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Importance of intersite Hubbard interactions in β-MnO2: A first-principles DFT+U+V study
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We present a first-principles investigation of the structural, electronic, and magnetic properties of pyro-
lusite (β-MnO2) using conventional and extended Hubbard-corrected density-functional theory (DFT+U and
DFT+U+V ). The onsite U and intersite V Hubbard parameters are computed using linear-response theory
in the framework of density-functional perturbation theory. We show that while the inclusion of the onsite U
is crucial to describe the localized nature of the Mn(3d ) states, the intersite V is key to capture accurately
the strong hybridization between neighboring Mn(3d ) and O(2p) states. In this framework, we stabilize the
simplified collinear antiferromagnetic (AFM) ordering (suggested by the Goodenough-Kanamori rule) that is
commonly used as an approximation to the experimentally-observed noncollinear screw-type spiral magnetic
ordering. A detailed investigation of the ferromagnetic and of other three collinear AFM spin configurations
is also presented. The findings from Hubbard-corrected DFT are discussed using two kinds of Hubbard
manifolds—nonorthogonalized and orthogonalized atomic orbitals—showing that special attention must be
given to the choice of the Hubbard projectors, with orthogonalized manifolds providing more accurate results
than nonorthogonalized ones within DFT+U+V . This paper paves the way for future studies of complex
transition-metal compounds containing strongly localized electrons in the presence of pronounced covalent
interactions.
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I. INTRODUCTION

Manganese oxides have been studied for many decades
because they are attractive not only from the fundamental
point of view but also due to their importance for a variety
of technological applications owing to their low cost, low tox-
icity, and high chemical stability [1]. In particular, pyrolusite
(β-MnO2) is the most stable and abundant polymorph of the
MnO2 family, and it is used as a catalyst [2,3], cathode in
alkaline batteries [4,5] and Li-ion batteries [6–8] and Li-O2

batteries [9], electrode in supercapacitors [10], to name a
few applications. Experimentally, β-MnO2 is a small-band-
gap semiconductor (0.26 − 0.28 eV [11–14]), which exists in
a tetragonal (P42/mnm) rutile structure, and it undergoes a
paramagnetic to noncollinear helical (screw-type spiral) an-
tiferromagnetic transition at TN = 92 K [15–18]. According
to Yoshimori [15], the pitch of this spiral is exactly 7c/2,
i.e., the spins lie on the ab plane and rotate by 129◦ in the
next-adjacent layer along the c axis for a period of 7 unit cells.
However, more recent and more refined measurements [19]
reported that the pitch is about 4% shorter than 7c/2, meaning
that β-MnO2 has an incommensurate magnetic ordering.

From the computational point of view, accurate first-
principles modeling of β-MnO2 with its very complex spin
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configuration and intricate electronic interactions (due to
the partially filled 3d-shell of Mn atoms) remains a major
challenge. Density-functional theory (DFT) [20,21] sim-
ulations in the local spin-density approximation (LSDA)
or spin-polarized generalized-gradient approximations (σ -
GGA) for the exchange-correlation (xc) functional—which
is a workhorse of the materials science—are unable to
provide satisfactory results for many transition-metal com-
pounds including β-MnO2 [22]. This is due to the large
self-interaction errors (SIE) [23,24] especially which are sig-
nificant for localized d and f electrons. For this reason, more
accurate approaches beyond standard DFT are generally ap-
plied. Particularly for β-MnO2 many approaches have been
used, with the majority of the studies based on Hubbard-
corrected DFT (so-called DFT+U [25–27]) [7,22,28–35]
and DFT with hybrid xc functionals (PBE0 [36] and
HSE06 [37,38]) [7,22,28,33,34]. In the former approach, the
Hubbard U correction is applied selectively only to the par-
tially filled d states to alleviate SIE for these states [39],
while all other states are treated at the level of LSDA or σ -
GGA, while in hybrid functionals a fraction of exact exchange
(Fock) is added (25% in the case of PBE0 and HSE06) and
the remainder of exchange is treated at the σ -GGA level,
together with 100% of the σ -GGA correlation. On one hand,
the advantage of DFT+U is that it often greatly improves
standard DFT with only marginally more computationally
expensive calculations; still, the value of the Hubbard U
parameter has to be determined in some satisfactory way.
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On the other hand, hybrid functionals are more accurate than
standard DFT, but they are computationally more expensive
than DFT or DFT+U calculations. Furthermore, for hybrid
functionals, quite often the required fraction of exact ex-
change must be tuned in solids to reach better agreement
with experiments (although there are ab initio methods to
determine the amount of exact exchange needed for a system
of interest [40–45]). β-MnO2 has also been studied using
other methods: Hartree-Fock [46], tight-binding [47], DFT
plus dynamical mean field theory (DMFT) [12], DFT with the
SCAN meta-GGA functional [33,48], and SCAN+U [48].

Modelling the incommensurate magnetic pattern of
β-MnO2 is computationally demanding as the simulation cell
is very large and beyond reach for some of the aforemen-
tioned methods (e.g., hybrid functionals). For this reason,
the vast majority of the first-principles studies of this
material are done using simplified collinear magnetic or-
dering [7,22,28,30,32–35,46,48,49], with only a few studies
done using a noncollinear helical magnetic ordering with the
7c/2 pitch [12,28,31,47]. The use of the simplified collinear
magnetic ordering is motivated by the fact that many studies
need to go beyond the standard electronic-structure analysis
and investigate other properties of β-MnO2; these include
thermoelectric [35] and thermochemical [48] properties, the
formation of oxygen vacancies [30,34], intercalation voltages,
and kinetics of Li diffusion in MnO2-based cathodes in Li-ion
batteries [7].

For the collinear case, all studies consider typically two
magnetic orderings, namely a ferromagnetic (FM) one and
an antiferromagnetic (AFM) ordering where the latter corre-
sponds to opposing spins on the center and corner Mn sites
in the unit cell (what will be called A1-AFM in this paper).
The choice of this specific collinear AFM ordering is based
on the Goodenough-Kanamori rule [50,51], which suggests
that this spin configuration should be the most preferable
one in β-MnO2 [49]. In the DFT+U and hybrid functional
studies mentioned above, the total energies of the FM and
A1-AFM orderings are compared: All hybrid functional stud-
ies predict the A1-AFM ordering to be lower in energy than
the FM one, while DFT+U studies give different results
depending on the value of the Hubbard U parameter used.
Commonly, in β-MnO2 studies the U parameter is deter-
mined empirically, such that DFT+U reproduces well some
experimental property of interest (e.g., the band gap or re-
action enthalpy) [7,12,22,29,31,33,35,48,49]; very rarely it is
computed from first principles [28]. Most importantly, when
comparing various U values from different works it is often
forgotten to check, which Hubbard manifold (projectors) are
used—as was shown in Refs. [32,39] and as will be discussed
in detail in this paper, the values of U are not universal, but
dependent on the type of the Hubbard projectors that are used.
Hence, it is crucial to keep consistency between Hubbard
parameters and Hubbard projectors, and keep this in mind
when comparing DFT+U results from different papers [52].
The reported empirical U values for β-MnO2 span a very
wide range going from 1 to 7 eV; generally it was found that,
using projector-augmented-wave (PAW) Hubbard projectors
as implemented in VASP [53], for smaller values of U the
A1-AFM ordering is lower in energy than FM, while for
larger values of U the FM ordering is lower in energy than

A1-AFM [22,32,49]. However, it is always assumed that A1-
AFM is the only AFM ordering that should be considered
among other AFM orderings, with the only exception being
Ref. [49] that considered also another type of the AFM order-
ing (what will be called A2-AFM in this paper) at the DFT+U
level. A detailed investigation of whether A1-AFM is indeed
the most energetically favorable spin configuration with re-
spect to various other collinear AFM orderings for β-MnO2

and how this depends on the type of Hubbard projectors is
currently missing in the literature; this point will be addressed
in this paper.

