diffusion and
lattice vibrations quantified as median lattice displacement
[10], both of which can be calculated more easily and are ex-
perimentally measurable. Therefore, we use these properties
as measures of the degree of sublattice delocalization.

1. Phase transitions driven by lattice vibrations

For systems at low values of ns:nl , we observe a phase
transition with increasing T from a localized, low-symmetry
lattice to a delocalized, higher-symmetry one, specifically
bct → bcc and A20 → bct. This is illustrated by a sharp
increase in our two descriptors of sublattice delocalization:
the diffusion coefficient [Fig. 4(a)] and lattice vibrations
[Fig. 4(b)]. The diffusion constant D is calculated as the
slope of the mean-squared displacement of the small particles,
which increases linearly at long timescales. Lattice vibrations
|R − 〈R〉| are quantified as the median of the magnitude of
the displacement of large particles from their mean positions.
Both of these properties increase suddenly at the temperature
of a crystal lattice transition, particularly a change to bcc. It
is also interesting to note that increasing the number of chains
per small-particle affects only the temperature at which this
change occurs and does not impact the nature of the transition.
That indicates that the addition of chains effectively increases
the energetic interaction between the small and large parti-
cles, stabilizing the lattice against sublattice delocalization
and melting. The exception to this is some systems with four
grafted chains per small particle, which will be discussed later
in this section.

The observed transitions appear to be driven by entropy,
and this is consistent with the observation that crystals lose
energetic interactions while gaining entropy when transition-
ing to a bcc with a delocalized sublattice. Figure 4(c) shows
the average interaction energy per small particle in each
system, as a function of T . As temperature increases, the
interaction energy tends closer to zero, meaning that energetic
interactions become weaker and less favorable. There is also

FIG. 4. Lattice properties of 3:1 and 4:1 systems with 4, 6, 8, and
10 chains per small particle as a function of reduced temperature T
(see Sec. IV). All bct crystals shown have lattice parameters c/a = 2
except when the small particles have 4 grafted chains. (a) Diffusion
constant, calculated as the slope of the mean-squared displacement
of the small particles in their linear (diffusive) regime. (b) Lattice
fluctuations, quantified as the median displacement of large particles
from their mean positions. (c) Average interaction energy Uint/kBT
per small particle. (d) Average lattice vibrational entropy of the large
particles (as they occupy the crystal’s lattice points). All quantities
show a jump around the phase transition to bcc crystals. Some
vary low-T points not relevant to the transition have been removed
for clarity.

a small jump at the transition to bcc to weaker energetic
interactions. This may occur for two reasons. First, the high-
temperature bcc lattice is generally less dense and therefore
contains weaker interactions than the low-temperature bct lat-
tice. Additionally, all bcts shown in Fig. 4 with more than four
grafted chains per small particle have the lattice parameter
ratio c/a = 2. As indicated in Table I, small particles interact
with four or five neighboring large particles in this type of bct
crystal, but with only four in a bcc, so some lose favorable
interactions transitioning to a bcc. Finally, delocalized small
particles also occupy regions between interstitials which also
decrease the number of interactions with neighboring large
particles, as seen in Supplemental Material, Fig. S3 [25].
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Vibrational entropy shows a similar signature. Figure 4(d)
shows the lattice (large-particle) vibrational entropy per large
particle Svib as a function of T , with clear jumps at the
transition temperature. The vibrations of the large particles in
a bct with c/a = 2 are more constrained parallel to the (001)
planes due to denser packing in those planes. When the crystal
transitions to a bcc, the overall density of the system decreases
and vibrations can be larger and more isotropic and contribute
more to the entropy of the crystal (see the Supplemental
Material, Sec. III B, for details [25]). Other forms of entropy
are larger in the bcc phase, as well. Delocalized small particles
can occupy a larger volume than localized ones and therefore
contribute to a larger entropy. Finally, bccs with ns:nl = 3:1
or 4:1 contain an average of six and four interstitial vacancies
per unit cell, respectively, and therefore their sublattices also
have more configurational entropy as not all sublattice sites
are filled. This is because, as indicated in Table I, the sublat-
tice of a bcc is filled at ns:nl = 6:1. However, having more
interstitial vacancies should increase the lattice entropy, and
the stability of the crystal will be negatively impacted as the
melting temperature will be decreased.

