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Electromigration (EM) is the motion of lattice atoms under high-density electric current. It is an important
mechanism for structural changes in nanoelectronic devices and a major contributor to the electroplastic effect
in structural metals. Recently, a phase-field-crystal (PFC) model for studying EM in metals was developed
and shown to successfully capture many important EM-driven structural evolutions at experimentally relevant
timescales. In this work, connections between the previous PFC EM model and existing EM theories are
established. It is shown that the PFC model can be linked to both the electron-density-based quantum EM theory
and the drift-diffusion-based continuum EM theory, therefore filling an important gap in the theoretical and
computational study of EM-related phenomena. The numerical method for implementing the PFC EM model is
discussed in detail. The well-established Blech effect is quantitatively reproduced using the model.
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I. INTRODUCTION

Electromigration (EM) is a process of both theoretical and
technological importance [1–5]. On the technology side, the
EM process has been known as a leading failure mechanism
of integrated electric circuits and a major contributing factor
in electroplasticity, and recently it has been used to produce
metallic nanocontacts [6]. On the theory side, EM has been
actively studied using quantum mechanical theories and con-
tinuum theories. Quantum mechanical studies have focused on
the nature of EM force from scattering of conduction electrons
[7–9], while the continuum works have mainly focused on
predicting failure of current-carrying metal materials as the
result of EM-driven atom migration over operation timescales
[10–14].

As the dimensions of integrated circuits quickly ap-
proaches the nm scale, microstructural defects such as grain
boundaries and surface steps become increasingly important
in the EM process [6,15]. In the case of metallic nanocon-
tacts, better control of the EM-driven thinning process is also
critical [16]. Methods based on electronic density functional
theory have been successfully used to study some microstruc-
tural effects on the EM process at nanoscales [9,17,18].
However, such methods are limited to small systems and
cannot be used to study EM-driven microstructural dynamics
in time, which are critical to both interconnect failure and
electroplasticity. Therefore an efficient computational method
that can track EM-driven microstructural change in nanoscale
metals over diffusion timescale is highly desirable.

Recently, a phase-field-crystal (PFC) model motivated by
classical density functional theory (CDFT) [19,20] was de-
veloped to study some well-established EM phenomena such
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as the Blech effect and void formation at a microstructural
triple junction [21]. It offers a promising approach for tracking
microstructural change in interconnects at atomic resolution
over diffusion timescales. However, the EM driving force in
this method is incorporated phenomenologically through an
auxiliary field, which is proportional to local electric potential.
While such a field is motivated by the fact that the EM force
fEM = Z∗eE , where Z∗ is the effective EM charge and the
electric field E is the gradient of electric potential, it does
not provide at least a qualitative linkage toward electronic
EM theories. Also, at the electron level, the EM wind force
is a manifestation of electron-ion interactions that arise due
to electron density response to an applied electric field [9,22].
The total EM force is a combination of the wind force and
a direct force which comes from the interaction of ions with
applied field. It is not entirely clear how the EM force, which
is generated from ion-related interactions, could be incorpo-
rated in a PFC-type model where the basic ingredient is a
density field describing neutral atoms rather than ions. At
the continuum level, although the previous PFC EM model
is shown to generate a stress response to EM-induced atomic
currents which is qualitatively similar to the Blech effect, it
is also not clear how the previous model can be quantitatively
linked to the well-established drift-diffusion-based continuum
EM theory.

In this paper, a connection between the previous PFC EM
model and electronic EM theories is explained. It is shown
that the PFC EM model can be derived from a CDFT-type
theory previously used for liquid metal systems where both
ion and electron densities are considered. The electron density
is separated into a zero-field part and a field-induced deviation
part; the first part is incorporated in the PFC model through
the effective inter-ion interaction, and the field-induced de-
viation part, which is associated with the EM force due to
electron-ion interactions, is incorporated using an effective
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EM potential which can be linked to the effective EM charge.
One can thus recover the previous neutral-atom-based PFC
EM model that incorporates an effective EM force. A connec-
tion to the continuum theory of EM-induced stress evolution
is also discussed. It is shown that the PFC EM model has
both the EM-driven and stress-driven atomic fluxes at the
coarse-grained level, therefore quantitatively reproducing the
Blech effect.

