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Long-range hydrogen-binding effects of carbide interfaces in iron
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A micromechanics model was developed to evaluate the elastic binding energy between carbide precipitates
and hydrogen interstitials using Eshelby’s equivalent inclusion method. Density functional theory (DFT) simu-
lations were performed to obtain the material-specific quantities, e.g., lattice constants and the elastic constants,
for the continuum model. Using this model, we find that for coherent carbide precipitates, hydrogen atoms are
more likely to bind on the broad surfaces of the disk-like precipitates, which is consistent with experimental
observations. For semicoherent and incoherent precipitates, our model suggests that it is possible for semicoher-
ent precipitates to have significant hydrogen binding capability while there is no hydrogen-binding capability of
incoherent precipitates, which also agrees with experimental findings. In addition, several factors that influence
the binding energies between hydrogen atoms and carbide precipitates were quantitatively analyzed, including
the precipitate size, morphology, orientation, and interface. These collective results include both the position
and the value of the strongest hydrogen-binding interaction for a wide range of carbide stoichiometries, which
contributes to our understanding of hydrogen trapping in steel-based materials.
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I. INTRODUCTION

High strength steels are susceptible to hydrogen em-
brittlement (HE) and specifically hydrogen-induced delayed
fracture (HDF). Microalloying with transitions metals has
been shown to improve high strength steels resistance to HDF
[1–4], and the main proposed reason for this improvement is
the presence of small scale carbide precipitates. Specifically,
the precipitation of titanium carbides (TiC), vanadium carbide
(VC), niobium carbides (NbC), and molybdenum carbides
(Mo2C) are thought to positively impact the materials resis-
tance to HDF.

These (mostly) rocksalt phases (B1 structure) form follow-
ing a standard precipitate growth pattern in which the smallest
particles are coherent with the ferrite matrix, exhibiting the
Baker-Nutting relation [5,6], as platelets. As the precipitates
grow, they transition to semicoherent precipitates with mis-
fit dislocations and eventually to incoherent precipitates [7].
During this growth, the particles undergo a constant change
in shape, transitioning from platelets (coherent) to spherical
particles (incoherent). The report of TiC particles acting as
traps to hydrogen is well known [1,8–15], with these traps
originally reported to be strong traps [1,9,10]. This leads to
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many studies to determine where and how the hydrogen was
trapped [12–15]. Several studies have demonstrated that co-
herency plays an important role in determining the mechanics
of trapping. Notably, coherent and semicoherent TiC particles
trap hydrogen at the interface with trapping sites presumed to
occur at dislocation cores with hydrogen desorption values of
40–60 kJ/mol [14,15]. Furthermore, the desorption activation
energies for incoherent particles are reported to be higher,
with values ranging from 70 to 120 kJ/mol [14]. Finally,
Takahashi et al. has directly demonstrated trapping in coherent
platelets [16] by means of the atom probe tomography (APT).

NbC and VC particles have also been studied as potential
hydrogen traps in steels. However, there is a lack of consensus
about if and where NbC and VC trap hydrogen. For example,
in vanadium carbides, the study by Wei et al. concluded that
hydrogen was trapped at the interface of coherent and semi-
coherent particles [7]. In contrast, Takahashi et al. [17,18]
and Chen et al. [19] both demonstrated that hydrogen can
be stored inside the VC particles and concluded they were
not stored at the interface. In niobium carbides, Chen et al.
directly observed hydrogen at the interface and the interior
of incoherent NbC particles [20]. Similarly, Ohnuma et al.
concluded that trapping could occur at the interface and within
bulk using small angle neutron scattering, with these particles
presumably coherent and semicoherent based on their sizes
[21]. Wei et al. further suggested that hydrogen was trapped
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at the interface of coherent and semicoherent NbC particles,
while the incoherent NbC particles did not exhibit the hydro-
gen trapping [7].

For the carbide precipitates without a FCC metal sublattice,
Wei and Tsuzaki [22] compared the hydrogen trapping of
the molybdenum hemicarbide (Mo2C) with some B1-structure
carbides (TiC, VC, NbC) in four steels and concluded that
Mo2C was not as a promising hydrogen trap as other B1-
structure carbides. However, Lee et al. [23] reported that
MoCx exhibited good hydrogen embrittlement (HE) resis-
tance, which was also found by Depover et al. [4]. Thus,
there is a lack of consensus of the role of interface and bulk
trapping of transition metal carbides in steels. It may occur at
the interfaces or in the bulk, and the evidence seems not to
produce a conclusion regarding the role of coherency.

In order to better understand the roles that different mech-
anisms can play in trapping hydrogen, it is critical to evaluate
each mechanism in its own right. To this end, in this the-
oretical paper we examine the potential trapping energy of
hydrogen at the interfaces of carbide particles in steels. More
specifically, we examine the elastic interactions between co-
herent carbide particles and H atoms inside the host iron
matrix using the formalisms of the Eshelby equivalent in-
clusion [24,25]. These results not only suggest where the
attractive binding energies occur, which is on the broad
surface of the coherent carbide palettes, but they also estab-
lish the magnitude of such interactions. Furthermore, several
factors of this long-range hydrogen-binding energy are ana-
lyzed, such as precipitate sizes, morphologies, and interface
characters. At last, comparisons of this attractive hydrogen
interaction are carried out among the group IVB, VB, and
VIB carbides with different stoichiometries. The magnitude
of the long-range hydrogen binding increases as the coherent
carbide precipitate grows. However, this binding energy be-
comes negligible when the carbide particle grows sufficiently
and becomes an incoherent precipitate. For coherent carbide
precipitates, the magnitude of the hydrogen-binding energy
depends both on the elasticity and the lattice constant of car-
bides. For carbides with a face-centered-cubic (FCC) metal
sublattice, also known as the B1-structure based carbides,
zirconium carbide (ZrC) exhibits the largest attractive hydro-
gen interaction at its interface. For carbides with a hexagonal
metal sublattice, the group VB and VIB hemicarbides show
promising hydrogen-binding capabilities. Therefore, results in
the present paper not only assist in understanding long-range
interactions between carbide particles and hydrogen, but also
provide insights into the material selection of HE resistance
steels.

II. METHODOLOGY

A. Model development

When steels are exposed in the hydrogen environment,
atomic hydrogen (H) dissolves in iron and diffuses into its
interior via interstitial diffusion. After sufficient time, H will
diffuse to the grain boundaries, dislocations, and other defects,
which reduces the ductility and strength of steels, resulting in
hydrogen embrittlement [26,27]. A schematic illustrating H
diffusion in steels is shown in Fig. 1(a) where both H atoms

(a) (b)

FIG. 1. (a) A schematic of absorbed H in steels. The blue dots
represent H atoms and the orange ellipses represent the carbide
particles. (b) A schematic illustrating our simplified model: The blue
sphere represents the point defect (a H atom) and the orange ellipsoid
represents the inclusion (a carbide particle). The global coordinates
x̂i are set along the semiaxes of the ellipsoidal inclusion. The local
coordinates x̃D

i and x̃I
i represent the orientation of the point defect and

the inclusion, respectively.

and carbide particles can be considered as inhomogeneities
inside the matrix (steel). These inhomogeneities create inter-
nal sources of displacements, strains and stresses [28], which
results in the elastic interaction between defects. If the total
elastic energy decreases as the hydrogen approaches the car-
bide interface, then the carbide acts as a trap for hydrogen.
This energy change is termed the interaction energy in elas-
ticity theory Eint and is equivalent to the trap energy discussed
in the hydrogen community. A negative value of Eint indicates
the ability of the carbide particles elastic field to trap hydrogen
and its magnitude representing the strength of the trap. To
evaluate Eint, we propose a simplified two-body continuum
model including a single H atom and a single carbide particle
inside an infinite matrix as shown in Fig. 1(b). The matrix in
this model is iron (Fe), which we approximate as an isotropic
continuum with the elastic constants CM−iso

i jkl :

CM−iso
i jkl = G

(
2ν

1 − 2ν
δi jδkl + δikδ jl + δ jkδil

)
, (1)

where δi j is the Kronecker delta, G is the shear modulus, ν is
Poisson’s ratio, and the Young’s modulus is E = 2G(1 + ν).
The H atom is modeled as a point defect with an elastic
dipole tensor P̃i j , which is defined in its local coordinates
x̃D

i [29]. We are aware that the choice of the anisotropic iron
matrix would be more appropriate. However, the choice of an
isotropic matrix leads to a closed-form solution, which not
only significantly lowers the computational complexity, but
more importantly assists in our analyses of the underlying
factors that affect the long-range hydrogen-binding effect,
such as the shape, size, structure and elastic constants of the
carbides, as well as the lattice and elastic constants of the iron
matrix. The carbide particle is modeled as an ellipsoidal inclu-
sion with semiaxes (a1, a2, a3) with its own elastic stiffness
tensor C̃I∗

i jkl expressed in its own coordinate system x̃I
i . If the

inclusion remains at least partially coherent with the matrix,
the inclusion will develop an eigenstrain ε̃I∗

i j , which results in
a constraint strain εc

i j in the matrix. It is this constraint strain
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that elastically interacts with the elastic fields of the H atom
in the matrix, which leads to the interaction energy Eint. To
derive the explicit form of Eint, we set the global coordinates
x̂i along the semiaxes of the ellipsoidal inclusion, while the
local coordinates, x̃D

i and x̃I
i (which represent the orientation

of the point defect and the inclusion, respectively) are chosen
to easily represent P̃i j and C̃I∗

i jkl . The orientation of the local
coordinates x̃D

i and x̃I
i are known based on crystallography.