The nature of the transition can be further characterized by
examining the behavior of the entropy of the system. Here,
we consider Svib to be representative of the total system en-
tropy, as we know from previous work that lattice vibrations
are highly tied to the other significant contributor to entropy,
small-particle delocalization, and it is more straightforward to
calculate following [27] (see the Supplemental Material, Sec.
III F [25]. A first-order phase transition occurs at a disconti-
nuity in the first derivative of the free energy, such as entropy.
In Fig. 4(d), there is a sharp jump in Svib at the transition to
sublattice delocalization when the number of grafted chains
per small particle is greater than 4, strongly hinting at a
discontinuity that would indicate the presence of a first-order
phase transition between a localized bct and a delocalized bcc.
This is consistent with Landau et al. [28], who state that a
first-order phase transition is expected between crystal phases
when the curve of an appropriate order parameter connecting
two phases of differing symmetry is not continuous. While the
large particles of a bct with c/a = 2 can change continuously
into a bcc, this does not appear to be possible for the small
particles, based on their interstitial positions. Therefore, it ap-
pears that the transition from bct with c/a = 2 and a localized
sublattice to a bcc with a delocalized sublattice is first order.
Additionally, estimates of the specific-heat capacity corrob-
orate these conclusions and are given in the Supplemental
Material, Sec. III I [25].

To further confirm the nature of this transition, we look
to the phonon-driven IMT in vanadium dioxide (VO2). The
sudden change from an insulating to a conducting state in
VO2 as a function of T is enabled by a phase transition to a
more symmetric and entropic crystal phase, in which a strong
metallic electron-phonon correlation was detected consistent
with a Peierls IMT [24]. Budai et al. identified the electron-
phonon correlations using the phonon density of states, which
narrows towards lower vibrational frequencies in the metallic
phase, and anharmonic vibrational modes impeding the filling
of lower-energy orbitals only in the metallic phase. In our
systems that appear to exhibit a first-order sublattice transi-
tion, we also find a bias towards lower vibrational modes in

crystals with a delocalized sublattice. There is also evidence
of anharmonic modes due the expanding lattice parameter of
the metallic bcc crystals as a function of temperature. Finally,
we calculate a greater momentum exchange in crystals with
a delocalized sublattice, which is most likely due to small
particles being more homogeneously distributed throughout
the crystal. See the Supplemental Material [25] for the vi-
brational density of states (following Dickey et al. [29]) and
the momentum cross correlation (following Verdaguer et al.
and Ishida [30–32]) for the case of a system that exhibits a
first-order sublattice transition.

The exception to this discussion is the case in which the
small particles have four grafted chains. In those cases, the
entropy in Fig. 4(d) appears to be continuous but with a
change in slope at the transition, indicating a discontinuity
in the specific-heat capacity, rather than entropy. According
to Landau et al. [28], a discontinuity in the specific heat is
to be expected for continuous phase transitions, specifically
between crystal types than can continuously change into one
another. While we would need more data to confidently de-
termine the classification of this phase transition, it is also
consistent with our intuition that the phase transition for
four grafted chains per small particle be continuous. This is
because the low-temperature bct crystals have c/a = √

2/3
when the small particles have only four grafted chains. As
discussed in Sec. II A, we believe that small particles with
only four grafted chains cannot stabilize a bct with c/a = 2.
However, for bct with c/a = √

2/3, the interstitial sites appear
to be such that it is possible for both the small and large
particles to continuously change to their bcc lattice sites. Note
that the 3:1 system with four chains per small particle also
transitions through an unclassified bct; see Fig. S1 in the
Supplemental Material for more information [25].

