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Data-driven, or machine learning (ML), approaches have become viable alternatives to semiempirical methods
to construct interatomic potentials, due to their capacity to accurately interpolate and extrapolate from first-
principles simulations if the training database and descriptor representation of atomic structures are carefully
chosen. Here, we present highly accurate interatomic potentials suitable for the study of dislocations, point
defects, and their clusters in bcc iron and tungsten, constructed using a linear or quadratic input-output mapping
from descriptor space. The proposed quadratic formulation, called quadratic noise ML, differs from previous
approaches, being strongly preconditioned by the linear solution. The developed potentials are compared to a
wide range of existing ML and semiempirical potentials, and are shown to have sufficient accuracy to distinguish
changes in the exchange-correlation functional or pseudopotential in the underlying reference data, while
retaining excellent transferability. The flexibility of the underlying approach is able to target properties almost
unattainable by traditional methods, such as the negative divacancy binding energy in W or the shape and the
magnitude of the Peierls barrier of the 1

2 〈111〉 screw dislocation in both metals. We also show how the developed
potentials can be used to target important observables that require large time-and-space scales unattainable with
first-principles methods, though we emphasize the importance of thoughtful database design and degrees of
nonlinearity of the descriptor space to achieve the appropriate passage of information to large-scale calculations.
As a demonstration, we perform direct atomistic calculations of the relative stability of 1

2 〈111〉 dislocations
loops and three-dimensional C15 clusters in Fe and find the crossover between the formation energies of the
two classes of interstitial defects occurs at around 40 self-interstitial atoms. We also compute the kink-pair
formation energy of the 1

2 〈111〉 screw dislocation in Fe and W, finding good agreement with density functional
theory informed line tension models that indirectly measure those quantities. Finally, we exploit the excellent
finite-temperature properties to compute vacancy formation free energies with full anharmonicity in thermal
vibrations. The presented potentials thus open up many avenues for systematic investigation of free-energy
landscape of defects with ab initio accuracy.
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I. INTRODUCTION

Enabled by the constant increase in computational power,
ab initio simulations regularly reveal new, previously hidden,
aspects of defects in crystalline materials. Empirical potentials
should constantly improve and integrate these new findings.
In metals where the functional form of the density of states is
relatively simple, embedded atom method (EAM) potentials
[1–6] are widely applied. However, attempts to improve the
performance of these potentials on some specific properties,
very often, imply a degradation of others. Over the last three
decades, efforts of the community to improve the empirical
force fields yielded various potentials, such as modified EAM
(MEAM) [7], bond-order potentials (BOP) [8], reactive force
field (ReaxFF) [9], charge-optimized many-body potentials
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(COMB) [10], etc. Although these potentials outperform the
EAM formalism in terms of accuracy with respect to ab initio
calculations, they also face transferability problems due to the
rigid form of underlying physical formalism. In this context,
proposing new fitting solutions and support functions with
increased flexibility of the functional form inspired by the
artificial intelligence (AI) and machine learning (ML) opens
up new avenues to overcome the limitations of classical inter-
atomic potentials. Moreover, AI and ML methods provide a
possibility to bridge the gap between the less accurate, empir-
ical potentials that scale as N2 or lower (N being the number
of atoms) and the more accurate electronic structure calcula-
tions that scale as N3 or higher. Although electronic structure
methods, such as tight-binding or hybrid electronic structure-
empirical methods (e.g., QM/MM), attempt to bridge this
gap, they are not always successful and retain the unfavorable
scaling. In this context, ML potentials are good candidates
to enable large length-scale and timescale calculations where
the computational cost of ab initio methods does not allow
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for direct atomistic simulations and accuracy of empirical
potentials is not sufficient.

The first attempt to couple AI and high-dimensional prob-
lems in atomic-scale materials science was proposed by
Behler and Parrinello in 2007 [11]. In contrast to classical
force fields where the performance and limitations of the
potential are mainly defined by the physical formalism, per-
formance and accuracy of ML potentials is determined by
three equally important components: database, its represen-
tation in descriptor space, and the regression algorithm.

ML potentials require an extensive training database be-
cause its content has a strong impact on the accuracy and
transferability of the potential. The design of the database,
which includes the choice of relevant information, as well as
the selection of pertinent instances [12–14], called sparsifica-
tion, is a crucial step for obtaining a relevant ML potential.

The atomic descriptors enable a specific numerical rep-
resentation of the atomic structures from the database and
its invariant description with respect to symmetries of the
Hamiltonian of the system (e.g., permutation of like atoms,
rotation, translation). Thus, instead of using R3N -dimensional
description of the local atomic environments, one employs
a space RD. The dimension of descriptor space commonly
ranges from few tens to few thousands [15–17]. Most com-
monly, atomic descriptors encode the local geometry on
neighboring atoms using the distances and/or angles be-
tween atoms [11,15,18], spectral analysis of local atomic
environments [15,18], or a tensorial description of atomic
coordinates [19,20]. A systematic basis that preserves the
symmetry of the potential energy function with respect to
rotations and permutations can also be developed by writing
the total energy as a sum of atomic body-ordered terms giv-
ing atomic body-ordered permutation-invariant polynomials
[21,22]. Some innovative descriptors, e.g. proposed by Mallat
et al. [23,24], are based on the scaling wavelets transforma-
tion. Quantum mechanics informed descriptors can be built on
physical observables, such as Mulliken charges [25] or partial
histograms of electronic density of states [26]. The similarity
distance descriptors are based on the distances between pairs
of atomic environments, e.g., smooth overlap of atomic posi-
tions (SOAP) [15] or graph version [27,28] defined through
a functional representation of atomic positions. The atomic
cluster expansion (ACE) can be used in order to build a com-
plete basis of invariant polynomials [29,30] by combination
of radial and spherical harmonic functions. In some cases,
the framework of deep learning neural networks (NN) with a
special design can be used to construct a pertinent descriptor
of the system [31–34].

The fitting of ML potentials is performed in descriptor
space and the (statistical) ML procedure of the fit defines the
performance and limitations of the potential. The relationship
between atomic energies and components of the descriptors
can be linear [35–41] or nonlinear [11,41–53]. The linear
model does not imply a linear relation between the phase
space and the observable. Any nonlinear regression becomes
linear if the domain of the function is projected into a space
with a sufficiently large number of dimensions [54,55]. Non-
linear models are most commonly based on NN [11,41–44]
or kernel methods [46–53]. Using a linear kernel is equivalent
to performing a linear regression while a polynomial kernel is

equivalent to linear regression with a basis set formed from
outer products of the elements of the feature vectors [56].
Some of the kernel models are formalized in the ever-growing
field of the statistical on-the-fly learning methods [51,53,57],
while the others are built in the form of potentials such as
Gaussian approximation potentials (GAP) [18,58]. The GAP
is the widely used version of kernel potentials. Generally
speaking, highly nonlinear methods are suitable to interpo-
late multivariate functions while in the extrapolation regime
they tend to give poor performance [54,55]. One can partially
overcome this inconvenience with the help of well-chosen
regularization, constant augmentation of the database, or by
using on-the-fly active learning techniques [53,57,59] in order
to constantly increase the boundaries of interpolation regime.
Alternatively to ML force fields, many other ML approaches
and surrogate models are designed to characterize defects in
crystalline materials [14,60–64].

In this work we aim to design ML force fields that are
suitable for modeling radiation-induced defects in Fe and W
and allow performing large-scale calculations. The energy
landscape of defects in bcc Fe and W is extremely com-
plex [65–73] and its accurate description at the atomic scale
requires using appropriate force-field models that provide a
correct description of atomic systems beyond the equilibrium
conditions. The new potentials should have higher accuracy
than traditional potentials for the essential properties of de-
fects and, in addition to that, correctly reproduce the peculiar
behavior of some small defects known from ab initio calcu-
lations, such as negative binding energy of the divacancies in
W [74–80], the distinct energy landscape of C15 interstitial
clusters in Fe [68,72,81–83], dislocation core structures, as
well as the shape and the magnitude of the Peierls barrier
[84–87]. In addition to the improved accuracy, the developed
ML potentials should be reasonably fast in order to enable
large-scale calculations of defects. Therefore, we focus on
linear ML (LML) models and its nonlinear variants that are
strongly preconditioned by the linear fit. Although these meth-
ods are not as accurate as nonlinear kernel or NN methods for
interpolation of the database, linear models have interesting
advantages related to their robust behavior outside the fitting
domain and computational cost that allows large-scale model-
ing.

The paper is organized as follows. Section II describes
the methods used in this work, including the description of
the density functional theory (DFT) database calculations
(Sec. II A) and the statistical ML approaches used to fit
the force fields and the details on the representation of the
databases in the descriptor space (Sec. II B). Then, Sec. III
summarizes the main results of modeling formation energies
and stability (Sec. III A) as well as the migration barriers
(Sec. III B) of small SIA and vacancy clusters in bcc Fe and
W. In Sec. IV we further test the developed ML potentials
for three challenging cases where the accuracy of the exist-
ing empirical potentials is not sufficient to provide reliable
results and the computational cost of ab initio calculations
does not allow for direct atomistic calculations. In Sec. IV A
we investigate the 1

2 〈111〉 screw dislocation in Fe and W
and compute its Peierls barrier and kink-pair formation en-
ergy employing direct atomistic simulations. The computed
formation energies of the kink pair are compared with those
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from line tension (LT) models parametrized using ab initio
calculations [86–88]. Further, Sec. IV B presents the results
of direct atomistic calculations of the relative stability of large
dislocation loops and C15 clusters in Fe. Finally, in Sec. IV C
we present the first calculations of anharmonic free energy
of the monovacancy formation in Fe and W using accurate
ML potentials. This quantity is essential for the parametriza-
tion of large-scale calculations such as kinetic Monte Carlo,
cluster dynamics, etc. The calculations presented in Sec. IV
are nowadays impossible to perform directly with ab initio as
they either require simulation boxes larger than 100 000 atoms
(Secs. IV B and IV A) or millions of force evaluations in order
to accurately converge the sampling of the thermodynamic
integration (Sec. IV C).

