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Primary radiation damage in silicon from the viewpoint of a machine learning interatomic potential
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Characterization of the primary damage is the starting point in describing and predicting the irradiation-
induced damage in materials. So far, primary damage has been described by traditional interatomic potentials
in molecular dynamics simulations. Here, we employ a Gaussian approximation machine-learning potential
(GAP) to study the primary damage in silicon with close to ab initio precision level. We report detailed
analysis of cascade simulations derived from our modified Si GAP, which has already shown its reliability
for simulating radiation damage in silicon. Major differences in the picture of primary damage predicted by
machine-learning potential compared to classical potentials are atomic mixing, defect state at the heat spike
phase, defect clustering, and recrystallization rate. Atomic mixing is higher in the GAP description by a factor
of two. GAP shows considerably higher number of coordination defects at the heat spike phase and the number
of displaced atoms is noticeably greater in GAP. Surviving defects are dominantly isolated defects and small
clusters, rather than large clusters, in GAP’s prediction. The pattern by which the cascades are evolving is also
different in GAP, having more expanded form compared to the locally compact form with classical potentials.
Moreover, recovery of the generated defects at the heat spike phase take places with higher efficiency in GAP.
We also provide the attributes of the new defect cluster that we had introduced in our previous study. A cluster of
four defects, in which a central vacancy is surrounded by three split interstitials, where the surrounding atoms are
all 4-folded bonded. The cluster shows higher occurrence in simulations with the GAP potential. The formation
energy of the defect is 5.57 eV and it remains stable up to 700 K, at least for 30 ps. The Arrhenius equation

predicts the lifetime of the cluster to be 0.0725 ps at room temperature.

DOLI: 10.1103/PhysRevMaterials.5.114603

I. INTRODUCTION

From the very early efforts to characterize the interaction
of energetic particles with matter [1-4] until now when pur-
poseful irradiation of materials has become vital in several
applications [5,6], the study and identification of the modifi-
cation induced in the structure of irradiated materials has been
an ongoing endeavor. The ability of describing or predicting
the macro-scale effects of the irradiation on the material, to a
great extent, hinges on understanding the early-stage damage
caused by collision cascades, known as “primary damage”
[7,8]. The fact that our understanding of the effects of particle
irradiation on materials has taken its shape progressively over
the years is partially due to the inherent nature of the atomic
collision cascades; that this process is extremely fast and far
from equilibrium [9,10]. This feature makes the observational
examination of primary damage at the time scale it forms
nearly impossible and leaves the burden of its description
on the other methods, computer simulations being the most
promising method during the past decades [11].
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In an ideal world, among the simulation methods, density
functional theory (DFT) calculations could provide a realistic
picture of the primary damage and evolution of collision cas-
cades. However, the current computational framework of the
DFT approach makes this method inapplicable to the large
scale problems, from which a near-to-reality, explanatory,
extendable, or predictive models of defect generation can be
extracted. As a result, molecular dynamics (MD) simulations
based on analytical potentials, through which significantly
larger time- and length-scales (compared to the DFT) is reach-
able, have become the main line to follow in the simulation
of primary damage in materials [11-14]. The reliability of
the description that the MD method provides depends almost
completely on the quality of the interatomic potential. Tradi-
tional potentials are fast and scale linearly with the number
of atoms in the system. Their speed comes from the relatively
simple mathematical function that is based on a physical un-
derstanding of interatomic bonding in the material [15-19].
The function has a handful of global fitting parameters. Once
optimized, these parameters are fixed and used for predict-
ing the energy and forces of the new configurations in the
simulation. Considering that the true interactions in metallic
and covalent systems are determined by complex mechanical
many body electronic interactions, it is clear that a unique,
mathematically simple function with a number of fixed pa-
rameters cannot represent all of the underlying physical and
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chemical aspects of the system, describes why the accuracy
that is reachable by classical interatomic potentials is inher-
ently limited.

In the newer class of interatomic potentials, machine learn-
ing (ML) potentials, the generality or higher flexibility lies
in the scheme that they are generated. Instead of targeting a
particular set of properties to be reproduced, the configura-
tional space of the system (which for a system of N atoms is
3N-dimensional) is sampled in order to reproduce or “learn”
the potential energy surface (PES) of the system [20,21].
Sampling points are DFT-generated energies and forces of a
range of configurations, collected in the data set. Learning is
achieved via numerical algorithms, in which a large number
of tunable parameters are involved. These parameters are opti-
mized in the training process, so that a smooth PES is mapped.
The energies of the newly encountered configurations in the
simulation is then calculated by interpolating between the
reference energies on the constructed PES.

Gaussian approximation potential (GAP) [20] is a class
of ML potentials that uses Gaussian process regression in
the learning (regression) stage. The idea behind reproduc-
ing the PES by ML potentials can be introduced by starting
from the following representation [22]:

E = ZE 1)

in which the total energy of the system E is defined as a
summation over contributions of individual atoms in the sys-
tem E;. E; is acquired in a two-step process. First, the local
environment of the atom i is encoded into a set of structural
parameters h;. The encoding of the atomic environments is
done by a structural descriptor [23-26] that should be ro-
tationally, translationally, and permutationally invariant. The
description provided by the descriptor is based on the posi-
tional vectors of the neighbor atoms within the cutoff sphere.
Moreover, in multielemental systems, the chemical diversity
of the atoms is also considered by the descriptor [27,28]. In the
second step, the implemented regression model maps the local
atomic environment around atom i on the E;. The outcome
of the summing E; over all atoms in the system would be
the total energy, which is a representative point on the PES
of the system. For the first step, GAP uses the SOAP [23]
structural descriptor, and takes advantage of Gaussian process
regression in the second step. The Eq. (1) can then be rewritten
in the form of

N

Egap = Z e(hy) (2

l

Although Egap has a many-body character, it is also possible
to append an external potential to it. This could be used with
the purpose of either handling a specific range of configu-
rations with the desired part of the potential (e.g., with the
external potential), or just to strengthen the overall energy
calculation by the addition of an external and fixed n-body
potential. In our case, the GAP has been equipped with a pair
potential Vj,; that is meant to deal with the extreme repulsion
of atoms in the collision cascades. The energy of the system

is then represented by

N
Ey = Z Vpair(rij) + EGAP- (3)

i<j

A successfully trained machine-learning potential inherits the
same DFT level-of-accuracy of the data set upon which has
been built. On the other hand, the fact that the ML potentials
calculate the energies and forces by interpolating the training
data makes the them significantly faster than DFT calculations
(yet noticeably slower that classical potentials) [29]. Hence,
the simulation capability that has been made available by ML
potentials makes larger scale molecular dynamics simulations
with DFT accuracy reachable [30-39]. That is why they have
received a great amount of interest in the community and their
implementation in different fields matures rapidly [40—44].

