
PHYSICAL REVIEW MATERIALS 5, 103801 (2021)

Automated free-energy calculation from atomistic simulations
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We devise automated workflows for the calculation of Helmholtz and Gibbs free energies and their temperature
and pressure dependence and provide the corresponding computational tools. We employ nonequilibrium
thermodynamics for evaluating the free energy of solid and liquid phases at a given temperature and reversible
scaling for computing free energies over a wide range of temperatures, including the direct integration of
P-T coexistence lines. By changing the chemistry and the interatomic potential, alchemical and upscal-
ing free energy calculations are possible. Several examples illustrate the accuracy and efficiency of our
implementation.
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I. INTRODUCTION

Free energies are crucial for thermodynamic analysis and
provide valuable insight into the relative stability of phases
and their coexistence. The calculation of free energies from
atomistic simulations is far from trivial. Thermodynamic inte-
gration [1,2] is widely employed to compute free energies. In
thermodynamic integration, the system of interest is related
to a reference system with known free energy. A parameter
switches the energy of the system of interest to the reference
system continuously and smoothly. For example, the free
energy of solids can be computed by transforming from a
noninteracting Einstein crystal to a system of interest [3]. For
liquids, reference systems such as the ideal gas [4,5] or pair
potentials like Lennard-Jones [6] or Uhlenbeck-Ford (UF) [7]
are utilized.

Thermodynamic integration is computationally intensive
because many separate calculations are required for discrete
points along the nonphysical path that connects the refer-
ence system to the system of interest [2]. Nonequilibrium
approaches to thermodynamic integration [8], in which the
system of interest is transformed to the reference system as
a function of time, lead to significant improvements in com-
putational cost and efficiency. Nonequilibrium calculations
for the computation of Helmholtz free energies have been
applied to solids [9] and liquids [10] within the framework of
the molecular dynamics (MD) code LAMMPS [11]. Employing
reversible scaling [12], nonequilibrium calculations are car-
ried out over thermodynamic state variables by relating the
switching parameter to temperature. In this way, the varia-
tion of the Helmholtz free energy with temperature can be
computed from a single nonequilibrium calculation starting
from the Helmholtz energy at a reference temperature. By
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scaling temperature and pressure simultaneously, P-T phase
boundaries can be computed within a single simulation [13].

In practical applications of nonequilibrium methods, sev-
eral simulations need to be combined, and parameters need
to be set, which makes the computational procedure cum-
bersome for nonspecialists. Therefore, automated protocols
that efficiently carry out nonequilibrium thermodynamic in-
tegration and establish a bridge from atomistic simulations to
thermodynamics are highly desirable.

A general workflow can be subdivided into four broad
steps:

(1) evaluation of basic properties such as volume or pres-
sure for the system of interest;

(2) setting of reference system parameters to resemble the
system of interest as closely as possible;

(3) time-dependent switching between the system of inter-
est and the reference system to compute the free energy; and

(4) temperature sweep to calculate the temperature depen-
dence of the Helmholtz or Gibbs free energy for constant
volume, pressure, or along pressure-temperature paths (i.e.,
for phase coexistence).

Several works implement parts of this workflow, but a
general, automated approach is not available. This limits the
widespread application of nonequilibrium methods for the
computation of thermodynamic properties.

Here, we present an entirely automated workflow imple-
mentation, that requires only minimal input and can be used
to calculate both Helmholtz and Gibbs free energies. The
workflow has four main applications: (i) calculation of the
Helmholtz and Gibbs free energy at a given temperature, (ii)
Helmholtz/Gibbs free-energy calculation as a function of tem-
perature at constant volume/pressure, (iii) calculation of the
pressure-temperature coexistence line of two phases, and (iv)
free-energy computation for alchemical changes and upscal-
ing. The workflow is suitable for single and multicomponent
systems, but configurational contributions to the free energy
are not evaluated.
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We demonstrate our automated workflow for calculating
the pressure-temperature phase diagram of Ti using an em-
bedded atom method (EAM) interatomic potential [14]. We
use three alternative methods that our workflow implements
for the computation of the phase diagram. For multicompo-
nent applications, we demonstrate the Helmholtz free-energy
calculation of a binary CuZr system [15]. Also, we present an
algorithm for alchemical changes and upsampling in which
the chemistry of the system or the interatomic potential in
use is continuously transformed. We demonstrate upsampling
by transforming between a relatively computationally inex-
pensive EAM potential for Cu [16] and the more expensive,
recently developed atomic cluster expansion (ACE) potential
[17,18]. Upsampling speeds up the free-energy calculations
by a factor of five, without loss of precision. Furthermore, in
the CuZr system, we employ alchemical transformations to
integrate from Cu to Zr.

The remainder of this paper is organized as follows: In
Sec. II, we discuss the nonequilibrium calculation of free
energy, followed by the temperature dependence of free en-
ergy in Sec. III, and in Sec. IV, an algorithm for alchemical
changes and upsampling is discussed. Finally, we demonstrate
the application of the algorithms in Sec. V and conclude in
Sec. VI.