The remainder of this paper is organized as follows. The
previous PFC EM model is briefly reviewed in Sec. II. The
model is reinterpreted in order to connect it to quantum me-
chanical EM theories in Sec. III. The continuum EM theory
and its relation to the newly interpreted PFC EM model is
discussed in Sec. IV. Section V discusses the numerical al-
gorithm used to solve the PFC EM model proposed in this
work. Numerical results are demonstrated in Sec. VI together
with our discussion. The last, summary section concludes this
work.

II. PFC EM MODEL

Standard PFC methods begin as an approximation to the
dynamical density functional theory (DDFT) [23]. Since both
the ideal and the excess parts of the free energy in CDFT
are expanded in the PFC model, the sharp particle density
profile seen in CDFT is smoothed in the PFC method which
greatly improves numerical efficiency in dynamical simula-
tions. While maintaining some of the microscopic granularity
of the CDFT, PFC methods can reach longer timescales and
therefore have been used to study microstructure evolution
[24,25], diffusional interface instabilities [26,27], and other
time evolution problems in materials science that involve the
interactions of defects on long time and length scales [28,29].

The previous PFC EM model starts with the following
CDFT-type free energy functional,

F = �F

kBT ρ̄
=

∫
dR

[
n(R)2

2
− n(R)3

6
+ n(R)4

12

]

− 1

2

∫
n(R1)

[∫
C(2)(R1 − R2) n(R2)dR2

]
dR1

+
4∑

m=3

1

m

[ ∫
dR1 . . . dRmχ (m)(R1, . . . , Rm)

× n(R1) . . . n(Rm)

]
+

∫
n(R)Ueff (R)dR, (1)

where the density parameter n(R) = (ρ − ρ̄ )/ρ̄, where ρ̄

is a reference density. The first line is a Taylor expan-
sion of the CDFT ideal part free energy density, while in
the second line, the pair correlation function is simplified
to C(2)(R1 − R2) = δ(R1 − R2){1 − r − Bx(1 − ∇2

R2
)2}. To

capture the formation of voids in structural evolution, the third
line follows Ref. [27] and includes higher-order multipoint
correlations given by χ (3) = (αr + b)χ (R1 − R2)χ (R1 −
R3) and χ (4) = cχ (R1 − R2)χ (R1 − R3)χ (R1 − R4), with
χ (k) = exp[−k2/(2λ)] in reciprocal space. In the above ex-
pressions, Bx is proportional to the solid compressibility, λ is
a constant that can be tuned to capture the thermodynamics
of the material system, and r plays the role of an effective

temperature, i.e., r = f (T ) [30]. The effective EM potential is
written as Ueff (R) = AemV (R), where V (R) is electric poten-
tial. The coefficient is Aem = nm f Z∗e/(kBT ρ̄�) with nm f =∫

χ (R − R′)n(R′)dR′. The gradient of V (R) gives local elec-
tric field E .

Microstructure evolution is described by the PFC density
field n(R) and follows the conserved dissipative dynamics
given by

∂n

∂t
= ∇ ·

(

∇ δF

δn

)
+ η, (2)

where 
 is a mobility parameter, η a stochastic noise
term satisfying the fluctuation-dissipation theorem
〈η(R, t ), η(R′, t ′)〉 = −2(
/ρ̄iad )∇2δ(R − R′)δ(t − t ′) with
a being the lattice constant of the crystal phase minimized by
the PFC theory. Explicit temperature dependence in the noise
has been scaled out [27]. Since the microstructure change is a
rather slow process, the electric potential V (R) is assumed to
satisfy the flux conservation condition

∇ · (σ∇V ) = 0, (3)

where the conductivity σ = σ0 in bulk metal and interpolates
to other values in regions of other microstructure defects such
as voids, grain boundaries, and dislocations.

III. CONNECTION TO QUANTUM MECHANICAL
EM THEORIES

A. Density functional theories

Electronic density functional theory (DFT) is a widely used
computational method for investigating electronic structures
of quantum many-body systems in physics, chemistry, and
materials science. In the field of electromigration, electronic
DFT has been used to calculate the EM force and the effective
EM charge in many materials.