II. METHODS

A. DFT calculations of the database

The designed DFT databases for Fe and W contain atomic
environments relevant for the physics of defects in materials
under irradiation. For both materials, we take into account
configurations of the perfect and distorted bcc structures;
point, linear and extended defects, such as self-interstitial
atoms (SIAs), vacancies, free surfaces, γ surfaces, disloca-
tions; and the liquid state. For most of atomic systems, we
compute energies, forces, and the virial stress. The full content
of the databases and total number of observables to fit are
detailed in the Appendix and Table V.

The databases are calculated with VASP [89] using projector
augmented wave (PAW) pseudopotentials that account for 8
valence electrons [Ar]3d74s1 for Fe and 14 valence electrons
[Xe4 f 14]5s25p66s15d5 for W. The magnetic state of bcc and
liquid Fe is ferromagnetic at 0 K as well as at finite temper-
ature. The exchange-correlation energy is evaluated using the
Perdew-Burke-Ernzerhof (PBE) parametrization of the gener-
alized gradient approximation (GGA). The plane-wave energy
cutoff is set to 500 eV and the Hermite-Gaussian broadening
width for Brillouin zone integration is 0.1 eV. The k-point grid
of the Brillouin zone was chosen such that each configuration
in the database has a similar density of k points and corre-
sponds to that of the cubic unit cells of Fe with a0 = 2.8327
Å and W with a0 = 3.1854 Å with Monkhorst-Pack (MP)
20 × 20 × 20 grid. The databases contain information from
three types of DFT calculations: (i) structural optimization
at 0 K; (ii) minimum energy pathways at 0 K; and (iii)
finite-temperature MD calculations. The 0-K minimization
is performed using conjugate gradients until the maximum
magnitude of the atomic forces becomes lower than 0.01
eV/Å. The minimum energy pathway (MEP) calculations are
performed using the climbing image version of nudge elastic
band (NEB) method [90–92] with 7–9 images and the same
criterion on the maximum force as above. The MD-DFT sim-
ulations sample finite-temperature trajectories of bcc (perfect
bulk or perfect bulk with few defects) and the liquid state.
High-temperature MD-DFT simulations are used to sample
the Maxwell-Boltzmann distribution of positions at a given
temperature. Including these calculations to the database are
compulsory in order to have reliable vibrational properties for
α-Fe [40,93,94]. The MD-DFT calculations are performed in

the NV T ensemble. The time step of MD integration is set to
1.0 fs. The shape of the simulation boxes used for MD is cubic
and is fixed to 4a0 × 4a0 × 4a0. The value of a0 is set to 0-K
lattice parameter from DFT calculations or (when it is speci-
fied in Table V) to the experimental lattice parameter, at the
corresponding temperature, rescaled with the ratio between
the very low-temperature experimental and DFT values. The
chosen temperatures are 300 and 800 K for Fe and 300, 1000,
and 3000 K for W.

B. ML force fields using linear and quadratic noise
regression in the descriptor space

The foundation of any empirical potential concept states a
correlation between the local atomic environment (LAE) and
local atomic energy. Here, we use the local energy term as
the energy accounted for from the atoms located in the neigh-
borhood or LAE of a central atom within a cutoff distance
Rc. The link between the total energy and the local atomic
energy was established in the early days of atomistic materials
science. For metals, the tight-binding approximation [95–97]
has formalized the basis of this relation. According to this
formalism, the total energy Es of the system s containing Ns

atoms can be written as a sum of local energies εa of the ath
atom:

Es =
Ns∑

a=1

εa. (1)

It should be noted that the above form of the total energy is a
crude approximation for systems where the electronic correla-
tions are important or in the case where the charge screening is
not very effective (e.g., insulators) and the charge interaction
between ions is not negligible. Such systems require more
sophisticated formalism [98], e.g., taking separately into ac-
count long-range interactions beyond Rc, which is beyond the
scope of this study.

1. Linear ML formalism

The present-day ML potentials propose a direct multivari-
ate regression, in the descriptor space, between the LAE and
the atomic energy. This linear proportionality was originally
proposed by Thompson et al. [35] and used in many other
studies [19,20,23,24,37–40,99]. In the linear ML model, the
target ab initio total energy Es

DFT can be approached by the
linear-ML energy Es

LML through the linear local contributions
ε (1)

a [23,35,40]:

ε (1)
a = β0 +

K∑
k=1

βkDs,a
k ,

Es
LML =

(
Ns,

Ns∑
a=1

Ds,a

)
·

⎛
⎜⎜⎝

β0

β1
...

βK

⎞
⎟⎟⎠ ,

where Ds,a = (Ds,a
1 , . . . , Ds,a

K ) is the descriptor vector with K
components of the ath atom and (β0, β1, . . . , βK )T are the
parameters of the fit (β0 is the constant energy contribution).
The total energy descriptor for the system s becomes Ds

E =
(Ns,

∑
a Ds,a) vector in the R1×(K+1) space. The energy of the
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corresponding system is obtained by a linear regression using
the K + 1 parameters mentioned above. The atomic forces and
the virial stress are obtained from the derivatives, with respect
to the coordinates, of the energy, Eq. (2) (more details about
derivatives are given in Ref. [40]).

2. Quadratic noise ML formalism

In order to keep the advantages of the linear interpolation
that can behave wrong outside their fitting range, we put a
precondition on the quadratic regime imposed by the linear
interpolations. Here we propose to fit in quadratic regime only
the deviation of the LML values from DFT. The reference
DFT energy of the system s can be written

Es
DFT = Es

LML + �E � Es
LML + Es

QNML , (2)

with the last term Es
QNML having a quadratic form in the de-

scriptors elements, which will be called hereafter as quadratic
noise ML (QNML):

Es
QNML =

Ns∑
a=1

ε (2)
a =

Ns∑
a=1

K∑
k=1

K∑
k′=1

αkk′Ds,a
k Ds,a

k′ , (3)

and the local atomic energy can be written

εa = ε (1)
a + ε (2)

a , (4)

ε (2)
a =

K∑
k=1

K∑
k′=1

αkk′Ds,a
k Ds,a

k′ . (5)

The above QNML development has a well-defined precon-
ditioning, imposed by the linear fitting, i.e., the parameters
α are determined after the parameters β of linear fit are
fixed. The solution is given by the least-square estimate
of the α parameters α = (�T �)−1�T yQNML. � ∈ RM×K2

,
�s,kk′ = ∑Ns

a=1 Ds,a
k Ds,a

k′ where s is an order number for the
system s between the 1st and Mth system of the training
data set. yQNML is a column vector ∈ RM×1, which con-
tains the differences between the DFT and LML values of
the total energies. As stated above, the quadratic fit in the
(K + 1)-dimensional descriptor space becomes a linear fit in
higher-dimensional descriptor space R1×(1+K+K2 ) for which
the energy descriptor is Ds

E = (Ns,
∑

a Ds,a,
∑

a Ds,a ⊗ Ds,a).
Similar to the linear case [36,40,45], the forces and virial
stress can be included in the quadratic formalism. The force
acting on atom b is computed from the total ML energy,
Eq. (2). For example, in the QNML case, the descriptor as-
sociated with the force acting on atom b in the direction
α becomes Ds,bα

F = −(0,
∑

a ∇bαDs,a,
∑

a(∇bαDs,a ⊗ Ds,a +
Ds,a ⊗ ∇bαDs,a)). The above force descriptors lie in the same
R1×(1+K+K2 ) space and require nontrivial evaluation of deriva-
tives of each atomic descriptor with respect to all atomic
Cartesian coordinates. In practical implementation, the de-
scriptor functions have a finite cutoff radius and, thus, the sum
over N atoms is replaced by the sum of the neighbors of the
bth atom within the cutoff. The techniques for regularization
or weighted fit useful for the linear case [40] can be also
employed in the case of QNML.

We emphasize that the proposed QNML formalism is dif-
ferent from quadratic SNAP (qSNAP) [45]. While qSNAP
potentials are fitted as a polynomial of second degree with

FIG. 1. Histogram distribution of the DFT data for energy (in
eV), force (in eV/Å), and error noise deviation of LML and QNML
force fields on W database. The absolute DFT energy is presented
using rescaled form (E − E )/σ where E is the average energy of the
database and σ is the standard deviation. The error distribution for
energy and force has Gaussian shape. The distribution is narrower
for QNML force field.

explicit linear and quadratic form, in QNML only the error
of linear fit (LML) is treated as a quadratic form of atomic
descriptors. Moreover, QNML procedure is inspired by the
nearly Gaussian shape of error distribution of the linear fit.
As shown in Fig. 1, the distribution of noise Es

DFT − Es
LML

is close to unimodal Gaussian, while absolute DFT energies
in our database exhibit a bimodal shape. Such distribution of
DFT data, without any treatment, can lead to overfitting or
highly heterogeneous parametrization. This error of the LML
fit is the target of the QNML formalism. In order to avoid the
inherent overfit that is associated to nonlinear approach appro-
priate regularization (e.g., L2 ridge, Bayesian, etc.) techniques
can be applied [54,55,100].

Using the QNML procedure implies a significant increase
in the number of parameters (which becomes in the order
of K2) compared to the linear case. For the descriptors with
large dimensions, such as MTP or SOAP (with K higher than
103), this approach is not practical: an important numerical
effort should be made in the fitting procedure in order to
perform regularization of parameters and to handle the de-
sign matrix, which will require a huge amount of memory.
For such large-dimensional descriptors, the linear or kernel
formalism are much better adapted as the range of the design
matrix and the number of parameters are order of K or M,
respectively. The suggested QNML approach is well adapted
for compact descriptors with D < 100 components, such as
angular Fourier series (AFS), bispectrum SO(4) [15], hybrid
descriptors [40], or quantum mechanics informed descriptors
[25].

3. Fitting of the potentials

In this study, Fe ML potentials are trained on 761
and tested on 300 DFT structures, providing, respectively,
111 683 and 41 496 observables with energy, forces, and stress
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(nE+nF +nS). In case of W, ML potentials are trained on
2132 and tested on 607 DFT structures, providing 131 057
and 22 543 observables, respectively. More details on the
database content and the observables in each structural
class of the database are provided in the Appendix and
Table V. The setup of DFT calculations is described in
Sec. II A.