II. NONEQUILIBRIUM CALCULATION
OF FREE ENERGY DIFFERENCES

We assume that the Helmholtz free energy for an initial
Hamiltonian Hi is known, and the target is the computation of
the free energy for a final Hamiltonian Hf . To this end, the two
Hamiltonians are combined into the Hamiltonian H (λ) with a
parameter λ that continuously switches between the initial and
final Hamiltonian:

Hi = H (λi ) and Hf = H (λ f ). (1)

The reversible work for switching along λ is given by [2]

W rev
i→ f =

∫ λ f

λi

〈
∂H (λ)

∂λ

〉
λ′

dλ′. (2)

If λ is varied as a function of time, the work done is given by

W s
i→ f =

∫ t f

ti

dλ(t )

dt

∂H (λ)

∂λ
dt, (3)

where W s is the dynamic work done along the process, λi =
λ(ti ), and λ f = λ(t f ). The time over which λ is switched
t f − ti is the switching time tsw. The free energy difference
is related to the dynamic work as

�F = W rev = W s − Ed , (4)

with Ed being the average dissipated energy. The energy
dissipation depends on the rate at which the Hamiltonian is
switched, with Ed → 0 for tsw → ∞. If the transformation is
slow and close to an ideal quasistatic process, the dissipated
energy when switching the system from the initial to the final
state is the same as for switching from the final to the initial
state [19]:

Ed = Ed
i→ f = Ed

f →i, (5)

and therefore,

�F = 1
2

(
W rev

i→ f − W rev
f →i

) = 1
2

(
W s

i→ f − W s
f →i

)
. (6)

The magnitude of energy dissipation follows as

Ed = 1
2

(
W s

i→ f + W s
f →i

)
. (7)

For the computation of the Gibbs free-energy difference in
the isobaric ensemble, only small modifications are necessary.
We relate the initial and final Hamiltonians with parameter λ

as before and include the dependence of pressure on λ, P(λ),
with

Pi = P(λi ) and Pf = P(λ f ). (8)

The work done by switching is then obtained as

W s =
∫ t f

ti

dλ

dt

[
∂H (λ)

∂λ
+ ∂P(λ)V

∂λ

]
dt, (9)

and for a quasistatic process:

�G = 1
2

(
W s

i→ f − W s
f →i

)
. (10)

III. TEMPERATURE DEPENDENCE
OF THE FREE ENERGY

The temperature dependence of the free energy is com-
puted in two steps. First, the free-energy difference between
a reference system and the system of interest at constant
temperature Ti is obtained. In a second step, the free energy
of the system of interest at Ti is taken as the starting point for
a temperature sweep for the computation of the free energy in
the interval from Ti to Tf . We implement temperature sweeps

(1) at constant volume,
(2) at constant pressure, and
(3) along the pressure-temperature two-phase coexistence

line.

A. Free energy at constant temperature

The starting point is a reference Hamiltonian Hi for which
the free energy Fi(N,V, T ) is known. For the solid, we use
an Einstein crystal and, for the liquid, an ideal gas combined
with the UF model [7]. In the Einstein crystal, the atoms
are bound to reference positions, which means that the free
energy is computed for the given atomic configuration, and
the configurational entropy is not included. This is different
for the liquid reference. In the liquid, atoms are free to move
and exchange, and the configurational entropy is part of the
calculation. The free energy of the reference systems is sum-
marized in Appendix B. The combined Hamiltonian is then
written as

H[λ(t )] = [1 − λ(t )]Hi + λ(t )Hf , (11)

and the integration over time is carried out from λ(ti ) = 0 to
λ(t f ) = 1. The free energy of the system of interest is obtained
by switching λ at constant temperature and volume:

Ff (N,V, T ) = Fi(N,V, T ) + �F. (12)

where �F is computed using Eq. (6). As the pressure for
Ff (N,V, T ) can be directly obtained, the Gibbs free energy
may be calculated as G f = Ff + PV . The evaluation of the
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Algorithm 1. Compute free energy at constant T

1: calculate V at (NPT ) for Hf

2: if solid then
3: For all atoms do
4: calculate:
5: average mean squared displacement 〈(�r)2〉
6: spring constant k
7: setup reference Hi = HE (see Appendix B 1)
8: else if liquid then
9: calculate density ρ

10: setup reference Hi = HUF (see Appendix B 2)
11: for n independent runs do
12: equilibrate for time teq

13: switch λ : 0 → 1 over time tsw

14: calculate work W s
i→ f [Eq. (3)]

15: equilibrate for time teq

16: switch λ : 1 → 0 over time tsw

17: calculate work W s
f →i [Eq. (3)]

18: average over n independent runs �F = 1
2 (W s

i→ f − W s
f →i )

19: calculate free energy
20: Ff (N,V, T ) = Fi(N,V, T ) + �F
21: if P is known then
22: Gf (N, P, T ) = Ff (N,V, T ) + PV

free energy at constant temperature from a known reference is
implemented in Algorithm 1.

B. Temperature sweep

Next, the free energy obtained in the previous section is
taken as the initial free energy Fi at the temperature Ti and
volume Vi. We employ reversible scaling [12] to sweep the
temperature at constant volume, constant pressure, or along a
P-T phase boundary.

Apart from F (N,V, T ) and G(N, P, T ), by numerical dif-
ferentiation, entropy

S = −
(

dG

dT

)
P

, (13)

and specific heat

CP = T

(
dS

dT

)
P

, (14)

are obtained.

1. Constant volume

For sweeping the temperature at constant volume, we use
the relation

F (N,V, Tf ) = F (N,V, Ti ) − 3

2
kBTf N ln

Tf

Ti
+ Tf

Ti
�F, (15)

where �F is obtained from scaling the Hamiltonian at con-
stant temperature [Eq. (C3)]. The derivation of this expression
is summarized in Appendix C. The temperature sweep is
implemented in Algorithm 2.