Finally, other low-temperature transitions between crystal
types are shown in Fig. 4, for example, A20 → bct and Ad →
bct. These transitions exhibit interesting changes in symme-
try; however, we do not study those changes here because they
are not accompanied by a change in sublattice delocalization.

2. Smooth change to sublattice delocalization
driven by stoichiometry

At ns:nl near the stoichiometric values for bcc crystals (6:1)
or fcc crystals (10:1), the transition to delocalization of the
small particles is gradual and not a true phase transition. In
these cases, the sublattice delocalizes slowly over a range
of temperatures and the large-particle lattice never changes
structure. This can be seen in Fig. 5. Note that, again, as
T increases, diffusion and vibrational entropy of the large
particles increase at the expense of the magnitude of the inter-
action energy. We hypothesize that this is because the bcc and
fcc lattices are the most symmetric and stable crystals avail-
able to systems at lower and higher ns:nl ratios, respectively.
Specifically, bcc lattices are entropically stabilized at high
T [33,34], so we do not expect a bcc to transition to another
crystal with increasing T as long as the number of small
particles does not exceed the number of interstitial sites (i.e., a
number ratio greater than 6:1). At higher number ratios, which
would otherwise result in bcc lattices with interstitial defects,
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FIG. 5. Lattice properties of 5:1, 6:1, 9:1, and 10:1 systems with 4, 6, 8, and 10 chains per small particle as a function of reduced
temperature T (see Sec. IV). Data from the 6:1 system are taken from [10] and included for comparison. (a) Diffusion constant. (b) Lattice
fluctuations. (c) Average interaction energy Uint/kBT per small particle. (d) Average lattice vibrational entropy of the large particles. All show
a smooth increase in diffusion and lattice vibrations, indicating a change to delocalization similar to that explored in the 6:1 system.

fcc crystals are stable simply based on stoichiometry. This will
be discussed further in the next subsection.

The 6:1 system is an exemplar of this behavior and has
been studied in detail by Lopez-Rios et al. [10]. The conclu-
sions of that study were that lattice vibrations and sublattice
delocalization are strongly tied, and the temperature of the
onset of both is dependent on the number of chains per small
particle. We have found this to be true in general for systems
that do not exhibit a lattice transition with temperature.

3. Phase transition driven by interstitial defects

For systems with ns:nl = 7:1 and 8:1, between the stoi-
chiometric number ratios for bcc and fcc, we observe a stable
two-phase coexistence between a localized bcc and delocal-
ized fcc. Coexistence is an indication of a first-order transition
between the two phases, and an example is in Fig. 6. Ex-
perimental evidence of a bcc/fcc mixture in colloidal crystals
was reported at a small-particle–large-particle number ratio
between those required for fully bcc or fully fcc crystal struc-
tures [9].

fcc lattices in these systems appear only at high number
ratios (7:1, 8:1, 9:1, 10:1), as can be seen in Table I. This is
also consistent with Girard et al. [9], who observed fcc lattices
when the concentration of small particles in solution was high.
In our 7:1 and 8:1 systems, the fcc phase appears to be the
result of interstitial defect attraction. It has been established
that bcc lattices with small particles localized at the usual
tetrahedral sites (ns:nl = 6:1) are stable. At a ns:nl of 7:1 or
8:1, however, a fully bcc system would contain two to four
interstitial defects per unit cell, which is energetically unfavor-
able. As has been demonstrated by van der Meer et al. [35],
interstitial defects in colloidal systems show long-range at-
traction. Therefore, the defects in the bcc system gather when
there are strong small-particle–large-particle interactions (8
and 10 chains per small particle). At very low temperatures,
they collect at a grain boundary; a snapshot of this is shown in
the Supplemental Material, Fig. S8 [25]. At moderate and high
temperatures, they collect and expand the lattice, resulting in
a fcc phase with a delocalized sublattice coexisting with the
bcc phase with a localized sublattice. This is consistent with
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FIG. 6. bcc/fcc coexistence in a simulation with T = 1.6,
8 chains per small particle, and ns:nl = 7:1. Stable localized bcc and
delocalized fcc portions can be seen in (a) a snapshot of the locations
of the small-particle centers and (b) the averaged positions of the
large particles, colored by crystal phase.