In the majority of Hubbard-corrected DFT studies of
β-MnO2, a simplified rotationally invariant formulation of
DFT+U [27] is used with an effective interaction param-
eter Ueff = U − J , where U representing a screened onsite
Coulomb repulsion and J is the Hund’s exchange parameter.
It has been shown by Tompsett et al. [28] that at this level
of theory with Ueff = 5.5 eV (determined from first principles
using constrained DFT [54]) within the linearized augmented
plane wave (LAPW) method, the FM spin configuration is
lower in energy than A1-AFM. Instead, when Hund’s J =
1.2 eV is treated explicitly on the same footing as U = 6.7 eV
(instead of one effective parameter Ueff ), A1-AFM is lower
in energy than FM. However, a more recent paper by Wang
et al. [32] has shown that even with one effective parameter
Ueff = 5.5 eV it is possible to have A1-AFM lower in energy
than FM for certain types of Hubbard projectors (different
from those of the LAPW method), thus underlying the crucial
role played not only by the value of the Hubbard parame-
ters but also by the Hubbard projectors [55]. Therefore, it
would be important to further investigate the effect of the
explicit account of Hund’s J (like in Ref. [28]) depending
on different types of Hubbard projectors [56]. Furthermore,
another important aspect that has been disregarded so far is
the investigation of the importance of the intersite Hubbard
interactions between Mn(3d ) and O(2p) states, that are known
to be strongly hybridized in the valence region [46]. In fact, it
has been pointed out by Yu et al. [12] that it is very important
to take into account the Mn(3d )–O(2p) hybridizations when
constructing Wannier functions for DFT+DMFT for an ac-
curate description of properties of β-MnO2. Therefore, this
aspect will also be investigated in detail here.

In this paper, we present a detailed investigation of the
structural, electronic, and magnetic properties of β-MnO2

using DFT+U and its extension DFT+U+V [57], where V
is the intersite Hubbard parameter. The interaction parameters
U and V are computed self-consistently from first-principles
using linear-response theory [58] reformulated in terms of
density-functional perturbation theory (DFPT) [59,60]. The
study is carried out using two types of Hubbard projec-
tors, namely nonorthogonalized atomic orbitals (NAO) and
orthogonalized atomic orbitals (OAO) [56]; in OAO the or-
thogonalization insures that Hubbard corrections are applied
only once to the respective Hubbard manifolds. We investigate
five collinear magnetic orderings of β-MnO2: FM, A1-AFM,
A2-AFM, C-AFM, and G-AFM. Based on this framework, we
show the crucial role played by the intersite Hubbard interac-
tions due to the strong covalent Mn(3d )-O(2p) hybridizations
and we highlight the importance of a careful choice of the
type of Hubbard projectors and especially of having Hubbard
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parameters that are consistent with those projectors. Our de-
tailed analysis of ground-state properties shows that overall
A1-AFM is the most energetically favorable and the most
accurate collinear (simplified) representation of the real non-
collinear helical magnetic ordering of β-MnO2, provided that
the DFT+U+V formulation with first-principles U and V
and OAO Hubbard projectors are used, since they properly
describe the delicate interplay between structural, electronic,
and magnetic degrees of freedom in this material.

The paper is organized as follows. Section II presents the
basics of DFT+U and DFT+U+V approaches and the DFPT
approach for computing U and V ; Sec. III contains technical
details of our calculations; in Sec. IV we present our find-
ings for the structural, electronic, and magnetic properties of
β-MnO2 for five types of collinear magnetic orderings; and in
Sec. V we give our conclusions.

II. COMPUTATIONAL METHOD

In this section we briefly discuss the basics of the
DFT+U+V approach [57,61] and of the DFPT approach for
computing Hubbard parameters [59,60]. All equations in this
section can be easily reduced to the DFT+U case by simply
setting V = 0. For the sake of simplicity, the formalism is
presented in the framework of norm-conserving (NC) pseu-
dopotentials (PPs) in the collinear spin-polarized case. The
generalization to the ultrasoft (US) PPs and the PAW method
can be found in Ref. [60]. Hartree atomic units are used.

A. DFT+U+V

In DFT+U+V , a correction term is added to the approxi-
mate DFT energy functional [57]:

EDFT+U+V = EDFT + EU+V , (1)

where EDFT is the approximate DFT energy (constructed, e.g.,
within LSDA or σ -GGA) and EU+V contains the additional
Hubbard term. At variance with the DFT+U approach, con-
taining only onsite interactions scaled by U , DFT+U+V
contains also intersite interactions between an atom and its
surrounding ligands scaled by V . In the case of β-MnO2,
the onsite U correction is needed for the Mn(3d ) states,
while the intersite V correction is expected to be relevant to
describe Mn(3d )–O(2p) interactions [62]. In the simplified
rotationally-invariant formulation [27], the extended Hubbard
term reads

EU+V = 1

2

∑

I

∑

σmm′
U I

(
δmm′ − nIIσ

mm′
)
nIIσ

m′m

− 1

2

∑

I

∗∑

J (J �=I )

∑

σmm′
V IJnIJσ

mm′nJIσ
m′m , (2)

where I and J are atomic site indices, m and m′ are the
magnetic quantum numbers associated with a specific angular
momentum [l = 2 for Mn(3d ) and l = 1 for O(2p)], U I and
V IJ are the effective onsite and intersite Hubbard parameters
(we dropped the subscript “eff” for simplicity), and the star in
the sum denotes that for each atom I the index J covers all its
neighbors up to a given distance (or up to a given shell).

The generalized occupation matrices nIJσ
mm′ are based on a

projection of the Kohn-Sham (KS) states on localized orbitals
φI

m(r) of neighbor atoms:

nIJσ
mm′ =

∑

v,k

f σ
v,k

〈
ψσ

v,k

∣∣φJ
m′

〉〈
φI

m

∣∣ψσ
v,k

〉
, (3)

where v and σ represent, respectively, the band and spin labels
of the KS wave functions ψσ

v,k(r), k indicate points in the first
Brillouin zone (BZ), f σ

v,k are the occupations of the KS states,

and φI
m(r) ≡ φ

γ (I )
m (r − RI ) are localized orbitals centered on

the Ith atom of type γ (I ) at the position RI . It is convenient
to establish a short-hand notation for the onsite occupation
matrix: nIσ

mm′ ≡ nIIσ
mm′ , which is used in the standard DFT+U

approach that corresponds to the first line of Eq. (2). The two
terms in Eq. (2) (i.e., proportional to the onsite U I and intersite
V IJ couplings) counteract each other: the onsite term favors
localization on atomic sites (thus suppressing hybridization
with neighbors), while the intersite term favors hybridized
states with components on neighbor atoms. More details about
DFT+U+V can be found in the pioneering paper [57] as well
as in more recent papers [63,64]. Hence, computing the values
of U I and V IJ interaction parameters is crucial to determine
the degree of localization of 3d electrons on Mn sites and the
degree of hybridization of these 3d electrons with 2p electrons
centered on neighboring O sites. In the next subsection we dis-
cuss briefly how these Hubbard parameters can be computed
using linear-response theory.