Algorithm 2. T sweep for constant V or P

1: if constant V then
2: F (N,V, Ti ) from Algorithm 1
3: else if constant P
4: F (N,V, Ti ) from Algorithm 1
5: calculate G(N, P, Ti ) = F (N,V, Ti ) + PVi

6: if n independent runs then
7: constant V
8: equilibrate for time teq in NVT ensemble
9: switch λ : 1 → Ti/Tf over time tsw

10 calculate work W s
i→ f [Eq. (C3)]

11: equilibrate for time teq in NVT ensemble
12: switch λ : Ti/Tf → 1 over time tsw

13: calculate work W s
f →i [Eq. (C3)]

14: else if constant P then
15: equilibrate for time teq in NPT ensemble
16: switch λ : 1 → Ti/Tf over time tsw

17: calculate work W s
i→ f [Eq. (C6)]

18: equilibrate for time teq in NPT ensemble
19: switch λ : Ti/Tf → 1 over time tsw

20: calculate work W s
f →i [Eq. (C6)]

21: if constant V
22: average over n independent runs �F = 1

2 (W s
i→ f − W s

f →i )

23: calculate F (N,V, Tf )=F (N,V, Ti )− 3
2 kBTf N ln

Tf

Ti
+ Tf

Ti
�F

24: else if constant P then
25: average over n independent runs �G = 1

2 (W s
i→ f − W s

f →i )

26: calculate G(N, P, Tf )=G(N, P, Ti )− 3
2 kBTf N ln

Tf

Ti
+ Tf

Ti
�G

27: calculate S and CP using Eqs. (13) and (14)

2. Constant pressure

For calculations at constant pressure, the Gibbs free-energy
reference is obtained as Gi = Fi + PVi, where P is the pres-
sure at volume Vi. We then use

G(N, P, Tf ) = G(N, P, Ti ) − 3

2
kBTf N ln

Tf

Ti
+ Tf

Ti
�G, (16)

where �G is obtained from scaling the Hamiltonian and pres-
sure at constant temperature [Eq. (C6)], see Appendix C. The
temperature sweep is implemented in Algorithm 2.

3. P-T coexistence line

For sweeping temperature T along the coexistence line
P(T ), first, an initial coexistence point between two phases
α and β is established Gα (N, Pi, Ti ) = Gβ (N, Pi, Ti ). Then
scaling temperature and adapting pressure to continuously ful-
fill the Clausius-Clapeyron condition, a series of coexistence
points is obtained. The necessary equations are summarized
in Appendix C. The workflow is detailed in Algorithm 3.

IV. ALCHEMICAL CHANGES AND UPSAMPLING

For efficient defect formation free energies or for the
computation of phase diagrams, alchemical changes and up-
sampling are useful. To this end, we provide Algorithm 4,
which continuously transforms atoms and atomic interac-
tions from an initial system to the final system. Along the
transformation path, each atom may change its chemistry, as
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Algorithm 3. T sweep along P(T ) coexistence line

1: for system in α, β do
2: for Pi > 0 calculate G(N, P, Ti ) for initial temperature Ti

from Algorithm 1
3: calculate G(N, Pi, T ) for various temperatures

from Algorithm 2
4: for Pi determine Ti such that Gα (N, Pi, Ti ) = Gβ (N, Pi, Ti )
5: for system in α, β

6: for n independent runs
7: equilibrate for time teq in NPT ensemble
8: switch λ : 1 → Ti/Tf over time tsw

9: calculate pressure �Ps
i→ f

10: calculate work W s
i→ f

11: equilibrate for time teq in NPT ensemble
12: switch λ : Ti/Tf → 1 over time tsw

13: calculate pressure �Ps
f →i

14: calculate work W s
f →i

15: average n independent runs �P = 1
2 (�Ps

i→ f − �Ps
f →i )

16: average n independent runs W = 1
2 (W s

i→ f − W s
f →i )

17: calculate Pf = (Tf /Ti )(Pi + �P)
18: calculate G(N, Pf , Tf ) = G(N, Pi, Ti ) − 3

2 kBTf N ln
Tf

Ti
+ Tf

Ti
�G

19: with Gα (N, Pf , Tf ) = Gβ (N, Pf , Tf ) = G(N, Pf , Tf )

described by the potential energy and mass. The integration
is separated into two steps. First, we evaluate the free-energy
difference between the initial and final system by changing
atomic interactions along λ but at constant atomic masses. We
transform according to Eq. (11), and the integration over time
is carried out from λ(ti ) = 0 to λ(t f ) = 1. The free-energy
difference �F is then obtained from Eq. (6). In the second
step, we consider the free-energy change originating from
the change in atomic masses. The change in mass affects the
kinetic energy contribution to the free energy and the corre-
sponding free-energy difference is given by �Fmass. Given the
free energy Fi of the initial system, the free energy of the final
system is given by

Ff = Fi + �F + �Fmass, (17)

where �Fmass is given by

�Fmass = 3

2
kBT

N∑
i=1

ln

[
m(i)

i

m( f )
i

]
, (18)

as briefly summarized in Appendix D.
If only the interatomic potential is changed along the path

and the atomic masses remain constant, only the first step is
necessary, and the algorithm may be used for efficiently com-
puting the free energy by starting from a less refined model
of the same chemistry, similar in spirit to the upsampling
in the two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) approach [20].

V. APPLICATIONS

A. Convergence with system size and switching time

For analyzing the dependence of the free energy on system
size and switching time, we use body-centered cubic (bcc) Fe
with an EAM potential [21]. We choose this particular system

Algorithm 4. Alchemical changes

1: define initial and final chemistry for each pair of atoms
2: define initial and final potential
3: set up Hi and Hf

4: for n independent runs
5: equilibrate for time teq

6: switch λ : 0 → 1 over time tsw

7: calculate work W s
i→ f

8: equilibrate for time teq

9: switch λ : 1 → 0 over time tsw

10: calculate work W s
f →i

11: if constant V then
12: average n independent runs �F = 1

2 (W s
i→ f − W s

f →i )
13: calculate Ff (N,V, T ) = Fi(N,V, T ) + �F + �Fmass

14: else if constant P then
15: average n independent runs �G = 1

2 (W s
i→ f − W s

f →i )
16: calculate Gf (N, P, T ) = Gi(N, P, T ) + �G + �Gmass

to facilitate comparison with Freitas et al. [9]. We calculate the
free energy at 1000 K and zero pressure for the bcc structure
using Algorithm 1 for various system sizes ranging from 128
to 16 000 atoms. The switching is carried out over 100 ps. The
calculated free energy G(N ) converges as a function of 1/N ,
where N is the number of atoms in the system [22]. We can
thus evaluate G(∞), the free energy at the thermodynamic
limit through an asymptotic analysis of G(1/N ). The differ-
ence in free energy G(∞) − G(N ) is shown in Fig. 1(a) after
considering corrections due to the fixed center of mass [22].
From the figure, 3000 atoms are sufficient to obtain the free
energy within an accuracy of 0.01 meV/atom.