Fig. 7, which shows that 8:1 systems have a higher fcc fraction
at a given T and number of chains per small particle.

As can also be seen in Fig. 7, increasing T results in
an increased fraction of the system in the fcc phase. This
indicates that the transition between a localized bcc and de-
localized fcc is at least in part driven by entropy. Each small
particle interacts with four large particles in a bcc lattice when
localized and only three in an fcc lattice (and even fewer when
delocalized due to spending less time at energetically favor-
able sites). Therefore, the transition from the bcc phase to the
fcc phase results in an energy penalty, which is compensated
for by a gain in entropy in the form of small-particle mobility
and lattice vibrations in the fcc phase.

Lastly, increasing the number of chains per small parti-
cle results in a higher fcc fraction, which deviates from the
general rule that adding chains simply increases lattice stabil-
ity. We hypothesize that this is due to the difference in the
unit-cell energy landscape between the bcc and fcc lattices.
The energy landscape of the fcc is overall shallower and more
homogeneous than that of the bcc, as there is little overlap
between the attractive regions around the large particles (see
the Supplemental Material, Table S1, for comparisons [25]).
In contrast, the bcc unit-cell energy wells are deep and lo-
calized in spaces between large particles. Therefore, it may
be that small particles interact favorably only with fcc en-
ergy landscapes when there are more chains and when those
chains are configured more isotropically. This may explain

FIG. 7. Fraction of large particles in the simulation in the bcc and
fcc phases for 7:1 and 8:1 systems. The small portion of particles
in neither phase is not shown. Increasing both reduced temperature
T and number of chains per small particle increases the percentage
of the delocalized fcc lattice. These compositions were tested for
stability with annealing techniques and at multiple system sizes.

why size-asymmetric binary colloidal systems composed of
spherical particles have only seen fcc lattices [12,36] and why
other crystals such as bcc have been observed only with the
existence of flexible chains on the small particles [9,10].

C. Stability as a function of number ratio ns:nl

Overall, crystals are more stable and have lower sublattice
delocalization when small particles saturate their interstitial
sites. This is highlighted in Figs. 8 and 9, which show diffu-
sion and lattice vibrations as a function of ns:nl for systems
with different T -chain number combinations. For clarity, data
are separated by whether there is a crystal phase transition as
a function of ns:nl . A minimum in both quantities appears at
3:1, 4:1, and 6:1 (for the 3:1, 4:1, and 6:1 systems that form
bcc, A20, and bct lattices with a fully saturated sublattice).
Meanwhile, the 5:1 (bcc crystals) and 9:1 (fcc crystals) ratios
both contain inherent vacancies that diffuse since bcc and
fcc interstitials are fully occupied at 6:1 and 10:1 ratios, re-
spectively. Additionally, according to Table I, fcc lattices and
their interstitials are less tightly bound than in bcc lattices and
therefore should show more delocalization at a given T . It is
not included, but lattice vibrations also show minima at 3:1
and 6:1 ratios.

The predominant appearance of bcc lattices over the entire
phase space explored may be due to their stabilization by
entropy [34]. Their lattice vibrations are isotropic and this
garners them additional structural stability as a function of
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FIG. 8. (a) Diffusion coefficients D and (b) lattice vibrations as
a function of ns:nl for simulation groups that do not exhibit a phase
transition. Both D and lattice vibrations both show a minimum at 6:1,
similar to the metallicity found by Girard et al. [9]. Lines connect
points with the same value of T and number of chains, and lines are
not drawn between nonadjacent points, or if any number of chain-
T combination has fewer than three data points. Although it is not
visually depicted, higher values of D and lattice vibrations for a given
number of chains correspond to higher temperatures.

temperature that enables a larger degree of sublattice delo-
calization than other lattices. For similar reasons, bcc lattices
have been suggested as optimal superionic conductors in
atomic systems [37].