As an element that has been extensively studied due to
its key role in the semiconductor industry, there are many
classical interatomic potentials for silicon [18,45-48]. So far,
radiation damage and defect generation in silicon has been
explored using these potentials, with Stillinger-Weber (SW)
[18] and Tersoff (T3) [48] potentials being the dominant ones.
Recently, a ML potential has been developed for silicon [49].
This potential has the DFT quality of its associated data
set, and hence the level of accuracy that is far beyond the
reach of any classical interatomic potential. This potential
and modifications of it have helped to elucidate some of the
key questions about the physical aspects of silicon [34,35,50].
We have recently taken advantage of this GAP potential to
carry out large-scale simulations of primary damage in silicon
with quantum mechanics precision level. In Ref. [51], we
presented our modification of the Si GAP; the modification
that aims at the enhancement of GAP‘s performance in the
simulation of collision cascades. In Ref. [51], we showed the
reliability of the modified GAP compared to experiments by
validating the GAP-predicted threshold displacement energies
(TDE) in principal directions, the sputtering yields in Ar
implantation simulations, and the size of the experimentally
detectable irradiation-induced defect clusters. We then sim-
ulated cascades initiated by 0.1, 0.2, 0.4, 1.0, and 2.0 keV
primary knock-on atom (PKA) energies, and performed sim-
ilar simulations with the SW and T3 classical potentials. In
this work, we present the results of a detailed analysis of
the features of the cascade evolution and defect generation
in the simulations with GAP. We highlight the differences
and similarities between the picture of primary damage that
is drawn by the machine-learning and traditional potentials.
For that, we explore different aspects of the defect generation
at the heat spike phase, and the final state of the resultant
damage. We also investigate the structure and the energetics
of the defect cluster that we observed in Ref. [51]. The paper
is organized as follows. In Sec. II we present the details of
our modification of the original GAP. In Sec. III we discuss
the performance of the modified GAP. The analysis of the
cascade simulations are outlined in Sec. IV, and conclusions
are presented in Sec. V.
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II. REPULSIVE POTENTIAL

When irradiated by energetic particles, cascades of colli-
sions are initiated by the recoiling PKA in the material. Atoms
that are involved in the cascades come close together, inter-
acting at distances much shorter than those in the equilibrium
state. Hence, depending on the energy, the colliding dimer can
reach potential energies well above the energy corresponding
to the ground state of the crystal. Since the original GAP has
been trained to the equilibrium properties, the high potential
energy of colliding atoms will be underestimated. To capture
the repulsion of the colliding atoms in cascade simulations,
we carried out a modification of the original GAP [51]. In
Ref. [51], we demonstrated the results obtained by implement-
ing the modified GAP and the modification itself was just
briefly introduced. In this section we provide the details of
this modification; that is a smooth joining of the all-electron
DFT repulsive potential, DMol [52], to the original potential.
The original and modified GAP potential have been referred
to as org-GAP and mod-GAP in the subsequent sections,
respectively.

The DMol-DFT data [52] is obtained from exclusively op-
timised calculations for the high-energy repulsive interactions
and its excellent agreement with the experiments has been
verified [53]. The Vi potential represents the DMol-DFT
repulsive potential in the mod-GAP, that is responsible to
take care of the configurations in which the atomic distances
are much shorter than the equilibrium distances (collisions).
Since the org-GAP has been trained over equilibrium and
near-equilibrium states, the short-distance configurations are
not present in its training data set. Hence, there is no overlap
between the configurations that are covered by the Vj,; and
the org-GAP. Thus, the augmentation of the Vj,;; can be done
without re-training the org-GAP, and V,,;; was appended to the
org-GAP. Since any interference with the original reference
structures in the data set will affect the equilibrium behavior of
the potential, we first found the minimum interatomic distance
present in the training data set dgpi, = 1.6 A, that becomes
the joining point of the Vpu; and the org-GAP. The Vg is
a cubic spline fit to the DMol Si-Si data, through which we
could control the smoothness at the joining point (quality
of the joining). The smoothness of the joining at dgpmin was
rigorously checked during the augmentation. This was done
by monitoring the potential energy and forces on the atoms
in a Si-Si dimer that are obtained by the resultant mod-GAP,
to make sure that the potential energy and its derivative are
continuous at the joining. Any non-smooth turn or variation
in the potential energy will be appeared as a kink in the force
plot. Joining the DMol data, as it is, to the org-GAP led
to a relatively non-smooth transition between the org-GAP
and the Vp; (top and middle panels in Fig. 1), which was
resolved by an averageoshift of about 2 eV in the Vp;, over the
range of [1.1 — dyyin]A (the smooth Vj,; in boottom panel in
Fig. 1). The Vp,;; then mathes the DMol at 1.0 A. The fit was
then updated and V.- was added to the org-GAP in a tabular
format. Figure 2 compares the repulsive interaction of a Si-Si
dimer calculated by mod-GAP and DFT with the DMol-DFT
data.
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FIG. 1. Distance-wise difference in the potential energy (top)
and forces (middle) of a Si-Si dimer with respect to the equilibrium.
The top and middle plots are derived form the MD simulations
using ”Smooth” and ”Non-smooth” mod-GAP potentials. The non-
smooth mod-GAP” represents joining the DMol repulsive data, as it
is, in the form of the V], cubic spline fit to the org-GAP potential.
The joining point is dgni, = 1.6 A. The non-smooth mod-GAP yields
a relatively sharp transition to the V. This problem was resolved
by re-fitting the Vj,,;; to the DMol data in which the potential energies
in the distance range starting from dyp;, to the 1.1 A have an average
downward shift of approximately 2 eV (the smooth Vi, bottom).
The Vi then matches the DMol at 1.0 A. The resultant smooth
mod-GAP potential was used to carry out the simulations in the