The database is represented using bispectrum SO(4) de-
scriptor with the angular moment j = 4, leading to K = 55
components. The cutoff function is the same as in the imple-
mentation from Ref. [40]. The cutoff distance Rc is set to 4.7
and 5.3 Å for Fe and W, respectively.

The fit is performed using Moore-Penrose pseudoinversion
of the design matrix [101]. In order to establish a hierarchy
in the importance of the target observables, a weighted fit is
performed. Accounting for the weights (that are the diagonal
elements of the diagonal matrix W), the objective function
can be written as J (α) = ‖W1/2(y − �α)‖2

and the solution
of the potential parameters is taken accordingly [40]. The
magnitude of weight associated with a subset of the database
(indicated as DB class in Table V) controls the accuracy of the
fit for that particular property [40]. For some components of
the database, the weights are fixed a large value (e.g., lattice
parameter and elastic constants), while others are optimized,
using a genetic algorithm, through an objective loss function
that includes the MAEs for energy, forces, and stress. This
optimization should avoid the risk of overfitting as it is de-
scribed in [40]. The solution is regularized using L2 Tikhonov
procedure, i.e., J (α)reg = J (α) + λ‖α‖2 employing a unique
regularization constant of λ = 10−6 for energy, force, and
stress. This value was found using a grid search in the range
from 10−8 to 102.

We note that in the framework of present ML potentials
short-range interactions are learned by including various con-
figurations of self-interstitial defects and strongly deformed
and compressed bulk structures (see the Appendix and Ta-
ble V) and no additional potentials for very short-range
interactions are included in the model. In order to ensure ro-
bust performance of the potentials for modeling displacement
cascades or Frenkel pair accumulation, it is recommended
to couple the ML potentials with a short-range interaction
model.

The comparison of computed lattice parameters and elastic
constants with the reference DFT values is provided in Ta-
ble I. Compared to LML potentials, QNML systematically
provides the values closer to DFT. Overall, the LML and
QNML fit provides reasonably low values for the mean av-
erage error (MAE) of energy per atom, force, and virial stress
(see Table I). The QNML potentials have MAEs that are
30%–50% lower than those from LML fit. To the best of our
knowledge, there are no traditional potentials able to reach
such low values of MAE. However, the parameter-free ML
kernel formalism, e.g., GAP potentials, can outperform this
accuracy of fit being up to five times lower in MAE than
LML.

The present LML and QNML potentials are developed us-
ing Machine Learning Dynamic (MILADY) package [40]. The
potentials together with the LAMMPS-MILADY module neces-
sary to perform the simulations in LAMMPS [103] are available
at GitHub repository [102].

TABLE I. Elastic properties of bcc Fe and W provided by the
developed LML and QNML potentials and their comparison with
the reference DFT values, obtained from DB class 2 in Table V.
The bcc lattice parameter a0 and the elastic constants are reported
in Å and GPa, respectively. MAEs of LML and QNML denote the
corresponding fitting mean-squared error for the energy per atom
(MAEE , in meV), forces (MAEF , in meV/Å), and stress (MAES , in
meV/Å3). MAE listed for DFT correspond to the estimated accuracy
of the given exchange-correlation functional, due to the mismatch in
k-point meshing, Fourier grid, etc., between the simulation cells of
different size.

Fe W

LML QNML DFT LML QNML DFT

a0 2.8325 2.8327 2.8327 3.1855 3.1854 3.1854
B 194.9 193.8 193.6 303.2 304.1 304.5
C11 287.7 293.6 292.3 509.8 516.7 516.6
C12 148.5 144.0 144.3 200.0 197.8 198.5
C44 120.5 102.3 102.1 144.5 137.2 140.2
MAEE 33 10 3 5 3 3
MAEF 70 33 5 95 50 5
MAES 25 19 4 10 10 4

III. RESULTS

In bcc metals, and in particular in Fe and W, the defect
energy landscape is very complex [70,73]. Both metals ac-
commodate a rich morphology of defects with size-dependent
stability and mobility. This section first profiles the perfor-
mance of the developed ML potentials for computing small
defect clusters with interstitial and vacancy character. The 0-K
formation and migration energies of small defects are reported
in Secs. III A and III B, respectively. Further, the performance
of the ML force fields is examined for some very challenging
cases. We test the ML potentials ability to perform large-
scale calculations, far beyond the limits in length scale and
timescale of DFT calculations, in order to study the kink-pair
formation energy (Sec. IV A), size-dependent stability of C15
clusters in Fe (Sec. IV B), and the anharmonic free-energy
landscape of bulk and monovacancies (Sec. IV C) in bcc Fe
and W.

A. Formation energies and relative stability
of small defect clusters

This section summarizes the performance of the fitted ML
potentials to compute the formation energies and relative sta-
bility of small vacancy and self-interstitial defect clusters in
bcc Fe and W.

1. Vacancy clusters

The energy landscape of small defect clusters in Fe and W
significantly differs from each other. The binding energy of
Vn vacancy clusters is always positive in Fe, while divacancy,
trivacancy, and quadrivacancy clusters in W can have a neg-
ative binding energy. In this work, the formation energies of
vacancy clusters Vn calculated with LML and QNML poten-
tials are close, within ±0.15 eV in both cases, to the DFT
values. Such good performance of the fitted ML potentials
results from the carefully constructed database in combination

103803-5



ALEXANDRA M. GORYAEVA et al. PHYSICAL REVIEW MATERIALS 5, 103803 (2021)

with the low values of MAEs (Table I) that ensure the accu-
racy of potentials with respect to the data included in the fit.

The divacancy in tungsten, a bcc metal of the VI B group,
has an unusual energy landscape [77]. According to the ab
initio calculations, the first-nearest-neighbor (1NN) divacan-
cies in W can be slightly repulsive or attractive, depending
on the approximation used for the DFT exchange-correlation
functional, while the second-nearest-neighbor (2NN) config-
uration is strongly repulsive [77,78]. The same tendency is
observed for all elements in the VI B group. The classical
mechanism of void formation implies first the formation of
small vacancy clusters like V2. The unstable character of 2NN
vacancies in W might imply the revision of the void formation
mechanism in this material. Vacancy clusters are evidenced in
the low-temperature limit by direct observations using trans-
mission electronic microscopy [104,105]. Those clusters form
by precipitation of vacancies during quenching and subse-
quent annealing during the experiments. Thus, an interatomic
potential that accurately predicts the stability of V2 clusters in
various configurations is necessary to clarify the mechanism
of void formation in W. The computed binding energies of
1NN and 2NN divacancies in W are negative for all ML po-
tentials developed until now, including LML, QNML, or GAP,
in accordance with the predictions of the DFT calculations
[77,78]. It is worth mentioning that there are no EAM poten-
tials, except [79], which are able to reproduce such behavior.
In this work, information about the repulsive character of V2

is directly included in the fitting database. For this particular
problem of vacancy clusters in W, we have tested the ability
of ML potentials to accurately compute the clusters of up to
10 vacancies. The tested Vn, n � 10 clusters are similar to the
configurations presented in Mason et al. [79]. The results in
Fig. 2(a) demonstrate that the formation energies predicted by
all tested ML potentials correlate very well with the present
DFT GGA-PBE calculations. The potentials GAP14 [94] and
GAP19 [106] slightly deviate from the perfect correlation.
The predictions from LML and QNML potentials fall between
the results of the two GAP potentials. The ML potentials
studied here are designed employing databases (Table V) that
contain information about the structural geometry of vacan-
cies, namely, minimum energy configurations of V1,2,3 and
short molecular dynamics trajectories around those minima,
as well as larger V8−16 clusters and free surfaces with various
orientations.

The analysis of the binding energy of vacancy clusters in
W shows that all the ML potentials follow the trend given by
DFT [Fig. 2(a)]. The main differences are imposed by the
value of the formation energy of the V1, which is 3.16 eV
for LML, 3.19 eV for QNML, and 3.24 eV for DFT. It worth
noting also the differences between the ML potentials and the
DFT reference [Fig. 2(b)] are close to those between the DFT
calculations that use the same exchange-correlation functional
and k-points sampling but employ different pseudopotentials
[DFT-SC and DFT-noSC in Fig. 2(b) with and without semi-
core states, respectively].

2. Interstitial clusters

As in the case of vacancies, the characteristics of SIA
clusters in Fe and W differ considerably from each other.

FIG. 2. Formation energies of vacancy clusters Vn (from n = 1
to 10 vacancies) in bcc W computed with LML, QNML, GAP14
[94] and GAP19 [106] potentials compared with the DFT GGA-
PBE values from this work. (a) Correlation between the formation
energies computed with ML potentials and with DFT. The dashed
black line indicates a perfect correlation. (b) Binding energies of
the vacancy clusters En

b = En
f − n × E 1

f , where En
for and E 1

f are the
formation energies of a cluster with n defects and of a single defect,
respectively. A negative value of the binding energy implies energetic
instability and dissociation of the defect cluster. DFT-SC and DFT-
noSC correspond to the DFT calculations using the pseudopotentials
with and without semicore states, respectively.

For single SIAs, resistivity recovery experiments [69,107],
DFT calculations [66,71,108–110], EAM [72,77,81,110–
113], ML-GAP [93,94], and the present ML potentials con-
sistently indicate that the I1 dumbbells with 〈110〉 orientation
in Fe and 〈111〉 orientation in W are the most stable. In W,
the energy landscape of SIAs predicted by DFT calculations
or accurate physics-informed models, such as the discrete-
continuum model (DC) [71], suggests that variants of 1

2 〈111〉
dislocation loops [67,114] are the lowest-energy configura-
tions at all sizes. Similar results are provided by the present
LML and QNML potentials, as well as by the other ML
potentials investigated here and, with few exceptions, by the
EAM potentials (for more details see Ref. [71]).