With the use of the rotation matrix R, the known physical
quantities in local coordinates can be transformed to those in
global coordinates:

x̂i = RD
i j x̃

D
j , x̂i = RI

i j x̃
I
j, (2)

Pi j = RD
imRD

jnP̃mn, εI∗
i j = RI

imRI
jnε̃

I∗
mn, (3)

CI
i jkl = RI

imRI
jnRI

kpRI
lqC̃I

mnpq, (4)

where the variables with tilde stand for physical quantities
in the local coordinates while those without tilde stand for
physical quantities in the global coordinates. In the following
context, the derivations and computations are carried out in
the global coordinates x̂i. For an ellipsoidal inclusion inside an
infinite matrix, Eshelby derived the analytical solution, where
the constraint strain εc

i j is expressed as the tensor product of
the eigenstrain ε∗

i j and the Eshelby tensor Di jkl [24,25]:

εc
i j (in) = Din

i jklε
∗
kl , εc

i j (out) = Dout
i jklε

∗
kl , (5)

In Eq. (5), Din
i jkl and Dout

i jkl represents the Eshelby tensor inside
and outside the inclusion, respectively. We note that Eq. (5) is
for a homogeneous ellipsoidal inclusion where the elasticity
of the inclusion is the same with that of the matrix. To deal
with the ellipsoidal inhomogeneity in our model, the Eshelby
equivalent inclusion method is used and the equivalent eigen-
strain ε∗

i j is computed as
[(

CI
i jkl − CM−iso

i jkl

)
Din

klmn + CM−iso
i jmn

]
ε∗

mn = CI
i jklε

I∗
kl . (6)

And the elastic-strain interaction energy Eint is evaluated sub-
sequently as

Eint = −Pi jε
c
i j . (7)

In this model, the Eshelby tensor for an ellipsoidal inclusion
has an analytic form, which dramatically simplifies the solu-
tion for the interaction energy. Inside an ellipsoidal inclusion,
the Eshelby tensor Din

i jkl is a constant and only depends on
the inclusion shape (the ratios of the semiaxes ai) [30]. At a
point xi outside an ellipsoidal inclusion, the Eshelby tensor
Dout

i jkl has a simple explicit expression in terms of the inclusion
shape (ai) and the point coordinates (xi) [31]. Corresponding
derivations are covered in the Supplemental Material [32].
The unknown terms in this model are material-specific quan-
tities, including the elastic stiffness tensor of iron CM−iso

i jkl , the

eigenstrain ε̃I∗
i j , the elastic constants of the carbides C̃I∗

i jkl , and
the elastic dipole tensor P̃i j of a H atom. For the matrix, the
crystal structure and elastic constants of α-Fe and γ -Fe are
obtained from reported experimental values. For the inclusion,
we investigated the group IVB, VB, and VIB carbides MCx

with x from 0.5 to 1, which include both experimentally re-
ported structures and vacancy-ordered structures predicted by

density functional theory (DFT) [33]. To ensure consistency
of the lattice constants and elastic constants of the various
carbides, these values were determined via DFT calculations
in this paper. The elastic dipole tensor of a H atom was ex-
tracted from DFT calculations using the homogeneous stress
method [29] because of the lack of direct experimental mea-
surements of the dilation of the iron/steel matrix caused by
H atoms. The determination of the aforementioned unknown
terms is covered with details in the proceeding sections. In
addition, we are aware that in this model the matrix is pure
Fe, which differs from ferritic/austenitic/martensitic steels.
However, starting with the pure Fe matrix will provide a
clear relationship between the interaction energy Eint and the
material-specific properties of the matrix, which paves ways
for evaluating the interaction energy between H and carbide
particles inside steels with more complex chemistries.

B. The structure and elasticity of the matrix and inclusion

The two allotropes of iron, α-Fe and γ -Fe, are chosen
as the isotropic matrix in this model, which is required by
the closed-form Eshelby’s solution. α-Fe is ferromagnetic
and has the body-centered cubic (BCC) structure, which is
essentially the matrix of ferritic steels. γ -Fe is paramagnetic
and has the face-centered cubic (FCC) structure, which is
similar to austenitic steels. For iron and steels, a number of
studies have investigated the structure and elastic constants via
both computational and experimental approaches [34–40]. To
make the matrix as representative as ferrite as possible, we use
the reported experimental values of the lattice parameter and
elastic constants of α-Fe in our calculation [34,35], which are
listed in Table I. Likewise, the experimental values are used
for γ -Fe as well [34,36]. The anisotropic elastic constants of
both α-Fe and γ -Fe (C11,C12,C44) were determined experi-
mentally by means of neutron scattering measurements and
ultrasonic pulse-echo measurements [36–38]. The isotropic
elastic constants of Fe were computed from the anisotropic
elastic constants via the Voigt-Reuss-Hill approach [41,42].
For comparison, the experimental values of austenitic and
ferritic steels are also listed in Table I [39,40]. For marten-
sitic steels, experimental studies show that those share similar
properties as ferritic steels with only 4% difference in the
lattice constant and elastic moduli [40]. The values in Table I
suggest that α-Fe and ferritic steels share the similar lattice
parameter and elastic constants. For austenitic steels, although
they have the similar lattice parameter as γ -Fe, the elastic
moduli of austenitic steels are twice as large as γ -Fe due to the
large composition differences in austenitic steels compared to
pure austenite.

The inclusion materials in this model are the group IVB
(Ti, Zr, Hf), VB (V, Nb, Ta), and VIB (Mo, W) transition-
metal carbides (TMCs). Most of these TMCs (excepting MoC
and WC) are also known as interstitial compounds where the
metal atoms form a close-packed metal sublattice and carbon
atoms fill the interstices. Due to the order-disorder transition
of carbon vacancies [43], the TMCs often exhibit a range of
stoichiometries with 0.5 � x � 1 in MCx. At 1:1 stoichiom-
etry, the group IVB and VB TMCs have the rocksalt (B1)
structure with a face-centered cubic (FCC) metal sublattice,
while the group VIB TMCs have the Bh structure with a
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TABLE I. The lattice constants and elastic constants of iron and steels, which were determined in experimental studies.

Lattice parameter Anisotropic elasticity CM
i jkl (GPa) Isotropic elasticity

a (Å) C11 C12 C44 Young’s modulus (GPa) Poisson ratio ν

γ -Fea 3.613 154 ± 14 122 ± 13 77±8 112 ± 11 0.360 ± 0.036
α-Feb 2.862 228 ± 2 132 ± 2 116 210 ± 2 0.287 ± 0.003
Austenitic steelc 3.530 209 ± 2 136 ± 1 130 266 ± 1 0.293 ± 0.013
Ferritic steeld 2.862 273.6 ± 0.3 82.10 ± 0.02 110.8±0.3 210.3 ± 0.2 0.2877 ± 0.0003

aThe lattice constants and anisotropic elastic constants were obtained from experimental studies in Ref. [34,36]. The Young’s modulus and
Poisson ratio were computed from CM

i jkl using the Voigt-Reuss-Hill approach.
bThe lattice constants and anisotropic elastic constants were obtained from experimental studies in Ref. [35,37,38]. The Young’s modulus and
Poisson ratio were computed from CM

i jkl using the Voigt-Reuss-Hill approach.
cSingle-crystal 70Fe-15Ni-15Cr in Ref. [39].
dPlain carbon steel, SAE 1050 with carbon composition of 0.5 wt% in Ref. [40].

simple hexagonal metal sublattice. Since the substoichio-
metric TMCs are carbon-vacancy-ordered structures, we
categorize the carbides based on their metal-sublattice struc-
tures: MCx with a FCC metal sublattice and MCx with a
hexagonal metal sublattice. In the following sections, results
are shown and discussed corresponding to those two cate-
gories. In the group VIB and VB carbides, the B1 structure
dominates for wide stoichiometries from MC to M2C [43].
Between hemicarbides and monocarbides, two vacancy-
ordered structures are included in this model, M4C3 (space
group C2c) [44,45] and M3C2 (space group C2m), which are
related to the B1 structure with a FCC metal sublattice. We are
aware of other proposed structures of M4C3 and M3C2 [46,47]
with a mixing FCC/HCP metal sublattice, such as the ζ phase
and η phase [48–51]. However, those structures are not inves-
tigated in this study since the ζ phase and η phase are difficult
to form and are not, to the authors knowledge, precipitates in
steels. At 2:1 stoichiometry, the group IVB hemicarbides form
the vacancy-ordered B1 structure (space group Fd3̄m [43])
while the group VB and VIB hemicarbides form a hexago-
nal close packed (HCP) metal sublattice with carbon atoms
filling the octahedral interstices with various configurations.
In other words, the stacking sequence of the group VB and
VIB hemicarbides is Aγ1Bγ2A · · · , where the different config-
urations in γ1 and γ2 planes [52] lead to different structures
of those hemicarbides. Since most of the aforementioned
stoichiometries of carbides MCx have only been thoroughly
investigated by ab initio calculations [52–54] while only a few
verified in experiments [55–60], we use DFT calculations to
obtain the consistent data for the lattice and elastic constants
of the carbides.

For each carbide, DFT calculations were carried out in two
steps using Vienna ab initio simulation package (VASP). At
first, the conventional unit cell of the carbide was fully relaxed
during the energy minimization process to determine the op-
timized structure associated with the minimum ground-state
energy. Then, based on the optimized structure, the elastic
constants were computed in VASP by applying the infinites-
imal deformation on the relaxed lattice vectors. In our DFT
calculations, we used the projector-augmented-wave (PAW)
pseudopotentials [61,62] and the plane-wave basis with the
energy cutoff 600 eV. The Perdew-Burke-Ernzergof (PBE)
formulation [63] and the generalized gradient approxima-
tion (GGA) method [64] were used to evaluate the electron

exchange correlation energy. To sample the Brillouin zone,
the k-points density was set to be 55, which was equivalent
to a 12 × 12 × 12 k-point mesh for the conventional unit cell
of carbides in the B1 structure. The first-order Methfessel-
Paxton method was used for the Fermi-surface smearing with
the smearing width 0.2 eV. The iteration criteria was set with
the energy change of 10−8 eV. It is worth noting that the struc-
ture and elasticity for each carbide from DFT calculations
are based on the local coordinates defined in its conventional
unit cell. Therefore, we provide the relaxed lattice vectors and
the associated stiffness tensor in Table S1 within the Supple-
mental Material [32] for all carbides investigated. In addition,
we compared our data with other published data for carbides
[53], which were also obtained by DFT calculations using the
PBE-GGA method. It is found that our data are consistent with
the published data with only 5% difference.