In the electronic DFT, the total energy of an electronic
system is [31]

E (ρe) =
∫

v(r)ρe(r)dr + Ee(ρe), (4)

where v(r) is an external potential, ρe is electron density, and
Ee is the total energy from electrons, which includes elec-
tron kinetic energy, exchange correlation energy, and direct
Coulombic interactions. Without an external electric field,
minimization of E gives a “textbook” solution of the electron
density ρ0

e (r). The combination of the electron-ion interaction
and the ion-ion Coulombic interaction is what gives an effec-
tive interatomic potential in metals [32,33].

In the CDFT, the free energy of an interacting system of
atoms is [19,33]

F (ρa) = F id + F ex + F ext, (5)

where ρa is atomic density, F id is the ideal free energy of
noninteracting atoms, F ex is the excess free energy, which
includes atomic interactions, and F ext is the contribution from
the interaction between ρa and an external field. Using classi-
cal atoms, this CDFT formulation has been very successful
in studies of liquids and solid-liquid phase transitions. In
particular, it is capable of giving rise to a solid phase described
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by an atomic density field that forms periodic lattices below a
freezing temperature [34].

The two density functional formulations above have been
previously combined to form a theory of liquid metals us-
ing metal ion and electron densities [33]. While the ions
in that theory are similar to the atoms in the CDFT (and
those used in molecular dynamics simulations), ionic inter-
actions comprise a combination of Coulombic interactions
between like ions and those between ions and electrons. Due
to the timescale separation of electronic and ionic dynamics
(Born-Oppenheimer approximation), ion interactions can be
simplified by expressing them as the sum of the inter-ionic
Coulombic potential and an additional potential contribution
from a “frozen” electron distribution around the ions.

B. Electromigration force

In the presence of an external electric field, electromigra-
tion of metal ions is driven by two forces, an electron wind
force which comes from scattering of conduction electrons
from ion cores, and a direct force which is the Coulombic
interaction between ions and the external field. In this part we
mainly focus on the wind force, noting that the direct force
due to screening effects is still being debated in the literature
[6,35]. Also, instead of solving for the electron density under
an external field and the associated wind force (which has
been done in many previous studies), this section discusses
how to effectively incorporates the EM force in a CDFT-type
microstructure evolution model.

In an electron-ion binary system, the electron-ion interac-
tion energy is

∫
dRρi(R)

∫
Vie(r − R)ρe(r)dr [33], where ρi

is the ion density, ρe is the conduction electron density, Vie

is the interaction potential, r is the electron coordinate, and
R is the ion coordinate. Under an external electric field, this
interaction energy can be separated into two parts,∫

ρi(R)
∫

Vie(r − R)ρe(r)drdR

=
∫

ρi(R)
∫

V ∗
ie (r − R)ρ0

e (r)drdR

+
∫

ρi(R)
∫

V ∗
ie (r − R)ρ1

e (r)drdR, (6)

where ρ0
e is the zero-field electron density (i.e., the electron

density without external electric field), ρ1
e is a small deviation

of electron density from ρ0
e induced by the external field, and

the pseudopotential of the ion core V ∗
ie is used on the right-

hand side [22,33]. The first integral on the right is the standard
electron contribution to the effective inter-ion potential [33],
while the second integral on the right is an additional electron-
ion interaction energy due to the external field. The wind force
exerted on ions due to this additional energy is

∂

∂R

∫
V ∗

ie (r − R)ρ1
e (r)dr =

∫
ρ1

e (r)
∂V ∗

ie (r − R)

∂R
dr, (7)

which is the standard expression for wind force from
the Hellmann-Feynman theorem [35]. Since electrons are
“frozen” on the timescale of ion dynamics, one can integrate
out the electron degrees of freedom

∫
V ∗

ie (r − R)ρ1
e (r)dr =

U (R), just as is done in the construction of effective inter-ion

potential without external field. This result indicates that the
effect of the wind force on ions can be written as a simple
potential U (R) that comes from the interaction between the
ion core potential and the electron density deviation induced
by the external electric field. This simple argument above is
based on considering a bulk crystal, but it has been shown
that the wind force on ions can also be seen as an external
potential in the presence of vacancies [22] and microstructure
defects (such as surface steps [35]). In the energy func-
tional, this wind-force-induced energy can be simply written
as

∫
ρi(R)U (R)dR.