paper.
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FIG. 2. Total energy (top) and exerted force (bottom) of a repuls-
ing Si-Si dimer, as a function of distance. Simulation setup is made
up of two silicon atoms withina (3 x 3 x 3)ay cell, ay = 5.461 being
the lattice constant with, that one moves toward the other one with
the step size of 0.2 A. GAP represents our modified GAP potential,
which is the original GAP joined to the DMol repulsive potential
at dymin = 1.6 A. Comparison is made with the results from GGA
DFT simulations with two PAW potentials; the soft one has 4 valence
electrons and the harder one has 12 valence electrons. Sudden jump
(drop) in the force (energy) plot is an indication of the attraction
between Si atoms. Both the hard and soft pseudopotentials predict
an attractive interaction in the distance range of d > 1.6 A. The
hard potential shows an abnormal, attractive response in the distance
ranges of d < 0.74 A.

DFT calculations were performed with VASP [54-57]
package, using the PBE GGA [58] exchange-correlation func-
tional, and projector-augmented-wave (PAW) method [59,60]
for the description of the electron-ion interaction. We em-
ployed two PAW potentials in this analysis; the hard potential
with 12 2s22p%3s*3p? valence electrons and the softer one
that treats 4 3s23p? electrons in the valence shell. The default
cutoff energies of 547 and 245 eV were used, and a single
I'-point sampling of the Brillouin was carried out. For each
PAW potential, reducing the dimer distance continued until
the calculation crashed. While the soft potential follows DMol
up to 1 A, the hard potential starts diverging from the soft and
from DMol at 1.2 A. For distances in the range of d < 0.74 A,
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FIG. 3. The repulsive part of the SW, T3, org-GAP, and mod-
GAP potentials.

with an abnormal behavior, the hard PAW potential becomes
attractive, showing a jump in the exerted force. Figure 3
compares the repulsive part of the SW, T3, org-GAP, and the
mod-GAP potentials along with the DMol data. As seen, the
org-GAP potential does not capture the atomic repulsion. The
T3 potential has a very similar profile to the DMol potential
and the mod-GAP. The SW potential shows higher energies
and a steeper gradient than the mod-GAP and T3 potentials in
the range of d < 1.25 A. The higher repulsive energy of the
SW potential can justify its higher prediction of the threshold
displacement energies in principal directions with respect to
the mod-GAP and T3 potentials [49].

III. PERFORMANCE OF THE MODIFIED POTENTIAL

A. Equilibrium state

The equilibrium part of the potential is responsible for the
post-heat-spike phase in the cascades where the hot liquid-
like region generated in the heat-spike cools down and the
defect structures are formed. In order to make sure that our
augmentation has not affected the primary training data set of
the potential (that represent the equilibrium/near-equilibrium
states), in Ref. [51] we calculated thermal and mechani-
cal properties using the mod-GAP and made a comparison
between the prediction of the org-GAP and mod-GAP. Cal-
culated properties include elastic constants, bulk modulus,
melting temperature, and radial distribution function of liquid
and amorphous phases. The results that are reported in [51]
show that the predictions of the two potentials are equal within
the error bars, confirming that the equilibrium part of the
potential has remained intact.

B. Quasi-static simulations

To further asses the performance of the mod GAP in cas-
cade simulations, we here conducted three tests, first one
being quasistatic drag calculations [61-63]. In these calcula-
tions, an atom is moved in a certain direction, along which
it encounters short-range interactions as a result of pass-
ing through very close neighborhood of some of the other
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FIG. 4. Quasistatic drag in three representative directions in silicon.

atoms in the system. The short-range interaction is seen as
a peak in the step-wise energy-difference monitoring of the
moving atom. The simulation setup includes a 64-atom box
(2 x 2 x 2) in which the moving atom travels along a given
direction with the step size of 0.3 A. DFT calculations were
performed with the same settings that were introduced in
Sec. II.

Figure 4 provides the results of the simulations in three
representative directions, where the predictions of mod-GAP,
org-GAP, and DFT calculations have been compared. As seen,
the org-GAP does not capture the higher energy in short-range
interactions of the moving atom, whereas the mod-GAP re-
flects the energy difference as the interatomic distance gets
smaller. The repulsive response of the mod-GAP is closer
to the DFT results obtained by the soft PAW potential than
to that estimated by the hard potential. However, since the
all-electron DMol repulsive potential, that mod-GAP takes the
advantage of, has been exclusively developed for extremely
short-range (down to 0.001 A) interactions, we believe that
the mod-GAP’s profile is more reliable in portraying repul-
sive energy landscape. Regarding the behavior of the PAW
potentials in the interactions in the range of d < 1.0 A, we
believe that the soft potential is more reliable. This is due to
the unphysical behavior of the hard potential in the range of
d < 0.74 A observed in Sec. II.

C. TDE calculations

The threshold displacement energy is one of the funda-
mental parameters in characterizing the early-stage defect
generation and radiation resistance of the materials [7]. In
Ref. [51] we calculated the TDE values in principal directions
with mod-GAP where we found excellent agreement between

the prediction of GAP and DFT and experimental values.
Here, we simulate the complete symmetry-reduced directional
TDE surface at 30 K by mod-GAP.