C. The elastic dipole of a H atom

The H atom also creates stress and strain fields inside the
matrix which can be modeled using an elastic dipole tensor
[29]. There are three methods that have been introduced to
extract the elastic dipole from atomic-level simulations: the
displacement fitting method [65], the homogeneous strain-
stress method [66,67], and the Kanzaki force method [68].
Varvenne et al. implemented the aforementioned methods into
the classical force-field atomic simulations and found that the
elastic dipole obtained from three approaches converged to the
same value when the simulation system was sufficiently large
(>104 atoms) [69]. Nazarov et al. applied all three approaches
to the ab initio calculations for a H atom in α-Zr, where the
simulation system was relatively small (∼102 atoms) [70].
These authors compared the elastic dipole tensor extracted
from DFT calculations with that determined in experiments
[71] where upon they suggested that the homogeneous stress-
strain method was optimal for small simulation systems in ab
initio calculations. Therefore, the homogeneous stress-strain
method is utilized in this study to compute the elastic dipole
tensor of a H atom inside α-Fe and γ -Fe. In this method, a
homogenous strain field is applied to a region (simulation box)
with a single point defect and the the elastic dipole tensor can
be computed from the residual stress on the simulation box.
When the residual stress tensor is allowed to relax to zero, the
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FIG. 2. (a) The components of the computed elastic dipole tensor
for a H atom in γ -Fe as a function of the supercell size. The blue
squares denote P11 for H at the octahedral interstices, and red circles
denote P11 for H at the tetrahedral interstices. Due to the symmetry of
γ -Fe, the elastic dipole tensor is isotropic P11 = P22 = P33. (b) The
energy correction term 	E corr versus the supercell size. 	E corr rep-
resents the energy correction to DFT calculations for the periodic
images of the point defect. The blue squares represent 	E corr for H
at the octahedral interstices and red circles represent 	E corr for H at
the tetrahedral interstices.

elastic dipole components are computed as

Pi j = VCM
i jklε

h
kl , (8)

where V stands for the volume of the undistorted matrix, CM
i jkl

is the anisotropic stiffness tensor of the matrix, and εh
kl stands

for the homogenous strain of the distorted matrix caused by
the point defect. In this paper, we chose the experimental
values of CM

i jkl for α-Fe and γ -Fe as listed in Table I. The
volume V of the defect-free matrix and the homogeneous
strain εh

i j of the distorted matrix were determined from DFT
calculations. Using the same parameters in Sec. II B, the DFT
calculations were carried out, for both α-Fe and γ -Fe, to
compute the ground-state energy of two structures: the iron
matrix with and without an interstitial H atom. Based on
the relaxed structure of the undistorted and distorted matrix,
the homogeneous strain, εh

kl in Eq. (8), was computed from
the deformation gradient F using the Green-Lagrange strain
definition: EGL = 1/2(FTF − I). Since the computed elastic
dipole may depend on the size of the simulation cell, we
examined the computed dipole as a function of the number
of atoms in the simulation cell to establish the value of an
isolated H atom. These supercells had 4, 8, 12, 16, 24, 32, 36,
48, 72, 96, 108 Fe atoms for γ -Fe while the supercells in α-Fe
had 2, 4, 6, 8, 12, 16, 18, 24, 36, 48, 54, 72, 96, 128, 160, 200,
250 Fe atoms.

The results of the computed elastic dipole tensor for a
H atom inside γ -Fe as a function of the number of atoms
are shown in Fig. 2(a). For H in both the octahedral and
tetrahedral interstices, the values of Pi j converge within a vari-
ation of 0.05 eV for supercells with 96 atoms or more. These
results also suggest that the elastic dipole tensor is isotropic
P11 = P22 = P33, as expected, which is due to the symmetry of
the interstitial sites of the FCC structure. To make sure that the
obtained Pi j is associated with an isolated (single) H atom, we
used the anisotropic elasticity toolkit (ANETO) [72] to eval-
uate the interactions between the image point defects because
of the periodic boundary condition in DFT calculations. This
correction to the simulated formation energy, i.e., 	E corr, for
H in γ -Fe is plotted in Fig. 2(b). The energy correction for the

FIG. 3. (a) The octahedral interstices (orange spheres) in a con-
ventional unit cell of α-Fe with the defined local coordinates x̃D

i .
The three different interstitial positions are labeled as 1, 2, and 3,
respectively. (b) The elastic dipole components of H at the octahedral
P3 position, marked by the red sphere in (a), where P33 > P11 = P22.
(c) The tetrahedral interstices (orange spheres) in a conventional unit
cell of α-Fe with the defined local coordinates x̃D

i . The three different
interstitial positions are labeled as 1, 2, and 3, respectively. (d) The
elastic dipole components of H at the tetrahedral P3 position, marked
by the red spheres in (c), where P33 < P11 = P22.

supercell with 96 atoms is below 5 meV, which is close to the
precision expected for DFT simulations and thus the supercell
with 96 atomic sites for γ -Fe with a H atom is sufficiently
large. Therefore, the elastic dipole is Pi j = 1.79δi j eV for a
single H atom at an octahedral interstice and Pi j = 2.66δi j eV
for a tetrahedral-interstice H atom in γ -Fe.

For a H atom in α-Fe, the elastic dipole tensor is
anisotropic and depends on the interstitial position. For the
atomic configuration shown in Fig. 3(a), the H atom at the
octahedral position 3 has an elastic dipole tensor with nonzero
diagonal components P33 > P11 = P22, which converge within
±0.02 eV for a supercell with 200 atoms. The larger mag-
nitude component (P33) is due to the shorter distance to the
octahedral vertices along the x̃D

3 direction. Similarly, the H
atom at the tetrahedral position 3 in Fig. 3(c) has an elastic
dipole tensor with nonzero diagonal components P33 < P11 =
P22, which converges within ±0.04 eV for the supercell with
200 atoms. To ensure that the obtained elastic dipoles are
for an isolated H atom, we computed the energy correction
	E corr, which is less than 2 meV for the supercell with
200 atoms. For clarity, we label the three unique intersti-
tial positions Pi (i.e., P1, P2, and P3) such that the elastic
dipole components obey Pii �= Pj j = Pkk . For example, the
elastic dipole components for H at the octahedral P3 position,
which is (1/2, 1/2, 1) in the conventional α-Fe unit cell, are
P11 = P22 = 3.02 eV, P33 = 6.25 eV. The elastic dipole com-
ponents for H at the tetrahedral P3, which is (1, 1/2, 3/4)
in the conventional α-Fe unit cell, are P11 = P22 = 4.16 eV,
P33 = 3.79 eV. Finally, we note that the computed elastic
dipole tensor is defined in the local coordinates of the γ -Fe
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TABLE II. The orientation relationships between the carbide precipitates and the Fe matrix. In this paper, the normal vector of the coherent
plane is parallel to x̂3 in the global coordinate system.

Carbide metal sublattice Matrix Coherent Plane Lattice-mismatch directions

FCC α-Fe (100)MCx ‖ (100)α [011]MCx ‖ [010]α [01̄1]MCx ‖ [001]α
FCC γ -Fe (100)MCx ‖ (100)γ [010]MCx ‖ [010]γ [001]MCx ‖ [001]γ
Hexagonal α-Fe (0001)MCx ‖ (011)α [11̄00]MCx ‖ [01̄1]α [112̄0]MCx ‖ [100]α
Hexagonal γ -Fe (0001)MCx ‖ (111)γ [11̄00]MCx ‖ [112]γ [112̄0]MCx ‖ [110]γ

or α-Fe structure. For H in γ -Fe, the elastic dipole tensor is
isotropic, which is independent of the orientation of its local
coordinates Pi j = P̃i j . For H in α-Fe, the elastic dipole tensor
P̃i j in the local coordinates x̃D

i has to be transformed into the
quantity Pi j in the global coordinates x̂i.

At last, from these simulations, we can evaluate the energy
differences (and hence favorability) of the types of interstices.
The calculated ground-state energies of the Fe supercell with
an interstitial H atom at the octahedral and tetrahedral in-
terstices are denoted as Eo and Et , respectively. The energy
difference 	Eot = Eo − Et indicates the preference of the
interstitial H and is useful in connecting the computed interac-
tion energy to the binding energy (or trap energy) of H at the
carbide interfaces. The results show that 	Eot = −0.45 eV in
γ -Fe while 	Eot = 0.13 eV in α-Fe, which means H atoms
are more stable at the octahedral interstices in γ -Fe, but are
more stable at the tetrahedral interstices in α-Fe as expected
[73]. (Please refer to the Supplemental Material [32] for the
convergence study of 	Eot ).

D. The eigenstrain of the carbide inclusion

The eigenstrains inside the carbide precipitates are not
only a function of the lattice and elastic constants, but the
orientation relationship (OR) that exists between the carbide
and the matrix, and thus our model must also include informa-
tion regarding these ORs. Carbide precipitates with an FCC
metal sublattice in γ -Fe have the simple cube-on-cube OR
{100}MC ‖ {100}γ [74] while the OR between these carbides
and ferrite typically exhibit the Baker-Nutting OR [6], which
we use in this study, with {100}MC ‖ {100}α . The orientation
relationship between the carbides with a hexagonal sublattice
and ferritic steels (α-Fe) was proposed by Pitsch et al. [75],
known as the Pitsch-Schrader OR, where the slip plane in the
matrix coincides with the close packed plane in the precipitate
{0001}MC ‖ {011}α . Although other orientation relationships
between the HCP-structure precipitates and the BCC-structure
matrix were observed by Jack, Burgers, and Potter [76,77],
they all identified as having the same lattice-mismatch plane
(coherent plane) as in the Pitsch-Schrader OR [78]. Thus,
we chose the Pitsch-Schrader OR in this study for the co-
herent precipitates in α-Fe and γ -Fe. Thus, the orientation
relationships used in our model are listed in Table II and
the eigenstrains of coherent carbide precipitates are computed
accordingly.

As illustrated in Fig. 4(a), the coherent precipitate forms
a small platelet, which can be viewed as an oblate spheroid
with the semiaxes a1 = a2 > a3. The interfaces of this oblate
spheroidal precipitate (inclusion) are plotted schematically
in Fig. 4(b) where the Baker-Nutting OR is adopted as an
example. The broad surfaces of the inclusion form coherent

interfaces where a large eigenstrain is induced because of
the lattice mismatch. On the surfaces near the edge of the
oblate spheroid, the interface is incoherent where the lat-
tice mismatch is negligible [79]. Therefore, according to the
Baker-Nutting OR, the eigenstrain has nonzero components
on the x̂1x̂2 plane of the oblate spheroidal inclusion, which
can be computed from the lattice mismatch along 〈011〉MCx ‖
〈010〉α direction. In a similar way, the eigenstrains of all
coherent carbide precipitates in α-Fe and γ -Fe are com-
puted based on ORs in Table II. We note that the obtained
eigenstrains ε̃I∗

i j of the carbide particle is defined in the local
coordinates of its conventional unit cell. Thus, we list the com-
puted eigenstrains together with the associated lattice vectors
within the Supplemental Material [32].

All the necessary physical quantities in this continuum
model are determined via the methods discussed above. Using
Eqs. (2)–(7), the elastic interaction energy Eint can be evalu-
ated between a carbide particle and a H atom. To compute the
interaction energies, these equations were implemented and
evaluated in a computer program written in FORTRAN 90.
Some approximations and simplifications of this continuum
model are quantitatively investigated and elaborated upon in
Appendix B.