In Fig. 1(b), we show the free energy with varying switch-
ing time tsw from 1 ps to 10 ns. We use a bcc cell with N =
6750 atoms at a temperature of 1000 K and zero pressure.
Even for the relatively short switching time of 50 ps, the free
energy can be evaluated with a precision of 0.1 meV/atom.
Additionally, we assess the convergence with system size
N and tsw for Cu [16] in face-centered cubic (fcc) lattice,
and Ti [14] in hexagonal close-packed (hcp) structure (see
Supplemental Material [23] for details) modeled using EAM
potentials and find similar behavior as that of Fe. At 100 K, we
obtain G(P = 0, T = 100 K) = −4.263118(4) eV/atom over
tsw = 10 ns, which is in excellent agreement with Freitas et al.
[9].

B. Pressure-temperature phase diagram for Ti

To illustrate the robustness and efficiency of the algo-
rithms, we calculate the pressure-temperature phase diagram
of Ti using an EAM potential [14]. We consider the bcc, hcp,
and liquid phases in the pressure range of 0–5 GPa and tem-
perature range of 500–3000 K. The simulation cell consists of
4394 atoms for the bcc structure and 4000 atoms for the hcp
and liquid phases.

Using the algorithms introduced in this paper, we calcu-
late the phase diagram using three different strategies. (i)
We localize points of pairwise identical Gibbs free energy
by sweeping temperature at constant pressure. This includes
three steps:
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FIG. 1. (a) G(∞) − G(N ) at 1000 K and zero pressure as a function of system size from 128 to 16 000 atoms and a switching time of
100 ps. (b) G(N = 6750) calculated for each switching time. G(∞) is shown in dashed red line. Switching times from 1 ps to 10 ns are used
for 6750 atoms.

(1) Using Algorithm 1 for the hcp and bcc phases, we
calculate G(P, T ) at T = 500 K and pressures from 0 to 5 GPa
in intervals of 0.25 GPa. For the liquid phase, G(P, T ) is
calculated over the same pressure range but at a temperature
of 1500 K. For all calculations, a switching time of 50 ps was
used.

(2) Starting from G(P, T ) calculated in the previous step,
we follow Algorithm 2 to compute the dependence of the
free energy on the temperature. For bcc and liquid phases, we
scale the Hamiltonian of the system such that a temperature
range up to 3000 K is covered. For hcp, the temperature range
until 1500 K is traversed, as the structure is unstable at higher
temperatures.

(3) At each pressure, from the crossings of the free en-
ergies as a function of temperature, the phase transition
temperature is located.

The calculated phase diagram is shown in Fig. 2. The ther-
modynamic regions at which the bcc, hcp, and liquid phases
are the most favorable energetically are red, green, and blue.

(ii) We use Algorithm 3 to sweep the P-T coexistence
lines directly. A prerequisite for Algorithm 3 is a known
coexistence point (Pi, Ti ) with Pi > 0. To this end, we use
Algorithm 2 to calculate initial coexistence points (Pi, Ti ) at
a low pressure of 0.01 GPa for bcc-hcp (T = 1158 K) and
bcc-liquid (T = 1931 K). From these points, Algorithm 3 is
used to scale the temperature up to 2200 K for bcc-liquid
coexistence and 1000 K for the bcc-hcp coexistence over a
time of 1 ns. The calculated coexistence lines are shown in
gray in Fig. 2. The coexistence lines using Algorithm 3 show
excellent agreement with coexistence points computed in (i).

(iii) We verify that the free energies along the coexistence
lines are indeed identical by carrying out calculations using
Algorithm 1. The calculated coexistence points are shown in
gray circles for both the bcc-hcp and the bcc-liquid coexis-
tence lines.

We predict the melting point of the bcc structure at zero
pressure at 1913 K, in excellent agreement with the reported
value (1918 K) [14]. We compute the hcp-bcc phase tran-
sition temperature to be 1150 K. Our calculations are in

good agreement with direct MD simulations (1150 K) and
the lattice switch Monte Carlo method (1152 K) [14]. The ω

phase, which appears in the experimental phase diagram [24]
(P > 2 GPa, T = 0 K), always has a higher free energy than
the hcp structure, as predicted by the EAM potential. To arrive
at the complete phase diagram, only minimal user input, such
as the required phases, and the corresponding temperature and
pressure ranges are required.

FIG. 2. The pressure-temperature phase diagram for Ti using
an embedded atom method (EAM) potential [14]. The regions of
stability for bcc, hcp, and liquid are shown in red, green, and blue,
respectively. The gradients in the color indicate decreasing free en-
ergy; darker color indicates decreasing free energy. Coexistence lines
calculated using Algorithm 3 are shown in gray. The coexistence line
is further verified by using Algorithm 1, the results of which are
shown as gray circles. The three independent computations are in
excellent agreement.
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FIG. 3. Pressure-temperature phase diagram of Si calculated us-
ing three different potentials. Stillinger-Weber (SW) potential [26],
angular-dependent potential (ADP) [27], and spectral neighbor anal-
ysis potential (SNAP) [28] are shown.