The simulations were performed based on the method
outlined in [64]. A simulation box containing 4096 atoms
(8 x 8 x 8 unit cells) was used. To check the box size, a few
simulations in some random directions with PKA energies
up to 62 eV were initially carried out and in none of the
cases the PKA atom reached to the border of the box. This
assured us of the box size being large enough. Around 140
directions were considered in the calculations, among which
nearly 50 directions represent uniform-sampling and 90 di-
rections correspond to the sampling by a constant 5° interval.
The method introduced in [65] was implemented for uniform
sampling of the directions. Moreover, to enrich the sampling,
additional simulations were also carried out where needed. A
4 eV kinetic-energy increment was used in the search for the
defect generation by the PKA atom. The global average TDE,
integrated over all directions was calculated by [64]

[T, ¢)sin0dbdy

Tave =
e [/ sin6dode

“

where T (6, ¢) is the TDE value for the given (6, ¢) direction.
The T,y values by mod-GAP, SW, and T3 potentials are 22 +
0.82, 32.87 £0.90, and 20.45 £ 0.42 eV, respectively. The
global minimum by GAP, SW, and T3 is 10 0.5, 18 0.5,
and 10 £ 0.5 eV, respectively. For the T3 potential the global
minimum is found in the [100] direction. For the SW potential
the global minimum is seen in (6 = 45°, ¢ = 15°) direction,
and the second smallest TDE value (20 4 0.5 eV) is found in
[111] direction. However, with the GAP potential the global
minimum does not occur in any of the low-index directions.

114603-5



A. HAMEDANI et al.

PHYSICAL REVIEW MATERIALS §, 114603 (2021)

o RN NN W W ROl
N OO

PSS EXR SRS R K
Threshold displacement energy (eV)

20° 25° 30° 35° 40° 45° 50°54.7°
Polar angle, 6 [110]

DO DO DO GO GO s i s U1 O
O OO =0 D
Threshold displacement energ;

20° 25° 30° 35° 40° 45° 50°54.7°
Polar angle, 6 [110]

©
| o \%\y@ A\
Do [N} w o
= oo [ S [=2)
Threshold displacement energy (eV)

o
S

—_
(=]

—
[\

> 20° 25° 30° 35° 40° 45° 50°54.7°
Polar angle, 6 [110]

FIG. 5. Threshold displacement energies calculated by mod-
GAP, SW, and T3 potentials at 30 K. The global averages are 19.63,
30.63, and 20.17 eV for mod-GAP, SW, and T3, respectively. The
global minimum by GAP, SW, and T3 is 10 0.5, 20 £ 0.5, and
10 £ 0.5 eV, respectively. The [111] direction in the maps corre-
sponds to the nearest-neighbour collision path of the atoms in (111)
directions.

Figure 5 presents the TDE surfaces obtained by three poten-
tials. The difference between the predictions of the potentials
and the higher minimum value by SW is visible. Since mod-
GAP has already shown [51] a perfect agreement with the
DFT values in low-index directions, a realistic estimation in
the other directions can also be expected although reporting
the directional TDE values from simulations must be done
carefully. This is due the fact that the anisotropic nature of the

TDE surface and thermal vibrations of the atoms could cause
a considerable difference between the TDE values in exactly
[hkl] direction and a direction that locates just a few degrees
away form it (a smeared-out threshold for the given direction
versus a sharp one). Further discussion on this topic can be
found in [62-64,606].

The output of the TDE simulations in cases that the sta-
ble defect has been generated is a Frenkel pair. Among all
tested energies in our trial in low-index directions, we se-
lected those simulations with mod-GAP, which led to the
defect generation, and analyzed the type of the interstitials
that were created. We observed (110)-split, tetrahedral, and
hexagonal interstitials with the occurrence of 46%, 29%, and
25%, respectively. Regarding the formation energy of these
defects, GAP shows excellent agreement with the DFT [49],
hence a realistic, DFT-accurate prediction can be expected.
We confirm that there is no dependence between the type of
the interstitial and the energy or the direction of the PKA
in GAP’s prediction, as we found all types of interstitials in
each of the crystal directions with different PKA energies. The
performance of the GAP becomes more interesting when the
same analysis is performed for the SW and T3 potentials as
well. In the SW and T3 simulations, we found no hexago-
nal interstitials, only (110)-split and tetrahedral interstitials.
(110)-split was the dominant type in SW simulations and
tetrahedral in T3 simulations. The summary of the analysis
for potentials along with the relative error of their predicted
formation energy (FE) with respect to the DFT is presented
in Table I. The ratio of the occurrence of each interstitial
type in the simulations with classical potentials can be linked
to the relative formation energies of the different interstitial
configurations. For example, with the T3 potential, the tetra-
hedral interstitial is the stable one and its occurrence is higher
than (110)-split. However, GAP predicts the (110)-split to be
the stable interstitial, as has already been confirmed by ab
initio calculations [67], and provides a balanced distribution
between the interstitial types.

IV. CASCADE SIMULATIONS

The cascade simulations on which we carry out our anal-
ysis are the same simulations that we conducted in Ref. [51].
Here, we carry out further and more detailed analysis to cover
different aspects of the defect generation in collision cascades,
and compare the results produced by mod-GAP, SW, and T3
potentials, indicating the differences between their predic-
tions.

A. Simulation Details

All cascade simulations were carried out with LAMMPS
[68,69] compiled with QUIP [70] to support the GAP. Simula-
tions were performed for 0.1, 0.2, 0.4, 1.0, and 2.0 keV PKA
energies at 300 K. The size of the simulation box depends on
the recoil energy, such that it contains 40-46 atoms for every
electron volt of the PKA energy (e.g., 8000 atoms for 0.2 keV
PKA simulations). Periodic boundary conditions were applied
in all directions. After minimization of the box using the con-
jugate gradient (CG) algorithm, initial random velocities were
assigned to the atoms to simulate a temperature of 300 K. The
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TABLE 1. Occurrence (%) of the (110)-split, tetrahedral, and hexagonal interstitials in our TDE simulations with GAP, T3, and SW
potentials. Relative error (%) of the formation energy (FE) of each interstitial type, compared to the DFT, has been taken from [49].