III. RESULTS AND DISCUSSION

A. The long-range hydrogen-binding capability of TiC

As stated previously, many experimental studies have
found that disk-like coherent TiC precipitates have the po-
tential to trap hydrogen and thus improve hydrogen tolerance

FIG. 4. A schematic of a coherent TiC precipitate in α-Fe adopt-
ing the Baker-Nutting OR [7,16]. (a) A TiC platelet is modeled as an
oblate spheroidal inclusion with the semiaxes a1 = a2 > a3 where
the global coordinates x̂i are set along the semiaxes. (b) A schematic
of the atomic configuration on the plane II in the subplot (a). Co-
herent interfaces (light-blue region) form on the broad surfaces of
the oblate spheroid, which lead to the induced strain from the lattice
mismatch. Near the edge of the oblate spheroid, incoherent interfaces
(light-pink region) form and no significant strain is induced along the
direction x̂3 ‖ [100]α ‖ [100]TiC.
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FIG. 5. The elastic interaction energy (Eint) between the TiC
oblate spheroidal inclusion (a1 : a3 = 5) and a H atom in the octa-
hedral interstice of α-Fe. The Baker-Nutting OR is chosen where
the plane normal of the coherent interface is x̂3 ‖ [100]α ‖ [100]TiC.
(a) Eint plotted along the semiaxes of the oblate spheroidal inclusion
x̂i and (b) Eint plotted on the x̂1x̂3 plane for H at the octahedral P1
position. (c) Eint plotted along the semiaxes of the oblate spheroidal
inclusion x̂i and (d) Eint plotted on the x̂1x̂3 plane for H at the
octahedral P2 and P3 positions. In the subplots (b) and (d), the circled
numbers show the site at the inclusion interface associated with the
largest hydrogen-binding energy.

of steels [5,7,16]. Thus, we choose to use the results for the
Eint between TiC particles and H as an illustrative example
of the interaction between the FCC structured carbides and
H atoms. The small platelet of the coherent TiC precipitate
is modeled as an oblate spheroidal inclusion with the semi-
axes a1 : a3 = 5, which is in agreement with the aspect ratios
reported experimentally [7]. The elastic interaction energy be-
tween the TiC inclusion and hydrogen Eint was computed as a
function of position in the region −5a0 � x, y, z � 5a0, where
a0 = (a1a2a3)1/3 is the characteristic length of the inclusion.
This was done in both γ -Fe and α-Fe.

The interaction energies for α-Fe are plotted in Fig. 5
and Fig. 6 for H at the octahedral and tetrahedral interstices,
respectively. The first observation one can make from the
plots is that Eint decays as 1/r3 where r is the distance
between hydrogen and the carbide inclusion, which means
the hydrogen-binding capability is only significant near the
carbide interfaces. This is expected and is a direct result of
the nature of the elastic interactions between two sources of
strain, but ensures all the other major conclusions of this paper
can be obtained by only examining Eint at the surface. For
a given ellipsoidal inclusion, the interaction energy Eint for
hydrogen is negligible when it is about 5a0 away from the
inclusion, where a0 = (a1a2a3)1/3 is the characteristic length
of the inclusion. The second point worth noting is that due
to the Baker-Nutting OR in ferrite and the cube-on-cube in
austenite, the eigenstrain in the coherent plane is isotropic
(ε̃I∗

11 = ε̃I∗
22), which results in the P2 and P3 being equivalent

FIG. 6. The elastic interaction energy Eint between the TiC oblate
spheroidal inclusion (a1 : a3 = 5) and a H atom in the tetrahedral
interstice of α-Fe. The Baker-Nutting OR is chosen where the plane
normal of the coherent interface is x̂3 ‖ [100]α ‖ [100]TiC. (a) Eint

plotted along the semiaxes of the oblate spheroidal inclusion x̂i and
(b) Eint plotted on the x̂1x̂3 plane for H at the tetrahedral P1 position.
(c) Eint plotted along the semiaxes of the oblate spheroidal inclusion
x̂i and (d) Eint on the x̂1x̂3 plane for H at the tetrahedral P2 and P3
positions. In the subplots (b) and (d), the circled numbers repre-
sent the point at the inclusion interface associated with the largest
hydrogen-binding energy.

and thus we only have to analyze two different orientations
for each interstice. It is worth noting that Eint for the octahe-
dral P2 is much larger than that for the octahedral P1 at the
vertices (±a1, 0, 0) as shown in Figs. 5(a) and 5(c), which
is attributed to the coupling between the anisotropic elastic
dipole and the large contractive strain near the edge of the
inclusion platelet.

Figures 5(b) and 5(d) demonstrate that H is subjected to a
repulsive force (Eint > 0) near the broad interface of the TiC
platelet when H is at the octahedral P1 but an attractive force
(Eint < 0) when H is at the octahedral P2 and P3 (the num-
bering scheme is denoted in Fig. 3). For H at the tetrahedral
interstices, Figures 6(b) and 6(d), the H atoms are attracted
to the broad interface of the TiC platelet for all three unique
tetrahedral positions. Noting that the magnitude of Eint is
much larger for the octahedral P2 and P3 positions than the P1
position, our results suggest that hydrogen is attracted to the
broad surface of the TiC platelet, which is consistent with the
experimental observations by Takahashi et al. [16]. However,
Takahashi et al. concluded that the hydrogen-binding effect
was not related to the strain field since the hydrogen-binding
sites were away from the edge of the TiC platelet where
the strains are the largest. The authors correctly noted the
strains would be the largest at the edges of the platelets,
at the vertices (±a1, 0, 0) and (0,±a2, 0) in Figs. 6(a) and
6(c), and thus would result in the largest interaction. However
Takahashi et al. neglected the sign whereas our results clearly
demonstrate that hydrogen interstitials are repelled from the
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edge of the disk and thus should not bind to this area. The
presence of a H atom generally creates a positive dilatational
strain field in the matrix and the large positive strains inside
the inclusion cause the contraction in the nearby matrix at
the edge of the oblate spheroidal inclusion, (±a1, 0, 0), which
leads to a repulsive force on H atoms in this region. Finally,
we note the magnitude of Eint at the co-vertices of the broad
face, i.e., (0, 0,±a3), is about 0.1 eV, which suggests a weak
hydrogen-binding capability. However, the difference in Eint

between the vertices and covertices is about 0.4 eV, which
ensures the broad surfaces of the TiC platelet are preferred
hydrogen-binding sites.

To quantitatively evaluate the hydrogen-binding capability,
we investigated the position and value of the minimum elastic-
strain interaction energy Eint (min) at the interfaces of the TiC
platelet. To do so, we computed Emin at points (x1, x2, x3) on
the inclusion surface by changing the parameters (u, v) every
2◦ where

x1 = a1 cos u sin v, x2 = a2 sin u sin v, x3 = a3 cos v, (9)

with u ∈ [0, 2π ) and v ∈ [0, π ). The site associated with
Eint (min), or the strongest hydrogen-binding capability, at the
inclusion interface is labeled in Fig. 5 and Fig. 6 for all
configurations of an interstitial H atom. When H is at the
octahedral P1, the strongest hydrogen-binding sites are near
the edge of the oblate spheroidal inclusion where v = 78◦ and
Eint (min) = −0.085 eV. When H is at the octahedral P2/P3,
the strongest hydrogen-binding point is at the covertices
(0, 0,±a3) where v = 0◦ and Eint (min) = −0.140 eV. For H
at the tetrahedral interstices, the covertices, (0, 0,±a3), are al-
ways the strongest hydrogen-binding sites where Eint (min) =
−0.089 eV and Eint (min) = −0.066 eV for H at the tetra-
hedral P1 and tetrahedral P2/P3, respectively. In this study,
among all unique interstitial positions, the lowest value in
Eint (min) is chosen to represent the hydrogen-binding capa-
bility. Therefore, for the oblate spheroidal TiC precipitate
with a1 : a3 = 5, we report Eint (min) = −0.140 eV for H
at the octahedral interstices and Eint (min) = −0.089 eV for
H at the tetrahedral interstices. In Ref. [80], Di Stefano
et al. studied the interactions between H and TiC inside
α-Fe by performing DFT simulations. The study suggested
that both the elastic-strain energy and the local atomic con-
figuration play important roles in H binding capability. By
removing chemical effects, the elastic-strain energy for the
tetrahedral-interstitial H atom was evaluated to be –0.18 eV
on an infinite-plane interface with the plane normal [001]α ‖
[001]TiC. To compare with the reported data [80], we evaluated
the long-range elastic interaction for a spherical inclusion
since an infinite plane is equivalent to a sphere with an
infinite radius. The values of Eint (min) between a tetrahedral-
interstitial H atom and a spherical TiC inclusion are –0.192 eV
for position P1 and –0.153 eV for position P2/P3, which are
close to their reported data indicating our continuum model
can accurately model the elastic interactions of hydrogen and
carbide precipitates.

For H at the octahedral or tetrahedral interstices in γ -Fe,
Eint is independent of the H atom position since the elastic
dipole tensor is isotropic. As shown in Fig. 7, the broad
surfaces of the TiC platelet are energetically favorable for H
atoms and the covertices (0, 0,±a3) are the interfacial sites

FIG. 7. The elastic interaction energy Eint between the TiC oblate
spheroidal inclusion (a1 : a3 = 5) and a H atom in the octahedral
interstice of γ -Fe. (a) Eint plotted along the semiaxes of the oblate
spheroidal inclusion x̂i and (b) Eint plotted on the x̂1x̂3 plane. The
orange-triangle marks the site at the inclusion interface associated
with the largest hydrogen-binding energy.

associated to the strongest hydrogen-binding capability, which
is Eint (min) = −0.0810 eV for an octahedral-interstice H. For
tetrahedral-interstice H atoms, the result only differs from that
for an octahedral interstices by a scale factor, which results in
Eint (min) = −0.120 eV at (0, 0,±a3).

B. The carbides with a FCC metal sublattice in Fe

Using the same procedures outlined in Sec. III A, the
minimum interaction energy Eint (min) was computed for all
B1-based carbides when the shape of the coherent precipitate
is an oblate spheroid with a1 : a3 = 5. The elastic interaction
energy Eint for all the B1-based carbides exhibits similar pat-
terns to that of TiC, which are illustrated in Figs. 5–7 and
thus we do not present these individual spacial results for each
element. To facilitate comparisons of the hydrogen binding (or
trapping) capability among the different carbides, the lowest
value of Eint (min) in each carbide is plotted in Fig. 8 for the
two types of interstices (octahedral and tetrahedral) inside the
two matrix materials (α-Fe and γ -Fe). These results include
the variation of carbon concentration, which was evaluated
using the elastic constants and lattice constants of the carbide
structures discussed in Sec. II B.