C. Phase diagram of Si

The selection of an interatomic potential for a particular
application requires the validation of the physical properties
predicted by the model. For Si, a wide range of interatomic
potentials were compared to assess their quality and trans-
ferability in Ref. [25]. In addition, the calculation of phase
diagrams can provide further insight into the quality of an
interatomic potential. We calculate the pressure-temperature
phase diagram of Si using different interatomic potentials. We
consider five different potentials: Stillinger-Weber (SW) [26],
angular-dependent potential (ADP) [27], spectral neighbor
analysis potential (SNAP) [28], Tersoff [29], and modified
EAM (MEAM) [30]. As an initial step to ascertain the va-
lidity of the potential, we calculate the melting temperature at
zero pressure. We use 4096 atoms for both solid and liquid
simulation cells and use a switching time of 50 ps. For the
Tersoff potential, the calculated melting temperature is very
low (<1400 K), while for the MEAM potential, it is very high
(>2000 K), compared with the experimental value of 1687 K.
Therefore, we do not consider Tersoff and MEAM for further
calculations. The melting temperature for the SW potential is
1678 K, for ADP 1850 K, and for SNAP 1405 K.

After calculating the melting temperature, we find the co-
existence line between cubic diamond and liquid at various
pressures. Additionally, we consider the β-tin phase, which
is a high-pressure polymorph in Si, and we estimate the co-
existence line for cubic diamond–β-tin and β-tin–liquid. The
calculated phase diagram is shown in Fig. 3. Note that we did
not include the sc-16 phase, which is known to be stabilized
in the SW phase diagram [31], in contrast to experiments.

As shown in Fig. 3, the phase diagram predicted by the SW
potential is in good agreement with previous results reported
for the same potential [31]. Furthermore, our calculations
predict the liquid–cubic diamond–β-tin triple point at 9.8 GPa
and 1205 K, in excellent agreement with previous calculations
using the SW potential [31].

The ADP and SNAP potentials cannot predict coexistence
of three phases, likely due to the exclusion of high-pressure
phases during the development of the interatomic potentials.

FIG. 4. CP of Cu calculated using an embedded atom method
(EAM) potential [16]. Orange line: Algorithm 2 and Eq. (14), yel-
low circles: experiment [32], red circles: molecular dynamics (MD)
calculations using Eq. (19).

For ADP, the only stable phases are cubic diamond and liquid,
and the system does not transform to β-tin at high pressure.
The cubic diamond–liquid coexistence line is overestimated
by ∼200 K at the range of pressures considered. The SNAP
also does not exhibit a phase transformation into the β-tin
phase. The cubic diamond–liquid coexistence line is under-
estimated by ∼300 K. Thus, our algorithms can be employed
for efficient calculation of phase diagrams, as predicted by dif-
ferent interatomic potentials, providing valuable information
about the transferability of the potential at various thermody-
namic conditions.

D. Calculation of specific heat

Algorithm 2 provides free energies as a function of temper-
ature. Equations (13) and (14) provide an efficient method to
compute the specific heat. It is worthwhile to stress that there
are no additional calculations required for CP; it is directly
available from Algorithm 2.

Alternatively, CP can also be calculated from the fluctua-
tions in the isothermal-isobaric (NPT) ensemble by

〈[δ(U + PV )]2〉NPT = kBT 2CP, (19)

where U is the internal energy.
To illustrate the calculation of CP, we use an EAM potential

[16] for Cu and compute the free energy as a function of
the temperature using Algorithm 2. We use a simulation cell
with 4000 atoms at zero pressure and a temperature range
of 600–1200 K. The switching is carried out over 50 ps. To
compare with Eq. (19), we further run MD simulations in the
NPT ensemble with a system size of 4000 atoms over the same
temperature range at intervals of 100 K. For each temperature,
the MD simulation was run for 1 ns, and five independent
calculations were run for each temperature to estimate the
error.

The results are shown in Fig. 4. It is clear that both methods
show fair agreement with each other and experiment. How-
ever, Cp using Eq. (14) is obtained from a single calculation
compared with longer MD runs for each temperature using
Eq. (19).
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FIG. 5. Free energy of the CuZr (red) and CuZr2 (blue). Solid
line: free energy calculated using Algorithm 2, circles: reference
from Tang and Harrowell [33].

E. Gibbs free energy of the CuZr system

The algorithms presented in this paper are applicable to
multicomponent materials but exclude the computation of
configurational entropy in the solid phase. We use CuZr as
an example and calculate the free energy for both CuZr (B2
structure) and CuZr2 (C11b structure) using an EAM potential
[15]. The simulation cells for CuZr and CuZr2 contain 4394
and 4320 atoms, respectively. We calculate the free energy in
the temperature range from 300 to 900 K and zero pressure for
both structures using Algorithm 2, with the switching carried
out over 50 ps. The calculated free energy is shown in Fig. 5
and compared with the results from Tang and Harrowell [33].
Our calculations agree very well with the reported values. By
employing Algorithm 2, however, it is possible to obtain the
free energy over the whole temperature in a single simulation.

F. Alchemical changes and upsampling

We demonstrate Algorithm 4 using two examples. In the
first example, we use upsampling in which a system is trans-
formed between two interatomic potentials. Such a scenario
is akin to Algorithm 1, albeit with a more complex reference
system, and is like the TU-TILD approach [20]. Here, we
switch between a computationally cheap EAM potential and a
relatively more expensive ACE potential. To obtain the free
energy of Cu using the ACE potential at a temperature of
100 K and zero pressure, we follow two different routes, as
illustrated in Fig. 6. One approach is to evaluate the free
energy directly starting from the reference Einstein crystal
using Algorithm 1. In the second approach, we compute the
free energy of the Cu EAM potential before the ACE potential.
Compared with ACE, the EAM potential is about two orders
of magnitude faster. From the EAM potential, we use Algo-
rithm 4 to transform the system to the ACE potential. From
the free-energy difference �F , during this transformation, we
can calculate the free energy of Cu for the ACE potential, by
GACE, up = GEAM + �F . As shown in Fig. 6, we find that both
routes arrive at the same result.