(110)-split Tetrahedral Hexagonal
Pot. Occ. FE err. Occ. FE err. Occ. FE err.
GAP 46 -2 29 =7 25 -3
SW 67 22 33 28 0 77
T3 27 32 73 -7 0 27

entire cell was then equilibrated at 300 K with the canonical
NVT ensemble for 30 ps. After that, the box was further
relaxed with the isothermal-isobaric NPT ensemble at 300 K
and zero pressure for another 30 ps. Finally, with an increased
damping parameter, the lattice was relaxed for another 30 ps at
300 K and zero pressure. At all stages, the time step was 1 fs.
The cascades were initiated by giving a kinetic energy to a
PKA atom at the center of the box along a randomly-selected
direction. For each energy, 20 simulations were performed.
The temperature along the borders of the simulation cell was
controlled by applying a Langevin thermostat [71]. This en-
ables dissipation of excess heat introduced by PKA to the
bulk of material and dampens pressure waves created at the
core of the cascades. Electronic stopping [72] was applied as
a nonlocal friction force to the atoms with kinetic energies
above 10 eV. The adaptive time step algorithm [73] was used
to integrate the equations of motion. The simulation time was
6 ps, after which the entire cell had cooled down to 300 K.

B. Defect generation

Table II summarizes the results associated with the defect
generation and cascade dynamics for the three potentials. This
includes the PKA energy E, the damage energy Eg,, defined
as the portion of the PKA energy that is deposited to the
lattice atoms in collision cascades, the final number of inter-

stitial defects Nji™ that have survived at ¢+ = 6 ps where the
system has reached equilibrium at 300 K and the number of
defects has been saturated, the number of coordination defects
(dangling + floating bonds) at the heat spike N and at
the equilibrium N0, the mixing parameter Q, the number
of atoms displaced by more than half the nearest-neighbor
distance Ng;sp, the number of atoms whose average kinetic en-
ergy is above the energy corresponding to the melting point of
the material (%kTmeh) Nhot, and the duration of the heat spike
phase #ike. Eqam Was calculated by subtracting the total en-
ergy lost to the electronic stopping, Ejs, from the PKA energy.
E.js was calculated using the SRIM [74] package. Interstitials
and vacancies were identified using Wigner-Seitz cell analysis
as implemented in the OVITO package [75]. The coordination
defects were obtained with the cut-off radius of r = 2.75 A.
The mixing parameter was calculated using the formula [76]

_ 2iln@) —ri(0)

619 Egam

Q &)

where ny is the atomic density, and with ri(¢) being the
position vector of the atom i at time 7, ), |ri(t) — ri(0)]?
represents the square of atomic displacements magnitudes at
time ¢, summed over all atoms in the simulation box. The Q
and Ng;sp values are reported at + ~ 2 ps, which was chosen
visually from their time-dependent profiles; the time at which

TABLE II. Number of defects at the heat spike and the final equilibrium state, as well as mixing, number of displaced atoms, number of
energetic atoms, and the duration of heat spike. Detailed information about the quantities is provided in the text. N;" was calculated at = 6

int

ps. O and Ngisp were obtained at # A 2 ps. Ny is reported at the specified time of the heat spike. The results of each case represent the average

over 20 simulations. Uncertainties are standard errors.

E Edam X Q tspike
Potential (keV) (keV) N Spike Ny (AS/eV) Naisp Niot (ps)
mod-GAP 0.1 0.08 1 +£0.1 48 £ 1 10 £ 1 18 £1 13+£1 57T+ 1 0.39 £ 0.026
0.2 0.16 24+02 83 + 2 17 £ 2 21 £ 1 29 £ 2 111 £ 2 0.41 £0.023
0.4 0.31 4 +04 161 £ 3 24 + 2 24 £ 1 67 £3 224 £ 3 0.48 £0.023
1.0 0.75 13+ 1 343 + 21 54 £ 3 32 £1 187 + 11 541 + 11 0.52 £ 0.024
2.0 1.45 27 £ 4 543 £ 34 102 £ 3 36 £ 1 370 £ 28 980 £ 28 0.57 £ 0.020
SW 0.1 0.08 1 +£0.1 24 £ 1 6+ 1 9+ 02 7+04 49 + 1 0.18 £ 0.025
0.2 0.16 2+02 48 £ 1 9 +1 11 £ 0.2 17 £ 1 97 £ 2 0.21 £0.018
0.4 0.31 4 +04 87 £ 2 20 £ 2 14 £ 0.2 41 £ 2 191 £ 2 0.17 £0.019
1.0 0.75 11 £ 1 185 £ 10 47 £ 3 19 £ 1 117 £ 6 477 £ 7 0.22 £ 0.021
2.0 1.45 27 £ 2 326 £ 12 103 £ 6 20 £ 1 235 £ 14 923 £ 19 0.20 £ 0.010
T3 0.1 0.08 24+02 30 £ 1 14 +£1 10 £ 0.2 7+03 27 £ 0.5 0.13 £0.017
0.2 0.16 5+03 60 £ 2 29 £ 2 12 £ 0.3 15 £1 50 £ 1 0.19 £0.017
0.4 0.31 9+ 04 106 £+ 4 52 +£3 16 £ 1 31 £ 1 100 + 2 0.21 £0.014
1.0 0.75 22 £ 1 235 £ 11 110 £ 3 19 +£1 80 + 4 248 £ 4 0.25 £ 0.026
2.0 1.45 40 £ 1 363 £ 22 205 £5 20 £ 1 154 £ 7 470 + 14 0.24 £0.018
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TABLE III. Results of the cluster analysis of the final Wigner-Seitz defects at = 6 ps, obtained from simulations using mod-GAP, SW,
T3 potentials. The analysis was performed with the cutoff value of r, = 10.8 A. Clusters are identified by the number of contained defects,
“isolated” being a single defect. E is the PKA energy in keV and Ny is the total number of defects (interstitials+vacancies). For the clusters
of size X, foc is the total frequency of occurrence; F is the total fraction(%) of defects; F, is the fraction (%) of vacancies; F; is the fraction
(%) of the interstitials, and F,/F; shows the ratio of the fraction of vacancies to interstitials. The results for each case represent the average

over 20 simulations. The 0.1, 0.2, and 0.4 keV PKAs do not produce large size clusters.

