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Hydrogen isotopes are retained in plasma-facing fusion materials, triggering hydrogen embrittlement and
changing tritium inventory as a function of exposure to neutron irradiation. But modeling highly damaged
materials—exposed to over 0.1 displacements per atom (dpa)—where saturation of damage is often observed, is
difficult because a microstructure containing high density of defects evolves nonlinearly as a function of dose.
In this study we show how to determine the defect and hydrogen isotope content in tungsten exposed to high
irradiation dose, using no adjustable or fitting parameters. First, we generate converged high dose (>1 dpa)
microstructures, using a combination of the creation-relaxation algorithm and collision cascade simulations.
Then we make robust estimates of vacancy and void regions using a modified Wigner-Seitz decomposition. The
resulting estimates of the void surface area enable predicting the deuterium retention capacity of tungsten as a
function of radiation exposure. The predictions are compared to 3He nuclear reaction analysis measurements
of tungsten samples, self-irradiated at 290 K to different damage doses and exposed to low-energy deuterium
plasma at 370 K. The theory gives an excellent match to the experimental data, with both model and experiment
showing that 1.5–2.0 at.% deuterium is retained in irradiated tungsten in the limit of high dose.
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I. INTRODUCTION

Materials intended for the first wall and divertor of DEMO
fusion reactor are expected to face irradiation doses of
10 dpa or more depending on location [1,2]. In the absence
of comprehensive experimental data on materials that have
actually experienced such high neutron fluxes with realistic
fusion energy spectra, it is expected that device performance
can be extrapolated to some extent using modeling and sim-
ulation. However, in recent years it has become increasingly
clear that the methods developed to simulate microstructural
evolution in the dilute defect limit are not well suited to gener-
ate representative highly irradiated microstructures. While it
is correct to model an isolated prismatic dislocation loop as a
diffusing single entity [3,4], and substantial progress has been
made with object kinetic Monte Carlo [5–9] and cluster dy-
namics models [10,11], based on discrete defect objects with
parameterized effective mobilities, this approach must break
down in the limit where the defect concentration grows to the
point when mean free paths are short or elastic interactions
dominate the dynamics.

Correlated motion of defects is observed in theoretical
models incorporating elastic interactions [12–14], which are
able to explain the experimentally observed phenomena in-
volving loop rafting [15,16] and self-pinning of defects [17].
In the dense microstructure limit often observed at doses
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above ∼0.1 dpa, new phenomena appear—dislocation loops
can merge together to the point where they are better de-
scribed as regions of near-perfect crystal than as isolated
platelets of interstitial point defects [18,19]. This is a funda-
mental topological transition in irradiated materials between
the point where dislocation objects can be treated as loops,
to the point where dislocations form a material-spanning
network [20]. Small changes in stress due to the produc-
tion or movement of defects can unlock barriers previously
too high to be overcome, leading to an avalanche of de-
fect coalescence or recombination over a wide spatial extent
[20]. Thermal activation controls the long time evolution of
complex microstructures [21], but in the dense limit, their gen-
eration and description requires adequate handling of the large
number of degrees of freedom involved in complex defect
rearrangement [22–26].

The dense microstructure limit does have one simplifying
universal feature, namely that the saturation of physical phe-
nomena has been observed. Materials irradiated to >1 dpa at
relatively low temperatures have shown saturation in thermal
diffusivity [27], lattice strain [19], and hardness [28]. This
suggests that, starting from some dose, further exposure to
irradiation does not significantly evolve the defect distribu-
tions, and therefore we may have a chance to simulate this
dynamic steady state even while the highly detailed modeling
of nonlinear transient microstructural configurations remains
difficult.

In this paper we interpret the experimental observations
showing that the vacancy content of ion-irradated tungsten,

2475-9953/2021/5(9)/095403(13) 095403-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1536-6254
https://orcid.org/0000-0001-9058-5652
https://orcid.org/0000-0001-7461-2817
https://orcid.org/0000-0001-6244-1942
https://orcid.org/0000-0002-7954-3547
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.095403&domain=pdf&date_stamp=2021-09-17
https://doi.org/10.1103/PhysRevMaterials.5.095403


DANIEL R. MASON et al. PHYSICAL REVIEW MATERIALS 5, 095403 (2021)

as deduced using positron annihilation spectroscopy, exhibits
saturation [29], as does its deuterium retention capacity
[30–33] observed at relatively low temperatures and high dose
(>0.2 dpa). We are able to explain experimental observations
by simulating a dynamic steady state of a highly irradiated
tungsten, characterized by fluctuating but statistically sta-
tionary vacancy distribution, which is modeled with atomic
resolution using no adjustable or fitting parameters.

In a fusion reactor, it is necessary to keep a careful in-
ventory of the tritium retained in the materials, both for the
purpose of efficient tritium breeding and for minimizing its
retention at the point of decommissioning or a loss-of-coolant
accident [34,35]. Hydrogen mobility in crystalline tungsten is
high, with an activation barrier of order 0.2 eV [36,37], and
its enthalpy of solution is also high at order 1 eV [38,39].
Any hydrogen isotopes in crystalline tungsten will therefore
either quickly migrate to existing defects [40], influencing
their evolution [41,42], or even produce new defects [43–46].

Of the possible trapping sites for hydrogen in tungsten, a
surface—either exterior or interior—is generally considered
the most favorable location for hydrogen retention [39], with
a binding energy of a hydrogen atom to the [100] surface
of 0.7–0.9 eV [39], and to a vacancy 1.4 eV [47,48]. Up to
six hydrogen atoms can be confined in a single vacancy at
absolute zero. By contrast, the binding energy of a hydrogen
atom to a self-interstitial atom defect is 0.3 eV [49], and
to an interstitial dislocation loop 0.7 eV [50]. Hence, while
hydrogen atoms can, in principle, form a Cottrell atmosphere
in the elastic fields around dislocations, they are unlikely
to be present in large concentrations around dislocations
at room temperature except under constant plasma loading
conditions [51].

Models for hydrogen retention typically start with the as-
sumption of one or more defect trapping site types [52,53],
and consider the effective diffusion of hydrogen from the
traps to the surface or into the bulk [54]. Because of the
difficulty associated with modifying these equations to take
into account the nanoscale fluctuations in stresses observed
in highly damaged microstructures [20], here we opt to find
a theoretical maximum retention level based on the interior
surface area of defects alone [55].

Previously, two simulation methodologies were employed
to generate microstrictures of heavily irradiated materials at
the atomic scale.

The first method is the creation-relaxation algorithm
(CRA) method [20], where instead of following full cascades,
Frenkel pairs are directly inserted by removing randomly
chosen atoms and replacing them in new, randomly chosen po-
sitions. The new configuration is then relaxed using conjugate
gradients (CG) with appropriate elastic boundary conditions
[18,20,56]. This is iterated many times to build up damage.
As the canonical definition of displacements per atom (dpa)
is the number of Frenkel pair production events generated by
the algorithm per atom in a simulation cell [20], we have a
well-defined measure of the (canonical) dpa level after any
number of algorithmic steps. This canonical measure of dose
is henceforth referred to as cdpa, to distinguish it from other
measures of radiation exposure. The CRA method is very
efficient in generating high dose microstructures. However,
there is no temperature and no cascade effects, which have

been seen to be important in tungsten [57,58]. The number
of defects obtained from a CRA simulation is therefore a
theoretical maximum value, defined primarily by the buildup
of internal fluctuating stress, and it is thought to overestimate
the observed experimental effects [18,19].

The second method is to generate the radiation dam-
age microstructures incrementally using a large number of
overlapping sequential collision cascade simulations using
molecular dynamics (MD). In a cascade simulation, one atom
is given high kinetic energy, order kilovolts, or more, and
the atomic system is then evolved in time with thermostats
and barostats appropriate for the boundary conditions. This
process is repeated as many times as can be afforded. This
has been done for several metals, and doses achieved are on
the order of tenths of a dpa [22,59–62]. The results of these
simulations agree with Rutherford back scattering channeling
measurements on similarly irradiated samples [63]. However,
as one needs to cumulatively add up the dose, over 10 000
consecutive cascade simulations would be needed to reach one
dpa. This limits the dose range that can be investigated using
this direct cascade simulation approach.

