
PHYSICAL REVIEW MATERIALS 5, 113605 (2021)

Theory of electroplasticity based on electromagnetic induction
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In the 1960s, it was discovered in the former Soviet Union that short pulses of intense electric currents through
metallic wires brought about temporary drops in the flow stress of the metal as it is deformed plastically. This
became known as the electroplastic effect, or electroplasticity. After more than 50 years of experimental and
theoretical research, no consensus has emerged as to the mechanism of the effect. Following a brief review
of the principal experimental results, we show that when a current flows through a metal the ionic cores of
atoms of the metal experience a force equal to the Lorentz force on the conduction electrons, which arises
from the magnetic field created by the current. This is the origin of the pinch effect in metals. We then present
a new theory of electroplasticity based on mechanical stresses created by pulsing the current as a result of
electromagnetic induction. Unlike earlier theories, the rate of change of the current is treated explicitly in a
dynamic version of the pinch effect. Pulses of normal and shear stresses arise with a magnitude that depends on
the rate at which the current changes during a pulse and a small number of other well defined variables. Unlike
earlier theories which focused on the maximum of the current during a pulse, this new theory highlights the time
dependence of the current pulse as well as its maximum value. Experiments to test the theory are suggested.
Four mechanisms proposed earlier for the electroplastic effect are reviewed critically in the appendices. They are
dislocation unpinning in a magnetic field, electromigration of dislocations, Joule heating, and the static pinch
effect. We show that the physics of the first two mechanisms is unsound and the second two cannot explain most
experimental observations.
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I. INTRODUCTION

When a pulse of high density electric current is passed
through a metallic wire, while it is stretched plastically at a
constant rate, it has been experimentally observed that the
stress in the wire decreases temporarily. This phenomenon has
become known as the electroplastic effect or electroplasticity.
It was discovered by Troitiskii in the former Soviet Union
in the 1960s [1]. It has been observed in a variety of met-
als and alloys. The effect has been reproduced in the West
by many groups, most notably Conrad and coworkers who
have also published excellent reviews [2–4]. Most recently
Dimitrov et al. [5] have provided an excellent review of the ex-
perimental and theoretical literature on electroplasticity. The
majority of this work has considered large current densities,
typically between 108 and 1010 A m−2, in wires of diameter
≈ 1 mm. The duration of most commonly used current pulses
is between 10 and 100 μs. Using pulses of much smaller
current densities (5 × 106 A m−2) and longer duration (0.1 s)
on titanium 7 at.% aluminum samples Zhao et al. [6] showed
the pulses alter dislocation microstructures and ductility of the
alloy. These changes were not found when the current was
continuous. Zhao et al. concluded the pulses were essential
for the effect. In another study Shibkov et al. [7] showed
that pulses of increasing current density (10–50 × 106 A m−2)
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applied to certain aluminum – magnesium alloys delayed the
onset of jerky flow to higher plastic strains and eventually
suppressed it completely. Although these studies on alloys are
very interesting the presence of solute atoms complicates the
interpretation of the results significantly. For this reason, we
shall confine our attention to pure metals.

Electroplasticity has started to be exploited in engineer-
ing applications, particularly as a means of facilitating bulk
deformation and sheet-metal forming [8,9]. Some of these ap-
plications use continuous currents where Joule heating could
be significant. There are some instances of pulsed currents
being used, which have the advantage of reduced energy costs.

All symbols used in this paper are listed in the table in
Appendix A. Several mechanisms have been proposed for
electroplasticity in pure metals. The majority of them assume
the current is pulsed to reduce Joule heating, but the pulsing
has no other purpose or effect. Consequently these expla-
nations apply equally well to continuous currents, although
Joule heating may then dominate over other mechanisms. Two
prominent explanations center on the interaction between the
current and dislocations, and they are reviewed critically in
Appendixes B and C. A third explanation is based on the
pinch effect, where the wire is contracted by a radial stress due
to the current. Again, this has normally been considered by
assuming a constant current, as reviewed in Appendix E. We
refer to this version of the pinch effect as the static pinch effect
because the current does not change in time. The mechanism
based on Joule heating by the current is briefly reviewed in
Appendix D.
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In contrast to earlier work, we consider the influence of
pulsing the current on the generation of transient stresses in
pure metals as a result of electromagnetic induction (Sec. V).
These stresses arise from a dynamic version of the pinch effect
where the time dependence of the current pulse plays a central
role. The time-dependent current generates time-dependent
Lorentz forces, as described in Secs. V A and V C, which give
rise to time-dependent stresses described in Sec. V D. If the
width of the conductor is less than the skin depth the induced
stresses are described adequately by the static pinch effect.
However, when the skin depth is less than the width of the
conductor we find larger stresses are created than those pre-
dicted by the static pinch effect. Furthermore, these stresses
increase extremely rapidly with increasing sample width at
constant current density. Since the skin depth is inversely
proportional to the square root of the magnetic permeability
we find the induced stresses are much larger in body centered
cubic iron than in nonmagnetic metals of the same dimensions
subjected to the same current pulses. This explains a striking
experimental observation about iron that appears in Ref. [10].

Current-induced stresses arise from body forces acting on
the crystal lattice. The origin of the body forces is the mag-
netic Lorentz force acting on the electrons. A central result of
this paper is to show in Sec. IV B that these Lorentz forces
are the resultant forces transferred from current-carrying elec-
trons to the crystal lattice. We do not consider the response
of any defects to the transient stresses, and therefore we are
not addressing electroplasticity directly. Instead, we identify
the conditions where these stresses are of sufficient magni-
tude to play a dominant role in accounting for the response
of dislocations to current pulses. Since dislocation glide and
mechanical twinning require shear stresses we have calculated
the von Mises shear stress invariant for the current-induced
stresses. The influence of the stresses generated by current
pulses is separate from and in addition to the current-induced
forces responsible for the electromigration of point defects.
It is well known that electromigration brings about mass
transport in metals by biasing the diffusional hops of point
defects. Gradients in the elastic strains associated with the
current-induced stresses give rise to additional forces on point
defects and another mechanism of mass transport, separate
from electromigration.

II. OVERVIEW OF EXPERIMENTAL OBSERVATIONS

Although the literature on electroplasticity is extensive
there are relatively few systematic explorations of the pa-
rameters affecting it, such as the current density, the shape
and duration of the current pulses and their frequency, the
width of the sample in relation to the skin depth, the influence
of the magnetic permeability of the sample, the orientation
of the crystal axes in single crystal samples to the wire axis,
the level of interstitial and substitutional point defects, grain
size and the degree of prior work hardening. There have also
been only a few observations by transmission electron mi-
croscopy of dislocation configurations in samples before and
after electropulsing treatments. In our view the paucity of sys-
tematic experimentation is one of the principal reasons why
there is still no widely accepted understanding of the mech-
anism(s) of electroplasticity. Since the physics of plasticity

FIG. 1. True stress–true strain relation for a titanium wire de-
formed in tension at a constant strain rate and subjected to current
pulses of increasing current density. Adapted from Okazaki et al.
[10]. Copyright ©1978, with permission from Elsevier.

spans length-scales from the atomic (individual dislocations)
to the mesoscopic (slip bands) and the macroscopic there is a
need for experimental observations of electroplasticity across
this range of scales [11].

Another unfortunate aspect of the literature of electroplas-
ticity is that a good deal of the more fundamental experimental
and theoretical research has been published in Russian in
journals that are not taken by most institutions in the West
either in print or electronically.

In a typical experiment, a current is pulsed through a
metallic wire as it is stretched at a constant rate and the load
is measured as a function of time. The sample is sometimes
cooled by immersion in liquid nitrogen or by forced air cool-
ing to minimize the effect of Joule heating. At the beginning
of the pulse, the load drops rapidly by up to 40% of the flow
stress, and it returns to its original value more gradually after
the pulse. An example is shown in Fig. 1 from the work of
Okazaki et al. [10]. It shows the effect of current pulses of
100 μs duration on the true stress true strain curve of a wire of
titanium, 0.51 mm diameter. The flow stress decreases sharply
when the current pulse is applied, and returns over a period of
order 0.1 s to the original stress-strain curve following termi-
nation of the pulse. It is noteworthy that the current pulses do
not affect the upper envelope of the stress-strain curve.

Okazaki et al. [12] found current pulses produced stress
drops also in the elastic part of the stress-strain curve in poly-
crystalline titanium (99.97% purity). They attributed these
stress drops to thermal expansion caused by Joule heating.
For a given current density the thermal strain is independent
of the dimensions of the wire. This is inconsistent with the
observations of Okazaki et al. [12] which showed a quadratic
dependence on the radius of the wire at constant current
density. However, it is consistent with the pinch effect as the
origin of the stress drops in the elastic part of the stress-strain
curve. The magnitude of the stress drops observed in the
elastic regime are larger by an order of magnitude than those
predicted by the static pinch effect. The stress drops in the
elastic part of the stress-strain curve were less than those that
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occurred in the plastic part. The extra drop observed in the
plastic part of the stress-strain curve has been attributed [2,13]
to some form of current-enabled or current-enhanced motion
of dislocations. Okazaki et al. [12] found the stress drops in
the plastic part of the stress-strain curve increased with the
current density. In a further experimental study Okazaki et al.
[14] considered the influence of the interstitial content and
strain rate on the stress drops in titanium wires. For strain
rates between 0.67 × 10−4 and 16.7 × 10−4 s−1 they found
the strain rate had no influence on the stress drops observed
in the plastic part of the stress-strain curve. At a given current
density and strain rate, they found the magnitude of the stress
drops in both the elastic and plastic parts of the stress-strain
curve increased with the interstitial content of the sample.

Troitskii [1] found the load drops in single crystals of zinc
were dependent on the orientation of the c axis relative to
the wire axis, that they increased with the current density,
and they decreased with increasing strain rate. They were
observed in compression as well as tension. Load drops have
been observed in polycrystalline samples as well as single
crystals, and in a variety of metals including Zn, Ti, Nb, Al,
Cu, Ni, Fe, W, Sn, Pb, Cd, and some metallic alloys [2,3,15].
Troitskii and Spitsyn [16] reported experiments demonstrating
that current-enhanced creep rates of single crystals of Pb, Zn,
and Cd single crystals depended on the direction of the current
through the samples. This “polarity effect” is incompatible
with an explanation of the effect of the current based either on
Joule heating or the pinch effect. Experimental and theoretical
research by Troitskii and other Russian authors was reviewed
in English by Kir’yanchev et al. [15].