The energy landscape of SIA clusters in Fe is more com-
plex [71,110,111] than that in W. With increasing size, SIA
clusters in Fe change their relative stability. For the traditional
2D loops with more than 4 SIAs, the DFT studies reveal
that 〈111〉 clusters become more stable than 〈110〉 family
[69,71,110]. The present LML and QNML potentials predict
the same crossover as DFT between the two families of loops.
The ML GAP18 potential [93] gives slightly overestimated
formation energies with respect to the same DFT calculations.
Overall, for the small 2D loops, GAP18 [93] provides results
very similar to those from the MA07 EAM potential [81,83]
and predicts the transition between the 〈111〉 and 〈110〉 loops
after accumulation of 5 SIAs, which is slightly larger than
the cluster sizes obtained by DFT and AM04 EAM potential
[115].
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TABLE II. Formation energy of SIA in Fe, In clusters (from
n = 1, 2, and 5). LE stands for the lowest-energy interstitial defects.
The value in parentheses is the relative energy with respect to corre-
sponding formation energy of the I 〈110〉

n . �I 〈111〉
n and �I 〈C15〉

n columns
give the difference between the formation energy of I 〈110〉

n and the
formation energy of the 〈111〉 and C15 clusters, respectively. When
a reference work is not specified, the DFT values are provided by the
present calculations.

Fe monointerstitial I1 (eV)
LE �I 〈111〉

1

AM04 [115] 〈110〉 0.49
MA07 [81,83] 〈110〉 0.72
GAP18 [93] 〈110〉 0.82
LML 〈110〉 0.69
QNML 〈110〉 0.72
DFT 〈110〉 0.74

Fe di-interstitial I2 (eV)
LE I 〈111〉

2 IC15
2

AM04 [115] 〈110〉 0.68 1.34
MA07 [81,83] 〈110〉 1.15 0.35
GAP18 [93] 〈110〉 1.57 1.98
LML Gao (−0.03) 1.05 0.64
QNML Gao (−0.18) 1.12 0.62
DFT Gao (−0.13) 1.21 0.64

Fe quadri-interstitial I4 (eV)
LE I 〈111〉

4 IC15
4

AM04 [115] C15 0.51 −1.51
MA07 [81,83] C15 0.63 −3.70
GAP18 [93] C15 1.23 −0.90
LML C15 0.92 −3.42
QNML C15 1.07 −2.45
DFT C15 0.83 −2.49

DFT calculations (Table II) predict that the lowest I2 con-
figuration in Fe is the so-called triangle or Gao configuration
IGao
2 [116]. These clusters are known to be immobile [82].

Moreover, IGao
2 represents an elementary building brick for

complex 3D SIA clusters with C15 structure [72,83]. Until
now, there are no empirical potentials that are able to predict
the Gao configuration as SIAs with the lowest energy. The
LML and QNML potentials developed here predict the correct
relative stability of IGao

2 clusters (Table II).
Formation of 3D interstitial clusters with the C15 structure

is specific to bcc Fe [70,71,83,117]. The fitted ML potentials
accurately reproduce the relative stability of the 3D C15 clus-
ters and 2D dislocation loops predicted by DFT [71,83,117]
(Table II). The C15 are the most stable configurations of the
In clusters with n > 3 SIAs. The fitted ML potentials predict
that the C15 energy relative to the parallel cluster, for 2 and 4
SIAs, is close to the DFT counterpart, which ensures that the
characteristics of the formation and the concentration of C15
clusters are similar to those found with DFT. For IC15

2 clusters,
the GAP18 potential [93] predicts formation energies that
are much higher than those of dumbbell configurations. The
predicted formation energy of IC15

2 is about 2.0 eV higher than
that of 〈110〉 dumbbells, yielding an impossible formation of
C15 in Fe. Moreover, for larger clusters, GAP18 [93] pre-

dicts less stable C15 clusters. These results are not consistent
with the DFT calculations [72,83]. The EAM AM04 potential
poorly reproduces the energy landscape of C15, while MA07
is much closer to the DFT results [72,112,118]. In contrast
to the 2D loops, the tested GAP18 potential [93] exhibits a
limited transferability for the C15 clusters and provides results
close to those from AM04. It is interesting to note that, at
variance with the present LML and QNML potentials, both
traditional and ML GAP interactions are not designed for C15
clusters (i.e., the C15 clusters are not explicitly included in
the potential databases). However, the fitting databases of both
potentials contained the Gao di-interstitial configuration IGao

2
[72]. A detailed analysis based on outlier detection and distor-
tion score shows that the components related to C15 clusters
are missing in the ML GAP database [14]. As a possible
solution to improve the performance of the GAP potential for
C15 clusters, one may consider including 3D cluster struc-
tures into the training databases in order to enrich the variety
of atomic environments known by the model. In Sec. IV B,
we will further test the performance of the LML and QNML
potentials to predict size-dependent relative stability of large
C15 clusters and 2D dislocation loops in Fe.

B. Migration energies of small defect clusters

In this section we outline the performance of the fitted ML
potentials to compute the migration barriers of small vacancy
V1−3 and self-interstitial I1−3 clusters.

1. Vacancy clusters

The migration energy barriers of monovacancies V1 in
Fe computed using the new LML/QNML potentials and
previously developed GAP18 potential [93] are remarkably
accurate compared to those provided by existing EAM po-
tentials (Table III). Moreover, the shape of the monovacancy
barrier computed with the ML potentials exhibits a clear sin-
gle saddle point, which is not the case for the EAM potentials
that have “double-humped” migration profiles. Such a shape
occurs because the jumping atom migrates along the 〈111〉
direction through the center of two equilateral triangles (at
1
3 a0〈111〉 and 2

3 a0〈111〉) lying in (111) plane. The traditional
force fields, such as EAM, do not favor this symmetric triangle
geometry, while the ML potentials are able to fit correctly
these subtle structures. Similar effects are observed for the
migration of the monovacancy in W.

For migration of divacancy clusters V2, the ML potentials
also predict single saddle-point curves. The energy barriers
computed for V2 both with ML potential and traditional poten-
tials compare well with the DFT calculations. The remarkable
agreement between LML and QNML and DFT calculations
are reported in Table III.

In order to examine the transferability of fitted ML poten-
tials we test their ability to compute migration barriers that
are not included in the training database, such as migration of
trivacancies V3 in Fe and W. A big error in these migration
barriers will have a strong impact on the predictions of defect
kinetics under irradiation and interpretation of processes dur-
ing resistivity recovery experiments. The experimental stage
IV of the vacancy in Fe and W will be strongly impacted
by the fast diffusion of the vacancy clusters Vn with n > 2
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TABLE III. The migration barriers �Em (in eV) of the mecha-
nisms with lowest DFT barriers for the small SIAs (I1−3) and vacancy
clusters (V1−3). The barriers marked with 	 have a double-hump
shape.

Fe self-interstitials �Em (eV)
I1 I2 I3

AM04 [115] 0.30 0.33 0.32
MA07 [81,83] 0.27 0.32 0.34
GAP18 [93] 0.32 0.37 0.31
LML 0.35 0.35 0.49
QNML 0.33 0.42 0.37
DFT [81] 0.34 0.43 0.43

Fe vacancy �Em (eV)
V1 V2 V3

AM04 [115] 0.64	 0.71 0.55
MA07 [81,83] 0.68 0.71 0.43
GAP18 [93] 0.67 0.54 0.14
LML 0.67 0.65 0.33
QNML 0.68 0.69 0.33
DFT [81] 0.67 0.62 0.35

W vacancy �Em (eV)
V1 V2 V3

MN17 [79] 1.52 1.63 1.79
GAP14 [94] 1.77	 1.75 0.70	

GAP19 [106] 1.73 1.42 0.69	

LML 1.82 1.74 1.31
QNML 1.83 1.77 1.13
DFT [79] 1.76 1.83 1.15
DFT [80] 1.68

[69,107], which will affect the predictions of the size and the
density of vacancy clusters above 300 K.

The saddle point of 1.15 eV for V3 migration in W, as it
was previously mentioned in Mason et al. [79], is very low
compared to the migration barrier of V1,2, around 1.7 eV. For

trivacancies V3, LML and QNML have rather good transfer-
ability and provide correct migration barriers (Fig. 3), both in
terms of energy and single saddle-point shape, while for the
GAP class potentials, the error reaches up to 60% with the
barrier having a nonphysical shape (Fig. 3). In this case, the
highly nonlinear character of GAP formalism yields a poor
transferability. The results reported in Fig. 3 and Table III
demonstrate that the performance of some of the EAM poten-
tials for W and Fe is comparable with that of GAP potentials
in the extrapolation regime. In order to improve the perfor-
mance of GAP potentials in such cases, it is essential to enrich
the training database and to include the saddle-point configu-
rations of V3 migration in the training data set. The missing
configurations can be revealed at the stage of the database
design using the distortion scores based on outlier analysis
of the database. This method was recently demonstrated to be
very efficient for a similar problem with GAP potential for Fe
[14].

2. Interstitial clusters

The migration of SIAs in W occurs along the 〈111〉 direc-
tion and the order of magnitude of this migration barrier is
tens of meV [67,114,119–122]. Such low migration barriers
do not play a critical role in the simulation of SIAs, except
at cryogenic temperatures [123,124]. In the high-temperature
limit, the movement of 〈111〉 loops is dominated by stochas-
tic motion along the axis of the surrounding cylinder glide
[66,120]. These characteristics are well reproduced both by
the present and existing interatomic potentials for W.