In general, the wind force on ions is a conservative force
which can be seen as the gradient of a potential field [36] and
can be calculated using well-established electronic methods
[37].

The free energy functional for an ion system under an
external potential is

�F = kBT ρ̄i

(∫
{[1 + n(R)] ln[1 + n(R)] − n(R)}dR

−
M∑

m=2

1

m!

∫ m∏
j=1

n(R j )Cm(R1, R2, . . . , Rm)dR j

+
∫

n(R)Ueff (R)dR
)

, (8)

where kBT is the thermal energy, ρ̄i is a reference ion fluid
density, n(R) = (ρi − ρ̄i )/ρ̄i, Cm(R1, R2, . . . , Rm) is the m-
point direct correlation function, and Ueff (R) is the external
field. It is noted that �F has been tacitly scaled here by ρ̄i. On
the right-hand side, the first integral is the ideal contribution,
the second integral is the excess part, and the third integral
is the contribution from the external field. Also, a constant
contribution to the free energy from the reference density has
been subtracted.

The EM direct force can be easily included in the exter-
nal field term since it is a Coulombic interaction term. The
wind-force-induced energy in the previous section can also
be included in this external field term since it has the same
form of

∫
ρi(R)U (R)dR. To find the correct Ueff (R) that

incorporates both the wind and the direct force, the easiest
approach is to turn to the well-established effective-charge-
based EM description where the EM force is averaged over
the ion migration path [37]. In this way, one can simply
approximate the Ueff by a linear function along the electron
current direction such that the gradient of this function recov-
ers the effective-charge-based EM force. Details about how
to obtain the effective EM charge from quantum mechanical
calculations can be found in Ref. [37].

Dissipative dynamics applied to Eq. (8) can be used to
study the dynamical evolution of the density field in the
presence of the effective EM potential [38]. However, this
type of dynamical density functional theory (DDFT) calcu-
lation is computationally very expensive for calculations in
the mesoscale time regime which is relevant to microstruc-
ture evolution in EM processes. The PFC model is therefore
needed as a computationally efficient approximation.

Comparing the CDFT-based formulation above with the
PFC EM model in the previous section, one can already
clarify some key issues in the PFC model. First, the density
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parameter in the PFC model is actually to be interpreted as
the ion density, although it can still be well approximated as
an atomic density. Second, the EM energy term in the PFC
model is the product of the local ion density and a linear
function proportional to local electric potential as described in
the CDFT model in Eq. (8). It incorporates both the wind force
from the electron-ion interaction and the direct force from the
Coulombic interaction between the ion charge and the applied
electric field through the effective EM charge.

IV. CONTINUUM EM THEORY

As demonstrated in the previous section, the PFC EM
model is an approximation to the CDFT formulation based
ion and electron densities. Its connection to the continuum EM
theory is discussed in this section.

The continuum EM theory is formulated based on drift
diffusion of lattice atoms under the EM force. EM-induced
atomic flux is Jem = McZ∗eE , where Z∗eE is the effective
EM force, M is atomic mobility, and c is atom concentration
(here the solid is seen as a mixture of atoms and vacan-
cies). This atomic flux slowly transports lattice atoms from
the upstream of the electron current to the downstream, and
therefore induces atom pileup at the downstream and atom
depletion at the upstream. When the conducting material is
confined by other surrounding materials, the atom pileup or
depletion produced by the EM-induced atomic current can-
not be accommodated by volume expansion or shrinkage;
hydrostatic pressure will develop in the conductor to locally
accommodate additional atoms or vacancies through lattice
deformation. This pressure, on the other hand, will also drive
atomic motion by producing an atomic current from highly
stressed regions to less stressed regions. The pressure-induced
atomic current is expressed in 1 dimension (1D) as Jp =
−Mc�dP/dx, where � is atomic volume, x is the spatial
coordinate along the current direction, and dP/dx is the gra-
dient of the hydrostatic pressure P. The EM-induced atomic
transport can be completely shut down if the pressure gradi-
ent satisfies dP/dx = Z∗eE/�, which is known as the Blech
effect.

The comparison of the PFC EM model introduced in
previous sections with the straightforward current-balancing
criterion in the continuum theory above is rather obscure. The
rest of this section is therefore dedicated to establishing a
connection between the PFC EM model and the continuum
current-balance formulation.