It is sometimes claimed that the observed stress drops vary
linearly or quadratically with the current density. We have not
found convincing experimental evidence for either. A thresh-
old current density, below which no stress drop is observed,
is also often reported. For example, in Fig. 1, such a thresh-
old appears to exists at about 1000 A mm−2 (109 A m−2).
However, the appearance of such a threshold may reflect the
insensitivity of the equipment to detect smaller stress drops,
such as the much smaller stress drops observed in Appendix
D. Troitskii [1] observed that when the stretching of a zinc
wire is arrested, so that the tensile stress within it relaxes
exponentially to a new finite value, the current pulses continue
to create stress drops but they are much smaller. A possibly
related observation was made by Okazaki et al. [12] where
they saw smaller stress drops in the elastic part of the stress-
strain relation than those that appear after yielding.

III. REVIEW OF PROPOSED MECHANISMS

Four mechanisms proposed for the electroplastic effect are
critically reviewed in Appendices B–E. Pulsing of the current
plays no role in any of them and they would apply equally
well if the current were constant.

Appendix B discusses a mechanism in which dislocations
are unpinned by the magnetic field of the current [13,17–19].
This mechanism is based on the assumption that localized
“dangling bond” states exist in metals, which we argue is
invalid.

Appendix B discusses electromigration of dislocations,
which is the proposal that the current enhances the motion of

dislocations by creating additional glide forces on them. For
a current-induced force to enhance the glide of a dislocation
it has to be dipolar in character to create a resolved shear
stress on the dislocation. That is because, in contrast to point
defects, the glide force on a dislocation is unaffected by a
monopole body force. Using symmetry arguments we show
that such current-induced forces are independent of the sign of
either the Burgers vector or the line direction. Consequently
dislocation loops would not expand under the influence of
such forces, and there would be no change in the plastic strain.
We conclude that even if such current-induced glide forces
exist they cannot account for the observed stress drops.

Appendix D discusses briefly the suggestion that the stress
drops are caused by thermal expansion. There are some exper-
iments where Joule heating could play a role, and others where
the pulse duration is so short the heating is insignificant. There
are experiments carried out under compressive loading where
Joule heating would increase the observed stress, whereas it is
observed that the current pulse decreases the stress [1].

Finally, in Appendix E, we review the static pinch effect.
The use of the adjective “static” is to convey the absence of
any time dependence in the current. In Sec. V, the “dynamic”
pinch effect is considered, where the time dependence of
the current is treated explicitly. We find that the stress drops
produced by the static pinch effect are too small to account for
those observed experimentally.

In conclusion none of these four mechanisms offers a
convincing explanation of the experimentally observed stress
drops due to current pulses. We noted at the beginning of this
section that none of them depends on the pulsed nature of
the current. In contrast, the mechanism we propose in Sec. V
depends explicitly on the pulsing of the current. In the next
section, we discuss the forces on atoms in metals arising from
electric currents, where we will see that the magnetic Lorentz
force has a unique significance. This was implicit in earlier
treatments, and in our derivation in Appendix E, of the static
pinch effect. In the next section, it is justified using the zero
sum rule of electromigration [20]. This puts the theory in
Sec. V on a firm foundation.

IV. FORCES ON ATOMS IN A METAL DUE TO
ELECTRIC CURRENTS

A. Electric fields in metals and the zero sum rule

Throughout Sec. IV the frame of reference is the rest frame
of the wire, which is also the laboratory frame. Consider a
homogeneous, cylindrical, crystalline, metallic wire carrying
an electric current. The metal comprises conduction electrons
and ions. Each ion consists of the atomic nucleus and core
electrons which remain bound to the nucleus. Conduction
electrons drift in response to the applied electric field accord-
ing to Ohm’s law. Their drift speed ve is much less than the
speed of light c. The charge relaxation time of the electrons
τe is equal to ε0/σc, where ε0 is the permittivity of free space
and σc is the electric conductivity. This is approximately the
time taken by conduction electrons in a metal to screen a
charge. For most metals it is of order 10−17–10−18 s. Since
the Thomas-Fermi screening length in a metal is comparable
to the interatomic distance and the charge relaxation time is so
small, local charge neutrality is maintained at all times except
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at plasmon frequencies when electrons and ions are induced
to move in opposite directions.

Since local charge neutrality is maintained at all times,
even when the current is pulsed, the total momentum of elec-
trons entering and leaving each transverse slice of the wire
per unit time does not change. This remains true even when
there are defects present. It follows that there is no net force
on the conduction electrons. There are two contributions to
the net force on conduction electrons: the force exerted by the
applied electric field and the force exerted by the ions. The
force exerted by conduction electrons on ions is equal and
opposite to the force exerted by ions on conduction electrons.
The force exerted by the applied electric field on ions is equal
and opposite to the force it exerts on conduction electrons.
Therefore the net force on ions is equal and opposite to the
net force on conduction electrons. Since the latter is zero there
is no net force on ions due to an electric field. This is the
zero sum rule introduced in [20]. It follows that there is no net
force on a metallic conductor due to an electric field even if it
induces a current to flow. This statement assumes there are no
other forces acting on the conductor, such as may be applied
through its attachment to a substrate. In a free-standing metal-
lic conductor, electromigration of atoms during the passage
of a current does not result in a displacement of its center
of mass. However, if the conductor is attached to a substrate,
there is a net force acting on the conductor and its center of
mass is displaced during electromigration.

B. Forces of a magnetic origin

The zero sum rule is modified when there are magnetic
fields present inside a metallic conductor. Electrons driven
along a wire by an applied electric field create a magnetic
field inside (and outside) the conductor. As a result there
is a Lorentz force on the conduction electrons. The Lorentz
force on the electrons is directed towards the axis of the wire.
To maintain local charge neutrality it is balanced by a force
−ρ0E (r) due to a radial electric field E (r), sometimes called a
Hall field. Here, −ρ0 = −ne is the conduction electron charge
density, where n is the number of conduction electrons per unit
volume and e is the electronic charge. The ionic charge density
is ρ0. Conduction electrons also experience a force exerted by
ions, as in the previous section. The net force on the electrons
remains zero because in any transverse slice the momentum
of electrons entering and leaving the slice per unit time is the
same, provided local charge neutrality is maintained.

Let Fe(r) be the net force per unit volume acting on con-
duction electrons at r. Let Fi

e(r) be the electrostatic force per
unit volume ions exert on conduction electrons at r. Let FE

e (r)
be the force per unit volume the applied and Hall electric fields
exert on conduction electrons at r. Let FB

e (r) be the force per
unit volume the magnetic field exerts on conduction electrons
at r. Then

Fe(r) = Fi
e(r) + FE

e (r) + FB
e (r) = 0. (1)

The net force on the ions arises from the electron-ion
electrostatic interaction and the force due the applied and
Hall electric fields. These forces are −Fi

e(r) and −FE
e (r),

respectively. We see from Eq. 1 that their sum is the Lorentz
force on the electrons FB

e (r). Therefore the net force on the
ions due to the current is identical to the Lorentz force acting

on the conduction electrons. This is a counter-intuitive result
because the ions are not moving, and therefore the magnetic
field does not exert a Lorentz force on them directly. Instead,
the Lorentz force is transferred to the ions by the conduction
electrons through their electrostatic interaction. Forces acting
on conduction electrons of a magnetic origin have a particular
significance for electroplasticity because they create net body
forces on ions which are the sources of stresses throughout the
conductor.

V. THE DYNAMIC PINCH EFFECT

A. Electromagnetic induction in a cylindrical wire

In this Sec. we encounter for the first time physics that
arises only when the current is pulsed. The time dependence
of a current pulse introduces a time dependence into the asso-
ciated magnetic field. Faraday’s law of induction tells us that
an electric field is induced in the wire by the time-dependent
magnetic field. In an infinitely long wire, the induced electric
field is parallel to the wire. It alters the drift velocity of
electrons. It also affects the radial distribution of the current
density. The changes in the drift velocity and radial distri-
bution of the current density alter the magnetic field in the
wire. All these changes affect the Lorentz forces acting on the
electrons, and hence the resultant forces acting on the ions and
the stresses they generate.

Following the treatment of the static pinch effect in
Appendix E, we consider an infinitely long, homogeneous,
cylindrical wire, and we use the same cylindrical coordinate
system. The translational invariance of the wire ensures that
the electric and magnetic fields and the current density do not
vary with position along the wire axis z. The azimuthal invari-
ance of the wire ensures their independence of the angle φ.
The independent variables are therefore the radial distance r
from the axis of the wire and time t . The drift velocity ve(r, t )
and the current density j(r, t ) are directed along the wire axis.

The timescale in which the current density, electric fields
and magnetic field change in any practical current pulse is
many orders of magnitude greater than the charge relaxation
time τe. The electronic charge distribution within the conduc-
tor adjusts virtually instantaneously to changes in the Lorentz
force. Consequently, the Hall field cancels the Lorentz force
at all times. It follows that the only forces on electrons are
due to the electric fields parallel to the wire axis. They are the
time-dependent, externally applied electric field Eext (t ) and
the induced electric field Ei(r, t ). According to Ohm’s law,
we have

j(r, t ) = σc[Eext (t ) + Ei(r, t )]. (2)

The time-dependent magnetic field induces the electric
field Ei(r, t ) along the wire axis through Faraday’s law of
electromagnetic induction. It is expressed as usual by the
following Maxwell equation:

∇ × Ei(r, t ) = −∂B(r, t )

∂t
. (3)

Introducing the vector potential A(r, t ), where B(r, t ) = ∇ ×
A(r, t ), the induced electric field is Ei(r, t ) = −∂A(r, t )/∂t .
The vector potential is also directed along the wire axis. The
divergence of the vector potential is zero automatically owing
to the translational invariance along the wire axis.
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We also need the following Maxwell equation:

∇ × B(r, t ) = μj(r, t ) + μτe
∂j(r, t)

∂t
. (4)

The magnetic permeability μ is equal to μrμ0, where μ0 is the
permeability of free space and μr is the relative permeability
of the wire. The second term on the right originates from the
displacement current. It is negligible in comparison to the first
term, again because τe is so small. Therefore this Maxwell
equation reduces to Ampère’s law:

∇ × B(r, t ) = μj(r, t ). (5)

It follows from Eqs. (2), (3), (5), and ∇ · Ei = 0 that

1

σcμ
∇2j(r, t ) = ∂j(r, t )

∂t
. (6)

Similar vector diffusion equations may be derived for E(r, t ),
B(r, t ), and A(r, t ). These equations are well known in the
context of the skin effect in AC conductors, for example see
Smythe [21]. Since j is directed along the wire axis Eq. (6)
simplifies as follows:

∂2 j(r, t )

∂r2
+ 1

r

∂ j(r, t )

∂r
− σcμ

∂ j(r, t )

∂t
= 0. (7)

Once Eq. (7) is solved the magnitude of the magnetic field
may be calculated as follows:

B(r, t ) = μ

r

∫ r

0
dr′r′ j(r′, t ). (8)

The Lorentz force on the conduction electrons is then given
by

fL(r, t ) = − j(r, t )B(r, t ) r̂. (9)

This is a body force that acts on the ions during a current
pulse. Note that for a given current density distribution the
Lorentz force is proportional to the magnetic permeability.
This indicates that wires with higher magnetic permeabilities
may have larger pulse-induced body forces. When the Lorentz
body force is substituted into the equation of mechanical
equilibrium, Eq. (E3), it yields the stress field due to the
current pulse. Note also that the time dependence of the stress
field does not have to be treated elastodynamically provided
cltp � rm, where cl is the longitudinal speed of sound in the
wire and tp is the pulse duration, which is always true in the
experiments of which we are aware.