In bcc Fe, the dumbbells can migrate from their initial
position to the next site via several different jump mecha-
nisms [69,109,125]. The lowest migration barriers for I1,2,3 in
Fe correspond to Johnson’s mechanism of nearest-neighbor
translation rotation [69,110,125]. The computed migration
barriers for this mechanism are reported in Table III and
compared with other interatomic potentials. Among the poten-
tials compared, the LML/QNML and GAP potentials perform

FIG. 3. Migration barriers of trivacancy clusters V3 in (a) bcc Fe and (b) bcc W. The comparison is made between the LML and QNML
potentials, GAP [93,94,106], and some commonly used EAM potentials for Fe [81,83,115] and W [79,83]. The gray dotted lines labeled with
V1−3 refer to the energy barriers for migration of monovacancies, divacancies, and trivacancies from DFT calculations in Fe [81] and W [79].
The saddle-point structure in the inset plot of (a) is detected using the distortion score of local atomic environments [14]. The atoms are colored
according to the magnitude of the distortion score (yellow, high; green, medium; blue, low).
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FIG. 4. Peierls barriers of the 1
2 〈111〉 screw dislocation gliding in the {110} plane (a) in Fe and (b) in W. The comparison is made between

the LML potentials, DFT calculations [86,87], GAP [93,94,106], and some commonly used EAM potentials for Fe [115,126] and W [83]. The
higher Peierls barrier in bcc Fe predicted by GAP18 [93] results from different DFT calculations in the training database of the potential. The
dislocation core structures in the inset plot are detected using the distortion score of local atomic environments [14]. The color of the atoms is
set according to the magnitude of the distortion score (yellow, high; green, medium; blue, low).

better than any EAM potential and predict energy barriers
within 10% of the DFT values. The QNML potential per-
forms slightly better that the LML and GAP18 [93] for I2

and I3 clusters. The good performance of LML and QNML
for the migration of small clusters in Fe results from the
thoughtful design of the training database, where we have
explicitly introduced the saddle-point configuration for I1 mi-
gration. In case of the GAP18 [93], the exact trajectories
of the jump mechanisms are not explicitly included into the
training database and the good performance of the potential
was ensured by including a rich variety of single SIA atomic
environments.

IV. LARGE-SCALE APPLICATIONS

In this section, we address large-scale calculations that are
challenging or impossible to perform using first-principles
calculations and compare them with the results from accurate
multiscale models that were previously designed to overcome
the limitations of ab initio methods. These large length scale
calculations employ systems containing 105−6 atoms. Sec-
tion IV A provides the essential characteristics of the screw
dislocations in bcc Fe and W, such as the formation energy
of the kink pair, obtained directly from atomistic calcula-
tions. Section IV B reports calculations of relative stability of
large C15 clusters and dislocation loops. The large timescale
calculations are described in Sec. IV C, which provide the
accurate anharmonic free-energy calculations of perfect bulk
and monovacancy that require millions of force evaluations.

A. Peierls barrier and kink-pair formation energy
of the screw dislocation

Here we present the performance of the developed ML
potentials to compute the essential properties of the 1

2 〈111〉
screw dislocation in bcc Fe and W: the core structure, the
Peierls barrier, and the kink-pair formation energy. Direct
DFT calculations can provide the dislocation core structure

and the Peierls barrier [84,85], while the formation energy
of the kink pair requires large simulation cells with more
than 100 000 atoms [87,88]. In order to compute the kink-pair
formation enthalpy in bcc metals with DFT, Proville et al.
[86,88] proposed a method based on the parametrization of
one-dimensional line tension (LT) model from atomistic cal-
culations performed in small simulation cells. This model was
applied to bcc Fe and W [87,88] in order to determine the
kink-pair formation enthalpy at different applied stresses. Our
direct calculations of the kink pair with ML potentials will be
compared to the results of the LT models.

The developed ML potentials yield a nondegenerate dis-
location core structure, as predicted by DFT calculations
[77,84,87,127–129]. The structure of the dislocation core is
analyzed using the distortion score of local atomic environ-
ments [14]. The dislocation cores in Fe and W are represented
in the inset of Fig. 4. The geometry of the cores together with
the magnitude of the distortion scores indicate the nondegen-
erated symmetry of the core structure.

The Peierls barriers of the 1
2 〈111〉 screw dislocation in Fe

and W gliding in the {110} plane are reported in Fig. 4. In
order to remain consistent with the reference DFT calcula-
tions, the barriers are calculated in systems containing 135
atoms with a quadripolar periodic array of dislocation dipoles,
similar to that used in Refs. [86,87]. The two dislocations were
displaced simultaneously in the {110} plane in the same 〈112〉
direction such as their separation distance remained constant.
The minimal energy pathway is computed using the NEB
implementation available in LAMMPS [91,103]. All the Peierls
barriers from our ML potentials have a single-humped profile,
in agreement with DFT results [86,87]. This shape of the
barriers is also predicted by the GAP potentials [93,94,106].
In bcc W, the magnitude of the Peierls barrier predicted by
LML and QNML is very close to the reference DFT values
[Fig. 4(b)]. In bcc Fe, LML exhibits a slightly underestimated
barrier compared to QNML potential. The higher Peierls bar-
rier in bcc Fe predicted by the GAP18 potential [93] results
from different DFT calculations that were used to train the
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potential and is not related to the kernel formalism of the
potential. The ML algorithm that underlays the GAP poten-
tial, Gaussian process regression, is nonparametric and can
integrate all the information provided by the projection of
database into the descriptor space RD.

As it was previously pointed out in Ref. [14] based on
the distortion score analysis, the screw dislocation structure,
including the core and saddle-point configurations, can be
accurately predicted by any kernel method that is fitted on a
training database that contains the appropriate stacking faults,
as was done for GAP18 [93]. The disagreement of the GAP19
potential for W with the present ML and DFT calculations
is related to the fact that the database of that potential does
not contain any instance that is close, in the descriptor space,
to the structure of the saddle point of the 1

2 〈111〉 dislocation
along the glide plane. Consequently, the core of the saddle
point is an outlier with respect to the training database, which
yields poor transferability for the given structure. This trans-
ferability issue has the same origin as the case of V3 migration,
described in Sec. III B.

The kink pairs are computed directly in large simulation
cells that contain a dipole of 1

2 〈111〉 straight screw disloca-
tions with and without a kink pair on each dislocation line.
Half of the difference of the total energies of the two sys-
tems gives the kink-pair formation energy. The simulation
cell is oriented such that the glide plane is a horizontal [110]
plane, the dislocation line is along the [111] direction, and
the glide occurs along the [112] axis. In order to reduce
the finite-size effects [88], we use simulation cells with the
length 200b (b = a0

√
3/2) along the dislocation line, which

contains 243 000 atoms. The relaxation is performed using
conjugate gradients until the maximum force of the system
is lower than 10−3 eV/Å. The obtained values for the kink-
pair energies are Ekp

Fe = 0.77 eV (LML)/0.84 eV (QNML)
and Ekp

W = 1.42 eV (LML)/1.65 eV (QNML), for Fe and
W, respectively. The comparison with the experimental val-
ues is not straightforward. The available experimental results
[130–132] are extracted from three different regimes with
various magnitudes of stress and temperature. Those experi-
mental regimes are interpreted using elastic models to extract
the different values for the kink-pair enthalpy. The extended
ranges over the three regimes are 0.6–0.91 eV [130,131] and
1.3–2.05 eV [132] for Fe and W, respectively. As in Ref. [86],
here we retain as the reference values the kink-pair formation
enthalpies measured at the lowest stresses and higher tem-
peratures without any additional theoretical assumption from
elasticity, providing 0.91 and 2.05 eV for Fe and W, respec-
tively. However, it is worth noting that the high-temperature
regime can change the magnitude of the kink-pair formation
enthalpy [133] biasing the comparison.

Further, we compare the present values of the kink-pair
formation energy with the 0-K values obtained from the line
tension (LT) models [88,134] parametrized with the ab initio
calculations. In Fe, Proville et al. [88] parametrized the LT
model using localized orbital basis as implemented in the
SIESTA code, resulting in Ekp

Fe = 0.86 eV. To construct the
training database, in this study we used VASP and PBE-GGA
for exchange-correlation functional and equivalent of 203 MP
k-point mesh for the cubic bcc unit cell. Itakura et al. [134],

TABLE IV. Kink-pair formation energies (in eV) computed with
LML and QNML potentials in comparison with line tension (LT)
models parametrized with DFT calculations.

LML QNML LT models

Fe 0.77 0.84 0.73-0.91 [86,88,134]
W 1.42 1.65 1.54 [86]

using a plane-wave basis (VASP) and different LT method,
obtained Ekp

Fe = 0.73 eV, employing the same PBE-GGA and
a MP k-point grid close to 203. Based on the same LT model
as in Ref. [88], but with different ab initio parametrization,
Dezerald et al. [86] computed Ekp

Fe = 0.91 eV and Ekp
W =

1.54 eV for Fe and W, respectively. For both metals, the
k-point grid in Ref. [86] is equivalent to 163 MP k-points
mesh. Moreover, for W there are no semicore electrons. Thus,
in Fe, the differences between various DFT calculations used
to parametrize the LT models provide a range of 0.73–0.91 eV
for the kink-pair energies predicted theoretically (Table IV).
Using GAP18 potential [93] for Fe, Maresca et al. [135]
predicted a kink-pair energy of 1.0 eV. This overestimation
is likely related to the magnitude of Peierls barrier, which
is higher than all the other DFT predictions (but in accord
with the DFT calculations on which the GAP18 potential was
fitted). According to the LT model considering a sinusoidal
shape of Peierls barrier [86,126,136], Ekp is proportional to
the square root of the Peierls barrier. Then, assuming that a LT
of dislocation line predicted by DFT and GAP18 is similar,
having a 40% lower Peierls barrier in agreement with other
DFT calculations (Fig. 4) would result in the value of the
kink-pair formation energy around 0.80 eV. This value falls in
the range of 0.73–0.91 eV predicted by the DFT parametrized
LT models [86,88,134].

The values of the kink-pair energy in Fe and W found with
the ML potentials developed here are within the limits of the
existing models and our results are close to the LT model
predictions [86]. These results demonstrate that fitting the
potentials with LML and QNML formalism based on database
with small periodic cells provides a robust force field that can
be used for larger systems with similar atomic environments.
The accuracy of ML potentials for kink pairs opens up many
perspectives for future studies of physics of dislocations. An-
other convincing example of LML and QNML transferability
is presented in Secs. IV B and IV C.

