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Topological transitions during grain growth on a finite element mesh
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The topological transitions that occur to the grain boundary network during grain growth in a material with
uniform grain boundary energies are believed to be known. The same is not true for more realistic materials, since
more general grain boundary energies in principle allow many more viable grain boundary configurations. A
grain growth simulation for such a material therefore requires a procedure to enumerate all possible topological
transitions and select the most energetically favorable one. Such a procedure is developed and implemented
here for a microstructure represented by a volumetric finite element mesh. As a specific example, all possible
transitions for a typical configuration with five grains around a junction point are enumerated, and some
exceptional transitions are found to be energetically similar to the conventional ones even for a uniform boundary
energy. A general discrete formulation to calculate grain boundary velocities is used to simulate grain growth for
an example microstructure. The method is implemented as a C++ library based on SCOREC, an open source
massively parallelizable library for finite element simulations with adaptive meshing.
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I. INTRODUCTION

One of the overarching goals of integrated computational
materials engineering (ICME) [1] is to accurately predict mi-
crostructure and property evolution during thermomechanical
processing. At a minimum this would require a simulation in-
corporating crystal plasticity and grain boundary motion, and
ideally interactions involving multiple phases and other mate-
rial physics. Such simulations would benefit from recent ad-
vances in three-dimensional microscopy [2], and specifically
three-dimensional X-ray diffraction microscopy (3DXRD)
that enables nondestructive three-dimensional imaging of
millimeter-sized samples [3,4]. These could both provide ini-
tial conditions for and allow verification of the output of
predictive simulations of microstructure evolution.

Historically, one of the major difficulties with simulations
of microstructure evolution has been the use of unrealistic
grain boundary energy (GBE) functions. Such functions are
difficult to determine experimentally due to the number of
independent variables, but Morawiec recently suggested a
procedure to estimate the GBE from distributions of grain
boundary angles around triple junctions [5]. Saylor et al. sub-
sequently used a related technique to estimate the GBE from
EBSD analysis of the surface of aluminum samples [6,7].
While explicit functions for the grain boundary energy are not
yet widely available (with a few exceptions [8,9]), this will
likely change in the near future. When that happens, a code
for microstructure evolution that is able to make full use of
them would ideally already be available.

Existing simulations of microstructure evolution include
Monte Carlo (MC) Potts, cellular automata (CA), phase field
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(PF), and front tracking models. The MC Potts [10,11] and
CA [12–14] methods are popular partly because of their low
computational complexity and ease of implementation, but
suffer from two relevant shortcomings. First, the underlying
voxel lattice introduces an artificial anisotropy that can be
difficult to overcome [15,16], and a predictive model should
respect the isotropy of space with kinetics that are relatively
independent of the underlying grid. Second, it can be difficult
to connect the MC Potts and CA models with physical units of
measure. Zhang et al. scaled quantities defining characteristic
time, length, and energy but observed that the grid size af-
fected the bulk energy driving force [17]. Mason established
spatial and temporal dimensions in a CA model using the
Turnbull relation and a uniform grain boundary energy, but
the technique is not easily generalized to other situations [16].

The phase field method is an implicit boundary approach
that was initially developed to study phase transitions [18],
and can be modified to include small deformations and
mildly anisotropic interface energies [19]. One drawback
is the high memory and computational demand associated
with representing grains by continuous fields, since numeri-
cal instabilities associated with steep gradients limit the time
step. Modern implementations often use sparse data struc-
tures [20–22] and adaptive meshing [23] to address this issue.
Still, finite deformations and arbitrary boundary energies that
can depend on the grain boundary plane pose difficulties.
Moreover, the use of diffuse boundaries can complicate the
study of topological aspects of the grain boundary network
and can introduce subtle numerical errors. Jin et al. compared
the accuracy of level set and phase field methods coupled with
the finite element method (FEM) in representing the motion of
triple lines during isotropic and anisotropic grain growth [24].
They observed that under proper grid and time refinement,
both methods performed similarly for the isotropic case. For
anisotropic grain growth though they observed 14.2% error in
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triple junction velocity for the level set method and as much as
68.7% error for the PF method. Some recent variants allow for
anisotropic grain boundary properties [25], but the modeling
of finite mechanical deformation has still not been addressed.

Early front tracking methods had the advantage of con-
centrating computational resources just on the boundaries,
and were often used to study mean curvature flow [26,27].
FEM-based approaches are a natural extension of these that
can support additional physics, e.g., boundary energies can
be explicitly defined and volumetric meshes allow for crys-
tal plasticity [28]. However, FEM-based methods introduce
additional challenges with scalability and require explicit han-
dling of the topology and mesh. These complexities have
encouraged use of an MC Potts, CA, or PF method in con-
junction with a FEM solver. Such hybrid schemes use an
implicit boundary representation to model grain growth, and
transfer the resulting microstructure to the FEM to model
deformation. Sequential evolution is achieved by transferring
the microstructure back and forth [29–31]. This does not
resolve accuracy concerns though, since transferring the so-
lution potentially introduces information loss and increases
computational complexity.