B. General solution of the equations for a cylindrical wire

The vectors j, E, Eext, and Ei are directed along the wire
axis. The magnetic field B is directed along the azimuthal
direction. They are all functions of r and t , except Eext which
is a function of t only. Equation (3) simplifies to

∂E (r, t )

∂r
= ∂B(r, t )

∂t
(10)

and Eq. (5) simplifies to

1

r

∂ (rB(r, t ))

∂r
= μ j(r, t ), (11)

which is the differential form of Eq. (8).
The externally applied electric field Eext (t ) of the pulse

drives the current j(r, t ). The task of this Sec. is to find the re-
lationship between j(r, t ) and Eext (t ). Along the way we shall

also derive expressions for B(r, t ) and Ei(r, t ). Introducing the
Fourier transform in the time variable, we have

j(r, ω) =
∫ ∞

−∞
j(r, t )e−iωt dt, (12)

j(r, t ) = 1

2π

∫ ∞

−∞
j(r, ω)eiωt dω. (13)

The transforms B(r, ω) and Ei(r, ω) are similarly defined.
The transform E ext (ω) is slightly different because it has no
positional dependence:

E ext (ω) =
∫ ∞

−∞
Eext (t )e−iωt dt, (14)

Eext (t ) = 1

2π

∫ ∞

−∞
E (ω)eiωt dω. (15)

When Eq. (7) is transformed it becomes

∂2 j

∂r2
+ 1

r

∂ j

∂r
− i

λ2
ω

j = 0, (16)

where λω = 1/
√

μσcω is a diffusion length associated with
the angular frequency ω. The solution of this equation is as
follows:

j(r, ω) = α(ω)J0

(
i3/2 r

λω

)
. (17)

Here, J0 is the Bessel function of the first kind of order zero.
It has a complex argument. The prefactor α(ω) is a complex
amplitude that is a function of ω only and it is to be determined
by relating it to E ext (ω). The average current density J (ω)
over all radii at this angular frequency is then

J (ω) = 1

πr2
m

∫ rm

0
2πr j(r, ω) dr

= 2α(ω)

(
i−3/2 λω

rm

)
J1

(
i3/2 rm

λω

)
. (18)

Inserting Eq. (17) into Eq. (8), we obtain an equation for
B(r, ω):

B(r, ω) = i−3/2μα(ω)λω J1

(
i3/2 r

λω

)
, (19)

where J1 is the Bessel function of the first kind of order
one. Note that in the limit ω → 0, B(r, ω) → μα(0)r/2, in
agreement with Eq. (E1) if we identify α(0) with the constant
current density j0.

Since Eext (t ) is assumed to have no spatial dependence
the electric field in Eq. (10) can be replaced by the induced
field Ei. Integrating this equation, we obtain the following
expression for Ei(r, ω):

Ei(r, ω) = −μωλ2
ωα(ω)

{
1 − J0

(
i3/2 r

λω

)}
. (20)

The induced electric field E i(ω), averaged over the cross-
section is as follows:

E i(ω) = 1

πr2
m

∫ rm

0
2πr Ei(r, ω)dr

= −α(ω)μλ2
ωω

[
1 − 2

(
i−3/2 λω

rm

)
J1

(
i3/2 rm

λω

)]
. (21)

Using Ohm’s law, Eq. (2), we have the following relation-
ship between the total current density, Eq. (18), the externally
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applied electric field E ext (ω) and the induced electric field
averaged over all radii, Eq. (21):

J (ω) = 1

πr2
m

∫ rm

0
2πr j(r, ω) dr

= σc

r2
m

∫ rm

0
2r (E ext (ω) + Ei(r, ω)) dr

= σc(E ext (ω) + E i(ω)). (22)

Substituting J (ω) from Eq. (18) and E i(ω) from Eq. (21) into
this equation, we obtain the explicit relationship we sought
between α(ω) and E ext (ω):

α(ω) = σcE ext (ω) (23)

Before we leave this Sec. we note a general feature of
the induced current at each radius, ji(r, t ) = σcEi(r, t ). The
integral of ji(r, t ) over all time at each radius r is zero:∫ ∞

−∞
ji(r, t )dt = σc

∫ ∞

−∞
Ei(r, t )dt

= σc

2π

∫ ∞

−∞
dt

∫ ∞

−∞
Ei(r, ω)eiωt dω

= σc

2π

∫ ∞

−∞
Ei(r, ω)2πδ(ω) dω

= σcE i(r, 0)

= 0. (24)

In the third line, δ(ω) is the Dirac delta function. The last step
follows from Eq. (20) and J0(0) = 1. Thus, in each cylindrical
shell of radius r and thickness dr, the induced current aver-
aged over all time is zero. It follows that at each radius the
induced current must change direction with time so that over
the duration of the pulse it averages to zero. However, if the
current passing through the wire changes from one constant
value to a different constant value, then this relation no longer
holds and there is a net induced current at each finite radius of
the wire. This follows directly from integrating Eq. (10) with
respect to t and r:∫ ∞

−∞
{Ei(r, t ) − Ei(0, t )}dt =

∫ ∞

−∞
Ei(r, t )dt

=
∫ r

r′=0
{B(r′,∞)−B(r′,−∞)} dr′.

(25)

The first equality follows because there is no magnetic field at
r = 0 and therefore Ei(0, t ) = 0 at all t . The right-hand side
is zero only if the current flowing in the wire is the same long
before and after the change.

C. Lorentz forces created by a Lorentzian current pulse

To make further progress, we have to choose a functional
form for the pulse Eext (t ). For short pulses where the exter-
nally applied electric field does not reach a constant value for a
large fraction of the pulse duration the choice of the functional
form is largely a matter of mathematical convenience. For
longer pulses, it may be more appropriate to choose a rounded
rectangular form to capture the relatively rapid rise and fall of
Eext (t ).

Since we have short pulses in mind we have chosen a
Lorentzian function:

Eext (t ) = ε

π

p

p2 + t2
, (26)

where 2p is the full width at half maximum of the pulse
and ε/(π p) is its maximum value. Note that the electric field
Eext (t ) rises when t < 0, reaching a maximum at t = 0, and
falls symmetrically when t > 0. In the limit p → ∞, the pulse
broadens into a constant electric field Eext = ε/(π p). Thus,
if ε → ∞ as p → ∞ such that ε/p remains finite Eq. (26)
describes a constant finite electric field Eext = ε/(π p). This
provides a useful check on the results of this Sec. because in
this limit they should reproduce the results of Appendix E.
On the other hand, by taking the limit p → 0 the pulse Eext (t )
becomes εδ(t ). However, this limit violates, our assumption
that the contribution of the term arising from the displacement
current in Eq. (4) can be neglected. Therefore p can be made
small but not zero. The Fourier transform of the pulse is
E ext (ω) = εe−p|ω|.

Inserting the Fourier transform of the Lorentzian into
Eq. (17) and using Eq. (23), we obtain the following expres-
sion for the Fourier transform of the current density due to a
Lorentzian pulse:

j(r, ω) = σcεe−p|ω|J0(i3/2r
√

μσcω). (27)

The current density j(r, t ) is obtained from the inverse Fourier
transform by expanding the Bessel function as an infinite
series, integrating each term and summing the resulting
series:

j(r, t ) = Re

[
σcε

π

∫ ∞

0

∞∑
k=0

(iμσcr2ω/4)k

(k!)2
eω(it−p) dω

]
(28)

= Re

[
σcε

π

1

p − it

∞∑
k=0

(−μσcr2/4

t + ip

)k 1

k!

]
(29)

= Re

[
σcε

π

(p + it )

(p2 + t2)
exp

{−μσcr2(t − ip)

4(p2 + t2)

}]
(30)

= σcε

π

exp[−(μσcr2t/4(p2 + t2))]√
p2 + t2

cos

(
μσcr2 p

4(p2 + t2)
+ tan−1(t/p)

)
. (31)
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TABLE I. Diffusion lengths of nominally pure metals for current pulses with a full width (2p) at half maximum of 60 μs. The electrical
conductivities σc, at 20 ◦C, are from Ref. [22]. For all the metals except iron the magnetic permeability is μ0 = 4π × 10−7 NA−2. For pure
iron the relative magnetic permeability is between 1000 and 1.4 × 106 depending on the heat treatment applied to the sample [23].

Al Au Cu Ti Zn Fe

σc (�−1 m−1) 3.77 × 107 4.26 × 107 5.98 × 107 2.38 × 106 1.69 × 107 1.03 × 107

LD 1.1 mm 1.1 mm 0.89 mm 4.5 mm 1.7 mm 1.8–70 μm

We have verified that Eq. (31) satisfies Eq. (16). It is useful to
introduce the following dimensionless variables:

R = r/LD, (32)

T = t/(2p). (33)

The parameter LD is a characteristic diffusion length that
depends on the electrical conductivity and magnetic perme-
ability of the metal and the duration of the pulse:

LD =
√

2p/(μσc). (34)

LD can be made smaller by decreasing the pulse duration,
subject to the limitation stated above. It is the same as the
skin depth for an alternating current of angular frequency 1/p.
In Table I, we have calculated LD in a variety of pure metals
assuming 2p = 60 μs. Notice the exceptionally small range of
diffusion lengths in iron, which is a consequence of its range
of high magnetic permeabilities.