B. Relative stability of dislocation loops and C15 clusters in Fe

The traditional mechanism of point-defect clustering in bcc
metals suggests that the elementary building bricks, like SIA
dumbbells and vacancies, pack together in bundles, forming
small 2D dislocation loops with well-defined Burgers vector.
These 2D clusters gradually grow and reach observable nano-
metric sizes. In bcc Fe, vacancies can bundle in 3D voids
[119] that, at sufficient large size, collapse into dislocation
loops with vacancy character. The works of Marinica et al.
[70,71,83,117] demonstrated that interstitials also can clus-
ter into 3D objects with a specific crystallographic structure,
which subsequently dissociate into 2D dislocation loops after
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reaching the critical size. The structure of such 3D clusters
corresponds to the C15 Laves phase. Using DFT and empir-
ical potentials, it was demonstrated [71,83,117] that in α-Fe
these C15 aggregates have four important characteristics: (i)
they are highly stable and (ii) they are immobile; (iii) they
exhibit large antiferromagnetic moments; and (iv) they form
directly under irradiation, in displacement cascades [118] or
Frenkel pair accumulations [70] and they can grow by absorb-
ing self-interstitials. Therefore, the correct characterization of
the crossover between the 2D dislocation loops and 3D C15
clusters is of primary importance for understanding the mi-
crostructural evolution of iron-based materials under extreme
conditions.

Investigations of the crossover between 2D and 3D defects
require atomistic simulations with nanometric-size atomic
systems. Such calculations can be performed using traditional
empirical potentials, which are numerically fast but not al-
ways accurate and the crossover size depends on the choice of
empirical potential. Recently, EAM [72] and bond order [112]
potentials were developed to address this problem. These
potentials, as well as older ones [71], provide a crossover
between the C15 and 1

2 〈111〉 clusters in the range of 20–35
SIAs. The computational cost of ab initio calculations pre-
vents direct first-principle investigations of C15 clusters and
dislocation loops at nanometer sizes. To overcome this prob-
lem, Alexander et al. [71] developed a discrete-continuum
(DC) model with ab initio accuracy to predict formation en-
ergies of defect clusters with various geometries and sizes.
This combines the discrete nature of interstitial clusters and
continuum elasticity for crystalline solid matrix. The model
was applied to interstitial dislocation loops with 1

2 〈111〉 Burg-
ers vector, and to the C15 clusters in bcc Fe, W, and V to
determine their relative stability as a function of defect size. In
bcc Fe, C15 clusters in Fe smaller than 1.5 nm were found to
be more stable than dislocation loops, i.e., the critical number
of self-interstitial atoms in the 3D clusters is in the range of
40–49 SIAs. The accurate parametrization of such models is
difficult and requires a considerable amount of computational
resources. Alexander et al. [71] used large-scale DFT calcu-
lations of clusters with up to 20 SIAs embedded in a matrix
with more than 1000 bcc atoms.

Here, using our ML potentials for Fe, we perform
large-scale atomistic calculations in order to determine the
crossover between the formation energies of 1

2 〈111〉 loops
and C15 clusters. Inserting dislocation loops and C15 clusters
from 1 to 300 SIAs in a simulation box of 50a0 × 50a0 × 50a0

(250 000 bulk atoms), we compute the formation energy of
defect clusters. Atomic relaxation is performed until the max-
imum atomic force is lower than 10−3 eV/Å . Using this
procedure, for the cluster sizes smaller than 140 SIAs, the
error for formation energy is lower than 0.3%. This error is
estimated with respect to the calculations in much larger cells
containing more than 106 atoms. The largest C15 cluster IC15

101
is computed using 80a0 × 80a0 × 80a0 (1 024 101 atoms) and
50a0 × 50a0 × 50a0 (250 101 atoms) boxes, which results in
formation energies of 169.98 and 170.48 eV, respectively. In
order to explore the energy landscape of C15 clusters, we
generate the defect configurations using the selection rules
described in [72]. This approach facilitates the construction
of the lowest-energy C15 clusters with minimal effort. The

results are reported in Fig. 5. The present LML and QNML
potentials for iron predict a crossover in the range of 35–45
SIAs. This range is in good agreement with the DC model
[71] and provides a considerable improvement with respect to
the traditional potentials.

Small differences in the crossover size range between the
LML/QNML and the DC approach [71] can be explained by
the differences in DFT pseudopotentials that were used for the
design of DC and ML databases. The DC model is fitted using
a database computed using a PAW Fe pseudopotential having
semicore states, while the database for fitting ML potentials
in this work accounts for only eight valence electrons without
semicore state. Moreover, the plane-wave energy cutoff is set
to 350 eV in Ref. [71], while in this study we use 500 eV. The
MP scheme for k-point mesh of the Brillouin zone of the cubic
unit cell is 16 × 16 × 16 in Ref. [72] compared to 20 × 20 ×
20 for the present DFT calculations. These differences in the
setup of DFT calculations impact the formation energies of
defects.

It is worth to note that our ML database for Fe contains
only two C15 cluster configurations: IC15

2 (one Z16 poly-
hedron) and IC15

4 (two joint Z16 polyhedra). More details
about the construction of the C15 clusters can be found in
Refs. [71,72,83]. With the employed PAW pseudopotential,
we find the lowest-energy configuration with the magnetic
state having the spin of atoms centering the Z16 polyhedra
antiferromagnetic state with respect to the bcc matrix with
magnetization 2.2μB and 2.4μB for IC15

2 and IC15
4 , respectively.

In the calculations from Ref. [71], the central atom of the
Z16 cage is ferromagnetic with respect to the matrix. This
has an impact on the formation energies of those clusters:
formation energies of IC15

2 and IC15
4 from [71] are 8.03 and

11.23 eV, respectively. In this paper, the same C15 clusters
have formation energies of 7.84 and 11.0 eV, respectively.
Those relatively small differences in DFT formation energies
of small clusters become more important for larger clusters
and exhibit a systematic trend. The comparison of the present
LML and QNML results with the DFT values for the clusters
smaller than 20 SIAs are presented in Figs. 5(b) and 5(c)
for dislocation loops and C15 clusters, respectively. A similar
tendency of the present DFT formation energies being lower
than those from [71] is also observed for the dislocation loops.
Here, it is worth noting that our ML training database includes
only three configurations of 2D clusters: 1

2 〈111〉, I 〈111〉
n with

the number of SIAs n = 1, 2, 4. The DFT values of the for-
mation energy for the corresponding loops are 4.90, 8.63, and
14.47 eV in [71] and 4.64, 7.90, and 14.07 eV in this study.

Despite some differences in formation energies caused by
differences in the reference DFT calculations, the two ap-
proaches, DC and present ML potentials, exhibit a remarkable
agreement for this complex case of the energy landscape of
C15 clusters. As such, the developed ML potentials represent
a real solution for exploration of the energy landscape of C15
clusters and interstitial dislocation loops in Fe.

C. Anharmonic free-energy calculations of bcc bulk and
monovacancy in Fe and W

The thermal properties of defect populations in a material
are driven by the underlying free-energy landscape of defect
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FIG. 5. Formation energies of C15 clusters and interstitial 1
2 〈111〉 loops in bcc Fe from LML and QNML potentials and DFT calculations.

(a) The relative stability of C15 clusters and 1
2 〈111〉 loops. The shaded gray area between 35 and 45 SIAs represents the crossover size predicted

by our ML potentials, the purple shaded area between 40 and 49 SIAs is the crossover predicted by the discrete-continuum model (DC) [71].
(b) Formation energies of C15 clusters. (c) Formation energies of 1

2 〈111〉 loops. In all the subplots,the x axis corresponds to the number of
SIAs; open circles and diamonds represent the energies of 1

2 〈111〉 loops and C15 clusters, respectively. The color of points is explained in the
legends in (b) and (c). The DFT-RA calculations are taken from Ref. [71] and are the calculations used in the parametrization of the DC model.

formation and migration. Accurate characterization of the
free-energy landscape (e.g., with less than 1 meV error for
small systems with few hundreds of atoms) requires consider-
able numerical effort, with at least 105 force evaluations. This
makes direct simulations with ab initio methods very imprac-
tical. As such, ML potentials with numerical cost between the
traditional potentials and DFT calculations open up many per-
spectives for such calculations. In the classical regime above
one-third of the Debye temperature TD, the evaluation of free
energy using classical Boltzmann partition function can be
performed with various methods for free-energy calculations
[137,138].

Direct thermodynamic integration of the free-energy varia-
tion �F between an initial state Ui(q) and a final state U f (q),
where q ∈ R3N represents a given atomic configuration, is
numerically challenging for large N giving rise to a pro-
hibitively large variance. Here we use alchemical integration
[137,140,141] where the initial state is well known and can be
easily evaluated, e.g., Einstein or harmonic crystal Ui(q) =
UHA(q), and the final state is the real state of the system
U f (q) = U (q). The two states, initial and final, are linearly
coupled by introducing an alchemical reaction coordinate ζ ∈
[0, 1]. The new system has the energy Us(q, ζ ) = ζU (q) +
(1 − ζ )UHA(q), where ζ characterizes the free-energy cou-
pling between the system’s harmonic state and real state. This
coupling makes direct sampling tractable [142–144]. From the
canonical partition function Z , one can deduce a probability
of finding the system in a given state characterized by ζ ,

i.e., the system’s free energy in the Landau sense, A(ζ ) =
−β−1 ln Z (N,V, T, ζ ). The difference between the full free
energy (ζ = 1) and the reference free energy (ζ = 0) becomes

A(1) − A(0) =
∫ 1

0
〈U (q) − Uref (q)〉dμζ

dζ , (6)

where A(0) is the free energy of the reference potential Uref (q)
for ζ = 0, and A(1) gives the free energy of the system at
ζ = 1 with the potential energy given by U (q). The average
of the thermodynamic integration, on the energies’ difference,
is made using the Boltzmann measure dμζ associated with
the alchemical potential Us(q, ζ ). Then, the difference in free
energy is calculated as

F (T,V ) = Fref (T,V ) +
∫ 1

0
〈U (q) − Uref (q)〉dμζ

dζ . (7)

Having derived Eqs. (6) and (7), the determination of free
energy of a given system is subject to two requirements. First,
a reference system, for which free energy can be calculated
analytically, should exist. Second, a reversible artificial path-
way between the system of interest and a reference crystal
should be provided to carry out a thermodynamic integration
of the potential energy on the right-hand side of Eq. (7)
or (6). This method is also known as alchemical transition
because a reaction coordinate or coupling parameter enables
a smooth transition from a realistic potential energy of the
system to a known reference state that is easy to compute.
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FIG. 6. The variation �a0(T ) of the lattice parameter a0(T )
in bcc Fe and W at the temperature relative to the experimental
value aexpt

0 (0) at T = 0 K [139]. The variation �a0(T ) = aML
0 (T ) −

aexpt
0 (300). We report the interpolation of the experimental values

[139] (black lines) and the corresponding values of the present LML
and QNML potentials (green circles). The numerical values for ML
potentials are computed using the evaluation of the minimal free
energy of the bcc systems using thermodynamic integration.