Of the purely FEM-based approaches, Kuprat developed
a three-dimensional gradient-weighted moving finite element
(GWFE) method and implemented GRAIN3D, a serial fi-
nite element framework for microstructure modeling of grain
growth [32]. The code uses an element regularization scheme
to improve low-quality elements, handles changes in the mi-
crostructure as boundaries evolve, and supports volumetric
physics. While the initial implementation only supported con-
stant grain boundary energies, more general energies were
investigated by Gruber et al. [33]. There are two main con-
cerns with using this for general purpose simulations of
microstructure evolution though. First, Kuprat implemented
the topological transitions by switching the last remaining set
of elements of a collapsing boundary segment or volume to
the appropriate neighboring volumes [32]. This is not neces-
sarily physical, and the relabeling can cause a substantial and
artificial perturbation of the boundaries. Although the likely
changes to the overall evolution are limited for an isotropic
grain boundary energy, this could substantially affect the mi-
crostructure trajectory for the anisotropic case. Second, the
existing implementation of the implicit finite element solver is
serial. This prohibits simulating microstructures on physically
relevant scales, such as the 1 mm3 cylindrical copper sample
imaged using 3DXRD by Li et al. [4].

Using a surface mesh representation, Syha and Wey-
gand studied the effects of an anisotropic grain boundary
energy [34]. They proposed to decompose topological tran-
sitions into simpler sequential operations and used a force-
based criteria to select changes to the grain boundary network.
While this could accommodate anisotropic grain boundary en-
ergies, decomposing a topological transition into a sequence
of simpler ones could alter the eventual trajectory of mi-
crostructure evolution. Moreover, the implementation is not
volumetric and cannot support volumetric physics.

Lazar et al. studied ideal grain growth by using a surface
mesh representation, a fixed set of topological transitions ap-
plicable for uniform grain boundary energy, and evolving the
microstructure with a discretized version of the MacPherson-

Srolovitz relation [35,36]. This approach provided insight into
ideal grain growth but is not applicable to general microstruc-
ture evolution for two reasons. First, the boundary evolution
formulation assumes that the microstructure is composed of
quadruple points and triple junctions at all times except for
the moments where transitions occur. While this is gener-
ally applicable for ideal grain growth, it does not hold for
experimental microstructures. For instance, highly twinned
microstructures often contain stable junction lines joining
four grain boundaries, and accommodating such configura-
tions would require implementing more general topological
transitions. Second, the implementation does not support vol-
umetric physics, and is only intended to model ideal grain
growth.

A general-purpose FEM code for ICME would ideally be
able to handle substantial volumes of material since many
grains are required to accurately reflect variations in the lo-
cal deformation response and model stochastic processes like
recrystallization. Tucker et al. studied the convergence of
large scale crack propagation simulations as a function of the
number of grains and mesh refinement in microstructures with
abnormal grains [37]. They observed that the overall damage
response was not significantly affected by mesh resolution,
but that more than 200 grains were required in the sample
microstructure for the local response to converge. This shows
that a scalable framework is necessary to accurately capture
the local response during deformation.

In summary, existing implementations of FEM-based
grain growth codes are limited in several respects. First,
they are generally serial, prohibiting large scale simula-
tions [32,34,35]. Second, topological transitions are achieved
by merging mesh entities with one of the neighboring
grains [32], by sequentially splitting points [34], or selecting
from a restricted set of operations [35], all of which could
substantially change the microstructure evolution trajectory.
That is, a general-purpose FEM code to study grain growth
and deformation at physically relevant scales does not appear
to exist.

There are four practical contributions described in this
paper. First, a method for finding all possible topological
transitions that can occur around junction points during grain
growth is proposed. Second, operations on the simplicial mesh
have been developed to modify the mesh corresponding to
these topological transitions. Third, a criterion based on the
energy dissipation rate is used to compare different topologi-
cal transitions, providing an unambiguous selection criterion.
Fourth, a discrete formulation to simulate grain boundary
motion has been implemented that allows for effectively ar-
bitrary grain boundary properties [38]. The formulation is
explicit and solves for the motion of each vertex individually,
reducing the computational complexity compared to the weak
formulation of the FEM at the cost of increased error. An
open-source C++ library called VDLIB [39,40] implements
all these operations and interfaces with SCOREC [41,42], a
massively parallel mesh management library with local adap-
tive remeshing.

The process of code development and the capabilities of
VDLIB have already resulted in three scientific contributions.
First, the process of finding all possible topological transitions
for a canonical configuration of five grains around a junction
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FIG. 1. (a) An example grain structure composed of seven grains.
A central rectangular grain is surrounded by six grains, with ex-
amples of a volume, surface, and line outlined in red. (b) A finite
element representation of this grain structure where tetrahedra, tri-
angles, edges, and vertices are used to discretize volumes, surfaces,
lines, and points. Examples of a tetrahedron, triangle, and edge are
outlined in red.

point revealed two possibilities that are likely not mentioned
anywhere in the literature, and that are named mixed removal
and digon insertion type-II in Sec. VII. Second, the spurious
stratum insertion discussed in Sec. IV C is established as
one of the essential topological transitions for the progress
of a grain growth simulation. Third, Sec. VI generalizes the
MacPherson-Srolovitz relation [36] to allow for fixed bound-
ary conditions. Since our purpose is to provide the foundations
for large-scale simulations of realistic microstructure evolu-
tion, we expect that the capabilities of our open-source library
will enable the community to realize further related scientific
advances in the future.