III. DISCUSSION AND CONCLUSIONS

In summary, highly size-asymmetric binary colloids as-
semble into a variety of crystals that exhibit varying levels
of sublattice delocalization. For temperatures at which the
sublattice is localized, the crystal structure is determined by
energetic interactions between the small and large particles.
Crystals with a lower number ratio ns:nl form lower-symmetry
crystals whose unit-cell potential energy landscapes contain
many deep wells. As ns:nl increases, crystals become more
symmetric and the wells become shallower. As a function of
T , we observe different types of entropically driven transi-

FIG. 9. (a) Diffusion coefficients D and (b) lattice vibrations as a
function of ns:nl for simulation groups that do exhibit a phase tran-
sition. Both quantities show minima at number ratios corresponding
to compound values for bcc and A20 crystals. Lines connect points
with the same value of T and number of chains, and lines are not
drawn between nonadjacent points, or if any number of chain-T
combination has fewer than three data points. Although it is not
visually depicted, higher values of D and lattice vibrations for a given
number of chains correspond to higher temperatures.

tions to sublattice delocalization. In some cases, this transition
occurs along with a symmetry change of the large particles,
always from a lower-symmetry lattice to a higher-symmetry
lattice containing more interstitial vacancies. In others, when
the lattice is in a cubic configuration (these are entropically
stabilized) or already contains inherent vacancies, there is
not a phase transition to sublattice delocalization but rather
a smooth change.

Additionally, we observe the appearance of different crys-
tal lattices as a function of ns:nl at constant T . This is
consistent with experiments using DNA functionalized NPs
[9,11] even though hybridization DNA chemistry employed
in those studies complicates experiments by including the
presence of nonhybridized DNA chains that could act like de-
pletant particles [9,11]. In particular, the transition we found
from bct to bcc as ns:nl increases agrees with Fig. 3 of Cheng
et al. [11]; note that in [11], “valency” is the number of linkers
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per small particle and not the number ratio of small (“electron
equivalent”) particles to large particles as it was defined in
[14] and in Fig. S29 in the Supplemental Material of [9].

We report minima as a function of lattice vibrations and
the diffusion constant of the small particles as a function
of ns:nl in Figs. 9 and 8. It is tempting to compare these
minima to the minima in metallicity identified by Girard and
Olvera de la Cruz [9], which were found for each crystal phase
(bcc, fcc, and Frank-Kasper A15) and which correspond to
the compound value of ns:nl for that phase. The behavior
of the lattice vibrations and diffusion constants is similar,
indicating that these reflect the same underlying phenomenon.
However, we found that it is difficult to compare metallicity
values between phases due to normalization and numerical
convergence issues; using the more physically measurable
values resolves these problems. Plotting indicators of sublat-
tice delocalization in multiple phases on the same axis allows
us two additional insights. First, this enables us to compare
behavior between phases. We find that there are still minima
at the saturation values for some lattices (A20, bct, and bcc),
but that the minimum for fcc found in [9] does not appear
because competition between bcc and fcc phases allows for a
coexistence not seen in [9]. Second, we see that the studied
assemblies are generally more stable in the form of a bcc
lattice, whether their sublattice is localized or delocalized.
Most of the low-symmetry crystal phases transition to bcc at
high temperatures, and bcc only fully transitions to fcc when
the number of interstitial defects is very high. bcc’s greater
structural stability is consistent with observations that bcc
crystals are entropically stabilized near their melting point
in colloidal assemblies [34] (even without a sublattice). For
these systems, the result of bcc lattice stability is that these
crystals can maintain a delocalized sublattice for a wider range
of temperatures than other crystals. Additionally, Wang et al.
predicted that superionic materials with a bcc structure should
exhibit the highest conductivity [37], which is of particular
interest for applications in solid-state batteries. Our results
agree with this for the case of NPs and confirm the stability
of bcc colloidal crystals with delocalized sublattices.