To investigate converged heavily irradiated microstruc-
tures, without the need of tens of thousands of direct cascade
simulations, we combine these two methods. We carry out
cascade simulation to transform the CRA pregenerated mi-
crostructures to form atomic configurations with an effective
dose up to several dpa. The convergence of this approach
is demonstrated by extending computationally expensive
cascade-only simulations to high dose. This convergence is
found to be robust and significant, and it links together a
purely static relaxation method for generating microstructure
(CRA) with a dynamic time-dependent simulation method
(MD), in a parameter-free way.

We emphasize that we do not claim the microstructures are
thermally annealed. To our knowledge there does not exist
any simulation technique yet for annealing a highly damaged
microstructure, involving thousands of vacancies and dozens
of arbitrarily complex interstitial loops and dislocation lines
in a million-atom simulation cell, to experimental timescales.

To compute the void content, we need new methods of
structural analysis of atomic configurations suited for highly
irradiated systems. We discuss how to generate the optimal
Wigner-Seitz (W-S) point defect counts using a strained and
rotated reference crystal and show how to generate isosurfaces
enclosing voids using this reference crystal. By this method
we can separate vacancies in vacancy dislocation loops, a
mismatch between the number of atoms and the number of
reference lattice sites but with no empty space for a hydrogen
atom, from vacancies isolated or in small clusters which act
as strong trapping sites.

Finally, we use the computed void surface area to estimate
hydrogen retention in highly damaged microstructures and
discuss the relationship with experimental measurements.

II. METHODS

A. Simulations

To produce representative microstructures of tungsten, cor-
responding to high exposure to irradiation at doses up to 3 dpa,
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we follow a two-step process—first using the CRA method
[20] to generate the high-dose prerelaxed atomic structures,
followed by further relaxation achieved by means of sequen-
tial overlapping MD cascade simulations.

As starting configurations, we use the CRA-generated
atomic structures of tungsten explored in Ref. [19]. These
structures were generated using the MNB interatomic tung-
sten potential, which is known to predict vacancy structures
that agree well with DFT simulations [64]. The simulation
cell contained 64 × 64 conventional cubic bcc unit cells in
the x and y directions, and 200 unit cells in the z direction.
The strain was set to zero in the x and y directions in the
plane parallel to the surface of the sample, representing a
constraint on the damaged layer due to the pristine defect-free
extended substrate material below the surface layer of the
material exposed to irradiation, and the homogeneous stress
was kept at zero in the z direction, reflecting the traction-
free surface boundary conditions. The simulations represent a
section cut from a foil with a damaged top layer, such as
might be produced by heavy ion bombardment. Maintaining
zero stress in the z direction reflects the ability of the mate-
rial to freely expand outwards in the direction normal to the
surface, this enables modeling the effect of traction-free sur-
face boundary conditions on the evolution of microstructure
without explicitly including surfaces in the simulation. The
simulations were performed using the molecular dynamics
simulation package LAMMPS [65].

As very large local stresses are generated by the build
up of point defects, a single CRA step can produce major
atomistic rearrangement over a large spatial extent [20]. As
dose increases, dislocation loops are formed, as interstitials
are inherently mobile under stress. At a dose of order 0.1 cdpa,
the dislocation loops combine into a dislocation network,
changing the apparent number of atomic lattice planes in the
simulation cell. Vacancies are relatively immobile in a CRA
simulation, hence voids do not form. Importantly, as the only
mode of relaxation of atomic structures is essentially downhill
in energy, the CRA method does not easily overcome potential
barriers. The microstructures produced by CRA simulations
are typically very dense in defects [19].

A computational approach similar to the massively over-
lapping cascade simulations [22,59–61] was used in our
investigation to achieve full microstructural convergence in
the limit of high dose. The simulations were carried out with
the MD code PARCAS [66,67], with an adaptive timestep to
account for the movement of high energy atoms [68]. Elec-
tronic stopping was applied as a friction force acting on all
the atoms with a kinetic energy over 10 eV [69]. The in-
teratomic potential was the same as that used in the CRA
simulations [64].

A perfect bcc simulation cell was created with the size
64 × 64 × 200 conventional cubic bcc unit cells, containing
about 1 600 000 atoms. The cell was created with the lattice
constant corresponding to the temperature of 300 K. The
simulation cell was then thermalized to 300 K with fixed
cell dimensions in the two shorter directions and kept at zero
stress in the longest dimension. After the initial relaxation
and thermalization, consecutive atomic impacts were initiated
in the cell as follows. (i) A 10-keV cascade was initialized in
the center of the cell, with a Berendsen thermostat [70] at the

FIG. 1. Vacancy concentration as a function of MD cascade
count. The canonical dpa rate is the gradient of vacancy concentra-
tion as a function of Ncasc at Ncasc = 0, indicated by the solid line.

border atoms and no pressure control. This was simulated for
20 ps. (ii) The cell was then relaxed with thermostat on all
atoms and a pressure control [70] to keep zero pressure in the
longest dimension, this simulation lasted for 10 ps. (iii) After
the relaxation, the cell was shifted randomly over the periodic
boundaries, in order for the next cascade to occur in a different
region, to obtain a homogeneous irradiation of the entire cell.
(iv) This was repeated many times. Two independent runs
were conducted to assess possible statistical differences; it
was concluded that the differences were small.

As the canonical definition of displacements per atom is
related to the number of vacancies generated in a perfect
crystal in the limit of zero dose, the cdpa rate for the se-
quential cascade events is given by the rate of increase of
vacancy concentration per lattice site cv , with the number of
cascades Ncasc

cdpa = ∂cv

∂Ncasc

∣∣∣∣
Ncasc=0

Ncasc. (1)

In Fig. 1 we plot the vacancy content using the W-S method
for our MD-only cascade simulations. Using the data derived
from the first 40 cascade simulations, we find that cpda =
4.07 × 10−6Ncasc.

We observe that the volume vacancy fraction reaches a
concentration close to 0.3 at.%. This agrees with experi-
mental observations on ion-irradiated tungsten [27] and other
metals [71], as well as simulations performed on other metals
[22,59,60]. We extended these MD cascade simulations out to
10 000 cascades, equivalent to 0.04 cdpa over a total simula-
tion time interval of 300 ns.

Simulations of microstructural relaxation driven by cas-
cades followed the same procedure as described above. The
starting point for cascade simulations were the highly dam-
aged cells generated by CRA simulations [20] using the cell
geometry defined in Ref. [19]. As starting configurations for
cascade simulations, we took the CRA configurations corre-
sponding to the damage doses of 0.0063, 0.019, 0.035, 0.063,
0.11, 0.19, 0.35, 0.63, 1.1, and 3.0 cdpa. These cells were
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initially scaled to the correct lattice constant (at 300 K) and
thermalized to room temperature over 10 ps using a Berend-
sen thermostat [70], with the same boundary conditions as
described above. After the initial thermalization, 1600 PKAs
of 10 keV each were initiated in the cell. This corresponds to
an extra exposure of 0.0065 cdpa in each case.

B. Defect detection

In this subsection we develop methods for detecting point
defects and defect clusters in high-dose atomistic simulations.
This methodological development is necessary as lattice de-
fects are defined by deviations from a reference lattice, but at
high dose the concept of a reference atomic lattice can become
ill-defined; the average distorted lattice certainly can no longer
be assumed to be same as the initial zero-dose perfect lattice
configuration. Furthermore, in what follows we choose to
compare the results of our simulations to deuterium retention
experiments, which we will argue are a good measure of the
vacancy content, and so is a good proxy measure of the cor-
rectness of our generated microstructure. We therefore need to
distinguish between unoccupied lattice sites, typically defined
in the context of the Wigner-Seitz analysis—which could, for
example, be part of a vacancy dislocation loop and hence
associated with relatively minor tensile strain while exhibiting
no substantial local free volume sufficient for accommodating
a deuterium atom—from true “voids,” which we can define
simply as being well-localized excess empty spaces between
the atoms.