Isolated 2-10 def. 10-30 def. >30 def.

Pot. E Ndef focc F Fv F; FV/F; focc F Fv E FV/F; focc F Fv F; FV/E focc F Fv E FV/E
mod-GAP 0.1 2 125 59 19 40 048 045 41 27 14 193 0.0 0.0

02 4 185 48 10 38 026 095 52 39 13 30 0.0 0.0

04 8 26 37 4 33 012 125 53 43 10 43 0.1 9 5 4 125 00

1.0 26 555 26 2 24 008 205 36 23 13 177 045 28 18 10 18 01 10 6 4 15

20 54 94 24 3 21 014 35 33 21 12 175 035 14 10 4 25 035 29 16 13 1.23
SW 01 2 075 38 16 22 0.73 060 62 32 30 107 00 0.0

02 4 075 23 3 20 0.15 090 77 47 30 157 00 0.0

04 8 065 11 4 7 057 075 50 27 23 117 04 39 20 19 1.05 00

1.0 22 13 & 1 7 014 10 23 10 13 038 07 55 30 25 12 015 14 8 6 133

20 54 245 6 1 5 020 11 12 5 7 071 08 35 18 17 1.06 055 47 25 22 1.14
T3 01 4 08 35 14 21 067 070 65 34 31 1.09 0.0 0.0

02 10 06 11 1 10 0.1 0.65 50 28 22 127 04 39 20 19 1.05 0.0

04 18 1.1 0o 7 00 025 9 5 4 125 09 82 45 37 122 0.0

1.0 44 20 5 0 5 00 045 5 2 3 067 015 12 7 5 14 085 78 42 36 1.16

20 8 30 S5 O 5 00 040 2 07 13 054 035 12 7 S5 14 095 81 43 38 1.13

saturation of Q in three potentials and almost in all PKA
energies is visible.

The heat spike, the repulsive part, and the melting point
of the potential affect the number of displaced atoms and the
mixing parameter [76,77]. The higher number of displaced
atoms in mod-GAP seen in Table II can be related to its
melting point, as it has the lowest melting point among three
potentials. Lower melting point leads to a greater number of
atoms in the molten zones, or higher No. During the cooling-
down of the cascades, these hot atoms can recrystallize in
new lattice sites, thus being labeled “displaced”. Mixing in
mod-GAP is greater than SW and T3 potentials by a factor
of two, which is in line with the higher number of displaced
atoms with GAP. This difference can also be justified from
the heat-spike point of view that is entangled with the melting
point predicted by the potentials. Besides the fact that there
are fewer number of hot atoms in the potential with the higher
melting point (hence the overall atomic displacement magni-
tude is lower), the heat spike in the potential that has higher
melting point is shorter (Table II) that reduces the distances,
which the hot atoms travel within molten zones.

The repulsive part of the potentials are not fully consistent
with the Q values or number of displaced atoms. T3 has very
similar repulsive potential to that of mod-GAP (Fig. 2) and
hence the number of displaced atoms are expected to be close.
However, mod-GAP shows around 1.5 times more displaced
atoms. On the contrary, the greater number of displaced atoms
in SW with respect to the T3 is consistent with the higher
repulsion by SW in d < 1.2 A. Regarding the interstitials, the
SW and mod-GAP potentials show very similar number of
surviving defects, whereas T3 potential produces almost two
times more defects at all energies. The number of interstitials
at the heat spike is also different in potentials [S1]; for in-
stance, for the PKA energy of 2 keV, mod-GAP shows higher

value (110 £ 9) than SW (78 £ 7) and T3 (66 &£ 5) potentials.
Recovery of the crystalline phase from the molten region that
is generated in the heat spike is also different in the three
potentials. Although mod-GAP and SW yield almost identical
final number of coordination defects, recovery in mod-GAP
takes place from noticeably higher number of defects, but
within the same interval as in SW. In other words, recrystal-
lization in GAP has higher rate or efficiency.

C. Cluster analysis

Cluster analysis was carried out by defining a cluster as
a set of neighboring Wigner-Seitz defects, neighbors being
defects located within a range up to the cutoff value of r =
2ay ~ 10.8A [79]. The size of the cluster is specified by the
number of defects that are contained within the cluster. We
considered the single (isolated) defects and the groups of
clusters with the sizes of 2—10, 10-30, and >30 defects in
our analysis. The results are compiled in Table III.

In clustering of the final defects, there are two major dif-
ferences between the mod-GAP and classical potentials. The
first difference is that in GAP, defects are more likely to be
clustered in smaller packs than in bulky pockets. This feature
is visible in the occurrence-frequency and the fraction of de-
fects in the clusters. Averaging over all energies, mod-GAP
shows 3 and 4 times more isolated defects compared to SW
and T3 potentials, respectively. Considering the energies indi-
vidually, the difference still exists but the factors are different.
Similarly, the defects in the small clusters (2—10 defects) are
1.5 and 6 times more (notice the frequencies as well) in GAP
with respect to the SW and T3. The number of defects that
are encapsulated within the largest clusters (>30) is also an-
other verification for the observed difference in mod-GAP, as
among three potentials GAP has the lowest fraction of defects
in this cluster size division.
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We also performed cluster analysis taking the vacancies
and interstitils separately into account in the simulation boxes.
In the prediction of all potentials, the isolated defects are
mostly of interstitial type, though the fractions are different.
This could raise an expectation that larger clusters would be
vacancy-rich, which is confirmed by a closer inspection of
the focc and F,/F; quantities for larger clusters (10-30, >30)
in Table IIl. F,/F; is the fractional ratio of vacancies and
interstitials in each case. Taking the F,/F for the isolated
defects into consideration, its value for all potentials and PKA
energies is below 1.0, which indicates the domination of iso-
lated interstitials over isolated vacancies. The distribution in
the other size bins shows that the number of vacancies are
higher than the interstitials in the clusters, since in almost all
of the larger-size (nonisolated) groups, the F,/F; is greater
than 1.0. However, it seems that there is no direct relation
between the size of the cluster and the fraction of its vacancies
and interstitials. The domination of vacancies over interstitials
in the clusters applies for all energies in GAP‘s prediction.
For T3 and SW the exception is “2-10 defects” group with
1.0 and 2.0 keV PKA energies, which have <1.0 values but,
in the larger cluster sizes, again, vacancies are forming major
part of the cluster. So, it could be stated that the vacancies are
more likely to be clustered than interstitials.