Thermodynamic integration can be performed using various
methods, such as perturbation methods [145,146], adaptive
biasing potential [147], or adaptive biasing force [148–151]
to determine the free-energy difference. In this work we use
adaptive biasing force method.

Here we present the evaluation of the free-energy basin of
the bcc bulk minima and the minima of monovacancies in bcc
Fe and W. Both simulations are performed at zero pressure.
Assuming zero-pressure condition implies that the thermody-
namic functions like Gibbs free energy G = E + PV − T S
and enthalpy H = E + PV are replaced by Helmholtz free
energy F = E − T S and energy E of the system, respectively.
The Helmholtz free-energy surface F (T,V, N ), a function of
number of atoms N , volume V , and temperature T , is a central
quantity and the intensive parameters, as pressure, become
P(V, T ) = −( ∂F

∂V )T . The equilibrium volume of the system
at zero pressure is evaluated from the system’s free energy
around equilibrium state using the Birch-Murnaghan (BM)
[152,153] equation of state. BM interpolations with between
7 and 11 points are used. The maximum applied isostrain is
less than 0.9%. The initial guess of the equilibrium volume
is not obvious. Here, for each temperature, the guess is taken
based on the experimental value of thermal expansion rescaled
by 0-K ratio between DFT and experimental volume. Using
the initial guess from BM interpolation, a new value of the
equilibrium volume is computed. Then, several iterations are
performed until convergence is reached, i.e., when the lattice
parameter variation becomes less than 10−4 Å .

1. Thermal expansion

To compute the thermal expansion of bcc Fe and W,
their lattice parameters are calculated at various tempera-
tures. Figure 6 reports the computed thermal expansion of
ML potentials in comparison with experimental values [139].

The reference cell parameter is taken at the experimental
value [139] at 300 K. For temperatures lower than 300 K,
the direct comparison between experimental and theoretical
values of lattice parameters is not applicable. The present
thermodynamic integration is based on a classical mechan-
ics framework within which the contribution of quantized
phonons cannot be taken into account. Recently, in the context
of physics of defects, it was demonstrated that those discrep-
ancies are important below Debye temperature TD [123,124]
even for metals with large atomic mass, like W. However, for
temperatures where the classical regime is dominant, there is
an excellent agreement between theoretical predictions and
experiments. At high temperature (Fig. 6), the predictions of
the QNML potential are slightly more accurate than those the
LML potential. As reported in Table I, the MAE of forces
within QNML formalism are almost twice smaller compared
to LML. The better accuracy of atomic forces results in better
performance for free-energy landscape calculations, as it was
previously attested by the free-energy calculations using the
mean force [14,133,154]. Consequently, the vibrational free
energy obtained with QNML is closer to DFT and experi-
ments.

2. Free energy of monovacancy formation

The formation free energy of monovacancies is an impor-
tant quantity for parametrization of multiscale models like
kinetic Monte Carlo, cluster dynamics, dislocation dynamics,
etc. Its magnitude controls the density of vacancies, which
acts as a driving force of self-diffusion [119], vacancy flux
coupling [155–158], Ostwald ripening [159], climb mech-
anisms [160–162], phase transformations [160], etc. Until
now, in bcc metals there are no studies that investigate the
anharmonic contribution to the formation free energy of va-
cancies in Fe and W. The vast majority of multiscale models,
cited above, use the values of vibrational entropy suggested
by experience or the values computed using ab initio tech-
niques within the harmonic approximation. Here, using the
developed ML potentials, we compute this quantity directly
using thermodynamic integration. The process of forming a
vacancy includes the creation of an internal free surface. The
exchange-correlation functional plays here an important role:
LDA tends to describe internal surfaces better than GGA.
The reason is a well-known cancellation effect: LDA largely
overestimates the exchange energy of a free metal surface,
but underestimates by approximately the same magnitude the
correlation energy. This results in a reasonable net total value
of the surface energy. GGA results can vary depending on
the parametrization of the exchange-correlation functional in
use. For example, for Perdew-Burke Ernzerhof (PBE) the
exchange surface energy is underestimated but the correla-
tion surface energy is only slightly overestimated, resulting
in too small vacancy formation energies. In the case of the
phonon spectrum, it has been shown that in the case of the
fcc metals the GGA functional gives the lower limit and
the LDA functional the higher limit of spectrum [163–165].
Moreover, variants of PBE exchange-correlation functional,
such as AM05 [166,167], were designed in order to overcome
this problem. However, for finite-temperature properties of va-
cancies in fcc metals it is commonly stated that is better to use
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FIG. 7. The anharmonic free energy of monovacancy formation
at zero pressure as a function of temperature computed using LML
and QNML potentials. The dashed lines are the vibrational formation
free energy based on the values of zero-pressure vacancy formation
entropy from self-diffusion experiments [119] (see the text for more
details).

the standard GGA PBE functional [165]. For those reasons
we inspect the free-energy landscape of the monovacancies
only with GGA PBE. Direct comparison of simulations with
experimental data is not easy to perform. Self-diffusion ex-
periments can provide only the activation enthalpy, the sum
of migration, and formation energy. Moreover, the change
of magnetic structure in α-Fe (from ferromagnetic to para-
magnetic) at almost 1

2 Tm (1043 K), and the large magnitude
of vacancy migration barrier in W impede the acquisition
of accurate activation enthalpies. The accepted experimen-
tal values [119,168] of the formation entropy are 3.7kB and
3.2kB for Fe and W, respectively. In the case of W, we use
the formation entropy of 2.2kB rather than 3.2kB. As it was
mentioned in Satta et al. [169], we subtract the electronic
contribution (even though this contribution is averaged only
at high temperatures).

Figure 7 reports the computed zero-pressure formation free
energy of monovacancy with full anharmonicity in thermal
vibrations up to the melting temperature Tm. The experimen-
tal data are presented there as FML(0) − T Sexpt. In the case
of Fe, constant volume PBE-GGA DFT calculations within
harmonic approximation (HA) predict larger values of the
formation entropy: 4.1kB [170] or 4.9kB [171,172]. Using the
present ML potentials for the similar simulations, we find
5.9kB and 5.5kB with LML and QNML, respectively. These
values are in good agreement with DFT predictions [171,172],
taking into account the differences in the DFT setup between
the cited studies and the present DFT database of ML po-
tentials. For W, constant volume DFT calculations with HA
predict 2.6kB, while the ML potentials predict 4.1kB (LML)
and 2.9kB (QNML). As in the case of Fe, QNML values in W
are closer to DFT than LML predictions.

The results in Fig. 7 emphasize the importance of an-
harmonicity for T > 1

3 Tm. Free energy of monovacancy
formation in Fe is more impacted by anharmonicity in ther-

mal vibrations. Most likely, it can be explained by the lower
mass of Fe. The computed anharmonic free energies offer a
significant improvement of theoretical predictions, which can
be of great help for accurate multiscale simulations that imply
characterization of high-temperatures regime. Moreover, the
precision of the present predictions encourages further studies
to explore the impact of different exchange-correlation func-
tional on finite-temperature properties.

V. CONCLUSIONS

In this work we have developed and tested ML inter-
atomic potentials for accurate modeling of radiation defects
and dislocations in bcc Fe and W. The generalization power
and confidence limit of these potentials enable large-scale
atomistic simulations that are not feasible with first-principles
methods. Beyond the standard linear ML potentials (LML)
[35,40], which assume a linear proportionality between the
descriptors and local atomic energy, we have proposed a dif-
ferent version of ML potentials, called quadratic noise ML
(QNML). In this approach the error of linear fit is treated
as a quadratic form of atomic descriptors. This noise has a
Gaussian distribution and, consequently, the fit is strongly
predetermined by the linear solutions. Regression of the error
noise for QNML potentials improves the accuracy of standard
LML approach without significant loss of transferability and
generalization power. Moreover, the QNML potentials in-
crease the learning capacity with respect to LML and make the
present ML approach suitable for active learning [20,59,173].
The QNML potentials are well adapted for atomic descriptors
with reasonably small dimension (preferably D < 100). In
this work we have demonstrated the performance of these ML
potentials in conjunction with the bispectrum SO(4) feature
set.

The developed LML and QNML potentials reproduce most
of the essential ab initio and experiment-based knowledge
about the defects in Fe and W. The potentials accurately
predict many difficult issues related to the stability and mo-
bility of defects that are determined by electronic structure
and, therefore, very challenging for semiempirical potentials.
Among such cases, the ML potentials correctly predict (i) the
triangle Gao configuration as the most stable configuration
for di-interstitial in Fe; (ii) the magnitude and single saddle-
point shape of the migration barriers of monovacancy and
of the Peierls barrier of the 1

2 〈111〉 screw dislocation; (iii)
the magnitude of the saddle point for V3 migration; (iv) the
binding energy of divacancies in W in accord with the DFT
calculations.

In addition to modeling small defects with DFT accuracy,
the ML potentials developed here are suitable for large-scale
simulations with computational cost beyond the scope of ab
initio methods. The potentials enable direct atomistic calcula-
tions of important properties such as formation and migration
energy of large defects, e.g., kink pairs, large 2D loops,
and 3D clusters that require large simulation cells containing
105 – 106 atoms in order to eliminate finite-size effects (e.g.,
elastic interaction of defects).