The Wigner-Seitz method is commonly used to identify
the positions of point defects in crystalline materials in the
low-damage limit [67]. This technique imagines the Voronoi
tesselation of an ideal lattice. Atoms are placed into these
Voronoi volumes, and the number of atoms in each Voronoi
volume is counted separately. If the atom positions are close
to the reference lattice sites, each volume is taken as being
singly occupied. If the atoms are significantly displaced from
reference ideal lattice sites, then some volumes will have zero
occupancy, others multiple occupancy. The volumes with zero
occupancy are then marked as vacancies, even if the actual
amount of free volume in a “vacancy” defined in this way is
very small. In practice, the Voronoi geometry does not need
to be calculated, it suffices to find the nearest reference site to
each atom.

We are, in principle, free to choose our reference lattice. In
the dilute defect case, corresponding to the low dose, this is
rarely a problem—we use the original perfect lattice defined
by the asymptotic positions of sites far from the defect(s).
In the dense defect case we still need to formulate a rule
that would determine what to take as a reference. Consider
the simulation supercell to be a periodically repeating par-
allelepiped with repeat vectors �A1, �A2, �A3. By definition, for
each point �x there is an equivalent point �x + N1 �A1 + N2 �A2 +
N3 �A3, where Nα are integers (α = {1, 2, 3}).

Now consider a reference lattice of primitive unit cells.
This again is a periodically repeating parallelepiped with re-
peat vectors �b1, �b2, �b3. By definition, for each point �z there
is an equivalent point �z + n1�b1 + n2�b2 + n3�b3, where nα are
integers.

For the two cells to be commensurate, it is necessary
only for any triplet {N1, N2, N3} for there to exist a triplet
{n1, n2, n3}, such that

N1 �A1 + N2 �A2 + N3 �A3 = n1�b1 + n2�b2 + n3�b3. (2)

Given the linearity of the problem, this reduces to

�Aα = n1α �b1 + n2α �b2 + n3α �b3, (3)

or, in matrix notation A = b · n, where Aβα is the βth
Cartesian component of the αth vector. The matrix n is a
matrix of nine independent integers, which has the flexibility
to consider any combination of axial strains, shears, and rota-
tions necessary to fit the primitive unit cell into the simulation
supercell.

Given the simulation cell A, and an intention to use, say,
a bcc primitive cell with �b1 = a0[1̄11] and so on, a fit for the
number of unit cell repeats is

n = nint
[
b−1A

]
, (4)

where nint[b−1A] is the component-wise nearest-integer op-
erator. The best fit unit cell, strained and rotated appropriately,
is then

b̃ = An−1. (5)

Note that there is no requirement for n to remain constant
through a simulation, particularly one with high-dose damage
where new crystal planes could be formed. The counts of
interstitials and vacant sites are not constrained to be equal.

We may have an estimate for the homogeneous rotation and
strain in the atomic system. This could be done by analyzing
the position of the peaks of the square of the structure fac-
tor S(�q) = ∑

i exp[i �q · �xi], where the sum runs over all atom
positions �xi. Then we have a better starting estimate for the
primitive cell T0b, and we can use this in place of b in Eq. (4).
We describe how we find a homogeneous transformation
matrix T0 using a real-space method in the Appendix.

The primitive unit cell has an associated motif �yi, i =
{1, 2, . . .} associated with it. For the bcc and fcc cases there
is only one motif point, but hcp and diamond structure have
two. The lattice is invariant under translation of the motif.
In the dense defect case, where displacements may be large,
there can arise a disregistry between the reference lattice and
the displaced planes of atoms. This will typically manifest as
smooth planar regions of point defects. We can therefore say
that the optimal translation for the Wigner-Seitz reference is
the one with fewest point defects. This is a global minimiza-
tion problem, hard to solve generally, as an arbitrarily small
displacement may push an atom from matching one reference
site to another. We find a good lattice offset with a simple grid
search; we search 6 × 6 × 6 trial offsets on a uniform grid,
establish the one with the fewest point defects, then refine the
grid and search again. This process is repeated a third time,
giving a reasonably high-precision estimate for a minimum.

Finally, we note that this procedure will still fail if there
are multiple grains or phases in the system. We used common
neighbor analysis [72,73] to search for subgrains in our sim-
ulation boxes, but did not find any. Therefore we leave the
multigrain defect detection problem for future research.
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(a)

(b)

FIG. 2. A comparison of three vacancy detection methods: alpha
hull (AH), Wigner-Seitz (W-S), and the isosurface method developed
here. (a) Performance of defect detection algorithms with homoge-
neously distributed vacancies. (b) Performance with single spherical
void. Solid line indicates perfect vacancy counting. Note the W-S
algorithm performs perfectly in these cases.

The successful operation of the W-S method to determine
unoccupied lattice sites is illustrated in Fig. 2.

An alternate choice for detecting void spaces between the
atoms, which are large enough for storing deuterium, is to
construct the alpha-hull (AH) from the Delauney tetrahedrali-
sation of the atomic positions.

This method requires a single input parameter, a minimum
sphere radius used to determine concave surfaces, and so is
highly transferable across atomic structures. It is a robust
method for determining the number and location of voids
within a body, and is implemented in OVITO as the construct
surface mesh modifier [74]. It does, however, produce sur-
faces with nodes defined by atomic positions. The volume

FIG. 3. Small vacancy clusters identified using Wigner-Seitz oc-
cupation (left), Delauney triangulation (AH method) (center), and
Wigner-Seitz isosurfaces, described here (right).

of a monovacancy region is, therefore, overestimated, and
the surface produced does not have the symmetry of the
Wigner-Seitz cell. The void-bounding surfaces produced for
small vacancy clusters are illustrated in Fig. 3. Note that for
this bcc example, the void surface for a monovacancy is do-
decahedral, and encloses a volume 4�0. Volumes and surface
areas of larger vacancy cluster regions can also be reported,
but with no simple linear transformation to determine the
number of point defects represented. In Fig. 2 we illustrate this
issue by representing the vacancy count using the AH method
as a band. The lower limit assumes that one vacancy has
volume 4�0, and is correct for homogeneous distributions.
The upper limit assumes one vacancy has volume �0, and is
asymptotically correct for large voids.

Now we describe a new method that sits between the W-S
and AH approaches. If we know the lattice type, we can define
vectors to the expected positions of neighbors. Writing �xi as
the position of atom i, and �vk,i as the vector from i to the
expected location of neighbor k, the kth Wigner-Seitz plane
passes through the midpoint of �xi and �xi + �vk,i, and so is
defined by the plane(

2 �vk,i

|�vk,i|2
)

· (�x − �xi ) = 1. (6)

Defining the kth normal vector as �nk,i = 2 �vk,i/|�vk,i|2, we can
find a scalar field ψi(�x) defining the distance from atom i
preserving the symmetry of the Wigner-Seitz cell

ψi(�x) = maxk{|�nk,i · (�x − �xi )|}. (7)

The region closest to atom i in the perfect lattice satisfies
ψi(�x) < 1. We can then define a scalar field φ(�x) describing
distance from any atomic position as the minimum value
of ψi(�x)

φ(�x) = mini{ψi(�x)}. (8)

In an ideal lattice, this will have the value zero at atomic
positions, rising to 1 at the Wigner-Seitz cell boundary. If
there is a void, then φ(�x) > 1 in this region. We illustrate a
φ = 1 isosurface bounding small vacancy clusters in Fig. 3.
For the bcc lattice we see that the isosurface is a truncated
octahedron, which is the correct shape for the Wigner-Seitz
cell.

If the lattice is not ideal, but instead is characterized by a
local strain tensor and rotation, then the vectors to neighbors
can be found from those in the reference lattice {�v0

k,i} by

�vk,i = T(�xi )�v0
k,i, (9)
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where T = (I + ε)R is a combined rotation and strain at point
�xi. We describe how to compute a converged local strain field
T(�x) in the Appendix.