The examination of Fig. 8 reveals several general trends
regarding the binding of H to carbide precipitates in the cubic
carbides that are worth noting. First, the interaction energy
of octahedral interstices is stronger than tetrahedral interstices
in α-Fe. Similarly, we can see that the tetrahedral interstices
have a stronger interaction energy with the carbides in γ -Fe.
In each of these cases, the stronger interaction energy (larger
in magnitude) is associated with the less stable interstice,
which generally has a larger elastic dipole, creating a larger
magnitude elastic interaction. This would appear to imply
that there is a stronger hydrogen binding energy for the oc-
tahedral interstices in α-Fe. However, this is not true since
the elastic interaction energies for the two interstices have
different references, which must be corrected to identify the
binding energy of a H atom to the carbide interface. Since
the tetrahedral interstices are the more favorable bulk inter-
stitial site in α-Fe and the octahedral interstices are more
favorable in γ -Fe, these are the correct reference to compute
the binding energies. Thus, the hydrogen binding energies to
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FIG. 8. The minimum elastic interaction energy Eint on the sur-
face of an oblate spheroidal inclusion (a1 : a3 = 5) for the carbides
with a FCC metal sublattice plotted as a function of the carbon
concentration. (a) H at the octahedral interstices inside α-Fe; (b) H
at the tetrahedral interstices inside α-Fe; (c) H at the tetrahedral
interstices inside γ -Fe; (d) H at the octahedral interstices inside
γ -Fe. In the subplot (a), the right-vertical axis represents the elastic-
strain interaction energy referenced to the ground-state energy of the
tetrahedral-interstice H atom, Eint (min) + 	Eot . In the subplot (c),
the right-vertical axis represents the elastic-strain interaction energy
referenced to the ground-state energy of the octahedral-interstice H
atom, Eint (min) − 	Eot .

the interface for α and γ -Fe are referenced to their respective
favorable interstices. The binding energies for octahedral H
interstitials in α-Fe and tetrahedral H interstitials in γ -Fe
should be referenced using the right vertical axis in Figs. 8(a)
and 8(c), i.e., Eint (min) ± 	Eot , while the binding energies
for tetrahedral H interstitials in α-Fe and octahedral H inter-
stitials in γ -Fe are equal to Eint, the left axis in Figs. 8(b)
and 8(d). These results indicate that in α-Fe, H atoms can
be at either the octahedral or tetrahedral interstices near the
covertices of the coherent carbide platelet since they have
similar binding energies. In contrast, the octahedral interstice
near the broad face of precipitates in γ -Fe are still more
stable even though the attractive elastic interaction is larger
for the tetrahedral-interstice H. Second, we note that there is a
stronger interaction energy between H atoms and carbides in
ferrite compared to that in austenite. This is a combination of
the larger dipole moments of H atoms in α-Fe and the larger
elastic constants of α-Fe.

As shown in Fig. 8, for stoichiometric carbides with the
same metal element, |Eint (min)| decreases gradually with re-
spect to the decreasing carbon concentration (x in MCx).
Such a trend is attributed primarily to the decrease in the
elastic moduli of B1-structure based carbides caused by the
increase in carbon vacancies. For carbides at the same car-
bon composition, the magnitude of the interaction energy,
which characterizes its hydrogen trapping ability, follows
ZrCx>HfCx>TaCx 
 NbCx>TiCx>VCx, which is consis-
tent with the experimental findings comparing TiC, NbC, and
TaC [7]. This trend can primarily be explained, as noted in [7],

by the magnitude of the lattice mismatch between the matrix
and the carbide particles. Thus, these results clearly show that
stoichiometric carbides of zirconium and hafnium should be
the most favorable in trapping hydrogen at their surface due
to the elastic interactions.

C. The carbides with a hexagonal metal sublattice in Fe

In this study, the carbides with a hexagonal metal sublattice
include the group VIB MC (Bh structure, space group P6̄m2),
the group VB and VIB M2C (space groups P3̄m1, P3̄1m,
Pbcn, Pnma, Pnnm). Those carbides share similarities in many
aspects, including the lattice, symmetry of elastic constants,
and the orientation relationship with the matrix, which lead to
the similar results of the elastic-strain interaction energy Eint .
However, we do note that the metal atoms stacking differently
based on chemistry. The group VIB MCs stack with a simple
hexagonal repeat and thus are not close-packed, while the
group VB and VIB M2Cs arrange in a HCP substructure and
are, in fact, close-packed. Hereby, we illustrate and discuss the
results of Eint between WC and H as an example. The coherent
WC precipitate is modeled as the oblate spheroidal inclu-
sion with the semiaxes a1 : a3 = 5 where the Pitsch-Schrader
OR is adopted: x̂3 ‖ [0001]WC ‖ [011]α and x̂3 ‖ [0001]WC ‖
[111]γ .

For the WC precipitate in α-Fe, the interaction energy
Eint is computed at the points (x, y, z) in the region −5a0 �
x, y, z � 5a0 for the three unique interstitial positions of H.
When H is at the interstitial positions P2 and P3, the values
of Eint are the same along the semiaxes of the inclusion x̂i,
but have slight differences at other positions, which is due to
the anisotropic eigenstrains on the coherent plane (ε̃I∗

11 �= ε̃I∗
22).

Figure 9 shows that when H is at the octahedral P1 position,
the magnitude of Eint is much larger than that when H is at
the octahedral P2/P3 position. Thus, for H at the octahedral
interstices inside α-Fe, the broad surfaces of the WC platelet
are the preferred hydrogen-binding sites. Similar to what was
done in the cubic carbides, the interfacial sites associated
with the largest long-range hydrogen-binding energy are de-
termined by varying the parameters (u, v) in Eq. (9). The
lowest value of Eint = −0.466 eV is located at the interfacial
sites (0, 0,±a3) for H at the octahedral P1 position.

The interaction energy Eint between the WC precipitate
and H at the tetrahedral interstices in α-Fe is plotted in
Fig. 10. Similar patterns of Eint are found for H at all three
unique interstitial positions (P1, P2, and P3), where attractive
interactions occur along the x̂1 and x̂3 directions while repul-
sive interactions occur along the x̂2 direction. These results
also indicate that the broad surfaces of the WC platelet are
energetically favorable for H atoms at the tetrahedral inter-
stices. When H is at the tetrahedral P1 and P2 positions, the
interfacial sites for Eint (min) are the covertices (0, 0,±a3)
with Eint (min) = −0.130 eV and −0.182 eV, respectively.
When H is at the tetrahedral P3 position, the interfacial
sites for Eint (min) move to the points where v = 60◦ and
Eint (min) = −0.194 eV, which is similar to the value for
H at the tetrahedral P2 position. Therefore, the quantitative
values for the hydrogen-binding capability of the coherent
WC precipitate inside α-Fe are Eint (min) = −0.466 eV for
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FIG. 9. The elastic interaction energy Eint between the WC oblate
spheroidal inclusion (a1 : a3 = 5) and a H atom in the octahedral
interstice of α-Fe. The Pitsch-Shrader OR is chosen where the plane
normal of the coherent interface is x̂3 ‖ [001]α ‖ [0001]WC (a) Eint

plotted along the semiaxes of the oblate spheroidal inclusion x̂i and
(b) Eint plotted on the x̂1x̂3 plane for H at the octahedral P1 position.
(c) Eint plotted along the semiaxes of the oblate spheroidal inclusion
x̂i for H at the at the octahedral P2 and P3 positions; (d) Eint plotted
on the x̂1x̂3 plane for H at the octahedral P2 position. In the subplots
(b) and (d), the circled numbers show the site at the inclusion inter-
face associated with the largest hydrogen-binding energy.

the octahedral-interstice H and Eint (min) = −0.194 eV for the
tetrahedral-interstice H.

For the WC precipitate in γ -Fe, the values of Eint are
plotted in Fig. 11 for H at the octahedral interstices not-
ing that the results for Eint of the tetrahedral interstices are
just scaled versions of these plots. Figure 11 shows that H
atoms tend to be attracted near the broad surfaces of the
WC platelet inside γ -Fe. At the covertices (0, 0,±a3), the
long-range hydrogen-binding capability is the strongest where
Eint (min) = −0.0626 eV and −0.0931 eV for the octahedral-
interstice H and tetrahedral-interstice H, respectively.

Given the same inclusion shape (a1 : a2 : a3 = 5 : 5 : 1),
the values of Eint (min) were computed for all the carbides with
a hexagonal metal sublattice. As noted previously, the group
VB and VIB hemicarbides adopt different structures and
have polymorphic phase transitions with temperature requir-
ing examination of all the aforementioned structures for the
hemicarbides. We note that the computed Eint of these differ-
ent structures is actually quite similar for a given composition
and thus we plot the average result in Fig. 12 to represent the
hydrogen-binding capability for each hemicarbide. The right
axes in Figs. 12(a) and 12(c) correct the interaction energy
to represent a binding energy of the most favorable isolated
interestitial in that iron structure so that it is equivalent to
a hydrogen binding or trap energy. Several trends of the
hydrogen-binding effectiveness are observed in Fig. 12. First,
the magnitude of |Eint (min)| in α-Fe is larger than that in γ -Fe
because of the larger elastic moduli of α-Fe. Furthermore,

FIG. 10. The elastic interaction energy Eint between the WC
oblate spheroidal inclusion (a1 : a3 = 5) and a H atom in the tetra-
hedral interstice of α-Fe. The Pitsch-Shrader OR is chosen where
the plane normal of the coherent interface is x̂3 ‖ [001]α ‖ [0001]WC.
(a) Eint plotted along the semiaxes of the oblate spheroidal inclusion
x̂i and (b) Eint plotted on the x̂1x̂3 plane for H at the tetrahedral P1
position. (c) Eint plotted along the semiaxes of the oblate spheroidal
inclusion x̂i for H at the tetrahedral P2 and P3 positions and (d) Eint

plotted on the x̂1x̂3 plane for H at the tetrahedral P2 position. In
the subplots (b) and (d), the circled numbers represent the point at
the inclusion interface associated with the largest hydrogen binding
energy.

the group VIB hemicarbides (Mo2C and W2C) have better
hydrogen-binding capability than the monocarbides (MoC
and WC), which is attributed to the larger eigenstrains of those
hemicarbides. Moreover, the group VB and VIB hemicarbides
are promising for the hydrogen trapping except for V2C,
which has the relatively low hydrogen-binding energy due to
its small eigenstrains. If one references the binding energy, the
H atoms will likely bind at the octahedral interstices that are
near the covertices of the coherent carbide platelet because of
the large magnitude of the elastic-strain interaction energy Eint

FIG. 11. The elastic interaction energy Eint between the WC
oblate spheroidal inclusion (a1 : a3 = 5) and a H atom in the oc-
tahedral interstice of γ -Fe. (a) Eint plotted along the semiaxes of
the oblate spheroidal inclusion x̂i and (b) Eint plotted on the x̂1x̂3

plane. The orange triangle marks the site at the inclusion interface
associated with the largest long-range hydrogen binding energy.
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FIG. 12. The minimum elastic interaction energy Eint on the sur-
face of an oblate spheroidal inclusion (a1 : a3 = 5) for the carbides
with a hexagonal metal sublattice plotted as a function of carbon
concentration. (a) H at the octahedral interstices inside α-Fe; (b) H
at the tetrahedral interstices inside α-Fe; (c) H at the tetrahedral
interstices inside γ -Fe; and (d) H at the octahedral interstices inside
γ -Fe. In the subplot (a), the right-vertical axis represents the elastic-
strain interaction energy referenced to the ground-state energy of the
tetrahedral-interstice H atom, Eint (min) + 	Eot . In the subplot (c),
the right-vertical axis represents the elastic-strain interaction energy
referenced to the ground-state energy of the octahedral-interstice H
atom, Eint (min) − 	Eot .

in α-Fe. Thus, for the hexagonal carbide precipitates in ferrite,
the hydrogen interstitials prefer the tetrahedral interstices in
the bulk but octahedral interstices at the ferrite-carbide inter-
face. In γ -Fe, the octahedral interstices are still the preferable
sites for H atoms near the broad surface of the coherent car-
bide platelet. All data shown in Fig. 8 and Fig. 11 are listed in
Table S2 within the Supplemental Material [32].