B. Calculation of U and V

First of all, we recall that in Hubbard-corrected DFT the
values of Hubbard parameters are not known a priori, and
hence very often these values are adjusted empirically such
that the final results of simulations match some experimental
properties of interest. This is fairly arbitrary, as can be seen on
the example of β-MnO2 as was discussed in Sec. I. Therefore,
first-principles calculation of Hubbard parameters for any sys-
tem at hand is essential and highly desirable. In this paper,
we compute U and V from a generalized piece-wise linearity
condition imposed through linear-response theory [58], based
on density-functional perturbation theory (DFPT) [59,60].
Within this framework the Hubbard parameters are the el-
ements of an effective interaction matrix computed as the
difference between bare and screened inverse susceptibili-
ties [58]:

U I = (
χ−1

0 − χ−1
)

II
, (4)

V IJ = (
χ−1

0 − χ−1
)

IJ
, (5)

where χ0 and χ are the susceptibilities, which measure the
response of atomic occupations to shifts in the potential acting
on individual Hubbard manifolds. In particular, χ is defined
as χIJ = ∑

mσ (dnIσ
mm/dαJ ), where αJ is the strength of the

perturbation of electronic occupations of the Jth site. While
χ is evaluated at self-consistency of the DFPT calculation,
χ0 (which has a similar definition as χ ) is computed before
the self-consistent re-adjustment of the Hartree and exchange-
correlation potentials [59]. In DFPT, the response of the
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occupation matrix is computed in a primitive unit cell as

dnIσ
mm′

dαJ
= 1

Nq

Nq∑

q

eiq·(Rl −Rl′ )
s′
q nsσ

mm′ , (6)

where q is the wave vector of the monochromatic per-
turbation, Nq is the total number of q’s, 
s′

q nsσ
mm′ is the

lattice-periodic response of atomic occupations to a q-specific
monochromatic perturbation, I ≡ (l, s) and J ≡ (l ′, s′) where
s and s′ are the atomic indices in unit cells while l and l ′
are the unit-cell indices, Rl and Rl ′ are the Bravais lattice
vectors. The q grid is chosen fine enough to make the resulting
atomic perturbations effectively decoupled from their periodic
replicas. More details about this approach can be found in
Refs. [59,60]. We stress that the main advantage of using
DFPT is that it does not require the usage of computationally
expensive supercells contrary to the original linear-response
formulation of Ref. [58]. However, it is crucial to remem-
ber that the values of the computed Hubbard parameters are
strongly dependent on the type of Hubbard projector functions
that are used in the DFT+U and DFT+U+V approaches; this
aspect is discussed in more detail in the next subsection.

C. Choice of Hubbard projectors

The Hubbard manifold {φI
m(r)} can be constructed using

different types of projector functions (see e.g. Refs. [56,65]).
Here we consider two types of projector functions, namely
NAO and OAO. NAO is one of the most simple projector
functions for the Hubbard manifold, and it is particularly well
suited for systems with mostly ionic bonding (because the
overlap between orbitals centered on neighboring atoms is
small). These projector functions are simply atomic orbitals
φI

m(r) that are provided with pseudopotentials, and they are or-
thonormal within each atom but not between different atoms.
However, whenever covalent interactions become important,
this type of projector functions is not the best choice since the
overlap between orbitals sitting on different atoms becomes
significant. In this case, OAO is a better choice. OAO are
obtained by taking atomic orbitals of each atom and then
orthonormalizing them to all orbitals of all atoms in the sys-
tem. In this work, we will use the Löwdin orthogonalization
method [66,67], which gives

φ̃I
m(r) =

∑

Jm′

(
Ô− 1

2
)JI

m′mφJ
m′ (r) , (7)

where Ô is the orbital overlap matrix, which is defined as

(Ô)IJ
m1m2

= 〈
φI

m1

∣∣φJ
m2

〉
(8)

and (Ô)IJ
m1m2

is a matrix element of Ô. By doing so, we obtain
Hubbard manifold composed of OAO {φ̃I

m(r)} that must be
used in Eq. (3). This new basis set better represents hybridiza-
tions of orbitals between neighboring sites, but especially it
allows us to avoid counting Hubbard corrections twice in the
interstitial regions between atoms, which is especially relevant
in the case of DFT+U+V . Finally, it is important to note
that NAO and OAO are not truncated at some cutoff radius
(at variance with other implementations [68,69]), which thus

(a)  A1-AFM (b)  A2-AFM

(c)  C-AFM (d)  G-AFM

FIG. 1. Four collinear AFM configurations of β-MnO2: (a) A1-
AFM, (b) A2-AFM, (c) C-AFM, and (d) G-AFM. Yellow and blue
octahedra contain Mn atoms in the center with up and down spin
alignments (shown with black and white arrows), respectively, and
oxygen atoms are represented as red balls.

eliminates ambiguities due to the choice of such a cutoff
radius [32,56].

In the following we will see how these two types of Hub-
bard projectors perform for β-MnO2 in the framework of
DFT+U and DFT+U+V .

III. TECHNICAL DETAILS

All calculations were performed using the plane-
wave (PW) pseudopotential method as implemented in
the QUANTUM ESPRESSO distribution [70–72]. We have
used the xc functional constructed using σ -GGA with
the PBEsol prescription [73]. Pseudopotentials are taken
from the SSSP library v1.1 (precision) [74,75]: For
Mn we have used mn_pbesol_v1.5.uspp.F.UPF from
the GBRV v1.5 library [76], and for O we have
used O.pbesol-n-kjpaw_psl.0.1.UPF from the Pslibrary
v0.3.1 [77]. We have considered five collinear magnetic or-
derings: FM, A1-AFM, A2-AFM, C-AFM, and G-AFM; all
AFM spin configurations are shown in Fig. 1. In the case of
FM and A1-AFM the unit cell contains 6 atoms, while in the
case of A2-AFM, C-AFM, and G-AFM a supercell of size
2 × 2 × 2 is used containing 48 atoms. For each of these spin
configurations, the crystal structure was optimized at three
levels of theory (DFT, DFT+U , and DFT+U+V ) using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [78],
with a convergence threshold for the total energy of 10−6 Ry,
for forces of 10−5 Ry/Bohr, and for pressure of 0.5 Kbar.
DFT+U and DFT+U+V calculations were performed using
two types of Hubbard projectors, NAO and OAO (see Sec. II).
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TABLE I. Hubbard parameters (HP) in eV computed from first principles using DFPT (see Sec. II B), for five magnetic configurations: FM,
A1-AFM, A2-AFM, C-AFM, and G-AFM. The onsite U for Mn(3d ) states and intersite V between Mn(3d ) and O(2p) states are computed in
the frameworks of DFT+U and DFT+U+V (PBEsol functional) using two types of Hubbard manifolds (HM), NAO and OAO (see Sec. II C).
In the case of C-AFM there are two values of U because there are two inequivalent types of Mn atoms. Intersite V parameters depend on the
distance between Mn and O atoms, therefore there are either two or three values per each case written inside round brackets (depending on
how many different bond lengths there are); in the C-AFM case there are two couples of V values referring to two inequivalent Mn atoms.

Magnetic ordering

Method HP (eV) HM FM A1-AFM A2-AFM C-AFM G-AFM

DFT+U U NAO 4.93 4.67 4.68 4.68, 4.78 4.68
OAO 7.08 6.34 6.41 6.54, 6.64 6.32

DFT+U+V U NAO 5.65 5.38 5.39 5.42, 5.62 5.40
V (1.34, 1.32) (1.27, 1.10) (1.14, 1.10, 1.23) (1.13, 1.39), (1.33, 1.31) (1.16, 1.24, 1.08)
U OAO 7.33 6.76 6.77 6.93, 7.03 6.77
V (1.17, 1.11) (0.99, 1.10) (0.99, 1.00, 1.07) (1.05, 1.11), (1.18, 1.07) (1.01, 0.98, 1.07)

For metallic ground states, we used the Marzari-Vanderbilt
(MV) smearing [79] with a broadening parameter of 5 ×
10−3 Ry. Structural optimizations were performed using an
uniform �-centered k points mesh of size 8 × 8 × 12 for the
6-atoms unit cell and 4 × 4 × 6 for the 48-atoms supercell,
and KS wave functions and potentials were expanded in PWs
up to a kinetic-energy cutoff of 90 and 1080 Ry, respectively.
Total energy differences, magnetic moments, band gaps, and
the projected density of states (PDOS) were computed using
a more refined k points mesh of size 12 × 12 × 16 for the
6-atoms unit cell and 6 × 6 × 8 for the 48-atom supercell, and
KS wave functions and potentials were expanded in PWs up
to a kinetic-energy cutoff of 150 and 1800 Ry, respectively.
PDOS was plotted using the Gaussian smearing with a broad-
ening parameter of 4.4 × 10−3 Ry.