One major difference between the PFC model and the con-
tinuum theory is the field variable used to describe the system
evolution. While the continuum approach tracks the evolution
of the atom concentration c, the PFC method works with the
density parameter n. Another difference of the two approaches
is the fundamental length scales in the description. Atomic
spacing enters the PFC model through the two-point correla-
tion function, but it is nowhere to be seen in the continuum
drift-diffusion theory. These two differences also cannot be
completely separated since the concentration in the continuum
theory typically covers a spatial region which encompasses at
least several atomic spacings.

Since the key feature in the continuum theory is the balance
of the pressure-driven and the EM-driven atomic fluxes, one

may start to build up the connection between the two methods
by identifying these two fluxes in the PFC EM model.

Using the standard one-mode approximation of the PFC
density field in a 2-dimensional (2D) solid phase [25], given
by

n = A1

[
cos

(
2πx

a

)
cos

(
2πy

a
√

3

)
− 1

2
cos

(
4πy

a
√

3

)]
+ n0,

(9)

where A1 = 2
5 (−1 + 2n0 −

√
1 − 20r + 16n0 − 16n2

0), a =
4π/

√
3, and the average density is n0, the unit-cell-averaged

solid-state free energy density becomes

fa = 1

V0

∫
V0

F (n)dv, (10)

where V0 is the unit cell area, and F (n) is the PFC free energy
functional in Eq. (1) without the last EM term.

The chemical potential from the unit-cell-averaged PFC
free energy is then μPFC

a = ∂ fa

∂n0
. Since nm f in the PFC model is

a long-range average of n, one can assume it is a constant over
a unit cell and only varies significantly over a length scale
much larger than the lattice spacing; one may also calculate
the chemical potential using nm f ,

μPFC
m f = ∂ fa

∂nm f
. (11)

Since the model is formulated using the Helmholtz free
energy and the solid phase is in equilibrium with the vapor
phase during the EM process, the change of the solid phase
Helmholtz free energy should be dF = −PdV + μdN = 0.
The hydrostatic pressure in the system is then P = μ/� since
dV = �dN . Local pressure in the PFC model can thus be
expressed as

P = kBT ρ̄μPFC
m f , (12)

where kBT ρ̄ is the scaling factor from Eq. (1), and the �

factor is ignored since the PFC free energy is expressed as
per volume rather than per atom.

The PFC density parameter n is related to atomic density
ρ of the material by n = (ρ − ρ̄ )/ρ̄ where ρ̄ is a reference
density. The same relation holds for the long-range-averaged
value nm f = (ρm f − ρ̄ )/ρ̄. The atomic concentration can then
be related to the long-range-averaged atomic density ρm f by
c = �ρm f ; then the long-range-averaged PFC density param-
eter nm f can be linked to the atomic concentration by

c = �(nm f + 1)ρ̄. (13)

Since the length scale corresponding to the lattice spacing
has been averaged out in the calculation of fa [Eq. (10)], one
may expect that ∂ fa

∂nm f
can somehow approximate the long-

range behavior of the functional derivative δF/δn in the PFC
equation of motion [Eq. (2)]. Using this ansatz (which will be
examined later using numerics), one can map the long-range
behavior of ∇ δF

δn in the PFC equation to the pressure gradient
∇P in the continuum description since

∇ δF

δn
∼ ∇ ∂ fa

∂nm f
∼ ∇P/(kBT ρ̄ ), (14)

where Eqs. (11) and (12) are used.
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With the concentration expression in Eq. (13) and the
pressure expression in Eq. (14), the pressure-induced atomic
current Jp = −Mc�∇P can be incorporated in the PFC equa-
tion using

JPFC
P = −MkBT ρ̄2�2(1 + nm f )∇ δF

δn
. (15)

The EM-induced atomic current Jem = McZ∗eE can be ex-
pressed in a similar way in the PFC model

JPFC
EM = Mρ̄�(1 + nm f )Z∗e 	E = Mρ̄�(1 + nm f )Z∗e∇V,

(16)
where V is electric potential. The PFC equation of motion
that incorporates both the EM-driven and the pressure-driven
atomic fluxes is then

∂n

∂t
= ∇ · 


[
ρ̄�(1 + nm f )∇ δF

δn
− (1 + nm f )

Z∗e 	E
kBT

]
, (17)

where 
 = Mρ̄�kBT . It is noted that Eq. (17) is different from
the variational formulation in the original PFC EM model
[i.e., Eq. (2)], whose coupling to 	E arises only through the
free energy in the pressure term. It is noteworthy, however,
that it goes back to the variational form in the limit where nm f

can be treated as a constant and ρ̄� = 1.