To compute the isosurface at φ = 1 in practice, we note
that thermal fluctuations might make small “cracks” appear at
isosurface level φ = 1 simply because atoms, in a fluctuating
manner, might be instantaneously further away from each
other than expected. To compensate for this, we can compute
the volume and area at isosurface level φ = 1 + ε, where ε

is a small parameter of the order of the (fractional) vibra-
tion lengthscale of the atoms. This effectively redraws the
Wigner-Seitz planes slightly further distant from the atoms,
shrinking the void regions proportionately. We therefore also
compute the volume and area derivatives of the isosurface
with respect to ε, and extrapolate to find the volume and area
at exactly φ = 1. Volume and area are not sensitive to the
choice of ε, we find taking ε = 0.05 works well in all cases we
tested. The correct performance of our isosurface algorithm
for simple homogeneous vacancies and voids is demonstrated
in Fig. 2, where we show the calculated vacancy concentration
for given input vacancy concentrations for W-S, AH, and our
isosurface method.

In Fig. 4 we demonstrate where our algorithm differs from
W-S. For prismatic vacancy loops with Burgers vectors �b =
1/2〈111〉, we find no void space, whereas W-S finds a differ-
ence between the number of lattice points and the number of
atoms. For prismatic vacancy loops with �b = 〈001〉, relaxed
using the MNB potential [64], we find small voids opening at
the dislocation core. This core shows a remarkable connection
with the work by Bullough [75] who noted that the core of an
edge dislocation with a large Burgers vector can be treated
analogously to a crack.

Figure 5 illustrates one of our CRA + MD simulation
cells at 1 cdpa, analyzed using the defect detection al-
gorithms described here. We can see a one-to-one match
between the voids detected using our isosurfaces method
and monovacancies/small vacancy clusters detected with the
Wigner-Seitz method, except for at the vacancy dislocation
loops. These are readily identified as planar features of higher
“point defect” density in the central cell circled by dislocation
lines. Note that some isosurfaces cross the periodic boundaries
and appear as flecks. The bottom replica shows a slice through
the local strain calculation, generated to improve the local
estimation of the Wigner-Seitz normal vectors.

C. Experimental methods

Tungsten samples with nominal 99.97 at.% purity were
procured from Plansee [76], outgassed, and annealed at
2000 K for 3 minutes, producing large grains with 10–50 μm
diameter and a low dislocation density estimated at 2 × 1010

m−2 [77]. The samples were irradiated to different damage
dose ranging from 0.001 to 2.3 dpa at the damage peak max-
imum using 20.3 MeV W6+ self ions at room temperature at
the TOF beamline of the 3-MV tandetron accelerator at the
Max-Planck-Institut für Plasmaphysik. Details can be found
in Ref. [78]. Damage doses were estimated using the Fast
Kinchin-Pease option using SRIM [79,80], with a threshold
displacement energy of 90 eV [81].

(a)

(b)

FIG. 4. A comparison of the Wigner-Seitz (W-S) algorithm to the
isosurface method developed here when applied to vacancy loops.
(a) Performance of void detection algorithm with prismatic vacancy
loops in bcc tungsten. Two Burgers vectors (b = 1/2〈111〉 . . . and
b = 〈001〉) are considered. Note that the W-S algorithm returns the
number of vacant lattice sites exactly, whereas the isosurface method
usually returns zero void space. (b) Slice through a [001] vacancy
loop viewed in the [001] orientation containing 25 vacant lattice sites,
atoms colored by depth. Isosurface showing the position of four voids
overlaid.

The samples were then exposed simultaneously to a low-
temperature deuterium (D) plasma to decorate the produced
defects with a moderate ion flux of 5.6 × 1019 D m−2s−1. For
the chosen plasma parameters this ion flux hitting the samples
contains dominantly D+

3 ions with an energy below 15 eV.
The target holder temperature was set with a liquid-cooled
thermostat to 370 K, which is adequate to allow D diffu-
sion into the bulk, and hence into the traps associated with
radiation defects, but does not cause evolution of the traps
themselves [82]. For these exposure conditions the D retention
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FIG. 5. A simulation cell generated with CRA simulations to
1 cdpa, then relaxed with MD cascades. The periodic replicas show
(top) void detection using isosurfaces; (center) Wigner-Seitz point
defect detection shows vacancies (red) and interstitials (blue); (bot-
tom) local strain calculation showing the εxz component colored from
blue (compressive −5%) through white (no strain) to red (tensile
+5%), where z is the long axis direction (here shown horizontally).
A dxa analysis [73] is overlaid to show the dislocation loops and
network. Green lines have Burgers vector 1/2〈111〉 and pink lines
〈100〉. Visualisation performed with OVITO [74].

is trap-limited, rather than diffusion limited, and the solute
D atoms are not in equilibrium with the trapped population.
A full description of this implantation methodology can be
found in Refs. [78,83].

The retained deuterium population was analysed ex situ
using the D(3He,p)α nuclear reaction, with eight different 3He
energies ranging from 500 to 4500 keV chosen to probe the
sample depth up to 7.4 μm. A full description of the NRA
analysis methodology used is given in Ref. [42].

III. RESULTS AND DISCUSSION

The results of application of the combined CRA + MD
cascade microstructure simulations are shown in Fig. 6. The
clearly visible convergence of combined CRA and MD cas-
cade simulations shown in this figure is the main finding of
this work. In the figure, the solid line corresponds to the mas-
sively overlapping cascade simulations alone, and the squares
to the CRA + MD cascade microstructure simulation results.
The CRA + MD cascade simulations are shown at these
increments: before any cascade and after 10, 25, 50, 100, 200,
400, 600, 800, 1000, 1200, 1400, and 1600 cascades. Note that
these increments are not linear.

In Fig. 6, each different color set starts with a CRA only
simulation—i.e., zero number of MD cascades. This point
corresponds to the highest vacancy concentration in the mi-
crostructure. Subsequent points on the cascade relaxation

FIG. 6. CRA simulations annealed with MD cascades. Solid
symbols: CRA simulation only. Open symbols: CRA simulations
with MD annealing. Solid line: MD cascades only, i.e., perfect lat-
tice starting point. Inset: Same data plotted on a linear scale shows
a match between MD cascade only and CRA + MD simulation
techniques.

curve show the effect of MD cascades on the microstructure.
The vacancy concentration initially shows a dramatic reduc-
tion after just a few MD cascades, then the convergence rate
gradually decreases until a converged limit is found.

First, looking at the three lowest starting points, cor-
responding to the lowest doses in the CRA method, we
can clearly see the cascade relaxation effect, which reduces
the fraction of vacancies in the microstructure. This reduc-
tion continues until the solid line (MD-only simulations) is
reached. We observe that as the number of cascades increases
past this point, so does the vacancy fraction, in excellent
agreement with the solid line. This validates that the combined
method is resulting in the same defect concentration as the
massively overlapping cascade simulations alone, however,
here already with a speed up of a factor of 2 to 5 depending
on the CRA starting point.

Second, looking at the high dose starting points, we again
can observe a huge effect of cascade relaxation in the be-
ginning, with a small effect at the end of the run. We see
a saturation of vacancy concentration at a level of 0.3 at.%.
This is an order of magnitude drop in vacancy concentration
compared to the CRA-only simulations. With the direct val-
idation against massively overlapping cascades at the lower
doses and with the qualitative agreement (both defect concen-
tration level and overall behavior), we observe this combined
technique to be very effective on obtaining microstructures at
very high doses—the microstructures obtained by combining
CRA + MD can result in a dose which would otherwise
require about 1 million overlapping cascade simulations. This
represents a dramatic computational speed-up on the order of
500.