The DFPT calculations of Hubbard parameters were per-
formed using uniform �-centered k and q point meshes [59]:
for the 6-atoms unit cells (FM and A1-AFM) we used the
4 × 4 × 8 k points mesh and the 2 × 2 × 4 q points mesh,
while for the 48-atom supercells (A2-AFM, C-AFM, G-AFM)
we used the 2 × 2 × 4 k points mesh and the 1 × 1 × 2 q
points mesh. In DFPT calculations, KS wavefunctions and
potentials are expanded in PWs up to a kinetic-energy cutoff
of 60 and 720 Ry, respectively. For DFPT calculations on top
of metallic ground states, we used the MV smearing with
a broadening parameter of 1.5 × 10−2 Ry. With this setup,
the accuracy of computed Hubbard parameters is 0.01 eV.
The DFPT equations are solved using the conjugate-gradient
algorithm [80] and the mixing scheme of Ref. [81]. We have
used the self-consistent procedure for the calculation of U
and V as described in detail in Ref. [60], which consists
of cyclic calculations containing structural optimizations and
recalculations of Hubbard parameters for each new geometry.

IV. RESULTS AND DISCUSSIONS

A. Hubbard parameters

We start by analyzing the computed Hubbard parame-
ters, which are listed in Table I for five collinear magnetic
configurations. It can be seen that the values of Hubbard
parameters U and V are very sensitive to the type of the
Hubbard projectors, as is well known from the literature for

other materials [55,59,69,83]. Due to the use of different Hub-
bard projectors (NAO or OAO), the variations in the onsite U
parameters range from about 1.4 to 2.2 eV, while the varia-
tions in the intersite V parameters are not more than 0.3 eV,
depending on the magnetic ordering. Therefore, the DFT+U
and DFT+U+V calculations must be performed consistently,
i.e., using the computed Hubbard parameters and the same
type of Hubbard projectors that were used to determine these
parameters.

Another important observation that can be made by ana-
lyzing the data of Table I is that for a fixed type of Hubbard
projectors the variations in the values of Hubbard parameters
due to different magnetic orderings is of the order of a fraction
of an eV. Similar trends were found in Ref. [84] for molecular
systems. This means that the sensitivity of U and V to the spin

FIG. 2. Experimental crystal structure of β-MnO2 [85]. Mn
atoms are indicated in yellow, while O atoms are indicated in blue
and red to highlight longer and shorter Mn–O bonds, respectively.
Three types of O–Mn–O bond angles are indicated with ϕ1, ϕ2, and
ϕ3, while two types of Mn–O–Mn bond angles are indicated with θ1

and θ2. a and c are the lattice parameters. The experimental values of
bond lengths and bond angles are indicated in Fig. 3.
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TABLE II. Crystal structure properties of β-MnO2 (see Fig. 2): lattice parameters a and c (in Å), volume V (in Å3) corresponding
to the 6-atoms unit cell and its deviation 
V (in %) from the experimental one of Ref. [85]. The results are presented for five collinear
magnetic orderings (FM, A1-AFM, A2-AFM, C-AFM, G-AFM) computed at three level of theory: DFT, DFT+U , and DFT+U+V (PBEsol
functional). Hubbard-corrected results are presented when using two types of Hubbard projectors (NAO and OAO) with their respective
Hubbard parameters (see Table I). Experimental lattice parameters for the noncollinear helical magnetic ordering of β-MnO2 are aexp = 4.41
Å and cexp = 2.87 Å, and the experimental volume is Vexp = 55.82 Å3 according to Ref. [85]; aexp = 4.40 Å, cexp = 2.88 Å according to
Ref. [87]; Vexp = 55.48 Å3 according to Ref. [86].

NAO OAO

Magnetic ordering Crystal structure properties DFT DFT+U DFT+U+V DFT+U DFT+U+V

FM a (Å) 4.40 4.42 4.39 4.49 4.43
c (Å) 2.84 2.97 2.89 3.05 2.97

V (Å3) 54.94 58.23 55.82 61.41 58.32

V % –1.58 4.32 0 10.01 4.48

A1-AFM a (Å) 4.37 4.38 4.36 4.40 4.39
c (Å) 2.83 2.93 2.89 2.94 2.92

V (Å3) 54.06 56.23 55.03 57.07 56.35

V % –3.15 0.73 –1.42 2.24 0.95

A2-AFM a (Å) 4.38 4.39 4.37 4.41 4.39
c (Å) 2.83 2.93 2.89 2.95 2.92

V (Å3) 54.23 56.30 55.13 57.50 56.43

V % –2.85 0.86 –1.24 3.01 1.09

C-AFM a (Å) 4.38 4.40 4.37 4.44 4.41
c (Å) 2.83 2.94 2.89 2.98 2.93

V (Å3) 54.34 56.96 55.27 58.75 57.07

V % –2.65 2.04 –0.99 5.25 2.24

G-AFM a (Å) 4.38 4.39 4.37 4.40 4.39
c (Å) 2.83 2.93 2.89 2.95 2.92

V (Å3) 54.22 56.31 55.14 57.19 56.44

V % –2.87 0.88 –1.22 2.45 1.11

configuration of β-MnO2 is not very strong but at the same
time it is not negligible (especially in the OAO case).

Using our computed Hubbard parameters for five mag-
netic orderings of β-MnO2, we have performed DFT+U
and DFT+U+V calculations of the structural, electronic, and
magnetic properties of this material. Our paper is thus fully
first-principles, i.e., without any adjustable or fitting parame-
ters, which allows us to avoid ambiguities in the results that
are common to the vast majority of the previous DFT+U
studies of β-MnO2.

B. Structural properties

β-MnO2 crystallizes in the tetragonal rutile structure,
where the cation (Mn) atoms are octahedrally coordinated to
six oxygen atoms (see Fig. 2). The unit cell with the FM or
A1-AFM magnetic orderings consists of two formula units
where Mn atoms occupy 2a Wyckoff positions while oxygen
atoms occupy 4f Wyckoff positions [85]. Instead, A2-AFM,
C-AFM, and G-AFM magnetic orderings require 2 × 2 × 2
supercells shown in Fig. 1 (A1-AFM ordering is also shown
with a supercell just for the sake of comparison with other
AFM orderings). MnO6 octahedra are interconnected primar-
ily along the c axis through edge-sharing, and the remaining
octahedra are connected by point sharing with each other.

First we analyze the optimized lattice parameters a
and c and the equilibrium volume V computed at three

levels of theory (DFT, DFT+U , and DFT+U+V ) with
those determined experimentally. As can be seen from
Table II, standard DFT is in surprisingly good agreement
for the lattice parameters and volume when the FM ordering
is used (
V ≈ −1.6%), while the deviation from the
experiment is larger for all types of the AFM ordering (
V
ranging from −2.7 to −3.2% depending on the AFM type).
Thus, we observe that DFT tends to underestimate lattice
parameters and volume, which is in contrast to previous
DFT studies [22]. This difference in the DFT trends can be
attributed to the fact that in this paper we use GGA-PBEsol
while in Ref. [22] GGA-PBE was used. We note that
despite some uncertainties in the experimental volumes
(55.48 Å3 [86], 55.82 Å3 [85]), our conclusions are robust.
Hubbard-corrected DFT results vary significantly depending
on whether only U or both U and V are included, on the
type of Hubbard projectors, and on the magnetic ordering.
In particular, as can be seen in Table II we find that using
NAO projectors DFT+U generally tends to overestimate
volumes while DFT+U+V tends to underestimate them;
lattice parameter a is generally in good agreement with the
experimental one while c is overestimated especially at the
DFT+U level. Instead, using OAO we find that both DFT+U
and DFT+U+V overestimate the volume and the lattice
parameter c (especially at the DFT+U level), while a is
either slightly overestimated or agrees remarkably with the
experimental value. Overall, we can conclude that
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DFT+U+V is in better agreement with the experiments than
DFT+U when OAO projectors are used; in terms of magnetic
ordering, A1-AFM comes out to be the most accurate
representation. In the case of NAO, the best agreement with
experiments is obtained at the DFT+U+V level for the FM
ordering. This latter finding has a drawback that FM is not
expected to be a good approximation of the noncollinear
helical magnetic ordering. Therefore, next best results
obtained using NAO are for A1-AFM, A2-AFM, and G-AFM
using DFT+U , all being very similar on average in terms
of accuracy. Hence, we find that there is no one single case,
which agrees best with experiments simultaneously for the
lattice parameters and volume, but the most accurate results
are obtained for A1-AFM at DFT+U+V (OAO), A1-AFM
and A2-AFM at DFT+U (NAO).