D. Changes in Eint due to morphologies and sizes

The results of Eint discussed previously are based on small
platelet-shaped coherent precipitates. As the coherent pre-
cipitate grows, both the diameter and the thickness of the
platelet increase and the platelet gradually becomes an ellip-
soid with a reduced eccentricity [7]. A detailed discussion of
the standard growth pattern for carbide precipitates is covered
within the Supplemental Material [32]. To understand how
changes in morphology would affect the computed interaction
energies, we investigated the hydrogen-binding capability of
the oblate spheroidal inclusions with the varying eccentricity,√

a2
1 − a2

3/a1, by changing the a1/a3 ratio. As illustrative ex-
amples, the results of TiC and WC are shown in Fig. 13 for
the carbides with the FCC and hexagonal metal sublattices,
respectively.

For the same carbide, there are two trends of Eint (min)
shown in Fig. 13, which depend on the anisotropy in elastic
dipole tensors. When the interfacial sites for Eint (min) are
on the broad surface of the oblate spheroidal inclusion, the
curves of Eint (min) are positively related to the ratio a1/a3

FIG. 13. The values of Eint (min) for oblate spheroidal inclusions
with a1/a3 ranging from 1.5 to 5. (a) The TiC coherent precipitate in
α-Fe; (b) the TiC coherent precipitate in γ -Fe; (c) the WC coherent
precipitate in α-Fe; (d) the WC coherent precipitate in γ -Fe.

or the eccentricity. In contrast, when the interfacial sites for
Eint (min) are near the edge of the oblate spheroidal inclusion,
the curves of Eint (min) are negatively related to the a1/a3

ratio. For example, as the TiC coherent precipitate grows in
α-Fe, this oblate spheroidal inclusion changes its shape by
decreasing its eccentricity,

√
a2

1 − a2
3/a1. When it occurs, the

hydrogen-binding capability of TiC becomes weaker for H at
the octahedral P1, but becomes stronger for H at the octahe-
dral P2/P3. Noting that the magnitude of Eint (min) is larger
for H at the octahedral P2/P3, the hydrogen-binding capabil-
ity of the coherent TiC precipitate increases with respect to the
decreasing eccentricity of the precipitate. The same patterns
are observed for WC where the curve associated with the
strongest H binding capability (octahedral P1) indicates the
negative correlation between |Eint (min)| and the eccentricity.
The slopes of the curves for the P1 in WC is different from that
of TiC, because, due to the different ORs, P1 in WC binds to
the broad face of the carbide platelet rather than P1 in TiC is
located near the edge of the carbide platelet.

These results suggests that the growth of the coherent
carbide precipitate will increase its hydrogen-binding effec-
tiveness because of two reasons. First, since the board surfaces
are the energetically favorable sites for H atoms, larger pre-
cipitate have more interfacial area for the hydrogen to bind.
Second, the eccentricity of the coherent precipitate decreases
towards zero (sphere) as it grows, which results in the in-
creasing negative value of Eint (min), which is equivalently the
increasing hydrogen-binding capability of the precipitate. It
is worth noting that our conclusion about the shape and size
effects in the hydrogen-binding capability is consistent with
the experimental observations [7,13]. However, we also note
that these trends do not account for changes in the coherency
of the interface that also changes as the precipitate grows.
The growth of a precipitate typically reduces the magnitude
of the coherency strains and eventually reduces the overall
interaction to zero when the particle is incoherent, which is
now discussed with associated details in the following section.
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E. Changes in Eint due to interface characteristics

As noted above, when the growth of a coherent precipitate
continues, an oblate spheroidal coherent precipitate gradually
changes into an ellipsoidal semicoherent precipitate, which
finally becomes a spherical incoherent precipitate [7]. For a
semicoherent precipitate, on the semicoherent interface, the
eigenstrain is associated with partial lattice mismatch, which
is not usually known. Furthermore, as the precipitates become
semicoherent, the precipitates do not strictly follow the Baker-
Nutting OR. Thus, it can be difficult to fully evaluate the role
of strain energy and its ability to interact with H atoms.

In this section, we choose to investigate the lower bound
of Eint, which is an upper bound for the particles hydrogen
trapping ability, by considering the particles as coherent and
allowing the particles to have an arbitrary OR with the matrix.
The Euler angles in the z − x′ − z′′ convention are used to
define the orientations of the local coordinates via the rotation
matrix R:

x̂i = RD
i j (α

D, βD, γ D)x̃D
j , x̂i = RI

i j (α
I , βI , γ I )x̃I

j, (10)

where (αD, βD, γ D) and (αI , βI , γ I ) represent the Euler
angles of the local coordinates x̃D

i and x̃I
i , respectively.

Finally, four shapes of the inclusion are investigated, includ-
ing a sphere, an ellipsoid (a1 : a2 : a3 = 5 : 4 : 3), a prolate
spheroid (a1 : a2 : a3 = 5 : 1 : 1), and an oblate spheroid (a1 :
a2 : a3 = 5 : 5 : 1). On the inclusion surface with each shape,
the minimum value of Eint is determined from the enumeration
of both the orientation of H and the carbide by changing the
Euler angles (αD, βD, γ D) and (αI , βI , γ I ) at every 2◦.

The full results of this study are included in Tables S3–
S5 within the Supplemental Material [32]. The values of
Eint (min) exhibit the same trends as shown in Fig. 8 and
Fig. 12. However, when the orientation is allowed to change,
the magnitude of Eint (min) increases to more than twice than
that for a coherent precipitate with a fixed orientation. For
the oblate spheroidal inclusion with a1 : a2 : a3 = 5 : 5 : 1,
the upper limits of the elastic-strain hydrogen-binding energy
|Eint (min)| for ZrC are 1.37 eV (octahedral) and 0.878 eV
(tetrahedral) in α-Fe as well as 0.698 eV (octahedral) and
1.04 eV (tetrahedral) in γ -Fe, which are the largest among
the carbides with a FCC metal sublattice. The |Eint (min)|
for Nb2C are 2.34 eV (octahedral) and 1.12 eV (tetrahe-
dral) in α-Fe as well as 0.497 eV (octahedral) and 0.739 eV
(tetrahedral) in γ -Fe, which are the largest among the car-
bides with a hexagonal metal sublattice. This suggests that
the hydrogen-binding capability of semi-incoherent carbide
precipitates could be significant, and has been noted in experi-
ments [7,15]. These results further indicate that the orientation
of the carbide precipitate can play a significant role in govern-
ing hydrogen trapping if coherency can be maintained.

For incoherent precipitates, Wei et al. investigated several
B1-structure based carbide precipitates (TiC, NbC, and VC)
and found that those incoherent precipitates did not exhibit
hydrogen-binding capability [7,15]. These results can also be
explained using the continuum model discussed in this paper.
For an incoherent precipitate, the eigenstrains are small since
the degree of the lattice mismatch is almost zero. Therefore,
the stress and strain fields around the precipitate are neg-
ligible, which leads to trivial long-range hydrogen binding
effects.

IV. SUMMARY AND CONCLUSIONS

The main goal of this study was to estimate the ability
of carbide precipitates in steels to attract hydrogen atoms to
its interface due to elastic interactions. To achieve this, we
used Eshelby’s equivalent inclusion method to calculate the
elastic interaction energy between the point defects of H and
ellipsoidal shaped carbide inclusions in the iron matrix.

This paper focused on precipitates in the group VIB, VB,
and VIB carbides MCx with the stoichiometries 0.5 � x � 1.
Our calculations demonstrate that for coherent precipitates of
the cubic carbides, hydrogen is generally attracted to the broad
interface of the precipitates and is in agreement with direct
experimental observations. Hydrogen is not, as previously
postulated, generally attracted to the edges of the precipitates
where the strain fields are the largest since the interaction is
repulsive, not attractive. This is true regardless of the structure
of the matrix, e.g., ferrite or austenite. The magnitude of
the interaction is typically less than 0.3 eV, resulting in the
elastic interaction acting as a weak trap for hydrogen. This
interaction does depend on the chemistry of the cubic carbide.
It is largest for the stoichiometric carbides MC because of the
larger elastic constants of the carbides, which decreases with
decreasing carbon content. However, we note that the transi-
tion metal also plays an important role in the magnitude of the
interaction because of the lattice mismatch, which follows the
trend ZrCx>HfCx>TaCx 
 NbCx>TiCx>VCx. In addition,
our results also suggest that hydrogen interstitials in α-Fe can
occupy both the octahedral and tetrahedral interstices near the
broad interface of the disk-like B1-structure based carbides
while the hydrogen in γ -Fe should occupy the octahedral
interstices at these interfaces.

The carbides with the hexagonal metal sublattice also
exhibit the ability to trap hydrogen at the broad coherent
interface. The interaction energies are similar in magnitude
to the cubic carbides, except for the octahedral interstice in
α-Fe, which is much larger and suggests that H might sit at the
octahedral interstices near the broad interface. The magnitude
of the interaction energy also changes with composition, but
this change in composition is attributed to lattice mismatch
instead of elastic constants, the latter of which does not drop
significantly with carbon content.

To further provide evidence of the hydrogen-binding ef-
fects near the interface of carbide precipitates, we estimated
the upper bound of the hydrogen-binding energy for coherent
and semicoherent precipitates by enumerating the orientations
of the carbides. Results indicate that semicoherent carbide
precipitates have the potential to become effective hydro-
gen traps but strongly depends on the carbide orientations.
In addition, our continuum model suggests the negligible
hydrogen-binding capability for incoherent precipitates. Our
findings of the hydrogen-binding capability for semicoherent
and incoherent precipitates agree with the experimental obser-
vations.

Overall, results in this study indicate that the hydrogen-
binding energy induced by the elastic fields depends on
several factors: size, morphology, orientation, and interface
character of the precipitate as well as the precipitate elastic
constants and lattice mismatch, which are both a function of
composition. This is further complicated by the fact that the
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coherency strain changes as the particle grows, which tends to
reduce the coherency strain and hence the particles hydrogen
trapping ability. All these factors can impact the efficiency
and effectiveness of the hydrogen binding, which may be
a possible explanation for the inconsistency in experimental
studies of the hydrogen trapping of NbC, VC, and Mo2C.
The last point to be raised is that this paper does not include
chemical factors from the local atomic configurations, which
include the chemical binding of hydrogen to the interface, the
formation of hydrides near dislocation cores, and the trapping
of hydrogen inside carbide particles. Those factors also play
important roles that can be studied with modeling approaches
and has been done for stoichiometric TiC [80].