II. MICROSTRUCTURE REPRESENTATION

Our purpose is to simulate microstructure evolution at a
scale that resolves the grain structure. It will be useful in the
following to introduce specific terminology to identify the
various microstructure components. A grain will be called
a volume, a boundary a surface, a boundary junction line a
line, and a boundary junction point a point. A microstructure
where each of these components is outlined in red is shown in
Fig. 1(a). The volumes, surfaces, lines, and points composing
the microstructure formally comprise a stratified space, and
for that reason the microstructure components will occasion-
ally be referred to as d-strata where d is the dimension of
the stratum. The connectivity of the topological components
of the microstructure is defined by the adjacencies of d-strata
and (d − 1)-strata; that is, a volume is bounded by surfaces,
surfaces by lines, and lines by points.

A point is required to bound at least three lines [Fig. 2(a)],
a line at least three surfaces [Fig. 2(b)], and a surface exactly
two volumes. One can show that any topological component
not satisfying these relationships is spurious and it can be
removed by merging the adjacent components of the next
higher dimension. There are no constraints imposed on the
number of adjacent components of the next lower dimension;
this allows, e.g., a small spherical volume to be embedded in

FIG. 2. Examples indicating adjacency rules. (a) A point should
bound at least three lines. This point bounds three lines and four
volumes, two on the left and right and two in front of and behind the
page. (b) A line should bound at least three surfaces. (c) A surface
separating a top and a bottom volume and ball embedded in the
surface. The line of intersection has no bounding points. (d) A sphere
inside another volume, with a surface that has no bounding lines.

the middle of a surface [Fig. 2(c)], or a ball to be embedded in
the interior of a volume [Fig. 2(d)].

III. OPERATIONS ON THE MICROSTRUCTURE

Over the course of grain growth, grain boundaries migrate
to reduce the energy of the microstructure. Occasionally a
surface or volume will shrink to a point or will expand from
a point to participate in the subsequent evolution; such events
are called topological transitions. From the standpoint of the
finite element mesh the corresponding operations are either
collapses, where disappearing boundary segments or volumes
are removed, or insertions, where new boundary segments are
introduced to allow the microstructure evolution to continue.

A. Stratum collapses

The average grain size increases during grain growth,
meaning that the general trend is for components of the grain
boundary network to vanish. The criterion for this topological
transition in practice is that the length of a line, area of a
surface, or volume of a grain is shrinking and passes below
a threshold related to a characteristic microstructural length
scale, e.g., the average grain diameter. The collapse is effected
by merging all of the bounding points and adjusting the ad-
jacency lists of the surrounding components as appropriate.
Examples of this operation are shown in Fig. 3, with several
specifics of the algorithm given in Sec. II of the Supplemental
Material (SM) [43].

FIG. 3. The cases of collapse shown on the rectangular prism
example. (a) The initial microstructure. (b) Line collapse. (c) Surface
collapse. (d) Volume collapse.
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FIG. 4. (a) Consider the point at the bottom left corner of the
central volume. (b) The neighborhood of the point shows the relation-
ships with the surrounding surfaces and volumes. (c) The volumes in
an exploded view. (d) The adjacency graph showing the volumes as
squares and the surfaces as disks. In this figure, volumes and squares
are the same color.

B. Stratum insertions

Often the configuration resulting from a stratum collapse
is unstable and the energy could be lowered by splitting the
point to insert a line or a surface. There are usually many
such possible insertions, and selecting the most likely one
necessarily involves first identifying the various possibilities.
This analysis can be performed using the adjacency graph
of surfaces and volumes. The adjacency graph is constructed
by placing a node for each volume and surface and an edge
between adjacent volumes and surfaces. The steps involved
are shown in Fig. 4 for a particular point. Formally, for non-
periodic microstructures, there is a volume surrounding the
simulation cell that is connected to the surfaces bounding the
simulation cell. For the purpose of identifying the possible
insertions, this is treated similarly to the volumes within the
simulation cell, with the specifics given in Sec. VIII of the
SM.

1. Line insertions

Every possible line insertion corresponds to a circuit on
the associated adjacency graph, with an example shown in
Fig. 5. This configuration frequently occurs for isotropic grain
boundary energies, e.g., when a triple line collapses and two
quadruple points are merged. The circuit shown in Fig. 5(a)

FIG. 5. A line insertion corresponds to a circuit on the adjacency
graph. (a) A five grain configuration and a circuit going around the
point. (b) Every surface punctured by the circuit is extended by
adding the inserted line to their adjacency lists. (c) The adjacency
graph around the point. Edges along the circuit are dashed.

FIG. 6. A surface insertion corresponds to a set of paths on the
adjacency graph. (a) A five grain configuration, showing a set of three
nonintersecting paths connecting the disconnected (top and bottom)
volumes. (b) A surface is inserted between the disconnected volumes
with one bounding line for each path. Each line is added to the
adjacency lists of the surfaces punctured by the corresponding path.
(c) The adjacency graph around the point. The color of punctured
surfaces and edges on the graph match on (a) and (c).

passes through the front, left, and right volumes, and every
surface that is punctured by the circuit is adjacent to the
inserted line. The circuit in Fig. 5(a) precisely corresponds
to the circuit in Fig. 5(c), and enumerating all possible line
insertions is equivalent to enumerating all circuits on the ad-
jacency graph. Algorithms to identify the circuits on a graph
are available in the literature [44,45]. Not all possible circuits
need to be considered though; if removing the nodes and
edges of the circuit from the adjacency graph leaves only a
single connected component, then the line insertion would
create a spurious line and point that would subsequently be
removed. The resulting algorithm is described in detail in
Sec. III of the SM.