In this work we have provided two important examples
of such large length scale calculations. The first example
considers direct atomistic calculations of the relative stability
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of large interstitial dislocation loops and C15 clusters in Fe.
The energy landscape of SIA in Fe is very complex. The
revisited scenario for formation of 2D dislocation loops in Fe
[70,71,83,117] predicts that interstitial atoms first cluster into
3D objects with C15 crystallographic structure, which sub-
sequently dissociate into dislocation loops after reaching the
critical size. However, the accuracy of traditional empirical
potentials is not sufficient to find this critical size [71,72] and
the numerical cost of ab initio methods does not allow for
direct atomistic simulations. Here, using the ML force fields,
we find the crossover between the formation energies of the
two families of defects around 40 SIAs. This result is in very
good agreement with a physics-informed discrete-continuum
(DC) model [71]. Detailed analysis of the calculations empha-
sizes that the small difference in the order of 5 SIAs betwen
the ML and DC predictions is determined by differences in the
DFT databases used for the parametrization of the models (the
pseudopotential and k-point grid sampling). It is interesting
to note that the present ML potential was trained on small
defect clusters with less than 5 SIAs and small simulation cells
(4a0 × 4a0 × 4a0), while the accurate fit of the DC model
required a significant numerical effort to build the database
with the clusters up to 20 SIAs and large DFT simulation cells
(up to 8a0 × 8a0 × 8a0). Thus, the generalization power of
designed ML force fields is sufficient to ensure transferability
and reconstruct the geometry and energy landscape of large
defects. A similar conclusion is reached in the second example
with direct atomistic calculations of the kink-pair formation
energy of the 1

2 〈111〉 screw dislocation. Kink pairs were not
directly included to the training database, but the presence of
straight screw dislocations and Peierls barriers were enough
to correctly predict kink-pair formation energies. The values
predicted by the LML and QNML, 0.77–0.84 eV for Fe and
1.42–1.65 eV for W, are in excellent agreement with LT mod-
els [86,88,134] parametrized using DFT calculations. Based
on these two large length scale physical problems, it can be
concluded that the design of the database, the type of the
exchange-correlation functional, and the setup of ab initio
calculations are all crucial for the accuracy of ML potentials.
Consequently, development of robust ML potentials requires
not only an extensive training database, but also reliable and
coherent ab initio content.

Finally, we used the developed ML potentials to char-
acterize the anharmonic free-energy landscape of bulk and
monovacancy formation in Fe and W. The accurate character-
ization of the free-energy landscape (less than 1 meV error)
requires a considerable numerical effort, e.g., 105 to 106 force
evaluations for small systems containing few hundreds of
atoms. Enabled by accuracy and numerical performance of
LML and QNML potentials, we have computed the thermal
expansion of the perfect bulk and zero-pressure formation
free energy in bcc Fe and W. The results are in excellent
agreement with the experimental data. The anharmonic free
energy of monovacancy formation in Fe and W was computed
and we demonstrate that the effect of anharmonicity is impor-
tant above 2

3 Tm in Fe and W and cannot be neglected. The
obtained free energies can be used as a reliable input for mul-
tiscale simulations like kinetic Monte Carlo, cluster dynamics,
etc. These promising applications combined with various
sampling strategies [14,133] open up many perspectives for

accurate characterization of defects at finite temperature in the
materials science community.

The developed LML and QNML potentials for Fe and W
together with the LAMMPS-MILADY module necessary for the
reproduction of the results are available at GitHub repository
[102].
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APPENDIX: CONTENT OF DFT DATABASE

Content of ML database has a strong impact on the accu-
racy and transferability of the potential. Here we detail the
the databases that were used for fitting of LML and QNLM
potentials for bcc Fe and W. The database is organized in sub-
sets, called DB classes in Table V. Different classes contain
the simulations relevant for different properties, e.g., elastic-
ity, formation, and migration energy of the certain defects,
thermal properties, etc. Aiming to model structural defects in
bcc Fe and W, we include to the database point defects and
their small clusters, including C15 interstitial clusters in bcc
Fe, as well as extended defects like dislocations, free surfaces,
and γ surfaces, also called generalized stacking faults (GSF).
Defect-free structures of the database contain MD configu-
rations of bcc bulk, elastically deformed systems and few
thousands of highly deformed bcc systems. In addition to
that, the databases contain MD configurations of liquid state,
which ensures good statistical sampling of atomic environ-

103803-15



ALEXANDRA M. GORYAEVA et al. PHYSICAL REVIEW MATERIALS 5, 103803 (2021)

TABLE V. Details of the different classes used in the Fe and W databases. The DB class column gives a short description of the calculations,
the “Atoms per cell” column lists the number of atoms in the cell used for DFT calculations, the “Properties to fit” column corresponds to
the fitted properties for training/testing (energy E , force F , stress S), the fourth column corresponds to the total number of train/test data that
are used to fit/test the potential, nE , nF , nS stand for number of energies, forces, and stresses, respectively, included in the fit. Finally, the last
column “Configurations train/test” gives the total number of configurations that were used for the train and test purposes.

Fe database
Atoms Properties nE + nF + nS Configurations

DB class Content per cell to fit train/test train/test

1 bcc bulk 128 E 1/0 1/0
2 Elasticity (bcc) 2 ES 315/0 45/0
3 Deformations 2 ES 2800/1351 400/193
4 SIA I1–I4 129–132 E 9/0 9/0
5 Vacancies V1–V4 124–127 E 11/0 11/0
6 Free surfaces 30 E 6/0 6/0
7 MD-bcc bulk (300 K, 800 K) 128 EFS 7820/2737 20/7
8 MD-bcc bulk (a0 rescaled 800 K) 128 EFS 3519/1173 9/3
9 MD-liquid (400 K, 800 K) 100 EF 18 060/6020 60/20
10 MD-SIA I1 − I4 (800 K) 129–132 EFS 35 745/18 304 90/46
11 MD-vacancies V1 − V4 (800 K) 127–124 EFS 30 659/11 911 80/31
12 Migration of monovacancy V1 127 E 7/0 7/0
13 Migration of monointerstitial I1 129 EFS 2364/0 6/0
14 Migration of 1

2 〈111〉 screw dislocation 135 EFS 3708/0 9/0
Total 111 683/41 496 761/300

W Database
Atoms Properties nE + nF + nS Configurations

DB class Content per cell to fit train/test train/test

1 bcc bulk 128 E 1/0 1/0
2 Elasticity (bcc) 2 ES 525/0 75/0
3 Elasticity (fcc) 4 E 33/0 33/0
4 Deformations 1 ES 10 500/3500 1500/500
5 SIA I1–I4 129–132 E 12/0 12/0
6 Vacancies V1–V4 124–128 E 4/0 4/0
7 Vacancy clusters V8–V16 240–248 EF 12 636/0 17/0
8 Free surfaces 12 E 45/15 45/15
9 γ surfaces 12 E 100/22 100/22
10 MD-bcc bulk (300 K, 1000 K, 3000 K) 128 EFS 17 595/5865 45/15
11 MD-liquid (1000 K, 3000 K) 100 EF 9632/2408 32/8
12 MD-vacancies V1–V2 (1000 K) 126–127 EFS 11 980/3477 31/9
13 MD-vacancies V2–V3 (300 K) 125–126 EF 6330/1886 16/5
14 MD-vacancies V5 (300 K) 123 EF 4440/1110 12/3
15 MD-(110) γ surface with vacancy V1 (300 K) 47 EF 14 200/ 4260 100/30
16 MD- 1

2 〈111〉 screw dislocation (300 K, 1000 K) 135 EF 40 600/0 100/0
17 Migration of monovacancy V1 53 EF 800/0 5/0
18 Migration of 1

2 〈111〉 screw dislocation 135 EF 1624/0 4/0
Total 131 057/22 543 2132/607

ments, drastically different from those of bcc. We empirically
observed that the presence of liquid in the database ensures a
dense sampling of the descriptor space and improves the sta-
bility of ML potential for predictions of atomic environments
that were not explicitly included into the database. Moreover,
it was recently demonstrated in Ref. [22] that including liquid
structures acts as regularization of the fitting solution, which
improves the transferability and prediction power of ML po-
tentials.

For most atomic systems, we compute energies (E ), forces
(F ), and the virial stress (S). A system with N atoms provides
at most 7+3N observables to fit: 1 energy (nE ), 3N force
components (nF ), and 6 independent stress components (nS).

Fe potentials were trained on 111 683 energies, forces, and
stress components (nE + nF + nS) from 761 configurations
and tested on 41 496 data instances from 300 configurations.
In case of W, training was performed on 131 057 data points
from 2132 atomic systems, and test was carried out on 22 543
instances from 607 systems. The number of instances for train
and test per each database class are given in Table V.

Figure 8 emphasizes the variety of atomic environments
different from defect-free bcc in the potential database. The
atomic environments different from bcc are selected us-
ing the distortion score of local atomic environments [14],
which is based on outlier detection with minimum covariance
determinant (MCD) [174,175]. In this approach, each atom is
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FIG. 8. Principal component analysis (PCA) representation of the databases for (a) bcc Fe and (b) bcc W. Each point on the plot corresponds
to an atomic environment. The depicted atomic environments are outliers with respect to defect-free bcc bulk structures (see text), as provided
by the distortion scores of LAEs [14]. Different colors represent different classes of structures in the database. The same color coding is used
for Fe and W, with two additional classes, fcc and γ surfaces, present in W.

characterized by a distortion score that describes a statistical
distance from a reference distribution in the descriptor space.
Here reference distribution is to be constructed from the local
atomic environments of defect-free bcc systems (Table V, DB
class 7 for Fe and 10 for W at at 300 K). Figure 8 depicts
the atoms that were identified as outliers deviating from the
bcc structure. The selected data are represented using prin-
cipal components analysis (PCA) and visualized along the
directions with maximum variance. The Fe and W databases

(Fig. 8) have two major components given by the atoms be-
longing to the point defects embedded into bcc matrix and
by the atoms of MD liquid at various temperatures. Between
those two main clouds, there are defects that favor the physical
transition between bcc and liquid phase such as vacancies.
The database of W also includes GSF. In the Fe database,
some highly deformed bcc configurations (few hundred atoms
among 2800 atomic environments) clearly deviate from the
reference defect-free bulk.
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