While all of the results discussed here are for ferrite
and austenite, we note that they can generally be applied
with little modification to ferritic and austenitic steels. Since
ferritic steels typically have similar lattice constants and elas-
tic constants to pure ferrite as studied here, our results are
representative of these materials. However, as noted in the
methodology, the elastic constants of austenite are about half
as those of austenitic steels. Based on the elastic model, we
can estimate that the elastic interaction energies here should
be roughly doubled when applied to austenitic steels.
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APPENDIX A: NOMENCLATURE

ai ≡ The semiaxes of the ellipsoidal inclusion

x̂i ≡ The global coordinate system along semiaxes

CM−iso
i jkl ≡ The stiffness tensor of the isotropic matrix
CM

i jkl ≡ The stiffness tensor of the anisotropic matrix

x̃D
i ≡ The local coordinate system of the point defect

RD
i j ≡ The rotation matrix for x̃D

i : x̂i = RD
i j x̃

D
j

P̃i j ≡ The elastic dipole tensor in the local coordinate system
x̃D

i

Pi j ≡ The elastic dipole tensor in the global coordinate system
x̂i

x̃I
i ≡ The local coordinate system of the inclusion

RI
i j ≡ The rotation matrix for x̃I

i : x̂i = RI
i j x̃

I
j

C̃I
i jkl ≡ The stiffness tensor of the anisotropic inclusion in the

local coordinate system x̃I
i

CI
i jkl ≡ The stiffness tensor of the anisotropic inclusion in the

global coordinate system x̂i

ε̃I∗
i j ≡ The eigenstrain of the inclusion in the local coordinate

system x̃I
i

εI∗
i j ≡ The eigenstrain of the inclusion in the global coordinate

system x̂i

ε∗
i j ≡ The equivalent eigenstrain of the inclusion in the global

coordinate system x̂i

Din
i jkl ≡ The Eshelby tensor inside the inclusion

Dout
i jkl ≡ The Eshelby tensor outside the inclusion

εc
i j ≡ The constraint strain in the global coordinate system x̂i

Eint ≡ The elastic-strain interaction energy between the point
defect and the inclusion

Eo ≡ The ground-state energy of a Fe supercell with an
octahedral interstice H

Et ≡ The ground-state energy of a Fe supercell with an
octahedral interstice H

	Eot ≡ The energy difference between H at different types of
interstices.

APPENDIX B: QUANTITATIVE ANALYSES OF THE
APPROXIMATIONS IN THE CONTINUUM MODEL

1. The isotropic and anisotropic elasticity of the Fe matrix

In our simulations, we chose to implement Eshelby’ so-
lution using isotropic elasticity for the iron matrix. However,
it is clear that the elastic constants of the matrix, either ferrite
and austenite, are anisotropic. The use of the isotropic approx-
imation for the matrix might appear at first an unusual choice,
but there are several reasons to make this choice. The first
is the expediency of the solution. The assumption of isotropy
results in closed forms for the Eshelby tensor Dout

i jkl [24,25,31],
which makes the evaluation of the interaction energy expedi-
tious; anisotropy would require the use of surface integrals
or Fourier transforms to evaluate the Eshelby tensor. This
allows us to more thoroughly evaluate how different structural
features affect the interaction energy. Another rationale to use
isotropy is that it makes extension of our results relatively
straightforward. For example, it is straightforward to extrapo-
late our results for pure austenite to austenitic stainless steels
by scaling with the Young’s modulus. To sum up, using simple
isotropic elastic constants that can be scale is less accurate for
pure iron, but much more useful in understanding how our
results would scale to steel.

To demonstrate that using isotropic elasticity of the Fe
matrix (as well as other approximations made in our model)
does not create large errors, we compare the calculated Eint in
the present study with the reported data from DFT simulation
[80]. Di Stefano et al. modeled the interface between TiC
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TABLE III. The computed minimum elastic interaction energy Eint (min) between a H atom and the ellipsoidal TiC particle with a1 : a2 :
a3 = 5 : 5 : 1. Different data of the lattice constant and the elastic constant for the Fe matrix are used. The Baker-Nutting orientation relation is
chosen where the coherent interface normal is [100]α ‖ [100]TiC. In the table, a0 represents the lattice constant, K represents the bulk modulus
and ν stands for the Poisson’s ratio.

Nonzero εI∗
i j Eint (min) at (0, 0, a3) (eV)

Matrix Methods a0 (Å) K(GPa) ν εI∗
22 = εI∗

33 �= 0 Octahedral H Tetrahedral H

α-Fe DFT at 0 K 2.832 187 0.302 0.08288 −0.180 −0.110
DFT+DG at 300 K 2.849 161 0.302 0.7642 −0.156 −0.0958

Exp. at 300 Ka 2.862 157 0.287 0.07153 −0.140 −0.0886
γ -Fe DFT at 0 K 3.477 183 0.191 0.2474 −0.171 −0.255

DFT+DG at 1428 K 3.509 130 0.191 0.2360 −0.149 −0.221
Exp. at 1428 Kb 3.613 126 0.360 0.2003 −0.0810 −0.120

aReference [37,38].
bReference [36].

and α-Fe as an infinite plane and reported the elastic-strain
contribution to the H binding energy as –0.18 eV for H atoms
at the tetrahedral interstice. In their DFT simulations, the
anisotropy of the matrix was fully considered. Using the con-
tinuum model, we computed Eint for a spherical TiC inclusion
since the infinite plane can be viewed as a sphere with an
infinite radius. We found values of Eint (min) of –0.192 eV for
tetrahedral-interstitial H at the position P1 and –0.153 eV for
H at the position P2/P3. These values obtained in our contin-
uum model are in good agreement with the reported data in
DFT simulation, which demonstrates that the approximations
and simplifications in our model are valid and do not produce
large errors.

2. The lattice constant and elastic constant of the Fe matrix
obtained in different approaches

As stated in Sec. III, we chose to use the experimental
values of the lattice constant and elastic constant for the Fe
matrix in Eq. (6) to compute Eint . The rationale for this is that
the real interest here is in understanding hydrogen trapping
in austenitic and ferritic steels, not pure Fe. Pure ferrite, as
noted in the text, is generally a good substitute for ferritic
steels as the addition of carbon and alloying elements typically
do not change the structure or elastic constants appreciably.
In austenite, the lattice constants are similar to austenitic
stainless steels but the elastic constants are different. Thus, in
this manuscript we used the experimental model of austenite
and discussed how the answers might change if the material
selected is an austenitic steel. However, our results do use the
experimental values instead of DFT values and it is impor-
tant to understand if this creates substantial inconsistencies
because we use DFT data for the carbides.

To complete this comparison, we evaluated the lattice con-
stants and elastic constants of ferrite and austenite in DFT
at conditions comparable to those in experiments, which are
ferrite at room temperature and austenite at 1428 K. To eval-
uate the lattice constant and elastic constant of Fe at a finite
temperature based on DFT simulations, the Debye-Grüneisen
model (DG model) was used [81]. We performed the DFT
calculations for α-Fe and γ -Fe with different volumes by
using the parameters in Sec. II C. Then that data was fitted to
a Morse-potential EDFT (V ) and the Debye frequency θD was

calculated from ∂EDFT (V )/∂V and ∂2EDFT (V )/∂V 2. Next,
the internal energy ED(T,V ) and the entropy SD(T,V ) of
phonons were computed by using θD. By minimizing the
Helmholtz free energy F (T,V ) in Eq. (B1), the equation of
state V (T ) was determined:

F (T,V ) = EDFT (V ) + ED(T,V ) − T SD(T,V )

+ Eel (T,V ) − T Sel (T,V ). (B1)

In Eq. (B1), the term Eel (T,V ) and Sel (T,V ) stands for the
heat-excited electronic internal energy and enthalpy, respec-
tively, which can be evaluated using the DOSCAR from DFT
simulations. Results of the lattice constant and heat capacity
of Fe obtained from DFT calculations at finite temperatures
are plotted in Fig. 14.

These results suggest that both the lattice constant and
heat capacity of α-Fe obtained from the DFT calculation are
consistent with the experimental data. However, while the heat
capacity of γ -Fe obtained from the DFT calculation agrees
with the experimental data, the lattice constant is off by about
3%. This indicates the DFT calculation can correctly model

FIG. 14. The calculated lattice constant and heat capacity using
the Debye-Grüneisen model compared with the experimental data.
Experimental data of the lattice constant for (a) α-Fe and (c) γ -Fe:
Feng [82], Basinski et al. [83]. Experimental data of the heat capacity
of (b) α-Fe and (d) γ -Fe: Chase [84].
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the bulk modulus of γ -Fe, while there is some error in evalu-
ating the lattice constant. Using this new data for the matrix,
we computed the Eint (min) between a H atom and the oblate
spheroidal TiC particle at (0, 0, a3). These results are listed in
Table III.

Results indicate that for α-Fe, the values of Eint (min) do
not change significantly when different material-specific data
were used in the model (experiments vs DFT) because the
DFT calculations show good agreement with experiments
in both the lattice constant and elastic constant. However,
the significant discrepancy exists in Eint (min) for γ -Fe even
though the computed bulk modulus at 1428 K is close to the
experimental value. This difference in Eint (min) is attributed
to the eigenstrain of the inclusion and the Young’s modulus
of the matrix, which can be seen from Eq. (6). Therefore, to
make the results meaningful for γ -Fe, we chose experimental
data of γ -Fe measured at 1428 K in this paper since it is a
more accurate representation of both austenite and austenitic
stainless steels. Finally, it is worth noting that if we use the
DFT data for the Fe matrix, the scaling of Eint (min) is nearly
the same for the carbides with similar structures (fcc metal
sublattice or hexagonal metal sublattice). This means that the
trends of Eint (min) amongst the carbides found in this study
are still valid.

3. The H-H interaction

As mentioned in Sec. II A, a simplified two-body con-
tinuum model was employed that neglects long-range H-H
interaction. In general, there are two different types of the H-H
interaction: one is the aggregation of H atoms, which leads to
the formation of hydrides, and the other is the long-range elas-
tic H-H interaction. The formation of hydrides depends on the
local hydrogen arrangement, which cannot be investigated in
this continuum model since we did not choose to evaluate the
energy of aggregated hydrogen atoms and is beyond the scope
of this paper, which is to evaluate the individual interactions
between atomic hydrogen and carbide particles.