The second difference in clustering of the defects in mod-
GAP, which, in a way, describes its first difference, is the
different “evolution pattern” of the cascades in mod-GAP
compared to the T3 and SW potentials. If one considers that
(sub)cascades are developing within pocket-like volumes in
the cell, in classical potentials these pockets are larger and
contain the major portion of displaced atoms, which after
cooling down results in in localized and denser clusters of final
defects. On the contrary, cascades in the GAP spread across
a broader spatial range, creating relatively smaller pockets
(hence smaller clusters of final defects) and leaving more
isolated defects. In other words, more atoms are involved in
the distribution of the injected energy by the PKA in the GAP,
while the dissipation of energy is concentrated more locally
in the classical potentials. This does not imply that there are
no larger clusters in mod-GAP simulations, but rather that the
frequency of larger clusters is lower in GAP and that their
sizes are smaller than their counterparts in T3 and SW. This
observation is confirmed by looking at the fraction of defect
clusters with the size of “>30 defects” in Table III, where
this class of clusters include lower fraction of total defects in
mod-GAP compared to T3 and SW.

In order to assess the evolution of the cascades and re-
sulting final clusters in the mod-GAP more quantitatively, we
carried out another two analyses. First, we selected the largest
defect clusters in our 2 keV PKA energy simulations in three
potentials (20 simulations for each potential) and assigned a
polyhedral surface to each cluster. The process was done using
the associated module implemented in the OVITO package.
The probing radius was set to 10.8 A, same as the cutoff
value in our cluster analysis, and smoothening level was set
to zero in order to have the maximum number of defects
enclosed by the generated 3D surface. We then calculated the
volume of the constructed geometries around the clusters in
three potentials. The mod-GAP with the average volume of
(1248 £ 407) A® has smaller volume occupied by the final

L

FIG. 6. A defect cluster found in molecular dynamics simula-
tion of collision cascades with the mod-GAP interatomic potential.
The cluster is comprised of a central vacancy and three dumbbell
interstitials around it. The missing bond in the array of bonds at the
center of the image can be helpful in locating the vacant site. Two of
the dumbbells that surround the vacancy have [1 0 0] configuration
(colored black and blue) and the third dumbbell is a [1 1 O]-type
(green). Red atoms show the regular atomic sites in silicon lattice.
All of the six atoms around the vacancy are 4-folded. The formation
energy of the cluster is 5.57 eV according to DFT.

defect clusters in the box, against T3 with (6233 4 656) A3,
and SW with (1948 +330) A3. In the second analysis we
calculated the average distance between the initial position of
the PKA, and the center of mass of relatively large clusters
that contain 30-45 defects. The average distance in GAP is
(38.5+ 3.8)/0%, which is greater than the average value of
(24.3 4+ 6.5) A in T3, and (25.4 + 2.3) A with the SW poten-
tial, indicating that in GAP, on average, the atoms, which have
been energetically affected by the PKA impact, reside farther
away from the PKA position.

The presence and structure of the small defect clusters
is important when characterizing the performance of semi-
conductor devices. The optical/electrical activity [80-82],
diffusion, interaction, and placement of dopants upon thermal
annealing [83-86], and nucleation of extended defects [86,87]
can be greatly influenced by the density and configuration
of small clusters. In Ref. [51] we observed a new defect
cluster in our cascade simulations, which we now analyze
and characterize in more detail. The probability of formation
of this cluster in the cascades was 0.03, 0.01, and O in the
simulations by mod-GAP, SW, and T3 potentials, respectively.
The cluster is comprised of a central vacancy and three split
interstitials that surround the vacancy and is illustrated in
Fig 6. In all cases two of the dumbbells are of [1 0 0] type
and the third one is a [1 1 O] dumbbell. With one case as
exception, the other feature of the cluster is that all of the
six atoms that surround the central vacancy are four-folded.
The exception is with one of the GAP occurrences where two
of the interstitials have a coordination number of three. This
feature explains the stability of the cluster upon quenching the
system to 0 K. In cases that the surrounding atoms are all four-
folded, the defect remains stable without any recombination.
However, in the case that the interstitials are three-folded, one
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of the interstitials combines with the vacancy and the cluster
collapses.

To investigate the thermal stability and energetics of this
cluster, we checked the stability of the cluster in DFT and
in finite-temperature simulations with the mod-GAP. The
position of the interstitials and vacancy were extracted (coor-
dination numbers, and relative directional vectors with respect
to the surrounding atoms were taken into account) and the
cluster was put in a new 512-atom perfect cell, yielding a 514-
atom defective cell. The DFT calculations were performed
with VASP package as before, with the PBE GGA exchange-
correlation functional. The PAW potential with 12 valence
electrons was used and the plane-wave cutoff energy was
710 eV was used. Brillouin-zone sampling was performed
using Monkhorst-Pack mesh grid of (2 x 2 x 2). To obtain
equilibrium geometries, all atoms were relaxed with conju-
gate gradient method until residual forces on atoms became
smaller than 0.01 eV/A. The cell shape and cell volume
were also allowed to change during the relaxation. The de-
fect cluster remained stable during the DFT relaxation. Upon
relaxation, the (min,max) displacement among the interstitials
is (0.16 A, 0.30 A).