In terms of the dimensionless variables, j(R, T ) is ex-
pressed as follows:

j(R, T ) = σc
ε

π p

exp [−R2T /(1 + 4T 2)]√
1 + 4T 2

× cos

( R2

2(1 + 4T 2)
+ tan−1(2T )

)
. (35)

In the limit ε → ∞ and p → ∞, such that ε/p remains fi-
nite, Eq. (35) correctly becomes the constant current density
j = σc[ε/(π p)]. If the diffusion length LD is much larger than

FIG. 2. (Left) Plot of the total current density j(R,T ) according to Eq. (35). (Right) Plot of the induced current density ji(R,T ), which
is the difference j(R,T ) − σcEext (T ). The current densities are in units of σcε/(π p).

the radius rm of the wire then the current density becomes
σcEext (t ), independent of position within the wire. This may
be described as the quasistatic limit because the time depen-
dence of the current density is the same as that of the external
electric field. When LD < rm the current density can display a
dependence on position and time which differs markedly from
that of the external electric field. Perhaps the most striking
feature in this limit is the oscillatory dependence of the current
density on position and time, resulting from electromagnetic
induction. These features are displayed in the plot of j(R, T )
in the left panel of Fig. 2. The plot shows a rapid increase in
the peak current density at R > 1, and at R > 2 the rise is
followed by an abrupt reversal of the current before the peak
is reached in the electric field at T = 0. The current flowing in
the wire at T > 0 decreases rapidly at R > 2 even though at
T = 0 the applied electric field is a maximum. The symmetry
of the applied electric field on either side of T = 0 is broken
in the current density except when R 
 1. The panel on the
right of Fig. 2 shows the induced current density ji(R, T ).
According to Eq. (24) the induced current density at each
radius averaged over all time is zero.

The magnetic field B(r, t ) may be found by a similar
set of steps using Eqs. (19), (23) and the Fourier transform
E ext (ω) = εe−p|ω|. The result is as follows:

B(r, t ) = 2ε

πr
exp[−(

μσcr2t/4(p2 + t2)
)
] sin

(
μσcr2 p

4(p2 + t2)

)
,

(36)
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FIG. 3. Plot of the magnetic field B(R,T ) according to Eq. (37).
The magnetic field B is in units of 2ε/(πLD).

B(R, T ) = ε

π p

2p

LD

exp [−R2T /(1 + 4T 2)]

R

× sin

( R2

2(1 + 4T 2)

)
. (37)

In the limit ε → ∞ and p → ∞ such that ε/p remains finite,
Eq. (36) becomes the time-independent magnetic field B(r) =

FIG. 4. Plot of the total current density J as a function of Rm

and T according to Eq. (40). The total current density is in units
of σc(ε/(π p)). Note the increasing departure with increasing Rm of
the total current density from the Lorentzian form, σcEext (t ), seen at
Rm = 0.

μ jr/2, where j = σcε/(π p), in agreement with Eq. (E1).
Figure 3 shows a plot of the magnetic field B(R, T ).

The total current density J (t ) is related to the magnetic
field at r = rm through Ampère’s law:

J (t ) = 1

πr2
m

∫ rm

0
2πr j(r, t )dr = 2

rm

B(rm, t )

μ
(38)

= 2σc
ε

π p

2p

μσcr2
m

exp
[ − (

μσcr2
mt/4(p2 + t2)

)]
sin

(
μσcr2

m p

4(p2 + t2)

)
, (39)

J (T ) = 2σc
ε

π p

exp
[ − R2

mT /(1 + 4T 2)
]

R2
m

sin

( R2
m

2(1 + 4T 2)

)
, (40)

where Rm = rm/LD. In the limit ε → ∞ and p → ∞ such that ε/p remains finite, J (t ) becomes the constant current density
σc[ε/(π p)]. In the limit Rm → 0, the total current density becomes J (t ) = σcEext (t ). It follows from Eq. (24) that the integral of
the total current density J (t ) over all time is determined by σcEext (t ) only∫ ∞

−∞
J (t )dt = σcε. (41)

The total amount of electronic charge flowing through the wire is a constant Q = πr2
mσcε, irrespective of the width 2p of the

pulse, because the contributions of the induced currents average to zero. If Q is the total charge stored in a bank of capacitors,
the discharge of which provides the current pulse, then this relation may be taken as a definition of ε:

ε = Q

πr2
mσc

= Qκ. (42)

In this equation, we see that ε is dependent on the resistance per unit length, κ , of the wire as well as the charge Q stored in the
bank of capacitors. Electromagnetic induction changes the rate and even the direction of the net flow of electronic charge in a
complex manner that depends on the radius and time. At each radius the induced current must reverse the direction of its flow at
certain times to satisfy Eq. (24). In Fig. 4, we plot J (T ) given by Eq. (40) as a function of Rm and T .

Using Eqs. (9), (31), and (36), we obtain the following expression for the Lorentz force due to the Lorentzian pulse:

fL(r, t ) = −σcε
2

π2r

exp [−μσcr2t/(2(p2 + t2))]√
p2 + t2

(
sin

[
μσcr2 p

2(p2 + t2)
+ tan−1

(
t

p

)]
− t√

t2 + p2

)
r̂, (43)

= −σc(ε/π p)2

2
2p

1

LD

exp [−2R2T /(1 + 4T 2)]

R
√

1 + 4T 2

(
sin

( R2

(1 + 4T 2)
+ tan−1(2T )

)
− 2T√

1 + 4T 2

)
r̂. (44)
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FIG. 5. Plot of the Lorentz force fL (R,T ) in a cylindrical wire
due to a current pulse according to Eq. (44). The Lorentz force fL is
in units of (σc(ε/π p)2/2)2p/LD.

In this equation, we see the Lorentz force per unit volume
is proportional to σc(ε/π p)2/2 × 2p divided by the diffusion
length LD. In the limit ε → ∞ and p → ∞ such that ε/p
remains finite the Lorentz force becomes μ j2r/2, where j =
σc[ε/(π p)], in agreement with Eq. (E2). Figure 5 is a plot of
the Lorentz force according to Eq. (44). Once again we see
a steep rise with increasing R. At R = 3, the Lorentz force
changes sign before T = 0.

The stresses created by these Lorentz forces are calculated
in the next section.

D. Time-dependent stress field created by a
Lorentzian current pulse

It was shown in Sec. IV B that the Lorentz forces on con-
duction electrons are transmitted to ions as body forces. They
create stresses which vary with time, because the Lorentz
forces are also time dependent. This raises the question of
whether the stresses should be calculated elastodynamically,
that is whether an inertia term should be included in Eq. (E5).

The stresses are radial and azimuthal and they create longitu-
dinal elastic waves that propagate radially at a speed cl . The
duration of the Lorentzian pulse is approximately 2p and the
distance traveled by a longitudinal wave in this time is 2cl p.
Since cl is of order 103 ms−1 and 2p is of order 10−4 s, then
2cl p is of order 10 cm. This is much larger than the radii of the
wires considered experimentally. It is therefore unnecessary to
include inertia terms in the calculation of the elastic response
of the wire to the Lorentz forces. The duration of the pulses
would have to be about 1 μs, or rm would have to be larger
than ≈ 10 cm, for an elastodynamic treatment to be necessary.

We calculate the elastic displacement field u(r, t ) using
Eq. (E5) but with the Lorentz force −μ j2

0 r/2 replaced by the
Lorentz force fL(r, t ) of Eq. (43):

u′′ + u′

r
− u

r2
= − (1 − 2ν)

2(1 − ν)

fL(r, t )

Gm
. (45)

The boundary conditions are that the radial displacement is
zero at r = 0 and σrr (rm, t ) = 0 for all t . The solution may be
expressed in terms of the time-independent Green’s function
G(r, r1) of the differential equation:

u(r, t ) = − (1 − 2ν)

2(1 − ν)

1

Gm

∫ rm

r1=0
G(r, r1) fL(r1, t ) dr1. (46)

where the Green’s function is constructed to satisfy the two
boundary conditions. The Green’s function is as follows:

G(r, r1)=
{

− 1
2

(
(1 − 2ν)rr2

1/r2
m + r2

1/r
)

0 � r1 � r � rm

− 1
2

(
(1 − 2ν)rr2

1/r2
m + r

)
0 � r � r1 � rm

.

(47)

We have verified that when this Green’s function is inserted
in the integral in Eq. (46) with the Lorentz force −μ j2

0 r/2 the
displacement field reproduces the solution given in Eqs. (E6)
and (E7) for a constant current flowing. The strains err (r, t ) =
u′(r, t ) and eφφ = u(r, t )/r are substituted into Hooke’s law of
Eq. (E4) to obtain the following expressions for the stresses
induced in the wire by the current pulse:

σrr (r, t ) = −
∫ rm

r1=0

∂G(r, r1)

∂r
fL(r1, t )dr1 − ν

1 − ν

1

r

∫ rm

r1=0
G(r, r1) fL(r1, t ) dr1, (48)

σφφ (r, t ) = − ν

1 − ν

∫ rm

r1=0

∂G(r, r1)

∂r
fL(r1, t )dr1 − 1

r

∫ rm

r1=0
G(r, r1) fL(r1, t ) dr1, (49)

σzz(r, t ) = − ν

1 − ν

∫ rm

r1=0

(
1

r
G(r, r1) + ∂G(r, r1)

∂r

)
fL(r1, t ) dr1. (50)

We shall now give the full expressions for these stresses and plot them. We obtain the following expression for σzz in terms
of the dimensionless variables R = r/LD, Rm = rm/LD, and T = t/(2p):

σzz(R, T )

[σc(ε/π p)2 p]
= − ν(1 − 2ν)

1 − ν

1

R2
m

sin2

(
R2

m

2(1 + 4T 2)

)
exp

[
− 2R2

mT
1 + 4T 2

]

− ν

2(1 − ν)