V. NUMERICAL ALGORITHM

The equation of motion for the PFC EM model is

∂n

∂t
= ∇ · 


[
ρ̄�(nm f + 1)∇ δF

δn
− (nm f + 1)

Z∗e 	E
kBT

]
, (18)

where 
 = Mρ̄�kBT and the electric field satisfies the current
continuity equation

∇ · (σ 	E ) = 0, (19)

with σ being the conductivity. Both equations are solved in
2D in the Fourier space.

Equation (18) can be rewritten as

∂n

∂t
= 
ρ̄�∇2 δF

δn

+∇ ·
[

ρ̄�nm f ∇ δF

δn
− (nm f + 1)

Z∗e 	E
kBT

]
. (20)

By treating the second term on the right as a nonlinear term,
Eq. (20) can be solved efficiently with the semi-implicit algo-
rithm discussed in Ref. [27]. The microstructure-dependent
conductivity in Eq. (19) can be written as σ (	r) = σ0 −
σ1(	r) where σ0 is a constant and σ1(	r) is the conductiv-
ity deviation due to the microstructure at point 	r. Given
an initial microstructure-independent electric field 	E0, the
microstructure-dependent electric field can be obtained by
iteratively solving

∇ · (σ0 	E (n+1)) = ∇ · [σ1(	r) 	E (n)], (21)

where 	E (n) is electric field from the nth iteration. Equation
(21) can be rewritten using the electric potential V as

σ0

(
∂2V (n+1)

∂x2
+ ∂2V (n+1)

∂y2

)
= ∂A(n)

x

∂x
+ ∂A(n)

y

∂y
, (22)

where A(n)
x = σ1(	r)E (n)

x and A(n)
y = σ1(	r)E (n)

y with E (n)
x and

E (n)
y being the x and y components of the electric field from

the nth iteration. By replacing V , Ax, and Ay with their Fourier

transform g(	r) = ∫
g̃(	k)e−i	k·	rd	k, where g can be V , Ax, or Ay,

and 	k is the wave number. Equation (22) in the Fourier space
becomes

Ṽ (n+1)(	k) = ikxÃx
(n) + ikyÃy

(n)

σ0
(
k2

x + k2
y

) , (23)

where kx and ky are the x and the y components of 	k. The real-
space potential field V (n+1) is obtained through the inverse
Fourier transform of the Ṽ (n+1) from Eq. (23). The V (n+1) can
then be used to calculate the electric field and reevaluate Ax

and Ay for the next iteration. The microstructure-dependent
electric field E satisfying Eq. (19) is then obtained by iterating
Eq. (23) until |En+1 − En| is smaller than a threshold.

In all the 2D numerics, the spacings of the spatial mesh
are set to dx/a = 3/32 and dy/a = √

3/16. Those values
are chosen such that the simulation box contains an integer
number of lattice spacing a along both the x and y directions.
Also ρ̄� = 1 and 
 = 10 are used in all simulations unless
explicitly specified.

VI. RESULTS AND DISCUSSION

Numerical results demonstrating continuum and atomistic
features of the PFC EM model are discussed in this section.

The important ansatz from the continuum EM theory part,
where the long-range behavior of the PFC equation of motion
is connected to the established continuum EM theories, is
examined numerically here. Numerical results for the pressure
evolution from the PFC EM model in Eq. (17) are shown
in Fig. 1. One can see from Fig. 1 that the pressure pro-
file gradually develops from the initial transient state toward
the flux-balanced state given by dP/dx = Z∗eE/�. The the-
oretical pressure profile is simply calculated by drawing a
line with slope Z∗eE/� with zero pressure at the center of
the simulation domain. This proves the ansatz that the PFC
model includes the continuum flux-balancing condition as its
long-range behavior, and it is a strong validation for the PFC
approach in Eq. (17) since the Blech effect in continuum EM
theory is quantitatively reproduced.