The resulting counts of all the point defect types deter-
mined for our high-dose simulations is shown in Fig. 7.
We find the interstitial count, and the total count of unoc-
cupied lattice sites using the W-S method. The proportion
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FIG. 7. A count of point defects for high dose microstructure
simulations. Interstitials counted using W-S method. Vacancies in
clusters counted using isosurface method, and vacancies in loops
taken as difference between total vacant lattice sites (W-S) and
vacancies in clusters. Open symbols are the result of using CRA
simulations alone. Solid symbols are the result of using MD and
CRA + MD relaxed simulations. The lines are to guide the eye
between sets of points.

of vacancies in vacancy loops is found by subtracting the
vacancies counted using the isosurface method from the total
Wigner-Seitz count of unoccupied lattice sites. In this plot we
use an extended range of CRA-only simulations to emphasize
the regime where interstitial and vacancy counts are equal.
We see that the atomic fraction of vacancies increases lin-
early with dose at low fluence, but tends to saturate at high
fluence, with CRA at 2.5 at.% and CRA + MD at 0.3 at.%.
This order of magnitude difference is clearly very significant
for predicting properties of highly irradiated materials, and
demonstrates the importance of further relaxation of CRA-
simulated microstructures. The interstitial count is seen to
follow the vacancy count at low fluence—this is an expected
consequence of defects being generated as Frenkel pairs. But
at high fluence, interstitial dislocation loops extend across the
periodic boundaries of the cell and form complete planes of
atoms, with residual network dislocations. For example, in
the simulation snapshot in Fig. 5, the matrix of primitive cell
repeats is

n =
⎛
⎝ 0 64 201

64 0 201
64 64 1

⎞
⎠, (10)

indicating that, compared to the original zero dose simulation
box, an additional plane normal to the z direction with Burgers
vector 1/2〈111〉 has formed.

It is notable that this split between interstitial and va-
cancy count occurs earlier in the simulations with cascades, at
0.01 dpa compared to 0.1 dpa in the CRA-only simulations.
This occurs because the high-energy cascade MD simulations
provide sufficient energy for the defect clusters to overcome
thermal barriers. We also see that vacancy loops emerge nat-

FIG. 8. Deuterium (D) concentration assuming 5 D atoms per
monovacancy equivalent. Note the displacement damage scale x-axis
is split into logarithmic and linear halves to emphasize the saturation
level in the high dose limit.

urally in both CRA and CRA + MD simulations, and with
a similar atomic fraction, at the point where interstitial and
vacancy counts diverge. They can be clearly seen in Fig. 5.
These vacancy loops are generated by interstitial loop coales-
cence: indeed, when the interstitial dislocation loops coalesce
to form a full new atomic lattice plane they will not do so with
100% coverage, but rather will leave small gaps, like holes
in the complete atomic planes. These gaps remain bounded
by edge dislocation lines. They are, by definition therefore,
vacancy loops.

To make an estimate for the amount of hydrogen that can
be retained in the material from the defect concentrations
computed above, we need to estimate the trapping efficiency
of the defects in our simulated microstructure. This has been
studied in detail in Ref. [84] for the 0.23 dpa data point
shown in Fig. 8. There the authors simulated the experimental
results using a macroscopic rate equation code [85], assuming
three defect types [86] with trapping energies corresponding
to monovacancies and vacancy clusters. As this modeling
gives a good fit to the experimental data, without recourse to
hydrogen trapping on other defects, we will also assume here
that it is the vacancies which are most significant in relation
to hydrogen retention.

Our approach will differ by how we determine the count of
trapped deuterium (D) atoms per vacancy. Previously, a great
deal of work has gone into evaluating the trapping energies
for individual deuterium traps [87], and this information is
invaluable for modeling outgassing as a function of temper-
ature, such as in thermal desorption spectroscopy. Here our
goal is only to determine the maximum amount of retained
deuterium. We instead use a model inspired by Hayward and
Fu [55,88]. They showed, using density functional calcula-
tions, that hydrogen saturates the surface of vacancy clusters
in α-Fe before forming H2 gas bubbles within, so that the im-
portant relevant parameter is the void surface area. In tungsten
this is likely also to be so, as in our simulations the vacancy
clusters do not grow significantly. Given that the monova-
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cancy is generally considered to trap up to five hydrogen
atoms at room temperature [86], and that these occupy five
of the six [1/200] interstitial positions surrounding the vacant
site, we can use the simple model that the surface area of a
monovacancy is 5/6 occupied.

If we generalize this result and consider the internal surface
area of void spaces to be the relevant factor in determining
the deuterium retention capacity, we need make no distinction
here between monovacancies, vacancy clusters or voids, or
indeed the more difficult to characterize internal surfaces such
as seen in Fig. 4. A more sophisticated model might make
a distinction with a gas bubble containing D2 in the empty
volume, but as we have little vacancy aggregation in our
low-temperature simulations or experiments we leave this to
future work. For a general vacancy cluster with surface area

, computed using the isosurface method above, we say that
the number of deuterium atoms retained, nD, is

nD = 5




V
, (11)

where 
V is the surface area of a monovacancy.
Figure 8 shows the final outcome of our analysis, an esti-

mation of the maximum deuterium concentration possible in
irradiated simulation cells, compared with direct NRA mea-
surements of the concentration of D in irradiated tungsten.
We see that the CRA-only simulations greatly overestimate
the saturation level, suggesting a D concentration over 10
at.%. This is understood as a consequence of the overestima-
tion of vacancy-type defects in CRA simulations due to the
incomplete relaxation of the microstructure. The combined
CRA + MD simulations, however, offer an excellent estima-
tion of the D retention, at order 1.5–2.0 at.% in the saturation
limit. The most significant difference between the experimen-
tally measured D concentration and our simulated estimate
is the offsetting of the damage scale (x-axis). This is not
unexpected in this case, as the simulations use a canonical
measure of the number of vacancies produced by the sim-
ulation, whereas the experiment uses a measure defined by
counting the number of Frenkel pairs created in binary col-
lisions, assuming a somewhat uncertain threshold energy for
this process. The experiment also can allow some additional
long-time thermal relaxation of defects at room temperature
which cannot presently be accounted for in the detailed ex-
ploration of defect microstructures.

IV. CONCLUSION

In this study, we demonstrated how to generate converged
microstructures of a material exposed to high radiation dose,
using a combination of the creation-relaxation algorithm and
molecular dynamics cascade simulations.

As the CRA method depends on static relaxations, dis-
placed atoms can only be moved to a nearby local minimum
energy configuration. By contrast, MD can overcome thermal
activation barriers, and so can move between local minima.
Even a small amount of MD will therefore relax high-energy
configurations to some extent. Cascade simulations introduce
sufficient energy to overcome much higher barriers than an
equivalent time of thermal annealing alone, and so act as
simulated annealing on high dose CRA configurations. This

simulated annealing removes the “memory” of the initial con-
dition, replacing high-energy CRA microstructure with lower
energy MD microstructure. In this paper we showed that the
computational time required for this process is reasonable,
and by matching the definition of canonical displacements
per atom we also match almost perfectly the defect content of
CRA + MD simulations with MD cascade simulations alone.

We showed that the Wigner-Seitz methodology for finding
defects can be employed to interpret the highly dense defect
microstructures. We discussed how to generate the correct
reference lattice, even when the simulation cell is sheared or
rotated, using a technique based on simple matrix inversion.
We refined this reference lattice by taking into account the
measurable homogeneous deformation, and adjusting the off-
set of the lattice motif. We further showed that this standard
measure of the occupation of lattice sites gives a good estima-
tor of the point defect numbers, but if we want to discriminate
between vacancies appearing as voids and those appearing
in vacancy loops we can do this by finding isosurfaces in
the Wigner-Seitz occupation. By this means we were able to
compute not just the number of vacant reference lattice sites,
but rather the surface area of voids in the simulation.

In our simulations, relaxation is performed by MD cas-
cades rather than by “true” thermal annealing, and so there
is still little vacancy mobility, and little void growth. This
is probably a reasonable assumption to compare to experi-
ments performed at temperatures below the onset of vacancy
mobility, as we have done here, but our methodology for
generating microstructures will need to be supplemented by
thermal annealing to compare to higher temperature experi-
mental results.