1

(1 + 4T 2)

[
Re

{
(2T + i)Ei

( −R2
m

2T − i

)}
− 2T Ei

(−2T R2
m

1 + 4T 2

)

−Re

{
(2T + i)Ei

( −R2

2T − i

)}
+ 2T Ei

( −2T R2

1 + 4T 2

)]
, (51)
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FIG. 6. Views of the stress component σzz(R,T ), given by Eq. (51), for the dimensionless radius 0 � R � 3 and the dimensionless time
−2 � T � 1 with Rm = 3 and ν = 1/3. (Left) View from the surface of the wire (at R = Rm = 3) looking towards the center (at R = 0).
(Right) Side view with the wire center on the left and the wire surface on the right. σzz is expressed in units of σc(ε/π p)2 p = Q2/(π 4r4

mσc p).

where Ei(ζ ) is the exponential integral function:

Ei(ζ ) = −P
∫ ∞

−ζ

e−t

t
dt (52)

and P denotes the principal value. If σzz(R, T ) is expanded to
lowest order in R and Rm it should reduce to the stress σzz

of Eq. (E10) when there is a constant direct current density.
It may be verified that this is the case if j0 of Eq. (E10) is
identified with the maximum current density delivered by the
pulse, which is equal to σcε/(π p) and which occurs when t =
T = 0. This provides some confidence in Eq. (51). The unit
of stress in Eq. (51) and subsequent stresses is σc(ε/π p)2 p =
Q2/(π4r4

mσc p), where we have used Eq. (42).
Figure 6 shows a plot of σzz(R, T ) in a wire with Rm = 3

and ν = 1/3. As in earlier plots, it is seen in the left-hand
image that most of the interesting features occur when t � 0.
The stress is predominantly compressive, as seen in the im-
age on the right. The requirement that the radial stress σrr

is zero at the surface (at R = Rm = 3) at all times has a
marked influence on σzz. The current density σcε/π p may
be identified with the peak current density only in the limit

of Rm < 1. When Rm > 1, it is more useful to express
σcε/π p in terms of the total charge Q flowing through the
wire during the pulse, using Eq. (42): σcε/π p = Q/(π2r2

m p).
For a current pulse with p = 30 μs, Q = 7 C (correspond-
ing to charging a 10 mF capacitor bank to 700 V), in a
copper wire with ν = 1/3, and rm = 2.7 mm (correspond-
ing to Rm = 3), we find Q/(π2r2

m p) ≈ 3 × 109 A m−2, the
maximum compressive stress σzz is around 32 MPa. If rm =
0.5 mm, corresponding to Rm = 0.6 and Q = 0.2 C so that
Q/(π2r2

m p) is again 3 × 109 A m−2, the maximum compres-
sive stress decreases to approximately 0.4 MPa, in agreement
with the estimate in Sec. E.

Consider a wire of BCC iron (ν ≈ 0.3) with a radius of
0.3 mm, the same value of Q/(π2r2

m p), and assuming the most
conservative value for LD of 70 μm, we obtain Rm = 4.3.
The stress σzz changes from compression to tension twice and
then returns to compression again in less than 60 μs. The
maximum compressive stress is approximately 9 GPa and the
maximum tensile stress is approximately 1 GPa. This demon-
strates the strong effect of a large magnetic permeability on
the induced stresses.

The radial stress σrr (R, T ) is similarly expressed as fol-
lows:

σrr (R, T )

[σc(ε/π p)2 p]
= 1 − 2ν

2(1 − ν)

[
1

R2
sin2

( R2

2(1 + 4T 2)

)
exp

(
− 2R2T

1 + 4T 2

)
− 1

R2
m

sin2

( R2
m

2(1 + 4T 2)

)
exp

(
− 2R2

mT
1 + 4T 2

)]
− 1

4(1 − ν)

1

(1 + 4T 2)

[
Re

{
(2T + i)Ei

( −R2
m

2T − i

)}
− 2T Ei

(−2T R2
m

1 + 4T 2

)
−Re

{
(2T + i)Ei

( −R2

2T − i

)}
+ 2T Ei

( −2T R2

1 + 4T 2

)]
. (53)

Figure 7 shows plots of σrr (R, T ), assuming ν = 1/3 and Rm = 3. It is quite similar to σzz(R, T ), as expected, but
σrr (R, T ) = 0 at all times at the surface of the wire as required by the boundary condition. Equation (53) reduces to Eq. (E8) in
the limit of small R and Rm provided j0 is identified with σcε/(π p) and T is set to zero.
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FIG. 7. Views of the stress component σrr (R,T ), given by Eq. (53), for the dimensionless radius 0 � R � 3 and the dimensionless time
−2 � T � 1, with Rm = 3 and ν = 1/3. (Left) View from the wire surface (R = 3) looking towards the center of the wire (R = 0). (Right)
Side view with the wire center on the left and the wire surface on the right. σrr is expressed in units of σc(ε/π p)2 p = Q2/(π 4r4

mσc p).

The hoop stress σφφ is as follows:

σφφ (R, T )

[σc(ε/π p)2 p]
= − 1 − 2ν

2(1 − ν)

[
1

R2
sin2

( R2

2(1 + 4T 2)

)
exp

(
− 2R2T

1 + 4T 2

)
+ 1

R2
m

sin2

( R2
m

2(1 + 4T 2)

)
exp

(
− 2R2

mT
1 + 4T 2

)]
− 1

4(1 − ν)

1

(1 + 4T 2)

[
Re

{
(2T + i)Ei

( −R2
m

2T − i

)}
− 2T Ei

(−2T R2
m

1 + 4T 2

)
−Re

{
(2T + i)Ei

( −R2

2T − i

)}
+ 2T Ei

( −2T R2

1 + 4T 2

)]
. (54)

We have verified that Eqs. (51), (53) and (54) satisfy
σzz(R, T ) = ν[σrr (R, T ) + σφφ (R, T )], as required in plane
strain. Equation (54) reduces to Eq. (E9) in the limit of small
R and Rm provided j0 is identified with σcε/(π p) and T is

set to zero. Figure 8 shows a plot of σφφ (R, T ) according to
Eq. (54).

As we have the full stress tensor induced by the current
pulse it is possible to calculate the von Mises shear stress

FIG. 8. Views of the stress component σφφ (R,T ), given by Eq. (54), for the dimensionless radius 0 � R � 3 and the dimensionless time
−2 � T � 1, with Rm = 3 and ν = 1/3. (Left) View from the wire surface (R = 3) looking towards the surface of the wire (R = 0). (Right)
Side view with the wire center on the left and the wire surface on the right. σφφ is expressed in units of σc(ε/π p)2 p = Q2/(π 4r4

mσc p).
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FIG. 9. Plot of the von Mises shear stress, given by Eq. (55),
assuming ν = 1/3 and Rm = 3. The von Mises stress is expressed
in units of σc(ε/π p)2 p = Q2/(π 4r4

mσc p).

invariant. It is plotted in Fig. 9. The von Mises stress is defined
as follows:

σvM = 1√
2

√
(σzz − σrr )2 + (σrr − σφφ )2 + (σφφ − σzz )2.

(55)

The root mean square shear stress averaged over all planes
is equal to

√
2/15 σvM [24]. The shear stresses (σzz − σφφ )/2

and (σzz − σrr )/2 are plotted in Fig. 10. They act on planes
inclined at 45◦ to the wire axis and they promote disloca-
tion glide. When the magnitude of these shear stress pulses
is sufficient to liberate dislocations from pinning centers
we suggest this is the mechanism by which current pulses
lead to the enhanced plasticity observed in the electroplastic
effect.

VI. DISCUSSION AND CONCLUSIONS

Each of the four mechanisms of the electroplastic effect
discussed in Appendices B–E assumes the pulsing of the
current plays no role other than to minimize Joule heating.
Consequently, each of these mechanisms is equally applicable
to a continuous direct current as to a pulsed direct current.
In contrast, the focus of this paper has been the influence
of pulsing the current on the generation of stresses resulting
from electromagnetic induction. Glide of dislocations and
liberation of dislocations from pinning points requires appro-
priate stresses. With intense current pulses lasting between 10
and 100 μs there is the possibility of larger stresses created
by electromagnetic induction than those arising when the
current is continuous. Our thinking was inspired in part by
the technology of electromagnetic forming (for a review see
Ref. [25]). In this technology magnetic fields associated with
pulses of large current densities in a solenoid induce currents
in a workpiece. As first demonstrated by Kapitza [26] almost
a century ago, the induced currents flowing in the workpiece
in the magnetic field of the adjacent solenoid create forces
in the workpiece which deform it plastically at a high strain
rate. The question we addressed in this paper is whether the
currents induced by the temporal variation of the magnetic
field inside the wire can generate stresses significantly above

those of a continuous current. The short answer is yes under
certain conditions.

The parameter LD = √
2p/(μσc) is the characteristic

length in the vector diffusion equation, Eq. (6), governing
the evolution in space and time of the current density in an
infinitely long, homogeneous, cylindrical wire of radius rm.
The same vector diffusion equation applies to the induced
electric field and the magnetic field. The parameter LD is the
same as the skin depth of a conductor carrying an alternating
current of angular frequency 1/p. When Rm = rm/LD is less
than 1 the effects of electromagnetic induction of the current
density are small. The current density is then adequately de-
scribed by j(r, t ) = σcEext (t ), i.e., the radial dependence is
negligible. The dynamic pinch effect is then virtually indistin-
guishable from the static pinch effect. The condition Rm > 1
encapsulates when the effects of electromagnetic induction
are significant. Larger values of Rm arise when the wire radius
rm increases, the pulse width 2p decreases, or the wire has a
larger electrical conductivity σc or larger magnetic permeabil-
ity μ.

The question arises whether Rm can be varied without af-
fecting the unit of stress in which all the stress components are
expressed. This is answered most simply by rewriting the unit
of stress, σc(ε/π p)2 p, as Q2/(π4r4

mσc p), using Eq. (42). Since
Rm = rm

√
μσc/(2p) the only way to change Rm without af-

fecting the unit of stress is to vary the magnetic permeability
because the unit of stress is independent of μ. However, it
is difficult in practice to vary the permeability without also
affecting the conductivity. Nevertheless μ can be varied by
alloying and/or heat treatment [23], while adjusting Q to
compensate for the change in σc to maintain the unit of
stress constant. This would permit an experimental test of the
predicted strong dependence of the stress drops on magnetic
permeability.