Now we turn to the analysis of the Mn-O bond lengths
(dMn−O) and two types of bond angles, namely Mn-O-Mn
(labeled as θ1 and θ2) and O-Mn-O (labeled as ϕ1, ϕ2, and
ϕ3), as shown in Fig. 2. The optimized and experimental
values of these quantities are highlighted in Fig. 3. Experi-
mentally it was observed that there are two types of Mn-O
interatomic distances (see Fig. 2): Two shorter distances of
length 1.88 Å and one longer distance of length 1.90 Å [85].
Since the difference between these two values is very small,
it is not easy to resolve them accurately in calculations as
is shown in the following. As seen in Fig. 3(a), for the FM
ordering the closest agreement with these two experimental
distances is obtained using DFT+U+V (NAO), for A1-AFM
using DFT+U+V (OAO), for A2-AFM and G-AFM using
DFT+U (NAO), and for C-AFM using DFT+U+V (NAO).
Thus, depending on the type of the magnetic ordering we
find that different levels of theory perform better or worse
than the others. Importantly, we find that in the majority of
cases DFT gives the worst result for dMn−O. As for what
concerns Mn-O-Mn bond angles, the experimental values
are θ1 = 99.59◦ and θ2 = 130.20◦ [85]. It can be seen from
Fig. 3(b) that the closest agreement with these values is
obtained either using standard DFT or DFT+U+V (NAO),
depending on the magnetic ordering; other levels of theory
give angles θ1 that θ2 that are somewhat more overestimated
and underestimated, respectively. Interestingly, the trends in
the performance of different levels of theory are essentially
the same for all considered magnetic orderings. Finally, the O-
Mn-O bond angles experimentally have the following values:
ϕ1 = 80.41◦, ϕ2 = 90.00◦, and ϕ3 = 99.59◦ [85]. In Fig. 3(c)
we see that the closest agreement with the experimental values
of ϕ1 and ϕ3 is obtained again either using standard DFT
or DFT+U+V (NAO). Instead, for ϕ2 we find that excellent
agreement with the experimental value is obtained at all levels
of theory for FM, A1-AFM, and C-AFM; while for A2-AFM
the best agreement is obtained using DFT+U+V (NAO), and
for G-AFM using DFT+U (OAO). We note however, that the
variations in ϕ2 for A2-AFM are extremely small, while for
G-AFM they are relatively large (but not more than 0.5◦).
Therefore, overall we can conclude that the best agreement
with the experimental bond lengths and angles is found for
the FM ordering at the DFT+U+V (NAO) level of theory.
However, as was pointed out above, FM is not expected
to be a good approximation to the real noncollinear helical
magnetic ordering. Fortunately, the agreement with experi-

FIG. 3. Bond lengths and bond angles in β-MnO2 (see Fig. 2)
as computed in this work using DFT, DFT+U , and DFT+U+V
(PBEsol functional) with two types of Hubbard projectors (NAO
and OAO) and corresponding first-principles parameters U and V
(see Table I), and as measured in experiments (dashed horizontal
lines) [85]. Theoretical results are shown for five collinear magnetic
orderings (FM, A1-AFM, A2-AFM, C-AFM, G-AFM), while the
experimental results correspond to the noncollinear helical structure.
(a) Mn-O bond lengths (in Å), (b) Mn-O-Mn bond angles θ1 and θ2

(in degrees), and (c) O-Mn-O bond angles ϕ1, ϕ2, and ϕ3 (in degrees).
Solid lines that connect squares are guides to the eye.

ments for some AFM orderings is also very satisfactory at
different levels of theory.

The overall analysis of the structural properties of β-MnO2

has revealed that the FM ordering turns out to be in best
agreement with experiments using DFT+U+V (NAO). This
is, although, quite surprising since the FM ordering is not
the true magnetic ground state of β-MnO2 and it is not ex-
pected to be a good approximation to the true noncollinear
helical ordering. Moreover, we found that overall satisfac-
tory results for the structural parameters are also found, in
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FIG. 4. Total energy difference per formula unit (in meV) for
five collinear magnetic orderings (FM, A1-AFM, A2-AFM, C-AFM,
G-AFM) computed at three levels of theory (DFT, DFT+U , and
DFT+U+V ) using the PBEsol functional. For each case, the Hub-
bard parameters U and V were computed using DFPT, using two
types of Hubbard projectors (NAO and OAO), and they are listed in
Table I.

particular, for A1-AFM using DFT+U+V (OAO). The ac-
curacy of DFT+U+V for predicting structural properties will
likely increase further if considering the noncollinear helical
ordering. In order to further compare the accuracy of the con-
sidered levels of theory for β-MnO2, we proceed to investigate
the relative stability of the five magnetic configurations.

C. Energetics

In this section we compare the total energies per for-
mula unit of β-MnO2 for five collinear magnetic orderings.
This comparison is done using standard DFT and Hubbard-
corrected DFT, and the result is shown in Fig. 4. First of all,
it is important to discuss whether it is correct to compare the
total energies for different magnetic orderings computed using
different values of the Hubbard parameters. Clearly, when the
Hubbard parameters are chosen empirically and arbitrarily,
it is not appropriate to compare total energies computed us-
ing these parameters [22]. For this reason, it is common in
literature to fix U and compare the total energies. However,
when Hubbard parameters are computed from first principles
for a given material in different magnetic configurations, it is
physically sound to compare the total energies with respective
values of U and V . Indeed, Hubbard parameters are not uni-
versal parameters that can be applied globally to all magnetic
configurations of a given material or to different compounds
containing the same transition-metal element. Hubbard pa-
rameters are material-specific. In this paper, U and V are
defined as the response property of a material, namely they are
computed by perturbing slightly the electronic occupations on
Hubbard atoms and by subsequently measuring the (linear)
response of the system to such a perturbation [58–60]. Ob-
viously, this response is not expected to be exactly the same
in different compounds or for different spin configurations;
as a result, Hubbard parameters change depending on many
factors as can be seen in Table I. In fact, it has been shown

that the ab initio value of U can change by a fraction of
eV or several eV for the same element in different chemical
environments (i.e., depending on the oxidation state) [88,89].
Comparison of energies computed using different Hubbard
parameters (computed from first principles self-consistently
for each material of interest) was done, e.g., in Refs. [84,90–
92]. Therefore, we adopt the same strategy and apply it in this
paper for β-MnO2. In addition it is useful to mention about
other recent ideas of how to compare total energies of different
spin configurations (namely, comparing plain DFT total ener-
gies computed on top of the DFT+U or DFT+U+V charge
densities [93]), but this path will not be explored in this paper.