2. Surface insertions

Around a point a surface can only be inserted between
two disconnected volumes. Given a pair of such volumes, the
inserted surface is connected to the surrounding surfaces by
some set of inserted lines. Each line corresponds to a path that
starts on one of the disconnected volumes and ends on the
other, as in Fig. 6(a). A set of such paths completely specifies
the topology around the inserted surface. Every surface punc-
tured by a path is adjacent to the corresponding inserted line,
as in Fig. 6(b). The set of all possible surface insertions can
be found by constructing all possible sets of nonintersecting
paths between the nodes of the adjacency graph corresponding
to the disconnected volumes. These paths can be found using
a standard depth first search algorithm on the adjacency graph.
Unlike line insertions, paths along surfaces that share a com-
mon edge are still acceptable, as the newly inserted line will
bound the inserted surface and will be topologically different
from any preexisting line. The resulting algorithm is described
in detail in Sec. IV of the SM.
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FIG. 7. Topological transitions not considered here. (a) Two lines
bounding the same surface meet to form a new point. (b) Two
bounding surfaces of a volume meet to form a new point. (c) The
cross section of a cylindrical volume is reduced to a point.

C. Other considerations

The algorithms described in this section are conjectured to
result in sets of topological transitions that include all those
that occur during grain growth for a generic initial condition,
even with anisotropic grain boundary energies. A generic
initial condition is one for which the type of topological tran-
sition shown in Fig. 7 does not occur. That is, the only allowed
topological transitions are those for which the length of a line,
the area of a surface, or the volume of a grain passes through
zero. This is not believed to be a serious constraint though,
since the topological transitions in Fig. 7 are not expected to
occur during grain growth in a generic physical system.

There are some situations where the adjacency graph of the
strata does not accurately reflect the topology around a point.
For example, a single point could appear on the boundary
of a surface more than once, as in Fig. 8. This is the reason
that the adjacency graph is constructed using only the mi-
crostructure components in a small neighborhood of the point.
This can allow spurious insertions (in the sense of Sec. II)
that are nevertheless required by the physical system, and any
spurious strata can easily be removed after the topological
transition is complete. The detection algorithm for spurious
strata is provided in Sec. V of the SM. The construction of
a small neighborhood necessarily involves the mesh, and will
be considered further in Sec. IV C.

IV. OPERATIONS ON THE MESH

The Scientific Computation Research Center (SCOREC)
is based at the Rensselaer Polytechnic Institute, and develops
mesh-based codes for multiscale systems design and engineer-

FIG. 8. A point connected to two spherical grains, and two grains
in front of and behind the page. The neighborhood of the point is
outlined by a dashed line. The surface in the page is represented twice
in the neighborhood of the point.

FIG. 9. Lens collapse operation. Left: The lens composed of
tetrahedra and triangles bounded by the collapsing dashed edge.
Right: The disk obtained by collapsing the lens.

ing [41,42]. Since the core SCOREC library does not natively
support changes to the topology of the finite element mesh, a
set of fundamental and localized operations are proposed and
implemented. Given that the microstructure is represented by
means of a finite element mesh, the individual microstructure
components are comprised of sets of simplicial mesh ele-
ments. These mesh elements will be referred to as tetrahedra,
triangles, edges, and vertices, or occasionally as d-simplices
when that is simpler. The distinction between the topological
and geometric components of the microstructure is reinforced
in Fig. 1.

Applying the stratum collapse and insertion operations
described in Sec. III on a simplicial finite element mesh re-
quires some mesh modifications, both to prepare the mesh
for these changes and to execute them. The two basic oper-
ations are lens collapse and lens expansion, associated with
stratum collapse and insertion, respectively. The lens split is
an additional operation used to prepare the mesh around a
stratum before stratum collapse or in the neighborhood of a
point before stratum insertion. While the actual collapse and
insertion operations are more complex than those described
below, the underlying approach is the same.

Recalling that the set of volumes, faces, lines, and points
and their connections compromise a topological structure
called a stratified space, microstructural components will be
called strata in this section, i.e., a volume will be called a
3-stratum, a surface will be called a 2-stratum, a line will be
called a 1-stratum, and a point will be called a 0-stratum. For
brevity, Sd will denote a d-stratum and Sd

i more specifically
the ith d-stratum.

A. Stratum collapse

An Sd with d > 0 is represented by a collection of e-
dimensional mesh entities with e = 0, 1, . . . , d . Collapsing an
Sd is equivalent to collapsing its constituent entities onto a
single vertex. This can be further simplified to collapsing all
edges within the Sd and its bounding strata, giving the central
idea of stratum collapse. For simplicity, this section describes
the procedure for a single collapsing edge, with the extension
to stratum collapses involving multiple collapsing edges in
Sec. VII of the SM.