Figure 3 of Okazaki et al. [10] shows the stress drops as
a function of current density in 99.9% iron wires of 0.35 mm
diameter and in 99.97% titanium wires of diameters 1.31 and
1.36 mm diameter. They found the stress drops in the iron
wire are about an order of magnitude greater than in the tita-
nium wires at current densities between 5 × 108 and 10 × 108

A m−2. This observation is consistent with the smaller value
of LD in iron compared with titanium, raising the value of Rm

in the iron wire despite the smaller value of rm. Such a large
difference between the stress drops in iron and titanium cannot
be explained by any other proposed mechanism.

For a given metal the static pinch effect predicts, at constant
current density, that the average stress 〈σzz〉is proportional to
r2

m. The dynamic pinch effect predicts a much stronger depen-
dence of the peak stress on rm as Rm increases above one,
while maintaining the unit of stress Q2/(π4r4

mσc p) constant.
This can be tested experimentally.

The Lorentz force on conduction electrons is conveyed as a
body force to the ions of the crystal lattice by the electron-ion
interaction. This body force generates mechanical stresses
through the equation of mechanical equilibrium, Eq. (E3).
Pulsing the current creates body force pulses, which in turn
generate elastic waves. Mechanical vibrations have been de-
tected experimentally by applying piezoelectric sensors to the
surface of solid cylindrical or tubular conductors subjected to
current pulses [27].
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FIG. 10. Shear stress components (σzz(R,T ) − σrr (R,T ))/2 (left) and (σzz(R,T ) − σφφ (R,T ))/2 (right) for the dimensionless radius
0 � R � 3 and the dimensionless time −2 � T � 1, with Rm = 3 and ν = 1/3. The stresses are expressed in units of σc(ε/π p)2 p =
Q2/(π 4r4

mσc p).

The assumption of a homogeneous wire was necessary
to be able to solve the equations analytically. In practice
there are bound to be microstructural inhomogeneities, from
point defects to precipitates, dislocations, slip bands, twins
and grain boundaries. These features will affect the distribu-
tion of the current density and hence the magnetic field and
Lorentz forces. The assumption of elastic isotropy is also an
approximation in all metals, although pure tungsten is very
close to being isotropic elastically. In elastically anisotropic
polycrystalline wires, current pulses may well create transient
compatibility stresses at grain boundaries, in addition to and
comparable to the transient stresses created directly by current
pulses.

Finally, we note that the stresses we have calculated in this
paper provide a mechanism of current-induced mass transport
separate from and in addition to the usual mechanism of
electromigration. Gradients in elastic strains associated with
spatially varying current-induced stresses give rise to addi-
tional forces on point defects through the interaction with
their dipole tensors [24]. Whereas the origin of this force is
long range, spatially varying elastic fields, the origin of the
electromigration force is local, arising from the self-consistent
redistribution of electronic charge at the point defect in the
presence of the current [28–31].

In conclusion, we contend that significantly larger tran-
sient stresses can be generated by pulsing a current than the
constant stresses arising when the current is constant in time.
The effect of pulsing the current becomes significant when
Rm > 1, most notably when the current changes rapidly and
in larger samples and in magnetic materials. We suggest that
these transient stresses are responsible for the stress drops
observed when the metal wire is stretched elastically. They
also alter the stress-state of the metal when it is deforming
plastically, although the response of the metal is then more
complex. The shape of the current pulse is important because
it determines how rapidly the current rises and falls. For
example, in an applied current pulse that approximates to a
square wave, the steep rise and fall of the applied current may
lead to much larger induced currents than the maximum of the
applied current. The induced currents change direction during
an applied current pulse, such that their average over time is
zero. However, the Lorentz body forces and the stresses they

create are independent of the direction of the induced currents
and they remain finite.

After completing this research we became aware of a short
paper by Bataronov and Roshchupkin [32] which also con-
sidered a dynamic version of the pinch effect as a possible
explanation of electroplasticity. Their theory is also men-
tioned in Ref. [33]. Although the basic idea appears to be the
same their mathematical analysis is completely different. The
expression they state for the induced current density during a
current pulse does not appear to satisfy our Eq. (24). We do
not understand their analysis.
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APPENDIX A: LIST OF SYMBOLS

List of symbols

A magnetic vector potential
α(ω) amplitude of j(r, ω)
b Burgers vector
B magnetic field
B coefficient of dislocation drag
Be electronic contribution to coefficient of dislocation drag
Bp phonon contribution to coefficient of dislocation drag
B(r, ω) Fourier transform of B(r, t )
c speed of light
cl speed of longitudinal elastic waves
C1,C2 arbitrary constants of integration
δ(ω) Dirac delta function
δρ0 charge density associated with Hall electric field
�σ stress drop
E Hall electric field
e electronic charge
e linear elastic strain tensor
ε parameter in Lorentzian pulse controlling its maximum

for a given value of p
ε0 permittivity of free space
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(Continued.)

List of symbols

Eext externally applied electric field
E ext (ω) Fourier transform of Eext (t )
Ei induced electric field
Ei(r, ω) Fourier transform of Ei(r, t )
E i(ω) Fourier transform of induced electric field averaged over

all radii
Ei exponential integral function
φ the azimuth in the cylindrical coordinate system
fc force on a dislocation due to interaction with conduction

electrons
Fe net force per unit volume on conduction electrons
FB

e force per unit volume on conduction electrons due to the
magnetic field

FE
e force per unit volume on conduction electrons due to the

applied electric field and the Hall field
Fi

e electrostatic force per unit volume on conduction
electrons due to ions

fL Lorentz force per unit volume
fPK Peach-Koehler force per unit length on a dislocation
Gm elastic shear modulus
G(r, r1) Green’s function for Eq. (45)
j current density
J (t ) current density averaged over all radii
J (ω) Fourier transform of current density averaged over all

radii
j0 constant current density
j(r, ω) Fourier transform of j(r, t )
J0 Bessel function of the first kind of order zero
J1 Bessel function of the first kind of order one
ji(r, t ) induced current density at radius r and time t
λ Lamé’s first elastic constant
LD diffusion length
λω diffusion length associated with angular frequency ω

μ permeability
μ0 permeability of free space
μr relative permeability
n number of conduction electrons per unit volume
ν Poisson’s ratio
p half-width at half maximum of Lorentzian pulse
Q total amount of electronic charge flowing through the

wire in one current pulse
r radial coordinate of the cylindrical coordinate system
R dimensionless radius r/LD

rm radius of cylindrical wire
ρ0 ionic charge density
Rm maximum value of R equal to rm/LD

σ elastic stress tensor
σc electric conductivity
σ f flow stress
σvM von Mises shear stress invariant
T dimensionless time t/(2p)
τe charge relaxation time of conduction electrons
tp duration of current pulse
u radial elastic displacement
vd speed of dislocation
ve drift speed of conduction electrons
ξ̂ direction of dislocation line
z coordinate along the axis of the straight cylindrical wire

APPENDIX B: DISLOCATION UNPINNING IN A
MAGNETIC FIELD

Dislocations may be pinned by each other through forest
interactions or by impurities, surfaces, voids, grain boundaries
and precipitates. Molotskii and coworkers proposed that the
magnetic field of an electric current may enable the release of
dislocations from pinning centers thereby increasing plastic
strain [13,17–19]. During an experimental test in which the
sample is strained at a constant rate the unpinning of disloca-
tions will result in a reduction �σ of the flow stress σ f .

It appears the pulsing of the current plays no role in this
mechanism, other than to minimize the degree of Joule heat-
ing. Before we discuss the physical basis of the mechanism
proposed by Molotskii et al. we note three of its key features.
(1) The mechanism applies to dislocations with arbitrary
Burgers vectors and line directions. It enables dislocations
to move both with and against the current. (2) The effect of
the current on plasticity is dependent on the thermal and me-
chanical history of the sample, because its history determines
the degree of dislocation pinning. (3) Since the mechanism is
centered on the unpinning of dislocations it does not apply to
the stress drops that have been observed when the sample is
deforming purely elastically.

The mechanism proposed by Molotskii and coworkers for
the unpinning of dislocations by the magnetic field of the
current is as follows. It is assumed that ‘dangling bond’ states
exist in dislocation cores in metals. Point defects are also as-
sumed to exist in the metal such as transition metal impurities
and vacancies as well as forest interactions between disloca-
tions. These defects are assumed to be paramagnetic centers
with unpaired electron spins. When these paramagnetic point
defects are located in the dislocation core they form singlet
bonding states or triplet antibonding states with the dangling
bonds on metal atoms in the core. If they form singlet bonding
states it is more difficult to move the dislocation because they
have to move with the core. The dislocation is then pinned.
The magnetic field of the current is assumed to favor the triplet
states, and since they are antibonding the dislocation is able
to escape from the pinning defect. The dislocation is then
unpinned. As noted by Molotskii [19], the mechanism can be
invoked only when the bond between the dislocation and the
point defect is on the verge of breaking. The magnetic field
by itself cannot break the bond because that would require an
energy of order 0.1–1 eV. Although the energy of flipping a
spin by the magnetic field is three to four orders of magnitude
smaller than this bond energy, and two to three orders of mag-
nitude smaller than a thermal fluctuation at room temperature,
once the spin is flipped the bond cannot be reformed.

It is instructive to compare the mechanism proposed by
Molotskii et al. to the “radical pair mechanism” invoked to
explain the effect of magnetic fields on the rates of chemical
reactions in which saturated bonds in molecules are broken
[34]. A saturated bond contains two electrons with opposite
spins. In the radical pair mechanism when a saturated bond
is broken, for example, by an incoming photon, a pair of
radicals is produced in which the two electrons retain their
opposite spins forming an entangled singlet state. In this state,
the saturated bond can be easily reformed by the radicals
coming together again. However, if the spin of the unpaired
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electron in one of the radicals is flipped by a magnetic field the
probability of the bond being reformed is much reduced. That
is because one of the spins would have to be flipped again to
form a bonding rather than an antibonding state. In this way,
the magnetic field can increase the rate of production of the
free radicals. Note that in this mechanism the bond is broken
by a photon with an energy of order 1 eV. The role of the
magnetic field is only to reduce the probability of the bond
being reformed, not to break the bond.