As can be seen from Fig. 4, the prediction of the most
energetically stable magnetic configuration depends strongly
on the level of theory that is used. We find that at the DFT
level all AFM orderings are more energetically favorable than
the FM ordering. Among them, A1-AFM and A2-AFM are
the lowest in energy and are essentially degenerate, while
G-AFM is only slightly higher in energy. We note that the
energy differences are extremely small, and this is why it is
crucial to converge the calculations with very high accuracy
and, in particular, keep high precision in the values of the
computed Hubbard parameters. In DFT+U with NAO and
OAO projectors, all AFM configurations are more energeti-
cally stable than FM, similarly to DFT. A1-AFM turns out
to be the most favorable at the DFT+U (NAO) level, while
G-AFM is the most stable when DFT+U (OAO) is used. We
find that DFT+U+V results depend very strongly on the type
of projectors that are used; DFT+U+V (NAO) predicts that
FM is more stable than A1-AFM, A2-AFM, and G-AFM,
and it is essentially degenerate in energy with C-AFM (which
turns out to be only marginally more stable than FM). Instead,
in DFT+U+V (OAO) all AFM orderings are more stable than
FM, with A1-AFM being the most energetically favorable
magnetic ordering.

Therefore, the commonly accepted A1-AFM spin con-
figuration for β-MnO2 is found to be the most energetically
favorable only at the DFT+U (NAO) and DFT+U+V (OAO)
levels of theory. It is also important to note that even though
DFT+U+V (NAO) predicted very accurately the lattice
parameters, bond lengths, and bond angles, it completely
fails in stabilizing the A1-AFM spin configuration and hence
DFT+U+V (NAO) cannot be considered as the most accurate
computational approach for describing β-MnO2. This finding
suggests that the inclusion of V is not enough and a careful
choice of Hubbard projects is required: NAO projectors do not
provide the correct energetics of β-MnO2 within DFT+U+V ,
and hence the orthogonalization of atomic orbitals is crucial.

D. Magnetic moment

The magnetic moments on Mn atoms in β-MnO2 for all
five magnetic orderings are shown in Fig. 5. The experimental
value of the magnetic moment at T = 10 K is 2.35 μB [19].
At the DFT level the magnetic moment is underestimated
by about 0.1 − 0.2 μB for all AFM orderings, while the
magnetic moment of FM is in very good agreement with
the experimental value (with only a slight overestimation of
0.03 μB). Application of the Hubbard corrections leads to the
overestimation of the magnetic moment for all cases shown
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FIG. 5. Magnetic moment (in μB) on Mn atoms in β-MnO2

for five collinear magnetic orderings (FM, A1-AFM, A2-AFM, C-
AFM, G-AFM) computed at three levels of theory (DFT, DFT+U ,
and DFT+U+V ) using the PBEsol functional. For each case, the
Hubbard parameters U and V were computed using DFPT, using
two types of Hubbard projectors (NAO and OAO), and they are
listed in Table I. The experimental magnetic moment at T = 10 K
is 2.35 μB [19] and it is indicated with a horizontal dashed line.

in Fig. 5. In particular, the closest agreement with the experi-
mental value on average is obtained when using DFT+U+V
(NAO), while the largest deviation is obtained on average
when using DFT+U (OAO). The A1-AFM spin configura-
tion that was found to be the most energetically favorable at
the DFT+U (NAO) and DFT+U+V (OAO) levels of theory
(see Sec. IV C) gives the magnetic moments of 2.69 μB and
2.74 μB, respectively, that are in fair agreement with the
experimental value. It is worth noting that the overestimation
of the magnetic moment for A1-AFM was also obtained in
previous works using the HSE06 and PBE0 hybrid functionals
(giving the magnetic moment of 2.89 μB) [22] and SCAN
meta-GGA functional (2.62 μB) [48]. The overestimation of
the magnetic moment in this paper using Hubbard-corrected
DFT and in previous papers using hybrid functionals and
SCAN might, in part, be attributed to the fact that these
calculations were performed for the collinear A1-AFM mag-
netic ordering, which is just an approximation to the real
noncollinear helical ordering; thus, perfect agreement with the
experimental magnetic moment should not be expected. In ad-
dition, the inclusion of the Hund’s J in the Hubbard-corrected
DFT might further improve the magnetic moments [94–96].

E. Band gap

β-MnO2 is a small band-gap semiconductor with the ex-
perimental value ranging from 0.26 to 0.28 eV [11–14].
Previous works based on hybrid functionals for A1-AFM
predicted a gap of 0.6 eV [22] and 1.75 [33] (using HSE06),
or 1.5 eV [22] (using PBE0), which largely overestimate
the experimental value. Earlier DFT+U works often relied
on the empirical U (and J) values aiming at reproducing
well the experimental band gap. For example, in Ref. [31]
the authors used empirical U = 2.8 eV and J = 1.2 eV with
NAO projectors for the helical magnetic ordering giving the

band gap of 0.25 eV, while in Ref. [28] the authors used
first-principles U = 6.7 eV and J = 1.2 eV in the LAPW
framework for the A1-AFM ordering giving 0.8 eV (while for
the helical ordering the gap differs only by 0.1 eV with respect
to the A1-AFM case [28]). In other DFT+U works (that do
not include J explicitly) an empirical U was used with PAW
Hubbard projectors; with U = 4 eV either a half-metallic FM
solution was obtained [22] (which was due to a too large
Gaussian smearing of 0.60 eV [49]), while in other work [49]
with the same U a semiconducting A1-AFM solution was
obtained (using a smaller Gaussian smearing of 0.01 eV)
with a largely underestimated band gap of 0.04 eV. On the
other hand, meta-GGA studies of A1-AFM using the SCAN
functional reported a gap of 0.43 eV [33], while a more resent
study using SCAN [48] reported that the system is metallic
provided that a more dense k points mesh is used than in
Ref. [33], while SCAN+U with the empirical U = 2.7 eV
and using PAW projectors gives a gap of 0.64 eV [48]. How-
ever, the band gaps in other types of the collinear magnetic
ordering of β-MnO2 were never investigated, and moreover
the effect of intersite V interactions on the band gap remained
unexplored until now.

Key question is: Can Hubbard-corrected DFT (DFT+U
and DFT+U+V ) accurately predict band gaps even if DFT
is not a theory for spectral properties? As was shown in
Ref. [83], DFT+U with U computed using linear-response
theory often significantly improves the agreement with the ex-
perimental band gaps (in contrast to standard DFT) provided
that the Hubbard correction acts on the edge states (if the
system is already insulating at the DFT level) or states around
the Fermi level (if the system is unphysically metallic at
the DFT level) providing a Koopmans-like linearization [97].
Moreover, it was found that the values of the band gaps are
very sensitive to the type of Hubbard projectors that are used
(which influence also the values of the corresponding first-
principles Hubbard parameters), with DFT+U (OAO) giving
more accurate band gaps than DFT+U (NAO). These obser-
vations were very useful to conduct, e.g., a DFT+U -based
high-throughput search of novel materials for the photocat-
alytic water splitting [98]. In this paper, we go further and
explore the accuracy of the extended DFT+U+V formulation
for predicting band gaps and its sensitivity to the type of
Hubbard projectors. The detailed discussion about the PDOS
in β-MnO2 will be given in Sec. IV F; here we just remark
that the Hubbard U correction is applied only to Mn(3d )
states while no U correction was applied to O(2p) states [and
intersite V correction was applied between Mn(3d ) and O(2p)
in the DFT+U+V framework] (see Sec. IV A).