The advantage of using upsampling to estimate the free
energy can be understood from Fig. 7. In Fig. 7, we show the
energy dissipation Ed in work done during switching in the

FIG. 6. Illustration of the two routes by which the free energy
for Cu within atomic cluster expansion (ACE) can be calculated.
Starting from the reference system, it can be directly calculated using
Algorithm 1. Alternatively, first, the free energy of the embedded
atom method (EAM) potential is calculated using Algorithm 1, after
which the system is upsampled to ACE using Algorithm 4.

two routes discussed above: the energy dissipation during the
calculation of GACE for switching time of 10–100 ps is shown
in red, and the energy dissipation during upsampling is shown
in blue. For all switching times considered, Ed is lower for
upsampling by at least an order of magnitude. The energy dis-
sipation depends on the similarity of the two systems, and the
Cu EAM potential is a more favorable reference state than
the Einstein crystal. Thus, by using Algorithm 1 to compute
the free energy for the computationally inexpensive potential
and by switching it to the more expensive one, it is possible to
obtain free energies from switching times as low as 10 ps. For
a comparable accuracy, one needs at least 50 ps of switching
time for the direct calculation with the more expensive
potential.

In the second example, we demonstrate the use of Algo-
rithm 4 for switching of chemical species. For the binary CuZr
alloy in Sec. V E, we start in B2 structure at 800 K, which
is the experimentally observed stable crystal structure at this
temperature. We randomly swap 2% of Zr atoms to Cu and

FIG. 7. Energy dissipation during the calculation of GACE using
Algorithm 1 (red circles) and for switching between the embedded
atom method (EAM) and atomic cluster expansion (ACE) potentials
(blue circles).
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FIG. 8. (a) �F as a function of λ(t ) along the alchemical integra-
tion path that switches a 48 at.% Zr B2 structure to 52 at.% Zr in the
same lattice. (b) The free energy as a function of the Zr concentration
calculated using Algorithm 4 (red line). Values reported by Tang
and Harrowell [33] are shown as blue circles, while those calculated
using Algorithm 1 are shown as red circles.

use it as the initial state. We use Algorithm 4 to switch to
52 at.% Zr. This particular concentration range was chosen
to compare the free energy of the system to that reported by
Tang and Harrowell [33] using the same interatomic potential.
Along the integration path, the mass of the system is also
transformed by adding a free energy contribution due to the
change in kinetic energy, as described in Appendix D. The
system consists of 16 000 atoms, and the alchemical switching
is carried out over 100 ps. Additionally, we evaluate the free
energy at different concentrations at the same temperature
using Algorithm 1.

In Fig. 8(a), the cumulative reversible work along the inte-
gration path is shown, while in Fig. 8(b), the free energy as a
function of concentration along the integration path is shown.
We find good agreement with the free energy reported by Tang
and Harrowell [33] and calculations using Algorithm 1 even
at intermediate points along the path (Zr at.% = 48–52).

VI. CONCLUSIONS

We implement four different algorithms for the automated
calculation of free energies. The algorithms can be applied
in different scenarios, such as calculating free energies at
constant temperature and pressure, calculating the free energy
over a given temperature range, and the direct calculation of
coexistence lines. We demonstrated the efficiency, accuracy,
and user friendliness of our implementation by calculating
the complete pressure-temperature phase diagrams of Ti and
Si. The algorithms can be employed for metastable and
amorphous phases as well as for multi component systems.
For multicomponent systems, the computation of configura-
tional entropy in the solid phase is currently not included.

Additionally, we present an algorithm for alchemical changes
and upsampling which can efficiently calculate free energies
over a given concentration range.

To facilitate the use of these algorithms, we provide a
Python library and command-line program CALPHY, detailed
in Appendix A. With the help of the framework provided,
complex properties such as melting temperature or phase tran-
sition temperatures can be easily calculated.
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APPENDIX A: IMPLEMENTATION

We provide a Python library CALPHY that includes all al-
gorithms in this paper. The library uses LAMMPS [11] through
the PYLAMMPSMPI interface [34,35] to carry out the MD sim-
ulations. The library also provides a command-line interface,
where the necessary input options are provided through a text
file. The input file used for the calculation of the free energy
of the CuZr system in the temperature range of 300–900 K at
zero pressure (Sec. V E) is shown here:

#elements
element: [’Zr’, ’Cu’]
#atomic mass
mass: [91.224, 63.546]
calculations:
#calculation mode: temperature-sweep
- mode: ts

#required temperature range
temperature: [300, 900]
#required pressure
pressure: [0]
#file containing input crystal structure
lattice: [ZrCu.data]
#state of the system
state: [solid]
#number of independent simulations
nsims: 3

md:
#details of the inter-atomic potential
pair_style: eam/fs
pair_coeff: "* * ZrCu.eam.fs Zr Cu"
#timestep for MD simulations
timestep: 0.001
#thermostat and barostat damping
tdamp: 0.1
pdamp: 0.1
#timesteps for equilibration run
te: 25000
#timesteps for switching run
ts: 50000
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The input file contains basic information about the system,
such as the elements used in the calculations and atomic
weights, followed by the required calculations and MD op-
tions in separate blocks. In this case, we use Algorithm 2 to
calculate the free energy over the given temperature range.
The algorithm is specified under the mode keyword in the in-
put file in the calculations block. Further information, such
as the temperature and pressure, is also provided in the same
block. The input structure to be used for the calculation is read
in the LAMMPS data format. The input parameters pertaining
to the MD calculations are switched in the md block, which
contains information about the interatomic potential, timestep,
thermostat, and barostat damping coefficients, as well as the
switching and equilibration time. A detailed discussion of the
input file is provided in the documentation of the library [36].

CALPHY provides an automated way for free-energy calcu-
lations with minimal user input. Every stage of the calculation
is automated, including the determination of optimal input
parameters for the reference system. In the case of solids,
this includes calculating the equilibrium atomic volume at the
given thermodynamic conditions, followed by the calculation
of the spring constants for the Einstein crystal, as described in
Appendix B, while for liquids, only the former is necessary.
Additionally, for liquids, CALPHY can be employed to create
an initial liquid structure. This is achieved in a two-step proce-
dure: In the first step, a solid configuration is overheated until
it melts. Then in the second step, this liquid configuration is
equilibrated at the given temperature and pressure. As shown
in the input file, all aspects of the MD simulation, such as
the thermostat and barostat damping coefficients, the system
size, and switching time are inputs by the user. However,
we provide a set of scripts [37] which can assist the user in
estimating the system size and switching times efficiently.