In tetrahedrally bonded silicon, which is an insulator at
absolute zero, each bond is saturated. Dangling bonds can
occur in dislocation cores in the crystalline state, but they are
rare because the core reconstructs so that each silicon atom is
fourfold coordinated. However, incompatibilities between dif-
ferent reconstructions meeting along the same dislocation line
can lead to dangling bond states being formed with energies
in the band gap [35]. The dangling bond can contain 0, 1 or 2
electrons depending on the position of the Fermi level in the
band gap. Thus “dangling bond” states of the type envisaged
by Molotskii and coworkers can exist in dislocation cores in
silicon.

In contrast to tetrahedrally bonded silicon the bonds in a
metal are unsaturated, i.e., they each contain less than two
electrons. As a result metallic bonding is more delocalized,
and it is more affected by the positions of neighboring atoms.
When we speak of a bond between two atoms in a metal being
broken it is a more delocalized event and less obvious than
when the bonding is saturated. Breaking the bond means the
two atoms concerned have separated to the point that the bond
order between them has become insignificant. However, that
does not result in the formation of two radicals, each contain-
ing one electron, localized on the atoms that were previously
bonded. Instead, the local densities of states of the two atoms
that were bonded, and their neighbors, all adjust to the local
change in coordination numbers of the two atoms concerned.
As a result there are states which are predominantly weighted
along the dislocation core, but electrons in these states are able
to leave the core and diffuse into the bulk of the metal. They
are virtual bound states rather than bound states. This picture
is supported by detailed electronic structure calculations of
dislocations in metals and alloys, see, for example, Ref. [36].

For a bound state to exist on a nonmagnetic atom in a
metal, it must have an energy outside the conduction band of
the metal. Only then can it be decoupled from the itinerant
states of the metal. Since the conduction band has no upper
limit it must have an energy between the conduction band and
the atomic core states of the metal. However, it will then be
occupied by two electrons and unable to bond to another atom.

The Anderson model [37] treats the theory of a param-
agnetic impurity atom, such as a transition metal atom, in a
nonmagnetic metal. Under conditions identified in Anderson’s
model, the impurity may exist in a localized paramagnetic
state within the conduction band of the metal, but the magnetic
polarization is generally nonintegral owing to the interaction
with conduction electron states of the metal. It is then also in
a virtual bound state.

A dangling bond state comprising an unpaired electron
confined to a single atom is not a valid concept in a metal.
Although the degree of electron localization envisaged by
the Molotskii-Fleurov mechanism exists when bonds are

saturated, as in silicon, it does not exist in a metal. The theory
does not have a sound foundation in metal physics.

APPENDIX C: ELECTROMIGRATION OF DISLOCATIONS

In the absence of a current, it has been established exper-
imentally that conduction electrons in a metal exert a drag
force on moving dislocations. The most convincing experi-
mental evidence comes from measurements made at liquid
helium temperatures where phonon drag becomes negligible
and drag due to electrons dominates. Kojima and Suzuki [38]
found the flow stresses of superconducting niobium and lead
increase at the transition between superconducting and normal
states. The transition was induced by the application of a
magnetic field at 4.2 K. The ratio of the increment to the
flow stress in the superconducting state was 2.9% in lead and
0.6% in niobium. In the superconducting state, electron drag
is quenched, and it appears only in the normal state. There
is experimental evidence that screw dislocations experience
a smaller electron drag force at a given speed than edge
dislocations [39]. One source of electron drag is the atomic re-
structuring in the core as a dislocation glides, which generates
electron-hole pairs in the vicinity of the Fermi energy, thereby
dissipating energy. Electron-hole pairs are also created by the
motion of the scattering potential the dislocation represents
for conduction electrons.

The relation between the drag force F per unit length on
a dislocation and its speed vd , at low speeds where inertial
effects are negligible, is usually expressed as F = Bvd . The
drag coefficient B is usually expressed as Be + Bp where Be

is the electron contribution and Bp is the phonon contribu-
tion. The electron contribution dominates only at cryogenic
temperatures. Experiments by Hikata et al. [40] found, at
temperatures below 40 K, the drag coefficient of dislocations
in aluminum is approximately constant at 1.4 × 10−6 sPa.
They also found that above 40 K the drag coefficient increases
with temperature due to phonon drag.

Viewed in the frame of a dislocation moving through the
metal, there is a current of conduction electrons moving past
it in the opposite direction. In this reference frame, the drag
force is seen as a ‘pushing force’ acting on a stationary dis-
location in the direction of an electron current flowing past
it. Antolovich and Conrad [4] identified this pushing force
as a current-induced force that leads to electromigration of
a stationary dislocation immersed in an electron current. Fol-
lowing earlier work by Kravchenko [41], Klimov et al. [42]
and Roshchupkin et al. [43] these authors expressed the force
per unit length fc on a dislocation due to interactions with
electrons as follows:

fc = Be(ve − vd ), (C1)

where ve is the electron drift speed. If the dislocation is sta-
tionary fc is the current-induced force Beve. If it is moving
at the same speed as the drift speed of the electrons there is
no current-induced or electron drag force acting on it. If it is
moving faster than the electron drift speed it experiences a
drag force.

The electron drift speed is related to the current density, j,
by ve = j/ne. Therefore, using the above measured value of
the electron drag coefficient for aluminum, Be = 1.4 × 10−6
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sPa, and a current density of j = 1010 A m−2, we obtain the
current-induced force per unit length on a stationary dislo-
cation Fe = 4.8 × 10−7 N m−1. Equating this force per unit
length to an equivalent shear stress acting on the dislocation,
multiplied by its Burgers vector, we find it is equivalent to a
shear stress of 1.7 kPa. Even if Be were two orders of magni-
tude larger, the equivalent stress would be only a little more
than atmospheric pressure. These stresses are too small to
make a sufficient difference to plastic deformation to explain
the stress drops observed during electropulsing experiments.

In the remainder of this Sec. we will argue the following
points. (1) The above reasoning that led to the estimate for
the current-induced force per unit length on a stationary dis-
location is flawed. (2) If there is a current-induced force on
a dislocation it is not the “electron wind force.” The current
must generate a force dipole on a dislocation to make it glide.
(3) If electromigration of dislocations exists it cannot explain
the stress drops observed by electropulsing because it does not
bring about a change of plastic strain.

1. The breakdown of the argument based on the equivalence
of the crystal and dislocation rest frames

Equation (C1) is based on changing rest frames between
that of the crystal and a moving dislocation. It assumes the
atomic structures of a static dislocation and a dislocation in
motion are equivalent. They are equivalent only if a disloca-
tion in motion is a rigidly displaced exact copy of a static
dislocation. That is unlikely ever to be true. For example,
dislocation motion may involve the creation and motion of
kinks. Nonplanar static dislocation cores may have to trans-
form into planar cores before they can glide. However, even if
the core is planar and lying in the slip plane, as in aluminum
and most other FCC metals, it is still not true. To see this con-
sider a gliding edge dislocation with a planar core. Imagine a
Maxwell demon sitting on an atom in the row terminating the
extra half-plane. In the rest frame of the dislocation the demon
swings backwards and forwards every time the dislocation
advances by one atomic spacing along the slip plane. The
swings are associated with breaking one bond and forming
another with atoms on the other side of the slip plane. The
amplitude of the swings decreases as the width of the core
increases because more atoms undergo smaller movements
to effect the relative displacement by the Burgers vector on
either side of the slip plane. Since a gliding dislocation is
very unlikely to be a rigid displacement of a static dislocation
there is no justification for Eq. (C1). The above estimate of
the current-induced force using the electron drag coefficient
is therefore without foundation.

2. The nature of current-induced forces on dislocations
Our view of current-induced forces on a defect is based on

the modern theory of electromigration [28–31]. To illustrate
the modern theory consider an isolated point defect in a large
metal crystal. We assume the crystal is in a fully relaxed
configuration before a constant current is passed through the
crystal. Current-carrying electrons are scattered by the point
defect and atoms close to it. The scattering redistributes elec-
tronic charge around the point defect. In the steady state, the
charge redistribution is self-consistent with the total potential
acting on the electrons. The current-induced force on the
point defect is then exactly equal to the charge of its nucleus
multiplied by the self-consistent electric field at its nucleus.

For a scatterer in a free-electron gas, the current-induced
force is identically equal to the rate of momentum transfer
from the electrons. This force is often called the electron-wind
force. For a point defect in a crystalline metal the picture is
more complicated, because electrons are scattered not only by
the point defect but also by surrounding atoms. For interacting
electrons it has been shown that there are counter-balancing
forces distributed on the surrounding atoms whose sum is
equal and opposite to the force on the point defect itself [20].
As a result of these counter-balancing forces the current does
not exert a net force on the metal in the steady state. This is
discussed further in Sec. IV.

There is also a distribution of forces imparted to atoms in
a dislocation by current-carrying electrons. By summing the
forces on atoms in the dislocation core we obtain a current-
induced force on the dislocation. In a free-electron model,
this would be the wind force. However, this force cannot
make a dislocation glide because it is a force monopole by
construction. It will only strain the region around the dislo-
cation elastically. That is because the mechanism by which
a dislocation glides involves shear on its slip plane. For a
dislocation to be induced to glide, there must be a shear stress
resolved on its slip plane in the direction of its Burgers vector.
To generate a shear stress there must be current-induced forces
with components parallel and antiparallel to the Burgers vec-
tor on either side of the slip plane, forming a dipole of forces.
If such a current-induced shear stress is generated it can be
substituted into the Peach-Koehler formula to calculate the
current-induced force per unit length on the dislocation. The
Peach-Koehler formula is as follows:

fPK = (σb) × ξ̂, (C2)

where the current-induced force per unit length acting on the
dislocation is now identified with the Peach-Koehler force
arising from the current-induced stress tensor, σ. The Burgers
vector is b and ξ̂ is the direction of the dislocation line.

A resolved shear stress may be generated at an edge dislo-
cation by a current, as illustrated in Fig. 11. At the terminating
half-plane of the dislocation atoms are closer together than
in the bulk, so the current flows more easily between them,
creating an electrostatic dipole as shown in the figure. Beneath
the terminating half plane atoms are further apart and the cur-
rent flows less easily between them creating an electrostatic
dipole in the opposite sense. The quadrupolar distribution of
potential creates a dipole of forces across the slip plane, and
hence a shear stress on atoms in the dislocation core. The
current-induced shear stress in Fig. 11 drives the dislocation
in the same direction as the electron current flow.