It is intriguing to find similar behavior at multiple length
scales, from sublattice melting in superionic materials to the
insulator-metal transition (IMT) in inorganic materials to sub-
lattice delocalization in colloidal binary crystals. Although
colloidal systems are more flexible and tunable due to the
lack of any sort of charge neutrality constraint on composi-
tion, they exhibit similarities to superionic materials in both
structure and dependence on lattice vibrations, explored pre-
viously by Lopez-Rios et al. [10]. There are also structural and
delocalization transition analogs between colloidal crystals
and materials exhibiting an IMT. For example, at low T and
4:1 number ratio, crystal phases resemble the actinide crystal
structures, where increasing the number of chains per small
particle is analogous to increasing the atomic number. Sys-
tems with 4, 6, and 8 chains per small particle assemble into
bct (c/a = √

2/3), A20, and Ad lattices, which have the same
symmetry as protactinium, α-uranium, and β-neptunium,
respectively. Increasing T of these and other systems, we ob-
serve a transition to sublattice delocalization strongly driven
by lattice vibrations. When accompanied by a change of
lattice symmetry, this resembles a Peierls IMT, a transition

driven by strong correlations between phonons and metallic
electrons. For colloidal crystals, this can be thought of as a
continuous pumping of momentum of the vibrating large par-
ticles to the diffusing small particles. As crystals become more
symmetric, lower vibrational frequencies are available, which
prolongs the exchange of momentum between the two species
given their large vibrational wavelengths. Such tunability as
a function of T makes these colloidal crystals possible can-
didates for exploration as colloidal photonic crystals [38,39].
There are other types of IMT, such as the Mott IMT, which
is driven by the interactions and correlations between the
smaller species. We observe stronger sublattice localization
as a function of ns:nl with a greater number of grafted chains,
which is similar to the behavior of metallicity [14]. This may
be seen as a Mott-type transition, where the delocalized lattice
may be suppressed by the addition of grafted chains on the
small particles as was alluded by Girard et al. [14]. However,
in some cases, the addition of grafted chains may also change
the crystal lattice structure, which complicates this analogy.

There is still more to explore. It is possible that by includ-
ing the deformability of the large particles, one might increase
the range of accessible phases such as the Frank Kasper
A15 phase [9]. Furthermore, given that lattice vibrations drive
the transition to sublattice delocalization and between host
lattices, it would be interesting to consider how impinging
acoustic waves or acoustic shock waves would affect the prop-
erties of these colloidal crystals for further applications.

IV. SIMULATION METHODS

In the model, as described in Fig. 1 (and also in [10]), we
change the temperature T , the number of chains per small
particle, and the small-particle–large-particle number ratio
ns:nl . Temperature T is expressed in reduced units, such that
T = kBT ′

ε
, where T ′ is the input temperature and ε is the

energy unit of the simulation, in our case T = 1 = 5
3 kJ/mol.

All simulations were conducted at constant number of
particles N , temperature T , and pressure P. The pressure
P was the same in all simulations P = 2 Pa (approximately
2% of atmospheric pressure). Simulations at low P simplify
the possible contributions to the formation and stability of a
crystal such that only two terms remain: energetic and en-
tropic. The pair-potential interactions within our model arise
from an attractive Gaussian potential between large particles
and the termini of the grafted chains UGaussian(r) [Eq. (1)],
as well as excluded volume interactions amongst all parti-
cles, modeled using the Weeks-Chandler-Andersen (WCA)
potential UWCA(r) [Eq. (2)]. The grafted chains are bonded
with harmonic potentials, and no angle or dihedral potential
is employed. We also used the HOOMD-BLUE XPLOR option
which prevents artificial discontinuities in UGaussian(r) as it
decays to zero. Parameters used are shown in Table II:

UGauss(r) = − εe− 1
2 ( r

σGauss
)2

for r � rcutoff , (1)

UWCA(r)=4
[(σ

r

)12
−

(σ

r

)6]
− 4

[( σ

21/6σ

)12
−

( σ

21/6σ

)6]

for r � 21/6σ, (2)
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TABLE II. Parameters used in this study.