The PFC EM model reproduces the well-established Blech
effect on continuum scales; as shown in Fig. 1 and Ref. [21],
its ability in capturing atomic-scale structural evolution at
diffusional timescales makes it a potentially useful method
in understanding the current-driven microstructure evolution
at nanoscales. Motion of surface steps driven by EM is an
important process that has long been associated with EM-
induced failure. Using the PFC EM model, EM-driven motion
of surface steps is examined. Figure 2 shows a time sequence
of the EM-driven step motion. As the electron wind is blow-
ing from the right to the left, lattice atoms tend to move in
the same direction as the electron wind due to the EM force
from electron scattering. For a step edge shown in Fig. 2, this
EM-induced one-direction motion of atoms to the left results
in the motion of the step edge toward the right as atoms on
the edge were transported away from the step by the EM
process. As suggested in previous experiments and quantum
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FIG. 1. Pressure development in the conducting material under
a given electric field eEa/(kBT ) = 0.002. The three solid lines are
the pressure profiles at different times. �P = P − P0. The dashed
line is the theoretical pressure profile given by dP/dx = Z∗eE/�.
Simulation pressures are averaged over the simulation domain height
h/a = 12. Effective EM charge Z∗ = −1.0. PFC parameters are r =
0.13, average density n̄ = 0.1867 which is the equilibrium density at
the given r, and other parameters are (dt, dx, dy, Bx, α, b, c, λ) =
(1.0,

√
3π/8, π/4, 0.7, 50, −19, 50, 0.05). P0 is the zero-current

stress. The stress in this figure is calculated numerically from the
equilibrated PFC density profile instead of the one-mode approxima-
tion in Eq. (9). Only half of the simulation system length is shown in
the figure; the other half is a mirror image of the first half with respect
to the x = 0 plane. This setting is to satisfy the periodic boundary
condition for the electric potential field. Noise is set to zero in the
simulation.

mechanical calculations [9], the effective EM charge on a
material’s surface can be significantly enhanced compared
to its bulk value. Since the surface step motion can be well
captured in the current PFC model, one can easily incorporate
this enhanced surface EM effect.

While the result shown in Fig. 2 is not based on a realistic
metal system, quantitative EM results can be obtained by
using the effective EM charge and tuning the PFC model to
match the elastic properties of the material as demonstrated in
Fig. 1. The matching of the PFC model to realistic materials
has been discussed in other literature [39,40]. Since the cur-
rent PFC EM model is built on the effective-charge-based EM
description which is mainly used for metal systems, it should
not be applied to semiconductors without further validations.

The results in this work were all obtained using 2D nu-
merics; the authors would expect very similar results from
full 3D calculations although the computational cost for such
calculations will be rather expensive.

VII. SUMMARY

This work connects a previously proposed PFC electro-
migration model to quantum mechanical EM theories and
macroscopic diffusion flux based continuum EM theories. The
connection to the quantum mechanical theories is explained
based on electronic and classical density functional theories,

FIG. 2. Plots of PFC atomic density field n(r) showing a time
sequence in the evolution of step motion (from top to bottom) driven
by EM. Direction of electron current is from the right to the left
as shown by the arrow. The periodic regions of the PFC density
parameter in the figures (lower half) represent the solid phase, while
the uniform regions in the figures (upper half) is the coexisting vapor
phase. A surface step (at the solid-vapor interface) is shown to move
in the opposite direction of electron current. PFC parameters are
the same as in Fig. 1 except for r = 0.11 and n̄ = 0.19. Only the
region near the surface step was shown in the figure. For the whole
simulation system, the same mirror image setup as in Fig. 1 was used.
The system was carefully initiated with a partially covered layer of
atoms at the solid-vapor interface.

while the connection to diffusion-based continuum theories
is achieved by coarse-graining the free energy functional in
the PFC model. A quantitative agreement between the PFC
EM model and the well-established Blech effect in continuum
EM theories is demonstrated. The capability of incorpo-
rating enhanced EM forces on atomic-scale defects while
tracking the microstructure evolution over long timescales
makes the PFC EM model a potentially useful tool in under-
standing current-driven microstructure changes in conducting
materials.
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