There are few divacancies, and the surface area of a
divacancy is just slightly under the surface area of two mono-
vacancies. Therefore the fractional surface area measured is,
in this case, a close match to the fraction of vacant lattice sites.
Importantly, we demonstrated a defect detection methodology
which continues to work accurately even when voids do form
under irradiation.

In this study we did not consider the external surface
area of the target itself as a trapping site for deuterium. The
quality of a highly irradiated surface can vary considerably
due to the effects of sputtering and deposition [45,89,90].
Our experimental study used NRA, which is a depth resolved
method (for characteristic depth traces the reader is referred to
Refs. [78,91]). One can deduce from these measurements that
for our reported experimental procedure, deuterium retention
at the external surface is of minor importance. Our simulations
used periodic boundary conditions and so have no explicit
surface. Our results therefore compare, in experiment and
simulation, the internal surfaces that can be drawn around
monovacancies, vacancy clusters, and voids. We found that
the internal surface area increases linearly with dose for low
dose, but then flattens and saturates between 0.01 and 0.1 dpa.
Using a simple model for hydrogen retention, based on 5/6
of the possible vacancy cluster surface area being occupied,
we find a very good match to the concentration of retained
hydrogen implanted from a plasma into irradiated tungsten.

As our model for hydrogen retention is essentially
parameter-free, depending solely on a robust estimation of the
total vacancy surface area, we would expect it to be able to
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reproduce the changes in hydrogen retention due to changes
in microstructure observed by changing the elastic boundary
conditions, or by introducing impurity atom types.
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APPENDIX: COMPUTING LOCAL DEFORMATION
GRADIENT

In this section we will describe the algorithm used to com-
pute the local rotation and strain fields. This is done with an
iterative real-space method. If we know the lattice type, then
from atom i at position �xi, we would expect to find its kth
neighbor at position (�xi + �v0

k,i )min if the lattice were locally
perfect [92]. In the perfect crystal, each atom in the same
sublattice is expected to have neighbors at the same vector
positions. If we actually find that atom i has a neighbor at
a position �xi + �vk,i, where �vk,i is not the expected ideal lattice
vector, then we can use this information to find the local strain.
This is a simple task where strains are small, but around a
dislocation core this may not be true and care must be taken.

The basis of the strain-finding algorithm is to minimize a
fitting function of the form

Si =
∑

k

(
T�v0

k,i + �δ − �vk,i
)2

, (A1)

with respect to the nine matrix elements of the matrix T and
the three elements of a uniform vector offset �δ. Differentiating
Eq. (A1) with respect to these 12 elements gives a set of
simultaneous linear equations, which can be solved with the
Lapack routine DSYSV. In our code we use a simple link-
cell list [93] to find the neighbors of atom i. This returns
an unsorted list of neighbor vectors �v j,i. We sort this list by
pairing each member of �v j,i with the expected vector �v0

k,i

which has the smallest separation |�v j,i − �v0
k,i|, rejecting any

vector for which |�v j,i − �v0
k,i| > a0/4 for all k, where a0 is the

lattice parameter. With the list sorted we can minimize the
fit function, but we could still find unexpected results if we
applied Eq. (A1) unthinkingly atom-by-atom, as our matching
is making an implicit assumption that the strain is small.

To ensure a reasonably smoothly varying local strain,
we note that we can add weighting and an initial guess to

Eq. (A1). Let us imagine we minimized
∑

i Si and found
a global homogeneous strain T0 and offset �δ0 which best
matches all the atoms simultaneously. We can now write
�v1

k,i = T0�v0
k,i + �δ0, and pair the observed set of neighbors to

this new set of expected positions. Then we can optimize

S =
∑

i

wi

∑
k

(
T�v1

k,i + �δ − �vk,i
)2

, (A2)

where now �vk,i is a neighbor to atom i paired with expected
neighbor vector �v1

k,i, and wi is a weighting for atom i. This
is the same set of simultaneous equations, but now each ex-
pected neighbor position is strained, rotated, and shifted.

We can make a locally varying estimate of the strain by
setting the weights wi with a Gaussian function centered on a
point �x and width σ .

wi = Exp

[
−|�xi − �x|2

2σ 2

]
. (A3)

Now minimizing Eq. (A2) finds the best strain locally to �x.
If σ = ∞, then each atom is weighted equally, and Eq. (A2)
returns a slightly improved solution to the homogeneous strain
given by the matrix product TT0, and offset T�δ0 + �δ. If our
initial guess was good, we expect T to be close to the identity
and |�δ| small.

To refine the local strains, we compute Eq. (A2) on an
evenly spaced mesh of nodes spanning the supercell with
spacing σ set to the shortest supercell dimension, and �x placed
on each node in turn, taking the homogeneous solution �v1

k,i
as our initial guess. This gives a new set of spatially varying
strains T1(�x) = T(�x)T0, and displacements �δ1(�x) = T(�x)�δ0 +
�δ(�x) on the nodes. Importantly, because we chose σ to be
large, this makes T(�x) near unity and slowly varying.

We then make a linear interpolation of strains and displace-
ments to a new mesh of nodes with spacing σ/4, to seed a
new spatially refined estimate of the expected atom positions,
�v2

k,i(�x) = T1(�x)�v1
k,i + �δ1(�x). This process is iterated, each time

reducing the mesh spacing, computing a small local change in
the strain and displacement, and the small local change in the
expected positions of the neighbors. By this process we can
build up a potentially large local transformation from small
incremental steps. We stop the iteration at the nth level when
σ ≈ a0, and we have an evenly spaced mesh of nodes with the
spacing of the lattice parameter.

Note that the derivative of the local displacement vector �δn

produced at the end of the iteration is not related to the local
strain—these displacements are only used to match observed
neighbours to expected neighbors and improve the fit for the
strain. We discard it.

The final local rotostrain transformation T(�x) at a general
point �x used in Eq. (9) is needed as a continuous field, so is
taken to be the linear interpolation of the final iteration Tn(�x)
computed on the eight nodes nearest to �x.

[1] J. H. You, E. Visca, C. Bachmann, T. Barrett, F. Crescenzi,
M. Fursdon, H. Greuner, D. Guilhem, P. Languille, M. Li,
S. McIntosh, A. V. Müller, J. Reiser, M. Richou, and M.

Rieth, European DEMO divertor target: Operational require-
ments and material-design interface, Nucl. Mater. Energy 9, 171
(2016).

095403-10

https://doi.org/10.1016/j.nme.2016.02.005


PARAMETER-FREE QUANTITATIVE SIMULATION OF … PHYSICAL REVIEW MATERIALS 5, 095403 (2021)

[2] M. R. Gilbert, S. Zheng, R. Kemp, L. W. Packer, S. L. Dudarev,
and J.-Ch. Sublet, Comparative assessment of material perfor-
mance in DEMO fusion reactors, Fusion Sci. Technol. 66, 9
(2014).

[3] P. M. Derlet, M. R. Gilbert, and S. L. Dudarev, Simulating
dislocation loop internal dynamics and collective diffusion us-
ing stochastic differential equations, Phys. Rev. B 84, 134109
(2011).

[4] K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi,
and H. Mori, Observation of the one-dimensional diffusion of
nanometer-sized dislocation loops, Science 318, 956 (2007).

[5] I. Martin-Bragado, A. Rivera, G. Valles, J. Luis Gomez-Selles,
and M. J. Caturla, MMonCa: An object kinetic Monte Carlo
simulator for damage irradiation evolution and defect diffusion,
Comput. Phys. Commun. 184, 2703 (2013).

[6] C. Domain, C. S. Becquart, and L. Malerba, Simulation of
radiation damage in Fe alloys: An object kinetic Monte Carlo
approach, J. Nucl. Mater. 335, 121 (2004).

[7] R. E. Stoller, S. I. Golubov, C. Domain, and C. S. Becquart,
Mean field rate theory and object kinetic Monte Carlo: A com-
parison of kinetic models, J. Nucl. Mater. 382, 77 (2008).

[8] C. S. Becquart and C. Domain, An object kinetic Monte Carlo
simulation of the dynamics of helium and point defects in tung-
sten, J. Nucl. Mater. 385, 223 (2009).