The computed band gaps in β-MnO2 for five collinear
magnetic configurations and using DFT with and without
Hubbard corrections are shown in Fig. 6. Overall we can
see that in many cases the band gap is zero meaning that
some methods predict a metallic unphysical ground state.
In particular, at the DFT level of theory only A2-AFM and
G-AFM magnetic orderings favor a semiconducting solution,
with G-AFM giving a gap of 0.28 eV, which is surpris-
ingly in excellent agreement with the experimental gap. In
DFT+U (NAO), A1-AFM and A2-AFM both underestimate
the band gap and give very similar values of about 0.1 eV,
while G-AFM overestimates the gap by 0.07 − 0.09 eV. In
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FIG. 6. Band gap (in eV) in β-MnO2 for five collinear magnetic
orderings (FM, A1-AFM, A2-AFM, C-AFM, G-AFM) computed at
three levels of theory (DFT, DFT+U , and DFT+U+V ) using the
PBEsol functional. For each case, the Hubbard parameters U and V
were computed using DFPT, using two types of Hubbard projectors
(NAO and OAO), and they are listed in Table I. The experimental
band gap is 0.26 eV [11,12], 0.27 eV [13], 0.28 eV [14]; the min-
imum and maximum values are indicated by the horizontal dashed
lines.

contrast, in DFT+U (OAO), A2-AFM gives a metallic so-
lution while A1-AFM predicts a tiny gap of 0.02 eV, and
G-AFM also underestimates the gap significantly (by 0.15 −
0.17 eV). Therefore, at the DFT+U level we can see that
OAO performs worse than NAO, in variance with what was
observed for nonmagnetic materials in Ref. [83]. This find-
ing suggests that most likely the hybridization effects in
β-MnO2 are important and hence intersite V interactions
should be taken into account. Indeed, as can be seen in
Fig. 6, DFT+U+V gives much more accurate band gaps
for A1-AFM with both NAO and OAO projectors. However,
A2-AFM gives an accurate prediction of the band gap only at
the DFT+U+V (OAO) level, while at the DFT+U+V (NAO)
level the gap is largely overestimated. This means that not
only the intersite V is important, but also the type of projectors
must be carefully chosen, with OAO being more accurate
than NAO within DFT+U+V . Regarding G-AFM, the gap
is overestimated at DFT+U+V for both types of Hubbard
projectors.

Therefore, we find that even though DFT predicts sur-
prisingly accurate structural properties and magnetic moment
for the FM ordering, it completely fails to predict a semi-
conducting ground state and to stabilize FM with respect
to AFM orderings. On the other hand, DFT+U+V (NAO)
describes accurately the structural properties, magnetic mo-
ment, and band gap for A1-AFM ordering; however, this spin
configuration is less energetically favorable than FM at this
level of theory. Conversely, DFT+U (NAO) and DFT+U+V
(OAO) predict A1-AFM to be the most energetically sta-
ble and they describe fairly accurately all properties for this
magnetic ordering. However, DFT+U+V (OAO) predicts the
band gap more accurately than DFT+U (NAO) for A1-AFM,
thus overall DFT+U+V (OAO) comes out to be the most
accurate computational framework for β-MnO2. Finally, the

FIG. 7. Spin-resolved PDOS and total DOS for five collinear
magnetic orderings of β-MnO2 (FM, A1-AFM, A2-AFM, C-AFM,
and G-AFM) computed using standard DFT (PBEsol functional).
The zero of energy corresponds to the Fermi energy (in the case of
metallic ground states) or top of the valence bands (in the case of
insulating ground states). The intensity of PDOS and total DOS was
rescaled to the 6-atoms unit cell for A2-AFM, C-AFM, and G-AFM.
The spin-up (upper part) and spin-down (lower part) components of
the PDOS are shown on each panel (summed over all atoms of the
same type). Mn1 and Mn2 correspond to two Mn atoms with the
opposite spin polarizations in the AFM cases.

DFT+U+V (OAO) band gap is 0.32 eV, which is a result
that is superior to those obtained using hybrid functionals
that give band gaps by a factor 2 − 6 worse [22,33] than the
DFT+U+V (OAO) band gap when compared to the exper-
imental one. The accuracy of the DFT+U+V (OAO) bad
gap will likely increase further when considering the helical
magnetic ordering of β-MnO2.

F. Projected density of states

The spin-resolved PDOS and total DOS at the DFT level
of theory for five collinear magnetic orderings of β-MnO2

are shown in Fig. 7. As was pointed out in Sec. IV E, FM,
A1-AFM, and C-AFM magnetic orderings correspond to the
metallic ground states (zero band gap), while A2-AFM and
G-AFM correspond to the insulating ground states. In all
cases the conduction bands minimum is predominantly of the
Mn(3d ) character while the valence bands maximum has a
mixed nature, namely it shows a strong hybridization between
the Mn(3d ) and O(2p) states. Overall, Mn(3d ) states are
overdelocalized due to SIE inherent to DFT with approximate
xc functionals (such as σ -GGA, which is used in this case),
and they spread over the wide energy interval from about −8
to 5 eV due to strong hybridization with O(2p) states. SIE can
be fixed by applying the onsite Hubbard U correction to the
Mn(3d ) states and the intersite Hubbard V correction between
the Mn(3d ) and O(2p) states; the results are shown in Fig. 8.

As can be seen from Figs. 8(a)–8(d), the application of the
Hubbard U correction to Mn(3d ) states makes them much
more localized than in the case of standard DFT, as expected.
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FIG. 8. Spin-resolved PDOS and total DOS for five collinear magnetic orderings of β-MnO2 (FM, A1-AFM, A2-AFM, C-AFM, and
G-AFM) computed at three levels of theory (DFT, DFT+U , and DFT+U+V ) using the PBEsol functional. For each case, the Hubbard
parameters U and V were computed using DFPT, using two types of Hubbard projectors (NAO and OAO), and they are listed in Table I. The
zero of energy corresponds to the Fermi energy (in the case of metallic ground states) or top of the valence bands (in the case of insulating
ground states). The intensity of PDOS and total DOS was rescaled to the 6-atoms unit cell for A2-AFM, C-AFM, and G-AFM. The spin-up
(upper part) and spin-down (lower part) components of the PDOS are shown on each panel (summed over all atoms of the same type). Mn1
and Mn2 correspond to two Mn atoms with the opposite spin polarizations in the AFM cases.

In particular, the spectral weight of occupied Mn(3d ) states
is shifted to lower energies with the maximum intensity in
PDOS being in the range from about −8 to −5 eV, with
some variations depending on the type of the Hubbard correc-
tion and type of the magnetic ordering. The empty Mn(3d )
states are shifted to higher energies and their intensity is
also increased, which is a fingerprint of stronger localiza-
tion. In contrast to standard DFT (see Fig. 7), the top of the
valence bands is clearly of the O(2p) character, while the
lowest conduction bands are still of the strong mixed character
highlighting the hybridization between Mn(3d ) and O(2p)
states. The higher energy empty states are predominantly of
the Mn(3d ) character, with the position of peaks spanning
the range from about 2.5 to 6 eV, depending on the magnetic
ordering and type of the Hubbard correction. It is worth noting
that our DFT+U PDOS computed using NAO or OAO is in

qualitatively good agreement with previous DFT+U studies
using PAW Hubbard projectors [49].

As was discussed previously, our most accurate results
(on average) are obtained at the DFT+U+V (OAO) level
of theory for the A1-AFM magnetic ordering, the PDOS
of which is shown in Fig. 8(d). It would be instructive to
make a comparison of this PDOS with the valence- and
conduction-band spectra measured in the x-ray photoelectron
spectroscopy (XPS) and x-ray absorption near-edge structure
(XANES) experiments, respectively. As for what concerns
the valence-band XPS measurements, we are aware only of
Ref. [99]; however, the resolution of these XPS spectra is not
high enough to make a precise comparison with our PDOS.
Also, we are not aware of any XANES measurements for
β-MnO2, hence we cannot verify the accuracy of empty-
states PDOS computed in this work. However, we want to
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point out that in the previous study of the XANES spectra
of pristine and Ni-substituted LaFeO3 we found that DFT+U
and DFT+U+V with OAO projectors give results that are in
fair agreement with the experimental XANES spectra [100].
Therefore, high-resolution XPS and XANES experiments on
β-MnO2 are called for.