We calculated the formation energy of the cluster Ey, de-
fined by E¢(n) = [Ewoi(ln) — (1 + n/N)Epux(N)], where N is
the number of atoms in the perfect cell, E(I,) is the total
energy of defected cell with N 4 n atoms, and Eyyy is the
total energy of the perfect system. GAP’s prediction of Ey is
5.97 eV, while DFT gives a slightly lower value of 5.57 eV.
The formation energy of the cluster is comparable to those
reported in the previous ab initio stability analysis studies
of the small defect clusters in silicon. Our 3I+V cluster is
an alternative 2I configuration in the net balance of atoms.
In Ref. [88] in which the stability and the formation energy
of the interstitial clusters, 7, (n < 10), has been studied, the
formation energy of the I, cluster was reported to be 5.58
and 5.04 eV with the GGA and LDA calculations, respec-
tively. Also, a value of 5.66 eV with the GGA functional in
a 216-atom box has been reported in Ref. [89]. These values
are very close to the 5.57 eV by our GGA DFT of the new
cluster, indicating that its stability is similar to other clusters
of the same size. The experimental E; value for I, cluster
can be found in Ref. [78], which amounts to 3.34 eV. In an
earlier attempt a value of 2.6 eV had also been reported [89].
These experiments have been performed in high temperature
conditions (600-800 C) and the inverse model has been im-
plemented to derive the reported values.

To further investigate thermal activation of the cluster we
conducted annealing simulations at the temperature range of
(400-1600)K. The cluster remains stable up to 700 K, for
at least 30 ps and collapses at 740 K. The cluster collapses
into two interstitials, that remain stable up to 50 ps. One of
the interstitials is a [1 1 0] dumbbell and the other one is a
tetrahedral interstitial. Regarding the transformation path of
the cluster, although the final configuration that the cluster
collapses into is similar in all cases (a [1 1 0] dumbbell and a
tetrahedral interstitial), the atom that becomes the tetrahedral
interstitial or the atoms that are building the [1 1 0] dumbbell
are not identical. Moreover, the location of the interstitial and
the orientation of the dumbbell are also different in simula-
tions. As aresult, a unique recombination path is not achieved.
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FIG. 7. The Arrhenius plot, through which the attempt frequency
and activation energy for the recombination of the 3I+V defect
cluster is calculated. At each temperature seven annealing MD
simulations with the mod-GAP potential have been carried out. Un-
certainties are standard error of the mean. With the estimated v and
E, values, the average life time of the cluster at room temperature is
predicted to be 0.0725 us.

However, the formation energy of the final collapsed-into con-
figuration in all cases is 5.30 eV. The average lifetime of the
cluster (t,) at different temperatures can be estimated using
the Arrhenius equation as

1 _E,
) 0P ( kB_T> ©

where FE, is the activation energy of recombination; v is the
attempt frequency; kg is the Boltzmann constant, and T is
the temperature. The attempt frequency and activation energy
can be calculated by fitting Eq. (6) to the obtained recombina-
tion times at different simulated temperatures in an Arrhenius
plot. Fig. 7 represents the fit and corresponding activation
energy and attempt frequency for recombination of the cluster.
The physics considerations for the Arrhenius fit presented in
Fig. 6 are as follows. In order to have the transition state
theory valid, the recombination time should not be shorter
than about three lattice vibrations, or 1 ps. Otherwise, the
recombination occurs in a time span that is shorter than the
thermodynamic relaxation time, which breaks the transition
state theory. Hence, we considered only the temperature range
up to Thax, Which was defined as the temperature at which
the cluster did not recombine for at least 2-3 ps. Thax Was
found to be 1100 K. Starting from Tj,,x, subsequent anneal-
ing simulations at temperatures down to the 800 K, with the
narrower interval of 50 K were carried out. For each temper-
ature seven cases were simulated. The average recombination
time and the associated standard error of the mean at each
temperature were considered in the fitting. Using the acquired
attempt frequency of v = 15.28 ps~! and activation energy of
E, = 0.36 eV, Eq. (6) predicts the life time of the cluster to be
0.0725 ps at room temperature.
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V. CONCLUSION

We exploit the near-DFT accuracy of a Gaussian approx-
imation machine-learning potential, GAP, to provide an ab
initio perspective of the primary radiation damage in silicon.
We show that there are perceptible differences between the
predictions of GAP and traditional potentials in both the heat
spike phase and in the final state of the defects. Regarding
the threshold displacement energy, SW has the highest global
average, where T3 and GAP potentials yield very close global
average values. Moreover, in contrary to GAP, the global min-
imum threshold is found in low-index directions in classical
potentials. Ion-beam mixing is greater in GAP by a factor a
two. As for the final state of the damage, larger defect clusters
have lower fraction in the simulations with GAP and survived
defects are majorly in the form of small-sized clusters or
isolated defects. We show that this feature arises from the form
by which the cascades are evolving in GAP; a more-spread
form of propagation compared to the confined-in-pocket form
with classical potentials. We also present detailed assessment

of the new defect cluster that we encountered in our previ-
ous work. This cluster is comprised of four defects where a
vacancy is surrounded by three dumbbell interstitals, and its
occurrence is higher in simulations with GAP. The cluster
remains stable when quenched to 0 K and shows no recom-
bination up to 700 K. The stability of the cluster comes
from the four-folded bonding nature of the all atoms around
the vacant position. The formation energy of this cluster is
5.97 eV by GAP compared to the 5.57 eV obtained with DFT
calculations. Assuming that the Arrhenius equation holds for
thermally-activated recombination of the cluster, 0.0725 us
was estimated as the average lifetime of the cluster at room
temperature.
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