On a simplicial mesh, an edge bounds a collection of tetra-
hedra and triangles forming a lens around that edge. As shown
in Fig. 9, the entities that are bounded by the collapsing edge
will also collapse and need to be removed. For each collapsing
triangle, the other two bounding edges form a merging couple.
For each collapsing tetrahedron, the two triangles that are not
collapsing form a merging couple. After the collapse, a new
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FIG. 10. Edge split operation during preconditioning. The
thicker edges in red and blue belong to strata Sd

i and Se
j , respectively.

If Sd
i and Se

j are not the same and one does not bound the other,
collapse of the dashed vertical edge is not allowed. Splitting the
red edge and all entities that are bounded by that edge into two
creates new entities which by construction either belong to Sd

i or
strata bounded by Sd

i .

entity is generated for each merging couple. Such an entity be-
longs to the lower dimensional stratum of the merging couple,
assuming the merging entities belong to the same or adjacent
strata.

Three issues could arise that would invalidate the mesh
during a stratum collapse. First, the collapse could cause an
additional topological transition if any of the merging entities
do not belong to the same or adjacent strata. Applying the
edge split operation shown in Fig. 10 to one of the edges of
the problematic couple resolves this situation. Second, it is
possible that two d-dimensional entities could unintentionally
merge. This could occur even if they do not belong to the
collapsing lens, but requires that they share d − 1 vertices and
that the remaining vertex of each be a distinct merging vertex
as in Fig. 11(a). The edge split procedure can also resolve
this by isolating the collapsing entity, as shown in Fig. 11(b).
A third issue that would invalidate the mesh is inversion of
one of the surrounding entities during a collapse. This could
occur if the initial and final positions of a merging vertex lie
on distinct sides of the plane containing the opposite triangle
of an adjacent tetrahedron.

FIG. 11. The effect of preconditioning for an S1 collapse on a
two-dimensional mesh. (a) Collapsing the blue S1 and moving the
vertices to the blue node would invert the red triangle and merge
it with the purple triangle. The resulting triangle is shown in dashed
lines. (b) The splitting procedure resolves this problem, but yields the
red triangle that could invert during collapse. (c) Relaxation allows
the S1 to be collapsed without inverting any elements.

The three-dimensional equivalent of the preconditioning
operation in Fig. 11 is applied to edges that are adjacent to
a single merging vertex to avoid all three situations. First, the
midpoints of all edges emanating from the merging vertices
are collected to compute their convex hull, and the emanating
edges are split where they intersect the convex hull. This
resolves the first two issues and yields a hull of triangles
surrounding the collapsing stratum. While it is still possible
for a surrounding tetrahedron to invert during the collapse,
a relaxation procedure analogous to that in Fig. 11(c) and
described in Sec. VI of the SM is applied to vertices on
the hull to avoid such an event. After preconditioning, the
stratum memberships of the new entities associated with the
merging entities are found. A new entity belongs to the lowest
dimensional stratum that owns one of the merging entities;
the preconditioning certifies that there is a single stratum of
the lowest dimension.

During the course of microstructure evolution, the criterion
for collapsing a stratum is decided at the mesh level with
a two step algorithm. First, the diameter of a stratum is ap-
proximated as that of an edge, square, or cube with the same
length, area, or volume, respectively. If the diameter of a Sd

is smaller than a threshold, then the time rate of change of
the total length, area, or volume of the collapsing stratum is
calculated using the velocities associated with the bounding
vertices. If this is negative, then the stratum is collapsed.

B. Stratum insertion

As described in Sec. III B, the insertion of a S1 or S2 around
a central S0 initially involves finding circuits or paths in the
adjacency graph of surfaces and volumes. For this to work
on the mesh level, there should be at least one internal edge
in each of the surrounding S2 and S3. This is ensured by two
operations. First, a lens expansion is applied to each connected
set of tetrahedra belonging to the same S3. The S2 triangles
bounding such a set and adjacent to the S0 form a disk that
can be expanded. The expansion forms a new vertex, a new
edge, and a set of new triangles and tetrahedra corresponding
to the disk triangles, all belonging to the specified S3. Second,
if there are any sets of connected triangles belonging to a S2

that consist of a single triangle, the edge opposite the S0 is
split. Next, the split operation is applied to the edges bounded
by the central vertex belonging to the S0. The vertices created
by these split operations are positioned on a sphere centered
at the S0 vertex location. The radius ρ of the sphere is smaller
than the distance to the closest triangle opposite the central
vertex in any surrounding tetrahedron.

Preconditioning achieves three things. First, it ensures that
corresponding sets of triangles and edges can be found for
each circuit associated with a S1 insertion and each path asso-
ciated with a S2 insertion. These sets of triangles and edges
form disk- or finlike structures. Second, it forms a convex
cavity of triangles, preventing element inversion after the in-
sertion. Third, it reduces the size disparity of the surrounding
triangles and the associated bias in the numerical scheme for
vertex velocities.