It is less clear that such a dipolar distribution of forces
can be created at a screw dislocation, which suggests it will
probably experience a smaller current-induced force than an
edge dislocation.

3. Electromigration of dislocations does not increase plastic
strain

Consider the edge dislocation depicted in Fig. 11. If we
rotate the crystal by 180◦ about the dashed line the extra half
plane is below the slip plane and the signs of the dipoles
above and below the slip plane are reversed. This reverses the
stress σ acting on the dislocation. The line direction ξ̂ of the
dislocation is also reversed by this operation, but the Burgers
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FIG. 11. Sketch to illustrate a current-induced electrostatic
quadrupole at an edge dislocation. The large arrows show an incident
electron current of density j from the left. The red (blue) atoms
signify a higher (lower) electrostatic potential for electrons. The
quadrupole generates forces, shown by small arrows, on atoms either
side of the slip plane (broken line) in the dislocation core. These
forces create a shear stress on the dislocation core. From Sutton [24].

vector b of the dislocation remains the same. Therefore the
Peach-Koehler force, Eq. (C2), acting on the dislocation does
not change after this rotation by 180◦.

The Burgers vector b is reversed if the crystal is rotated
by 180◦ about the dislocation line. The current-induced shear
stress σ acting on the dislocation is reversed because the extra
half plane is again beneath the slip plane. However, the direc-
tion ξ̂ of the dislocation line does not change. The result is that
the current-induced Peach-Koehler force on the dislocation is
again unchanged.

It follows that for an edge dislocation the same current-
induced force per unit length is induced regardless of the signs
of its Burgers vector and line direction. If there are current-
induced forces on screw dislocations they are likely to display
the same symmetries as shown above for edge dislocations.
Therefore electromigration of equal numbers of positive and
negative dislocations does not increase plastic strain because
they move in the same direction under the influence of the
current. Similarly dislocation loops will be translated by the
current but not expanded. If electromigration of dislocations
does not lead to increased plastic strain it cannot explain the
larger stress drops observed in the plastic part of the stress-
strain curve than those observed in the elastic part.

The approach we take in Sec. V is based on the Peach-
Koehler formula of Eq. (C2). However, the stress field σ

is not generated by the interaction between current-carrying
electrons and dislocations but by Lorentz body forces acting
on all atoms in the sample. Consequently dislocations of op-
posite signs move in opposite directions and dislocation loops
expand when these stresses act upon them.

APPENDIX D: JOULE HEATING

Sceptics of the load drops observed during current pulsing
often assert they are merely a result of Joule heating. They
claim that the passage of such high current densities heats
the metal. The heating leads to thermal expansion which re-
duces the tensile stress in a specimen subjected to a constant
tensile strain. It may also facilitate thermally activated slip
processes, leading to larger stress drops in the plastic part of
the stress-strain curve. However, Troitskii [1] observed stress
drops under compression loading when the compressive stress
would be expected to rise if the current pulses produced only
thermal expansion.

A particularly good example of the scepticism was pro-
vided by the experiments reported by Goldman et al. [44].
They carried out tensile tests on lead crystals at 4.2 K, a tem-
perature at which lead is a superconductor. They monitored
the voltage across the specimen as current pulses were passed
through it with densities between 2 × 106 and 8 × 106 A m−2.
At the same time, they monitored the load in the specimen
with a high sensitivity equal to 0.01%–0.03% of the yield
stress. At the lower current densities the specimen remained
superconducting and it displayed no load drops during the
current pulses. At the higher current densities. the specimen
became normal and then it did display load drops. The authors
argued that when the specimen became normal the current
pulses heated the specimen, because then it had a resistance.
However, as long as the specimen remained superconducting
there was no heating, because it had no resistance. They
concluded that the load drops were associated with Joule
heating. They found the specimen remained superconducting
at higher current densities after further plastic deformation.
Again they found no load drops at a higher current density
where the specimen remained superconducting. However, at
an even higher current density, the specimen became normal
and load drops were observed. They argued this shows the
load drops are dependent only on whether the specimen is in a
normal or superconducting state, and not on a critical current
density.

The current densities used in the experiments of Goldman
et al. [44] are orders of magnitude less than those used by
Troitskii and by Conrad and coworkers. The latter reported
critical current densities for electroplasticity that were much
greater than those used by Goldman et al. It is quite possible,
therefore, that no current-facilitated plasticity occurred in the
experiments of Goldman et al. and that the load drops were
indeed entirely a result of thermal expansion in the normal
state.

APPENDIX E: THE STATIC PINCH EFFECT

Under the influence of a constant current along a cylindri-
cal wire, there is a radial contraction due to the static pinch
effect. If the wire is under tension at constant length the tensile
stress in the wire is reduced by the pinch effect. That is be-
cause if the wire were not constrained to be of constant length
the radial compression would increase its length through the
Poisson effect. However, since the wire is constrained to have
a constant length the Poisson effect results in a compressive
stress along the wire, which reduces the applied tensile stress.
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Therefore it is conceivable that the static pinch effect can
account for the stress drops observed during current-pulsing
in the elastic part of the stress-strain curve, which may also
account for part of the current-induced stress drops observed
when the wire is deformed plastically.

Consider a long straight cylindrical wire of radius rm.
Introduce a cylindrical coordinate system (r, φ, z) with the
z-axis along the axis of the wire. We assume the wire is
homogeneous and elastically isotropic. The wire is carrying a
constant current of density j0, which is uniformly distributed
in the wire. The magnetic field inside the wire at a radius r is

B = μ j0r

2
φ̂, (E1)

where φ̂ is a unit vector along the azimuthal direction. The
Lorentz force on the conduction electrons per unit volume,
fL = j × B, is then

fL = −μ j2
0 r

2
r̂. (E2)

In Sec. IV B, we showed that the Lorentz force on the
conduction electrons is transferred to the ionic cores of the
metal creating a body force on them. This radial body force
generates radial displacements u(r). The equation of mechan-
ical equilibrium, in cylindrical coordinates and with radial
symmetry, is as follows:

dσrr

dr
+ σrr − σφφ

r
= − fL. (E3)

The following strains are present: err = u′(r) and eφφ =
u(r)/r where u(r) is the radial elastic displacement and the
prime denotes differentiation. In experiments where the length
of the wire is increased at a fixed rate its length is not allowed
to change in response to stresses created within it. The trans-
lational invariance along z then ensures plane strain, so that
ezz = 0. In isotropic elasticity the stresses are related to the
strains by Hooke’s law:

σrr = 2Gmerr + λ(err + eφφ ),

σφφ = 2Gmeφφ + λ(err + eφφ ),

σzz = ν(σrr + σφφ ), (E4)

where Gm is the shear modulus, λ = 2Gmν/(1 − 2ν) and ν

is Poisson’s ratio. The expression for σzz follows from the
assumption of plane strain. Substituting these relations be-
tween the stresses and strains and between the strains and
the displacement field u(r) into the equilibrium equation,
Eq. (E3), we obtain the following differential equation for the
displacement field:

u′′ + u′

r
− u

r2
= (1 − 2ν)

4(1 − ν)

μ j2
0

Gm
r. (E5)

The solution is as follows:

u = C1r + (1 − 2ν)

32(1 − ν)

μ j2
0

Gm
r3, (E6)

where C1 is an arbitrary constant to be determined by the
boundary condition that σrr (rm) = 0. The general solution
of Eq. (E5) includes a term C2/r, where C2 is an arbitrary

constant. We equate C2 to zero because there is no singularity
at r = 0.

Equating σrr to zero at r = rm yields the following equation
for C1:

C1 = − (3 − 2ν)(1 − 2ν)

32(1 − ν)

μ j2
0

Gm
r2

m. (E7)

Therefore the stresses σrr (r) and σφφ (r) are as follows:

σrr (r) = − (3 − 2ν)

16(1 − ν)

(
r2

m − r2
)
μ j2

0 , (E8)

σφφ (r) = − ((3 − 2ν)r2
m − (1 + 2ν)r2)

16(1 − ν)
μ j2

0 . (E9)

Using Eq. (E4), we obtain

σzz(r) = − ν

8(1 − ν)

(
(3 − 2ν)r2

m − 2r2
)
μ j2

0 . (E10)

Since ν � 1
2 we see that σzz(r) is compressive at all radii. The

mean value of σzz(r) is

〈σzz〉 = −νμ j2
0 r2

m/4. (E11)

Assuming ν = 1/3, μ = 4π × 10−7 N A−2, j0 = 3 × 109

A m−2, and rm = 5 × 10−4 m, we obtain 〈σzz〉 ≈ 0.2 MPa,
and the maximum value of σzz is approximately 0.4 MPa.
These stresses are too small by more than an order of mag-
nitude to account for the stress drops observed in the elastic
part of the stress-strain curve by Okazaki et al. [12].

In the experiments of Troitskii [1] and Okazaki et al. [10]
the nominal strain rates imposed by the Instron machine were
1.1 × 10−4 and 1.7 × 10−4 s−1 respectively. For a pulse of
duration 10−4 s the strain increment was therefore between
1.1 × 10−8 and 1.7 × 10−8. If the Young’s modulus of the
wire is of order 100 GPa, the strains produced in the static
pinch effect by stresses of order 0.1 MPa are of order 10−6,
which is two orders of magnitude larger than the strain in-
crement imposed by the Instron machine during the pulse.
It follows that even for the small stresses of the static pinch
effect the wire may be treated as having a constant length
throughout a pulse of 10−4 s duration. As we saw, in Sec. V D,
the stresses created in the dynamic pinch effect can be much
larger than those in the static pinch effect. The argument for
treating the wires as having a constant length throughout the
pulse is then even stronger.

Equating the force −ρ0E (r) on conduction electrons due
to the Hall field to − fL = μ j2

0 r/2 (see Eq. (E2)) we ob-
tain E (r) = −μ j2

0 r/(2ρ0). Taking the divergence of the radial
electric field E (r) we find it is generated by an extremely
small uniform negative charge density δρ0 throughout the wire
given by δρ0/ρ0 = −μrv

2
d/c2. This extremely small uniform

charge density inside the metal can be neutralized by a small
surface charge density, μrρ0rv2

d/(2c2), which does not affect
the electric field inside the wire.
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