However, the long-range elastic H-H interactions can be es-
timated using the anisotropic elasticity toolkit (ANETO) [72].
As discussed in Sec. II C, DFT calculations were performed
for different Fe supercells with one H interstitial. Due to the
periodic boundary conditions in DFT simulations, the H atom
(point defect) inside the Fe matrix with N atomic sites has the
elastic interaction 	EH−H with its image atoms. This energy
	EH−H can be approximated as the average long-range elastic
H-H interactions inside the bulk Fe with 1/N composition of
hydrogen. The computed results using ANETO are illustrated
in Fig. 15.

These results suggest that the choice of two-body model
is valid for two reasons. First, the elastic long-range in-
teraction between H interstitials are repulsive since the H
atom (point defects) generally produce dilatational stress-
strain fields. Second, the concentration of H atoms inside
iron/steels is small in practical cases. In references [85–87],
the threshold concentrations of hydrogen were determined
experimentally based on the initiation of cracks. Experimental
results suggest that, when the ultimate tensile stress (UTS)
of ferritic/martensitic steels is about 1 GPa, the threshold
concentration of hydrogen is 0.5 − 8.5 wt ppm, which is
2.8 × 10−5 − 4.7 × 10−4 molar fraction. This threshold con-

FIG. 15. (a) The computed average elastic long-range interac-
tion between H atoms inside γ -Fe via DFT simulations; (b) The
computed average elastic long-range interaction between H atoms
inside γ -Fe via DFT simulations. The light green region in the
subplot (b) represents the threshold concentration of hydrogen in
ferritic/martensitic steels with its ultimate tensile stress (UTS) is
1 GPa.

centration range is labeled in Fig. 15(b) and obviously the
average 	EH−H is negligible (<10−4 eV).

4. The shape effect between a cylindrical inclusion and an
ellipsoidal inclusion

The growth of secondary-phase particles, including transi-
tion metal carbides, are governed by both the surface energy
and the volumetric elastic energy as discussed above. For
small coherent precipitates, the precipitates typically form a
flat platelet where the broad surface has the minimum surface
energy. As the precipitate grows, the volumetric elastic energy
gradually dominates over the surface energy by changing the
shape of the precipitate, and thus the ellipsoidal or spherical
particles are observed for semicoherent and incoherent precip-
itates. This typical growth pattern of precipitates is discussed
within the Supplemental Material [32], which is also con-
firmed in many experimental observations. Wei et al. approxi-
mated the small coherent precipitates as flat discs based on the
TEM images (Fig. 2 in Ref. [7]). Takahashi et al. conducted
the direct observation of coherent TiC precipitates using APT
and also suggested that the particles were flat platelets/disks
[16]. For the semicoherent and incoherent precipitates, the
ellipsoidal or spherical shapes were observed in experiments
[7,88]. In order to implement the Eshelby’s solution, the co-
herent precipitates are modeled as oblate spheroids in the
present study instead of the disk/cylinder shapes for numeri-
cal convenience. While experiments cannot truly resolve if the
precipitates are truly cylindrical discs or oblate spheroids, it is
important to establish how each of these models impact the
results as that has an impact on the error in our model.

Unlike an ellipsoidal inclusion, the Eshelby tensor of a
cylindrical inclusion does not have an explicit form. More-
over, the simple linear relationship between the constraint
strain εc and the eigenstrain ε∗ does not exist in cylindrical
inclusions. Using the Green’s function and Fourier transform,
thus the constraint strain has to be computed using Eqs. (B2)
and (B3):

Gi j (�x) =
(

1

2π

)3 ∫ ∞

−∞

exp(−i�k · �x)

k2

[
CM

im jnkmkn

k2

]−1

d�k,

(B2)
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FIG. 16. (a) The constraint strain εc
i j along the x̂3 axis of the

cylindrical inclusion and the ellipsoidal inclusion. The shape is cho-
sen as a1 : a2 : a3 = 5 : 5 : 1 and the eigenstrain is set isotropic on
the x̂1x̂2 plane as ε∗

11 = ε∗
22 = ε∗. The constraint strain εc

i j is scaled
with respect to ε∗ (b) The relative difference in the constraint strain
εc at (0, 0, a3) between the cylindrical and ellipsoidal inclusions.

εc
i j (�x) = − 1

2

∮
CM

pqrsε
∗
rsnq(�x′)

× [Gim, j (�x − �x′) + Gjm,i(�x − �x′)]dS(�x′), (B3)

To compare εc between the two different shapes of the
inclusion, the radius and the height of the cylindrical inclu-
sion, labeled as a1 and a3, are a1 : a3 = 5 and for the oblate
spheroid: a1 : a2 : a3 = 5 : 5 : 1. The eigenstrain is set to be
isotropic on x̂1 − x̂2 plane as ε∗

11 = ε∗
22 = ε∗. The components

of the constraint strain εc
i j along the x̂3 axis are plotted in

Fig. 16(a). A slight difference in εc is found inside the inclu-
sion and near the inclusion boundary. At the point (0, 0, a3),
which associated with the largest elastic H binding energy,
the relative difference in the constraint strain is computed in
Eq. (B4):

η = 2‖εc(disc) − εc(oblate)‖2

‖εc(disc)‖2 + ‖εc(oblate)‖2
, (B4)

where ‖εc‖ stands for the norm 2 of the constraint strain.
Figure 16(b) shows that for flat platelets a1/a3 > 3, the rela-
tive difference in the shape effect between the disk and oblate
spheroid is less than 10%. In this study, we chose the shape of
coherent precipitates as the oblate spheroid with a1 : a3 = 5,
which may cause about 7% relative difference compared to a
disk shaped inclusion.

Therefore, choosing the ellipsoidal inclusion instead of the
cylindrical inclusion would bring about 7% relative differ-
ence, which would not change the conclusion in this study.
However, modeling the inclusion as an ellipsoid dramatically
lowers the computational effort. Furthermore, it is worth re-
turning to the point that we do not know the true shape of
the precipitate: is it a disk or an oblate spheroid? This paper
clearly demonstrates that for platelet shapes, the difference is
small and thus both models will give similar answers and, for
more equiaxed shapes that occur as the precipitates grow, the
ellipsoidal model is much more appropriate than a cylinder as
the experimental shapes agree much more with ellipsoids than
cylinders.

5. The magnetostrictive effect inside α-Fe

The magnetostriction in α-Fe has the potential to create
a magnetostrictive strain and thus contribute to the elastic

FIG. 17. (a) The oblate spheroidal TiC particle inside α-Fe,
where a1 : a2 : a3 = 5 : 5 : 1 and the Baker-Nutting orientation re-
lation is adopted. (b) The magneto-elastic energy 	Eσ (�α) caused by
the stress field around the TiC particle with respect to the magnetiza-
tion orientation �α(θ, φ).

interaction energy Eint between H atoms and carbides. In
a continuum model, the first-order linear term in the mag-
netostriction is zero because no external magnetic field is
applied on the bcc α-Fe (and α-Fe is centrosymmetric). There-
fore, we assume the change in Eint is negligible due to the
magnetostriction. However, below we will quantify this and
demonstrate the effects can be neglected.

If we consider magnetostriction in the continuum model,
the stress-strain field around the carbide particle is coupled
with the internal magnetization �M(�α) where �α = (α1, α2, α3)
is the magnetization orientation. The internal energy change
due to the magnetization is therefore [89]:

	E (�α) = 	Em(�α) + 	Eσ (�α), (B5)

	Em(�α) = K1
(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3

) + K2α
2
1α

2
2α

2
3, (B6)

where 	Em(�α) is the anisotropic magnetization energy and
	Eσ (�α) is the magneto-elastic energy. The term 	Eσ (�α) is
computed as the tensor contraction between the stress σi j and
the magnetostriction strain ε

μ
i j (�α):

	Eσ (�α) = −σi jε
μ
i j (�α). (B7)

The magnetostriction strain ε
μ
i j (�α) for a single crystal α-Fe is

defined in Eq. (B8):

ε
μ
i j (�α) = 3

2

⎡
⎣λ100

(
α2

1 − 1
3

)
λ111α1α2 λ111α1α3

λ111α2α1 λ100
(
α2

2 − 1
3

)
λ111α2α3

λ111α3α1 λ111α3α2 λ100
(
α2

3 − 1
3

)
⎤
⎦.

(B8)

In Eq. (B8), λ100 and λ111 represent the magnetostriction
constants along 〈100〉α and 〈111〉α , which are temperature de-
pendent. At 300 K, λ100 = 2.2 × 10−5, λ111 = −1.7 × 10−5,
K1 = 4.8 × 104 J/m3, and K2 = 1.5 × 104 J/m3 [90]. The
magnetization orientation �α can be determined by minimizing
	E (�α) in Eq. (B5). 	Em(�α) has a minimum value when
�α ‖ 〈100〉α , which means the magnetization of a single crys-
tal α-Fe without internal stresses prefers 〈100〉α directions.
To evaluate 	Eσ (�α) in our model, we use a coherent TiC
precipitate as an example with the Baker-Nutting orientation.
The Baker-Nutting orientation relation was implemented by
choosing the normal vector of the coherent interfaces as x̂3 ‖
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TABLE IV. The contribution of the magnetostriction in the elas-
tic interaction between H atoms and TiC particle inside α-Fe, noted
as 	Eμ

int (�α) with units in eV. The magnetization orientation is deter-
mined to be parallel to the normal vector of the coherent interfaces:
�α ‖ [100]α ‖ [100]TiC.

Octahedral interstitial Tetrahedral interstitial

P1 P2/P3 P1 P2/P3

	Eμ

int (�α) −7.11 × 10−5 3.55 × 10−5 8.14 × 10−6 −4.07 × 10−6

[100]α ‖ [100]TiC. The TiC particle was modeled as an oblate
spheroidal inclusion with the semiaxes a1 : a2 : a3 = 5 : 5 : 1.

The orientation of �α is defined by the polar angle (θ ) and
the azimuthal angle (φ) in the global coordinate system x̂i as
illustrated in Fig. 17(a). The volume integral of 	Eσ (�α) was
then performed in the ellipsoidal region λai with λ ∈ [1, 30],

and the minimum value of 	Eσ (�α) was found when �α ‖ x̂3 ‖
[100]α ‖ [100]TiC (θ = 0).

As illustrated in Fig. 17(a), although large internal stresses
exist on the (100)α plane near the edge of the TiC platelet
due to the lattice mismatch, this stress field is compres-
sive and thus unfavorable for the magnetization. Taking both
	Em(�α) and 	Eσ (�α) into consideration, the magnetization
orientation �α is along the normal vector of the coherent
interfaces [100]α ‖ [100]TiC. The correction term due to the
magnetostriction in the elastic interaction Eint is computed
afterwards as

	Eμ
int (�α) = −Pi jε

μ
i j (�α), (B9)

where Pi j is the elastic dipole tensor of an interstitial H. As
listed in Table IV, values of 	Eμ

int (�α) are in the magnitude
of 10−6 − 10−5 eV, which justifies the assumption that the
magnetostriction is negligible in our model.
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