Stratum insertion requires expansion of a disk/fin, creation
of triangles and tetrahedra with the same stratum member-
ships as the edges and triangles on the disk/fin, and creation
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FIG. 12. Steps of a spurious line insertion. (a) A point, connected
to the red and green volumes above and below and two volumes
in front of and behind the page. (b) Insertion of the spurious line,
adjacent to two surfaces both separating the same volumes. (c) The
spurious line is removed and the two surfaces are merged.

of edges and triangles belonging to the new strata. In the case
of a S1 insertion, a new S0 vertex and a new S1 vertex to be
positioned on the interior of the new line are created. The
disk associated with the circuit is used to create three disks,
one for the old S0 vertex, one for the new S1 vertex, and one
for the new S0 vertex such that the disk entities belong to
the same strata as in the initial disk. Two new S1 edges are
created to connect the S1 vertex to the bounding S0 vertices.
The volume between the disks and around the new S1 edges
is filled by triangles and tetrahedra corresponding to edges
and triangles on the disks. In the case of a S2 insertion, the
entities bounded by the new S2 entities need to be generated.
A triangle belonging to the new S2 is generated for each new
S1 edge, and a new tetrahedron belonging to the adjoining S3

is generated for each new S2 triangle. When inserting strata
on a S0 on the boundary of the simulation, the algorithm skips
the creation of entities for the exterior S3. The final step of the
insertion is the relaxation described in Sec. V.

C. Spurious stratum detection and insertion

If an inserted stratum has fewer than the minimum num-
ber of higher-dimensional adjacencies, it is spurious and is
removed by merging the higher-dimensional adjacencies. An
example is given in Fig. 12. This operation is sometimes
necessary, e.g., when a S0 is connected to multiple disjoint
sets of triangles belonging to the same S2 or disjoint sets
of tetrahedra belonging to the same S3. In this situation, the
global connectivity of the stratification is not representative
of the possible local insertions around the vertex. A local
stratification of disjoint sets of entities belonging to the same
stratum is generated, and the set of all possible insertions is
found with the same circuit and path detection methods as de-
scribed above. A practical situation where spurious insertions
are necessary for the progress of a grain growth simulation is
described in Sec. X of the SM.

V. BOUNDARY EVOLUTION AND ENERGY CRITERIA

When inserting a new stratum, it is important that the ge-
ometry of the stratum maximizes the energy dissipation rate as
the stratum expands. This is especially important when there
is more than one possible stable insertion, as shown in Fig. 13.
Even for a constant grain boundary energy, inaccurate calcula-
tions of the geometry could change the selected insertion and
drastically alter the subsequent evolution of the system. The
calculation of the geometry of an inserted stratum begins by
isolating the mesh around the old S0 vertex and applying the

FIG. 13. The choice of insertion can change the overall trajec-
tory of the system. (a) A two-dimensional degenerate configuration
with four grains could transition to either (b) or (c) since they are
energetically equivalent. For (d), (e) and (f) both lower the energy,
but (e) more so.

relaxation algorithm, as shown in Fig. 14 for a digon insertion.
The bold black lines in Fig. 14(a) represent the fins of triangles
on the paths. A new digon is inserted by expanding the two
selected fins, changing the topology as shown in Fig. 14(b).
The projection sphere of radius r is represented by the black
dotted circle and the inner (one for each S1 and S2 vertex) and
outer bounding spheres are represented by red dashed circles.
The vertices are then allowed to move according to the equa-
tions of motion [Fig. 14(c)] until a minimum energy is reached
or one of the moving vertices intersects an inner or outer
bounding sphere. If one of the inner spheres is intersected,
the insertion is discarded. If the outer sphere is intersected, the
inserted stratum is scaled to be contained within the projection
sphere. The steps in Figs. 14(c) and 14(d) are repeated until
both the energy at the intersection and the energy after the
scaling converge to the final and initial energies E f and Ei.

Since the thermodynamically driven system follows a gra-
dient flow of the energy, the physical system will transition
to the state with the highest energy dissipation rate. After the
process converges, the energy dissipation rate is calculated for
the expanding insertions at the singular configuration where
all the new vertices are positioned at the old vertex position.
Assuming the contributions of the newly generated strata to
the forces acting on the vertices are vanishingly small in this
configuration, the dissipation rate of initial expansion is given
by

W = −
∑

i

�Fi · �vi,

where Fi and vi are the force acting on and the velocity of
vertex i and the sum is over all newly inserted bounding
vertices.

Our energy dissipation rate criterion is similar to the depin-
ning force which Shya and Weygand use to repeatedly split a
node by edge insertions [34]. The difference is that our ap-
proach instead compares all possible single stratum insertions
at once using the energy dissipation rate criterion, presumably
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FIG. 14. The steps of mesh level insertion and reorientation for a digon insertion. (a) Fins of triangles along paths, shown in bold black.
(b) Insertion of the new digon, where S1 edges are shown as green lines and S2 edges are shown as blue lines. (c) The vertices are allowed to
move until one of the ending criteria is reached. (d) The digon is scaled to be within the projection sphere, and relaxation continues until the
energies converge.

more closely following the evolution of the physical system.
Moreover, the relaxation algorithm discards insertions that do
not expand, allowing for stable high valency junctions that
could form, e.g., at intersecting deformation twins in TWIP
steels.

VI. MODIFIED MACPHERSON-SROLOVITZ RELATION

All numerical approaches should be verified against
experimental or analytical results. One possibility for poly-
crystalline microstructures evolving under constant grain
boundary energy is the MacPherson-Srolovitz (MS) re-
lation [36], the three-dimensional extension of the von
Neumann–Mullins relation [46,47]. For a constant grain
boundary energy, this relation should be satisfied by each
grain at every moment in time except for when a topological
transition occurs.