The switching function λ(t ), which couples the system of
interest and the reference system, can have multiple func-
tional forms, as discussed in Appendix E. In the case of solid
systems, the switching between the system of interest and
reference system is implemented using the fix ti/spring
command [9] as implemented in LAMMPS. For liquid systems,
the pair_style ufm command [7] within LAMMPS is used
to model the interatomic interactions in the UF model, for
which the reference free energy is calculated using the splines
provided in Ref. [7]. In the case of Algorithm 2, it is necessary
to ensure that the system remains in its initial state (solid or
liquid) and does not undergo a phase transformation as the
Hamiltonian is scaled. To this end, Steinhardt’s parameters
[38], as implemented in the PYSCAL code [39], are used to
detect the amount of solid or liquid particles in a given system.
As classical MD simulations are utilized in CALPHY, only the
vibrational contributions to the free energy are considered.

The CALPHY library is available in a public repository [37],
along with a collection of examples, including those presented
in this paper.

APPENDIX B: REFERENCE FREE ENERGY

1. Free energy of solids

The Frenkel-Ladd path [3] is commonly used to calculate
the Helmholtz free energy in solids from the Einstein crystal.

The Hamiltonian of the reference state is given by

HE =
N∑

i=1

[
p2

i

2mi
+ 1

2
miω

2
i (�ri )

2

]
, (B1)

where mi is the mass, ωi the oscillator frequency, and �ri

is the vector of particle i from its equilibrium position. The
Helmholtz free energy is given by

FE (N,V, T ) = 3kBT
∑

i

ln

(
h̄ωi

kBT

)
. (B2)

The spring constant ki = miω
2
i needs to be estimated such that

the vibrational frequencies are as close as possible to the solid
of interest. A common approach [9] is to estimate ki from the
mean-square displacement 〈(�ri )2〉 of the atoms:

1
2 ki〈(�ri )

2〉 = 3
2 kBT . (B3)

In addition, a correction due to the fixed center of mass [22]
needs to be added to the free energy;

δF = kBT ln

[
N

V

(
2πkBT

Nmω2

)3/2]
. (B4)

2. Free energy of liquids

The choice of a reference system for a liquid is more com-
plicated than for a solid. A typical reference system is the ideal
gas. However, a direct switching path between a liquid and
ideal gas can cross the liquid-vapor coexistence line, leading
to hysteresis [40].

The UF [7] model can be used as a reference system [10].
The UF model is a purely repulsive pair potential with a single
parameter. The interaction decays quickly and smoothly, pro-
viding an advantage over the Lennard-Jones potential in terms
of truncation or long-range corrections. Furthermore, the UF
model only has a stable liquid phase, preventing hystere-
sis associated with phase transformations. The UF model is
given by

HUF =
N∑

i=1

p2
i

2mi
−

N∑
i< j

pkBT ln

{
1 − exp

[
−

(
ri j

σ

)2]}
,

(B5)
where ri j is the interparticle distance, σ the length scale, and
p a nonnegative scaling factor that controls the strength of the
interaction. The free energy of the UF model is represented as

FUF = Fig + F (ex)
UF . (B6)

The excess free energy of the UF model is expanded as

F (ex)
UF (x, T ) = kBT

∞∑
n=1

B̃n+1(p)

n
xn, (B7)

with x ≡ bρ and the number density ρ. The reduced virial
coefficients b ≡ (πσ 2)(3/2) and B̃n+1(p) can be computed ex-
actly. An accurate numerical representation of the free energy
using splines is available in the literature [7]. The free energy
of the ideal gas is given by

Fig = NkBT

(
ln ρ − 1 +

∑
n

cn ln cn

)
+ 3kBT

∑
i

ln �i.

(B8)
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The concentration of species n is denoted cn, �i is the de
Broglie thermal wavelength:

�i =
√

h2

2πkBT mi
, (B9)

where h is the Planck’s constant.

APPENDIX C: REVERSIBLE SCALING

Here, we summarize key formulas from Ref. [12]. In re-
versible scaling, the potential energy of the system of interest
is linearly scaled by a factor λ. The partition sum Q remains
unchanged when T and λ are scaled such that T/λ is constant.
In other words, the change of the potential energy with λ has
the same effect on the partition function as the scaling of the
temperature to T/λ while keeping H unchanged. If one further
considers the temperature scaling in the kinetic energy and
the definition of the Helmholtz free energy from the partition
function Q as F = −kBT ln Q, one arrives at

F

(
N,V,

T

λ

)
= 3

2
kBT N

ln λ

λ
+ F (λ, N,V, T )

λ
, (C1)

where F (λ, N,V, T ) is the free energy of the scaled
Hamiltonian. Therefore, from computing F (λ, N,V, T ), the
Helmholtz free energy F (N,V, T/λ) can be directly obtained,
and scaling along λ provides the temperature dependence of
F (N,V, T/λ). For the change of F with λ, one has

∂F (λ, N,V, T )

∂λ
= 〈U 〉, (C2)

and

�F =
∫ λ f

1
〈U 〉 dλ ≡ Wrev, (C3)

with T = Ti and λ f = Ti/Tf .
For the Gibbs energy at a given pressure P, a scaling to λH

changes the partition function in the isobaric ensemble in the
same way as a scaling of temperature and pressure to T/λ and
P/λ; therefore,

G

(
N,

P

λ
,

T

λ

)
= 3

2
kBT N

ln λ

λ
+ G(λ, N, P, T )

λ
. (C4)

This identity may be exploited to evaluate the Gibbs free
energy along different pressure paths by assuming that the
pressure changes with λ, P = P(λ). Then

∂G[λ, N, P(λ), T ]

∂λ
= 〈U 〉 + dP(λ)

dλ
〈V 〉, (C5)

and

�G =
∫ λ f

1
〈U 〉 + dP(λ)

dλ
〈V 〉 dλ ≡ Wrev. (C6)

Three different pressure paths will be illustrated in the
following.