[9] N. Castin, A. Dubinko, G. Bonny, A. Bakaev, J. Likonen, A.
De Backer, A. E. Sand, K. Heinola, and D. Terentyev, The
influence of carbon impurities on the formation of loops in
tungsten irradiated with self-ions, J. Nucl. Mater. 527, 151808
(2019).

[10] J. Marian and V. V. Bulatov, Stochastic cluster dynamics
method for simulations of multispecies irradiation damage ac-
cumulation, J. Nucl. Mater. 415, 84 (2011).

[11] C. Liu, L. He, Y. Zhai, B. Tyburska-Püschel, P. M. Voyles, K.
Sridharan, D. Morgan, and I. Szlufarska, Evolution of small
defect clusters in ion-irradiated 3C-SiC: Combined cluster dy-
namics modeling and experimental study, Acta Mater. 125, 377
(2017).

[12] S. L. Dudarev, M. R. Gilbert, K. Arakawa, H. Mori, Z. Yao,
M. L. Jenkins, and P. M. Derlet, Langevin model for real-time
Brownian dynamics of interacting nanodefects in irradiated
metals, Phys. Rev. B 81, 224107 (2010).

[13] S. L. Dudarev, K. Arakawa, X. Yi, Z. Yao, M. L. Jenkins, M. R.
Gilbert, and P. M. Derlet, Spatial ordering of nano-dislocation
loops in ion-irradiated materials, J. Nucl. Mater. 455, 16
(2014).

[14] Y. Li, M. Boleininger, C. Robertson, L. Dupuy, and S. L.
Dudarev, Diffusion and interaction of prismatic dislocation
loops simulated by stochastic discrete dislocation dynamics,
Phys. Rev. Materials 3, 073805 (2019).

[15] X. Yi, M. L. Jenkins, M. A. Kirk, Z. Zhou, and S. G. Roberts,
In-situ TEM studies of 150 keV W+ ion irradiated W and
W-alloys: Damage production and microstructural evolution,
Acta Mater. 112, 105 (2016).

[16] O. El-Atwani, E. Aydogan, E. Esquivel, M. Efe, Y. Q. Wang,
and S. A. Maloy, Detailed transmission electron microscopy
study on the mechanism of dislocation loop rafting in tungsten,
Acta Mater. 147, 277 (2018).

[17] D. R. Mason, X. Yi, M. A. Kirk, and S. L. Dudarev, Elastic trap-
ping of dislocation loops in cascades in ion-irradiated tungsten
foils, J. Phys.: Condens. Matter 26, 375701 (2014).

[18] A. Debelle, J.-P. Crocombette, A. Boulle, A. Chartier, T.
Jourdan, S. Pellegrino, D. Bachiller-Perea, D. Carpentier, J.
Channagiri, T.-Hien Nguyen, F. Garrido, and L. Thomé, Lattice
strain in irradiated materials unveils a prevalent defect evolution
mechanism, Phys. Rev. Materials 2, 013604 (2018).

[19] D. R. Mason, S. Das, P. M. Derlet, S. L. Dudarev, A. J. London,
H. Yu, N. W. Phillips, D. Yang, K. Mizohata, R. Xu, and F.
Hofmann, Observation of Transient and Asymptotic Driven
Structural States of Tungsten Exposed to Radiation, Phys. Rev.
Lett. 125, 225503 (2020).

[20] P. M. Derlet and S. L. Dudarev, Microscopic structure of a heav-
ily irradiated material, Phys. Rev. Materials 4, 023605 (2020).

[21] F. Ferroni, X. Yi, K. Arakawa, S. P. Fitzgerald, P. D.
Edmondson, and S. G. Roberts, High temperature annealing of
ion irradiated tungsten, Acta Mater. 90, 380 (2015).

[22] F. Granberg, J. Byggmästar, and K. Nordlund, Defect accumu-
lation and evolution during prolonged irradiation of Fe and FeCr
alloys, J. Nucl. Mater. 528, 151843 (2020).

[23] A. E. Sand, J. Byggmästar, A. Zitting, and K. Nordlund, De-
fect structures and statistics in overlapping cascade damage in
fusion-relevant bcc metals, J. Nucl. Mater. 511, 64 (2018).

[24] M.-C. Marinica, F. Willaime, and N. Mousseau, Energy land-
scape of small clusters of self-interstitial dumbbells in iron,
Phys. Rev. B 83, 094119 (2011).

[25] D. R. Mason, A. E. Sand, and S. L. Dudarev, Atomistic-object
kinetic Monte Carlo simulations of irradiation damage in tung-
sten, Modell. Simul. Mater. Sci. Eng. 27, 055003 (2019).

[26] T. D. Swinburne and D. Perez, Self-optimized construction of
transition rate matrices from accelerated atomistic simulations
with Bayesian uncertainty quantification, Phys. Rev. Materials
2, 053802 (2018).

[27] A. Reza, H. Yu, K. Mizohata, and F. Hofmann, Thermal diffu-
sivity degradation and point defect density in self-ion implanted
tungsten, Acta Mater. 193, 270 (2020).

[28] E. Gaganidze, C. Petersen, E. Materna-Morris, C. Dethloff, O.
J. Weiß, J. Aktaa, A. Povstyanko, A. Fedoseev, O. Makarov, and
V. Prokhorov, Mechanical properties and TEM examination of
RAFM steels irradiated up to 70dpa in BOR-60, J. Nucl. Mater.
417, 93 (2011).

[29] A. Hollingsworth, M. Yu. Lavrentiev, R. Watkins, A. C. Davies,
S. Davies, R. Smith, D. R. Mason, A. Baron-Wiechec, Z. Kollo,
J. Hess, I. Jepu, J. Likonen, K. Heinola, K. Mizohata, E. Meslin,
M.-F. Barthe, A. Widdowson, I. S. Grech, K. Abraham, E.
Pender et al., Comparative study of deuterium retention in irra-
diated eurofer and Fe–Cr from a new ion implantation materials
facility, Nucl. Fusion 60, 016024 (2019).

[30] B. Tyburska, V. Kh. Alimov, O. V. Ogorodnikova, K. Schmid,
and K. Ertl, Deuterium retention in self-damaged tungsten, J.
Nucl. Mater. 395, 150 (2009).

[31] V. Kh. Alimov, Y. Hatano, B. Tyburska-Püschel, K. Sugiyama,
I. Takagi, Y. Furuta, J. Dorner, M. Fusseder, K. Isobe, T.
Yamanishi, and M. Matsuyama, Deuterium retention in tung-
sten damaged with W ions to various damage levels, J. Nucl.
Mater. 441, 280 (2013).

[32] O. V. Ogorodnikova and V. Gann, Simulation of neutron-
induced damage in tungsten by irradiation with energetic
self-ions, J. Nucl. Mater. 460, 60 (2015).

[33] J. Wang, Y. Hatano, T. Hinoki, V. Kh. Alimov, A. V. Spitsyn,
N. P. Bobyr, S. Kondo, T. Toyama, H. Tae Lee, Y. Ueda, and
T. Schwarz-Selinger, Deuterium retention in W and binary W