Finally, for the sake of completeness, in the Appendix we
present the spin-resolved PDOS of the t2g and eg components
of the Mn(3d ) orbitals for the A1-AFM ordering computed
using DFT, DFT+U (OAO) and DFT+U+V (OAO). Similar
trends are found also for other AFM orderings and when using
the NAO Hubbard projectors.

V. CONCLUSIONS

We have presented a fully first-principles investigation
of the structural, electronic, and magnetic properties of five
collinear magnetic orderings of β-MnO2 (FM, A1-AFM,
A2-AFM, C-AFM, G-AFM). A Hubbard-corrected DFT ap-
proach was used with onsite U and intersite V Hubbard
parameters computed using density-functional perturbation
theory [59,60], with two types of Hubbard projectors based
on nonorthogonalized and orthogonalized atomic orbitals.

We have found that there are sizable variations in the pre-
dicted results depending on the type of the spin configuration,
on whether only U or both U and V corrections are applied,
and on the type of the Hubbard projectors. The most accurate
results on average are found using DFT+U+V with OAO
projectors for the A1-AFM magnetic ordering. At this level
of theory, A1-AFM is found to be the most energetically
favorable compared to FM and all other AFM orderings. This
finding suggests that the commonly used collinear A1-AFM
ordering as an approximation to the true noncollinear helical
ordering is justified when the intersite Hubbard interactions
are taken into account and when Hubbard projectors are care-
fully chosen. Indeed, we have highlighted the crucial role
played by the intersite V correction to describe accurately
strong hybridizations between Mn(3d ) and O(2p) states in
β-MnO2.

Within DFT+U+V (OAO), a semiconducting ground state
was obtained for A1-AFM with the band gap of 0.32 eV,
which is in good agreement with the experimental values of
0.26 − 0.28 eV [11–14], and the magnetic moment on Mn
atoms is predicted to be 2.74 μB, which is in a satisfactory
agreement with the experimental value of 2.35 μB [19]. The
remaining discrepancies between our best computed results
and the experimental ones can be attributed to the fact that
A1-AFM is just an approximation to the noncollinear heli-
cal magnetic ordering, and perhaps the inclusion of Hund’s
J could also bring our theoretical predictions even closer
to the experimental ones. Therefore, the generalization of
DFT+U+V to include J and the investigation of the com-
plex noncollinear helical magnetic ordering are topics of
future studies on β-MnO2. Finally, it would be interesting
to further examine the accuracy of DFT+U+V with OAO
Hubbard projectors for other properties of β-MnO2 such as
phonons, thermoelectric and thermochemical properties, for-
mation energy of oxygen vacancies, to name a few, as well
as to analyze the effective hoppings and magnetic interaction
parameters.

FIG. 9. Spin-resolved PDOS for the t2g and eg states of one Mn
atom of β-MnO2 with the A1-AFM magnetic ordering computed at
three levels of theory (DFT, DFT+U , and DFT+U+V ) using the
PBEsol functional. OAO Hubbard projectors are used. The upper and
lower panels on each figure correspond to the spin-up and spin-down
channels, respectively. The zero of energy corresponds to the Fermi
energy (in the DFT case) or top of the valence bands (in the case of
DFT+U and DFT+U+V ).

The data used to produce the results of this paper are
available in the Materials Cloud Archive [82].
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APPENDIX: SPIN-RESOLVED PDOS
OF THE Mn(3d ) ORBITALS

In this Appendix we present the spin-resolved PDOS of
the t2g and eg components of the Mn(3d ) orbitals for the
A1-AFM ordering computed using DFT, DFT+U (OAO), and
DFT+U+V (OAO).

The calculation of the PDOS for the t2g and eg orbitals
was done by diagonalizing the onsite occupation matrix [see
Eq. (3), with I = J], then using its eigenvectors to rotate the
OAO (that are defined in the global frame), and finally by
projecting the KS wave functions onto these rotated orbitals
and computing

I I,σ
m (ε) =

∑

v,k

f σ
v,k

∣∣〈ψσ
v,k

∣∣φ̃I
m,rot

〉∣∣2
δ(ε − εv,k ) , (A1)

where εv,k are the KS energies, φ̃I
m,rot are the rotated OAO, and

all other quantities are defined in Sec. II. The rotation of the
orbitals is needed in order to obtain the PDOS in a local frame
and not in the global frame—this allows us to assign states
to the t2g or eg character (we adopt the approximate but more
insightful Oh-group nomenclature, although it is understood
that locally the point group symmetry is reduced to D2h). We
have implemented the calculation of PDOS with the rotated
orbitals in QUANTUM ESPRESSO and will make it publicly
available in the next official release.

The PDOS computed using Eq. (A1) is shown in Fig. 9.
It is seen that there are large differences (between DFT and
Hubbard-corrected DFT results) in the shape and position of
the t2g and eg states in both spin channels. In particular, in DFT
the t2g(↑) and t2g(↓) states are very close to the Fermi level
and they contribute to the DOS at the Fermi level (to recall,
the ground state is metallic in DFT for A1-AFM); moreover,
t2g(↑) are essentially fully occupied while t2g(↓) are mainly
empty, as can also be see from the occupation numbers in
Table III. The eg(↑) and eg(↓) states in DFT are both par-
tially occupied (see Table III). The inclusion of the Hubbard
corrections (U and V ) dramatically changes the PDOS: The
t2g(↑) states are pushed downwards in energy, while t2g(↓) are

TABLE III. Eigenvalues of the occupation matrix, Eq. (3) (with
I = J), for one Mn atom. Spin-up and spin-down components of
the t2g and eg states are indicated with up arrow and down arrow,
respectively. The DFT+U and DFT+U+V results were obtained
using the OAO Hubbard projectors.

Orbital character DFT DFT+U DFT+U+V

0.994 0.993 0.994
t2g(↑) 0.969 0.996 0.996

0.969 0.996 0.996
0.455 0.571 0.534

eg(↑) 0.470 0.586 0.547

0.164 0.054 0.062
t2g(↓) 0.224 0.101 0.120

0.269 0.111 0.141
0.342 0.265 0.291

eg(↓) 0.355 0.278 0.304

pushed upwards and they become sharper [especially t2g(↓)],
while the eg(↑) and eg(↓) states also experince significant
modifications as can be seen in Fig. 9. An interesting differ-
ence between the DFT+U and DFT+U+V PDOS is that the
peak associated with t2g(↓) has larger intensity in DFT+U
than in DFT+U+V - this is so because U in DFT+U fa-
vors the localization of these states while V in DFT+U+V
counterbalances the effect of U by favoring the hybridization
with O(2p) states that reduces the intensity of the t2g(↓) peak.
The reduction of the peak intensity in DFT+U+V is also
observed for other states in Fig. 9. As for what concerns the
occupation numbers, DFT+U and DFT+U+V give similar
values as can be seen in Table III, and they differ considerably
from the DFT occupations. In particular, we can see that in the
Hubbard-corrected DFT the t2g(↑) states are fully occupied
(∼1.0), t2g(↓) are almost fully empty, while eg(↑) and eg(↓)
are partially occupied.

Finally, it is instructive to discuss the splitting between the
t2g(↓) and eg(↓) states. In DFT, there is clearly a gap between
these states (i.e., crystal field splitting), while in DFT+U
and DFT+U+V the separation of these states is reduced so
strongly that they start to overlap. This effect can be explained
based on the arguments of the crystal field theory. The split-
ting between the d states depends on the distance between
the ligands (O) and a metal ion (Mn): the smaller the Mn-O
distance the larger the splitting of d states. As can be seen
from Fig. 2 and Fig. 3(a) (second panel, A1-AFM), the Mn-O
distance in DFT is smaller than in DFT+U and DFT+U+V ,
and as a result the splitting between the t2g(↓) and eg(↓)
states is larger in DFT than in DFT+U and DFT+U+V . It
is worth pointing out that a similar result was obtained in
Ref. [28].
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