The MS relation [36] governing the rates of change of
volumes is given by

dV (D)

dt
= −2πμγ

[
L(D) − 1

6
M(D)

]
, (1)

where μ is the constant grain boundary mobility, γ is the con-
stant grain boundary energy, L(D) is the mean width which
measures the total mean curvature of grain D, and M(D) is
the total length of the triple lines of grain D. Lazar et al.
describe a discretized form of the MS relation that can be used
to calculate the rate of volume change for grains composed
of discretized linear elements [35]. For this case, L(D) and
M(D) reduce to

L(D) = 1

2π

∑
i

eiαi,

M(D) =
∑

j

l j,

where ei is the length of the ith boundary edge, αi is the
exterior angle around the ith boundary edge with respect to
grain D, and l j is the length of the jth triple line edge.

The coefficient of M(D) in Eq. (1) is related to the equilib-
rium exterior angle of π/3. For periodic boundary conditions
and when all junctions are composed of triple junctions and
quadruple points, this is the expected exterior angle every-
where. As will be further discussed in Sec. VII though, when

using an exterior boundary or allowing higher valency junc-
tions due to the discretized mesh, the MS relation needs to be
modified to include more general exterior angle conditions.
Specifically,

dV (D)

dt
= −μγ [2πL(D) − N (D)], (2)

N (D) =
∑

j

β j l j, (3)

where β j is the equilibrium exterior angle around the jth
junction line edge. This is determined by the equation

(π − β j )n = ξ j,

where n is the number of grains and ξ j is the total interior
angle available for all grains around the jth junction line edge.
For a stable interior S1, ξ j = 2π , n = 3, β j = π/3 and Eq. (2)
reduces to Eq. (1). Assuming a cubic simulation cell, the sta-
ble configuration of a S1 on a simulation cell edge has n = 1,
ξ j = π/2, and β j = π/2, and the stable configuration of a S1

on a simulation cell face has n = 2, ξ j = π , and β j = π/2. It
is possible to have unstable junctions with n larger than that
for the stable configurations.

VII. RESULTS AND DISCUSSION

This section describes several tests of our implementation
of the preceding ideas in situations where the expected re-
sult are known. All possible insertions are identified for the
canonical configuration of five volumes around a single point,
and include both the insertion of a line and triangle that are
considered in previous FEM-based methods and a number of
insertions that are not. The effect of the geometric configu-
ration of the surrounding surfaces on the type and geometry
of the insertion that maximizes the energy dissipation rate
is explored. Finally, a simulation of a trial microstructure
is performed as a demonstration of the capabilities of our
implementation.

Consider the five grain configuration previously described
in Fig. 5(a). All possible insertions can be found by applying
the circuit and path detection algorithms, and these are shown
in Fig. 15 (classified by their symmetries). There are four
classes of S1 insertions and three classes of S2 insertions. The
volume removal and trigon insertion are generally handled by
all grain growth codes, but the other insertions are usually not
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FIG. 15. All possible insertions for the canonical configuration, classified by symmetry groups. Observe that digon insertions can be
obtained by decomposing circuits containing disconnected 3-stratum couples into two paths connecting the couples and using these to insert a
2-stratum. Digon insertion type-I is related to petal removal type-I and digon insertion type-II is related to mixed removal.

since a S1 collapse is always followed by a trigon insertion
when the boundary energy is a constant. Digons can also be
inserted, with the two types shown in Fig. 15.

To be specific, there is one volume removal, three petal
removal type-Is, six petal removal type-IIs, and six mixed
removals possible, all of which are found by circuit analysis.
There are three type-I digon, six type-II digon, and one trigon
insertions possible as well. Note that digon insertion type-I
and type-II use paths that can be constructed by decomposing
the circuits of petal removal type-I or mixed removal, respec-
tively. When discussing the energy dissipation rates, it will
be shown that these additional operations could be relevant
depending on the grain boundary energy function.

Depending on the geometry of the surrounding boundaries,
each insertion has a different energy dissipation rate associ-
ated with the subsequent evolution. The energy dissipation
rate criterion states that the insertion with the highest positive
dissipation rate is the one that will be realized. As a test of
this criterion, a mesh was generated for the configuration in
Fig. 15. If the geometry is such that the three S1s on top and
three S1s on the bottom are separated by the tetrahedral angle,
a degenerate configuration is created where any insertion re-
sults in an unstable configuration with increased energy. If the
angles between the S1s are instead larger than the tetrahedral

angle, a trigon insertion should be favored. Conversely, if the
angles between the S1s are smaller than the tetrahedral angle,
a volume removal should be favored.

The results of this simple test are shown in Fig. 16. The en-
ergy changes in Fig. 16(a) are calculated with the new vertices
on the outer projection sphere. For the compressed case where
trigon insertion is favored, it is significant that the digon in-
sertion is also energy decreasing and the petal removal type-I
is nearly energy neutral. The dissipation rates associated with
the expanding insertions are shown in Fig. 16(b), and correctly
identify the most energetically favorable insertions.

The current scheme applies smaller forces on the inserted
triangles than the surrounding triangles due to the discretized
equations of motion, and a small bias towards trigon insertions
in the degenerate configuration is visible in Fig. 16. The bias
depends on the selection of the ratio of the radii of the inner
and outer spheres in Fig. 14. By increasing the ratio, smaller
radius insertions are discarded, effectively creating a range
of grain configurations around the degenerate case where no
insertion is valid. However, that can also make high aspect
ratio S2 insertions hit the inner sphere and be discarded until
their aspect ratio lowers on the consecutive time steps.