Parameter Value

Rlarge particle 10.5 nm
Rsmall-particle center 1.0 nm
Rchain bead 1.0 nm
Rinteractive chain end bead 0.5 nm
ε 70 kJ/mol
σGauss 4.8 nm
Rcutoff 8.4 nm
No. noninteractive beads/chain 3

where σ = RA + RB is the sum of the radii of the interacting
species.

All simulations were initiated with 6×6×6 unit cells in the
simulation box with either an fcc or bcc lattice with lattice pa-
rameter a = 60 nm. They were all energetically and thermally
equilibrated using NVE integration and later Langevin inte-
gration, respectively, then depressurized to their final pressure.
This sequence lasted 312 ns. Finally, the simulations were
run at their final pressure P = 2 Pa for at least 8.44 μs, the
first 1.38 μs of which was considered an equilibration period
and not used for analysis. Simulation code is available upon
request.

To determine the crystal phase resulting from a simu-
lation of a given set of parameters (T , ns:nl , number of
grafted chains, and initial configuration), we analyzed the
pair-correlation function [g(r)] of the large particles. See the
Supplemental Material, Sec. I A, for details [25].

While exploring parameter space by changing ns:nl , it
is important to ensure that the crystal configurations we
are reporting are equilibrium configurations. To that end,
we initialized many ns:nl -T -chain parameter combinations in
multiple ways, i.e., bcc and fcc with an unphysically large
lattice parameter, about 3–5 times any lattice parameter from
an equilibrated lattice structure of this study. If both sim-
ulations equilibrated to the same crystal configuration, we
considered that configuration to be the lowest free-energy
state and selected only one to include for analysis in our
final set. If the simulations had different results, we annealed
both using various techniques described in the Supplemental
Material, Sec. I A [25], until both equilibrated to the same
configuration. Note that a simulation initialized as an fcc has
twice as many particles as one initialized as a bcc (because
the fcc unit cell contains twice as many particles), so this
procedure of different initialization is also a test for finite-size
effects.

Sometimes, this annealing process resulted in one version
of the simulation with a bulk monocrystal and another in a
polycrystal with grain boundaries. It has been observed ex-
perimentally that annealing polycrystalline colloids does not
always result in a monocrystalline phase, possibly because
of the similarity between the melting temperature and the
temperature required to remove grain boundaries (see the
Supplementary Discussion of [40]). If, after a few rounds
of annealing, the two did not converge to exactly the same
configuration, we chose to use the simulation resulting in the
monocrystal. This is because polycrystals are always higher
energy than monocrystals, and the purpose of this study is
to understand bulk crystals based on different parameter sets.
Including polycrystals and the added complexity of grain
boundaries is outside of these bounds.

Finally, finite-size effects are often associated with seeing
two-phase coexistence in an NPT simulation. To test whether
simulation size played a role in the existence of two phases in
our 7:1 and 8:1 systems, we ran and annealed all points of 7:1
and 8:1 systems in at least two initial configurations (usually
bcc and fcc). Simulations of different sizes resulted in very
similar bcc to fcc ratios, which are shown in Fig. 7. We tested
one system (7:1, 8 chains per small particle, T = 1.3) with
432, 864, and 2000 large particles and saw roughly the same
bcc to fcc ratio in all three simulations.

System topology for the simulation was built using
HOOBAS [41]. Simulations were run with HOOMD-BLUE

[42,43] and analyzed using MDANALYSIS [44,45], FREUD [46],
and a polyhedral template matching algorithm [47], as imple-
mented in OVITO [49]. Images were created with MAYAVI [48]
[Table I and Fig. 6(b)] and OVITO [49] [Figs. 1 and 6(a)]. The
g(r) functions for determining crystal type were calculated
using VMD [50], and some crystal structure determination was
done using PYMATGEN [51] and the AFLOW database [52,53].
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