1. Constant pressure

For computing the temperature dependence of the Gibbs
free energy at constant pressure, in Eq. (C4), we change P to

λP on both sides so that it becomes

G

(
N, P,

T

λ

)
= 3

2
kBT N

ln λ

λ
+ G(λ, N, λP, T )

λ
. (C7)

Therefore, for constant pressure simulations, the pressure in
the scaled Gibbs free energy G(λ, N, λP, T ) needs to increase
linearly with λ. Equation (C5) reads

∂G

∂λ
= 〈U 〉 + P〈V 〉, (C8)

and

�G =
∫ λ f

1
〈U 〉 + P〈V 〉 dλ. (C9)

2. Pressure as a function of temperature

We would like to compute the Gibbs free energy along
a given P-T path. As the variation of the temperature is
achieved through scaling with λ from a reference temperature
T , we use T/λ to indicate the varying temperature. Then from
Eq. (C4), we have

G

[
N, P

(
T

λ

)
,

T

λ

]
= 3

2
kBT N

ln λ

λ
+ G(λ, N, PRS, T )

λ
,

(C10)
with the scaled pressure

PRS = λP

(
T

λ

)
, (C11)

and Eq. (C5) reads

∂G

∂λ
= 〈U 〉 + dPRS(λ)

dλ
〈V 〉, (C12)

with

dPRS(λ)

dλ
= P

(
T

λ

)
−

(
T

λ

)
dP

(
T
λ

)
d
(

T
λ

) . (C13)

3. P-T coexistence

The P-T scaling may be used for tracking the coexistence
boundary between two phases [13]. We take P(T/λ) as the
line along which the Gibbs energy of two phases α and β are
identical:

Gα

[
N, P

(
T

λ

)
,

T

λ

]
= Gβ

[
N, P

(
T

λ

)
,

T

λ

]
. (C14)

This means that

Gα (λ, N, PRS, T ) = Gβ (λ, N, PRS, T ). (C15)

As we track the coexistence, a change of λ must maintain the
condition

∂Gα

∂λ
= ∂Gβ

∂λ
, (C16)

which from Eq. (C12) implies

〈U 〉α + dPRS(λ)

dλ
〈V 〉α = 〈U 〉β + dPRS(λ)

dλ
〈V 〉β, (C17)

and provides a condition for the P-T coexistence path:

dPRS(λ)

dλ
= 〈U 〉α − 〈U 〉β

〈V 〉α − 〈V 〉β , (C18)
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which is the Clausius-Clapeyron equation. From this, the pres-
sure change along the coexistence line is obtained:

�P =
∫ λ f

1

〈U 〉α − 〈U 〉β
〈V 〉α − 〈V 〉β dλ. (C19)

To make contact to nonequilibrium thermodynamics, the scal-
ing parameter λ is varied with time, and thermodynamic
expectation values are replaced by instantaneous values:

dPRS

dt
= dλ

dt

Uα (t ) − Uβ (t )

Vα (t ) − Vβ (t )
, (C20)

and the pressure difference is estimated as

�P = PRS[λ(t f )] − PRS[λ(ti)] =
∫ t f

ti

dt
dλ

dt

Uα (t ) − Uβ (t )

Vα (t ) − Vβ (t )
.

(C21)

This defines the coexistence line PRS(λ) in the scaled system.
The coexistence pressure in the unscaled system at tempera-
ture Tf may be obtained from Eq. (C11) at λ(t f ) = Ti/Tf by
using λ(ti ) = 1 and PRS(1) = Pi as

Pf = P(Tf ) =
(

Tf

Ti

)
PRS

(
Ti

Tf

)
=

(
Tf

Ti

)
(�P + Pi ). (C22)

APPENDIX D: KINETIC ENERGY CONTRIBUTION
TO THE FREE ENERGY

For the purpose of switching the chemistry along an inte-
gration path in Algorithm 4, the mass m of the required atoms
also needs to change along the path. We assume that the mass
does not change along the path and add the kinetic energy
contribution to the free energy.

The Hamiltonian of a system of N particles is

H =
N∑

i=1

p2
i

2m
+ U (r1, r2...rN ), (D1)

where pi and ri are the momenta and position of particle i, and
U is the potential energy. The corresponding Helmholtz free
energy is

F (T ) = −kBT ln
∫

dr exp

(
− U

kBT

)
+ 3kBT

N∑
i=1

ln �i(T ),

(D2)

where �(T ) is the de Broglie wavelength given by Eq. (B9).
Upon a change of mass from m(i)

i to m( f )
i from the initial

to final state, the corresponding de Broglie wavelength also
changes, which leads to

�F (T ) = 3kBT
N∑

i=1

ln

[
�

(i)
i (T )

�
( f )
i (T )

]
= 3

2
kBT

N∑
i=1

ln

[
m(i)

i

m( f )
i

]
.

(D3)

APPENDIX E: SWITCHING FUNCTION

The choice of the functional form of the switching func-
tion λ(t ) in Algorithm 1 affects the energy dissipation during
the switching process [41]. For Algorithm 1 in solids, the
fix ti/spring command in LAMMPS [9] allows for two func-
tional forms: (i) a linear function λ(t ) = t/tsw and (ii) a
function of the form:

λ(t ) = τ 5(70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126), (E1)

where τ = t/tsw. This function has vanishing slopes at the
ends of the switching process and is shown to reduce the
energy dissipation [41]. Like solids, we implement both func-
tional forms for liquids and provide the option to choose either
of the functions. For the other algorithms, we employ a linear
function for λ(t ).
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