Whereas the vertical stretch changes which inser-
tion is energetically favored, lateral stretches change the

FIG. 16. (a) The variation in energy change of insertion with the surrounding boundary configuration. Blue triangles show the energies
for the configuration when the S1 angles in (c) are tetrahedral angles. Red squares denote the energies for the stretched case, and the green
pentagons show the compressed case. (b) The dissipation rates for the expanding insertions at the singular configuration, where the volume
removal and the trigon insertion are energetically favorable for the stretched and compressed cases, respectively.
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FIG. 17. The effect of orthogonal stretching on the trigon shape.
(b) Starting configuration, where dihedral angles between surfaces
separating the surrounding S3 are equal. (a)–(c) After stretching
(compressing) the configuration in the lateral direction, running the
relaxation yields a laterally stretched (compressed) S2.

energy-minimizing shape of the inserted stratum as is re-
flected by the relaxation scheme. Without this, insertions of
equilateral S2 could increase the energy artificially and cause
a physically favorable insertion to be overlooked. Relaxation
mitigates the problem, and as shown in Fig. 17, the shape of
the inserted S2 changes along with the surrounding geometry.

Finally, we simulate the evolution of an artificial mi-
crostructure of 100 grains generated as a Voronoi tesselation
using Neper [48]. The simulation cell is a cube with unit edge
length but is not periodic, requiring that a local volume preser-
vation constraint be imposed on the exterior vertices. This
relaxes the connectivity constraint on grain surfaces on the
exterior, and requires some additional operations described in
Sec. VII of the SM. The mesh is adaptively refined, with a
target edge length set to a fraction of the median of the cube-
equivalent grain diameters. The S1 are additionally required
to contain at least two edges to provide sufficient degrees of
freedom. The microstructure is evolved using equations of
motion by Mason [38] with unit surface drag coefficient and
grain boundary energy. The time iteration is implemented by a
second-order Runge-Kutta scheme with the time step at each
iteration given by min(tinv/20, tfixed), where tinv is the shortest
time step to invert any element and tfixed is the maximum
fixed time step of 5.0 × 10−5. One iteration loop involves
nine subiterations of the equations of motion, checking for
and implementing collapses, followed by checking for and
implementing insertions. Some snapshots from the resulting
system evolution are shown in Fig. 18, with the discretization
of several grains visible in Fig. S8 of the SM. For reference,
this simulation required about a week on a PC with 16 GB
of 2400 MHz DDR4 RAM and an Intel(R) Core(TM) i7-

FIG. 18. Simulation of a microstructure composed of 100 grains
under isotropic grain boundary energy. (a) Initial configuration.
(b) The number of grains is about one half of the starting number.

FIG. 19. The rates of volume change for example grains as cal-
culated by the modified MacPherson-Srolovitz (MS) relation, and
first-order approximation using the equations of motion (EoM).

7700HQ CPU at 2.80 GHz. More details of the computational
resource use and scaling are provided in Sec. XII of the SM.

The modified MS relation in Sec. VI is used to calculate
the rate of volume change of grains composed of discretized
linear elements. The resulting actual rates of volume change
for a select number of grains and the predictions of the mod-
ified MS relation are given in Fig. 19. The initial discrepancy
is mainly due to the deviation from the equilibrium angle
conditions in the initial condition. The discrepancy decreases
as the initial microstructure evolves and the angles around the
junction lines approach the equilibrium values. Topological
transitions can also cause temporary deviations (e.g., grain
5 around t = 0.003 in Fig. 19) which decrease with time.
Despite using linear elements and an explicit time integration
scheme, there is overall good agreement with the MS relation.

VIII. CONCLUSION

A computational framework with an explicit grain bound-
ary representation is proposed to predict grain growth for
anisotropic grain boundary energies and mobilities. This
establishes the foundations of a massively parallelizable
general-purpose framework to model microstructure evolu-
tion during, e.g., high-temperature and finite-strain processes.
There does not appear to be any other software with these
capabilities that uses an explicit boundary representation, and
that supports general changes to the grain boundary network.

Predictive simulations of microstructure evolution during
thermomechanical processing require the ability to repre-
sent features such as stable quadruple junction lines in low
stacking-fault energy metals. This in turn requires the ability
to handle anisotropic properties and more general topologies
than usually assumed in the literature. Moreover, the mesh
should be partitioned across multiple processing units to reach
physically relevant scales, and the equations of motion should
be local to keep the computational cost linearly proportional
to the number of grains. The discrete equations of motion
proposed by Mason [38] can accommodate anisotropic grain
boundary energies and drag coefficients. They are local and
scalable, and have been implemented to describe the boundary
motion.
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A generic method to identify the possible singular tran-
sitions is proposed and implemented. An insertion selection
criterion based on the energy dissipation rate is proposed and
implemented. The method can utilize models for anisotropic
energies, and once experimental grain boundary energy func-
tions are available, the framework will be used to simulate
grain growth under these conditions. Finally, the work is done

in the context of a massively parallelizable finite element
based library that can support volumetric physics.
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