095403-11

https://doi.org/10.13182/FST13-751
https://doi.org/10.1103/PhysRevB.84.134109
https://doi.org/10.1126/science.1145386
https://doi.org/10.1016/j.cpc.2013.07.011
https://doi.org/10.1016/j.jnucmat.2004.07.037
https://doi.org/10.1016/j.jnucmat.2008.08.047
https://doi.org/10.1016/j.jnucmat.2008.11.027
https://doi.org/10.1016/j.jnucmat.2019.151808
https://doi.org/10.1016/j.jnucmat.2011.05.045
https://doi.org/10.1016/j.actamat.2016.12.020
https://doi.org/10.1103/PhysRevB.81.224107
https://doi.org/10.1016/j.jnucmat.2014.02.032
https://doi.org/10.1103/PhysRevMaterials.3.073805
https://doi.org/10.1016/j.actamat.2016.03.051
https://doi.org/10.1016/j.actamat.2018.01.003
https://doi.org/10.1088/0953-8984/26/37/375701
https://doi.org/10.1103/PhysRevMaterials.2.013604
https://doi.org/10.1103/PhysRevLett.125.225503
https://doi.org/10.1103/PhysRevMaterials.4.023605
https://doi.org/10.1016/j.actamat.2015.01.067
https://doi.org/10.1016/j.jnucmat.2019.151843
https://doi.org/10.1016/j.jnucmat.2018.08.049
https://doi.org/10.1103/PhysRevB.83.094119
https://doi.org/10.1088/1361-651X/ab1a1e
https://doi.org/10.1103/PhysRevMaterials.2.053802
https://doi.org/10.1016/j.actamat.2020.03.034
https://doi.org/10.1016/j.jnucmat.2010.12.047
https://doi.org/10.1088/1741-4326/ab546e
https://doi.org/10.1016/j.jnucmat.2009.10.046
https://doi.org/10.1016/j.jnucmat.2013.06.005
https://doi.org/10.1016/j.jnucmat.2015.02.004


DANIEL R. MASON et al. PHYSICAL REVIEW MATERIALS 5, 095403 (2021)

alloys irradiated with high energy Fe ions, J. Nucl. Mater. 545,
152749 (2021).

[34] R. A. Causey, Hydrogen isotope retention and recycling in
fusion reactor plasma-facing components, J. Nucl. Mater. 300,
91 (2002).

[35] G. R. Tynan, R. P. Doerner, J. Barton, R. Chen, S. Cui, M.
Simmonds, Y. Wang, J. S. Weaver, N. Mara, and S. Pathak,
Deuterium retention and thermal conductivity in ion-beam
displacement-damaged tungsten, Nucl. Mater. Energy 12, 164
(2017).

[36] K. Heinola and T. Ahlgren, Diffusion of hydrogen in bcc tung-
sten studied with first principle calculations, J. Appl. Phys. 107,
113531 (2010).

[37] G. Holzner, T. Schwarz-Selinger, T. Dürbeck, and U. von
Toussaint, Solute diffusion of hydrogen isotopes in tungsten-
a gas loading experiment, Phys. Scr., T171, 014034 (2020).

[38] R. Frauenfelder, Solution and diffusion of hydrogen in tungsten,
J. Vac. Sci. Technol. 6, 388 (1969).

[39] K. Heinola and T. Ahlgren, First-principles study of H on the
reconstructed W(100) surface, Phys. Rev. B 81, 073409 (2010).

[40] G.-H. Lu, H.-B. Zhou, and C. S. Becquart, A review of mod-
elling and simulation of hydrogen behaviour in tungsten at
different scales, Nucl. Fusion 54, 086001 (2014).

[41] D. Kato, H. Iwakiri, Y. Watanabe, K. Morishita, and T. Muroga,
Super-saturated hydrogen effects on radiation damages in tung-
sten under the high-flux divertor plasma irradiation, Nucl.
Fusion 55, 083019 (2015).

[42] T. Schwarz-Selinger, J. Bauer, S. Elgeti, and S. Markelj, Influ-
ence of the presence of deuterium on displacement damage in
tungsten, Nucl. Mater. Energy 17, 228 (2018).

[43] Y.-N. Liu, T. Ahlgren, L. Bukonte, K. Nordlund, X. Shu, Y.
Yu, X.-C. Li, and G.-H. Lu, Mechanism of vacancy formation
induced by hydrogen in tungsten, AIP Adv., 3 122111 (2013).

[44] S.-Y. Qin, S. Jin, L. Sun, H.-B. Zhou, Y. Zhang, and G.-H.
Lu, Hydrogen assisted vacancy formation in tungsten: A first-
principles investigation, J. Nucl. Mater. 465, 135 (2015).

[45] Y. Zayachuk, M. H. J. ’t Hoen, P.A. Zeijlmans van
Emmichoven, D. Terentyev, I. Uytdenhouwen, and G. van Oost,
Surface modification of tungsten and tungsten–tantalum alloys
exposed to high-flux deuterium plasma and its impact on deu-
terium retention, Nucl. Fusion 53, 013013 (2013).

[46] E. A. Hodille, N. Fernandez, Z. A. Piazza, M. Ajmalghan, and
Y. Ferro, Hydrogen supersaturated layers in H/D plasma-loaded
tungsten: A global model based on thermodynamics, kinetics
and density functional theory data, Phys. Rev. Materials 2,
093802 (2018).

[47] D. Kato, H. Iwakiri, and K Morishita, First-principle study on
binding energy of vacancy-hydrogen cluster in tungsten, J. Soc.
Plasma Sci. Nucl. Fusion Research Ser. 8, 404 (2009).

[48] K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Hydro-
gen interaction with point defects in tungsten, Phys. Rev. B 82,
094102 (2010).

[49] C. S. Becquart, C. Domain, U. Sarkar, A. De Backer, and M.
Hou, Microstructural evolution of irradiated tungsten: Ab initio
parameterisation of an OKMC model, J. Nucl. Mater. 403, 75
(2010).

[50] A. De Backer, D. R. Mason, C. Domain, D. Nguyen-Manh,
M.-C. Marinica, L. Ventelon, C. S. Becquart, and S. L. Dudarev,
Multiscale modelling of the interaction of hydrogen with inter-

stitial defects and dislocations in BCC tungsten, Nucl. Fusion
58, 016006 (2017).

[51] A. De Backer, D. R. Mason, C. Domain, D. Nguyen-Manh,
M.-C. Marinica, L. Ventelon, C. S. Becquart, and S. L. Dudarev,
Hydrogen accumulation around dislocation loops and edge dis-
locations: from atomistic to mesoscopic scales in BCC tungsten,
Phys. Scr., T170, 014073 (2017).

[52] M. Shimada, Y. Hatano, P. Calderoni, T. Oda, Y. Oya, M.
Sokolov, K. Zhang, G. Cao, R. Kolasinski, and J. P. Sharpe,
First result of deuterium retention in neutron-irradiated tungsten
exposed to high flux plasma in TPE, J. Nucl. Mater. 415, S667
(2011).

[53] O. V. Ogorodnikova, Fundamental aspects of deuterium reten-
tion in tungsten at high flux plasma exposure, J. Appl. Phys.
118, 074902 (2015).

[54] R. Kirchheim, Solid solutions of hydrogen in complex materi-
als, in Solid State Physics Vol. 59, edited by H. Ehrenreich and
F. Spaepen, (Elsevier, Amsterdam, 2004), pp. 203.

[55] E. Hayward, R. Hayward, and C.-C. Fu, Predicting distinct
regimes of hydrogen behavior at nano-cavities in metals, J.
Nucl. Mater. 476, 36 (2016).

[56] A. Chartier, C. Onofri, L. Van Brutzel, C. Sabathier, O. Dorosh,
and J. Jagielski, Early stages of irradiation induced dislocations
in urania, Appl. Phys. Lett. 109, 181902 (2016).

[57] J. Byggmästar, F. Granberg, A. E. Sand, A. Pirttikoski, R.
Alexander, M. C. Marinica, and K. Nordlund, Collision cas-
cades overlapping with self-interstitial defect clusters in Fe and
W, J. Phys.: Condens. Matter 31, 245402 (2019).

[58] A. Fellman, A. E. Sand, J. Byggmästar, and K. Nordlund, Radi-
ation damage in tungsten from cascade overlap with voids and
vacancy clusters, J. Phys.: Condens. Matter 31, 405402 (2019).

[59] F. Granberg, K. Nordlund, M. W. Ullah, K. Jin, C. Lu, H.
Bei, L. M. Wang, F. Djurabekova, W. J. Weber, and Y. Zhang,
Mechanism of Radiation Damage Reduction in Equiatomic
Multicomponent Single Phase Alloys, Phys. Rev. Lett. 116,
135504 (2016).

[60] J. Byggmästar, F. Granberg, and K. Nordlund, Effects of the
short-range repulsive potential on cascade damage in iron, J.
Nucl. Mater. 508, 530 (2018).
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