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x-[Pd(dmit)2]2 as a quasi-one-dimensional scalene Heisenberg model

E. P. Kenny ,* A. C. Jacko, and B. J. Powell
School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia

(Received 6 April 2021; revised 7 July 2021; accepted 16 August 2021; published 30 August 2021)

From first principles, we calculate the Heisenberg interactions between neighboring dimers in several
compounds within the EtnMe4−nX [Pd(dmit)2]2 (Et = ethyl, Me = methyl, dmit = 2-thioxo-1,3-dithiole-4,5-
dithiolate) family using an atomistic approach, with broken-symmetry density functional theory. In all materials,
we find a scalene triangular model where the strongest exchange coupling along one crystallographic axis is up
to three times larger than the others and where the frustration further enhances this quasi-one-dimensionality.
We calculate the Néel ordering temperature via the chain random phase approximation. We show that the
difference in the frustrated interchain couplings is equivalent to a single bipartite interchain coupling, favoring
long-range magnetic order. We find that the Néel ordering temperatures are the same order of magnitude as the
experimentally measured values for most compounds.
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I. INTRODUCTION

Charge transfer salts, especially the EtnMe4−nX
[Pd(dmit)2]2 (x-[Pd(dmit)2]2) family, have been of intense
interest for more than a decade. Geometric frustration and
strong electron correlations lead to a wide range of exotic
phenomena [1,2]. All x-[Pd(dmit)2]2 compounds are Mott
insulators at ambient pressure and low temperature, but
changing the counter-ion (X and n) leads to many different
ground states. Most salts exhibit antiferromagnetic order,
for example, X -n = As-0, As-1, As-2, N-0, and Sb-0 [3–5].
Others exhibit valence-bond order (P-1) [6,7], charge order
(Sb-2) [8,9], and spin-liquid behavior (Sb-1) [10–13].
Those with antiferromagnetic order have been shown to
exhibit unconventional superconducting behavior with the
application of hydrostatic pressure or uniaxial strain [14,15].
Regardless of their ground state, most compounds in this
family exhibit magnetic ordering at a temperature much
lower than is expected based on the strength of their magnetic
interactions.

All compounds contain isomorphous layers of Pd(dmit)2

dimers separated by layers of counter-ions. The Pd(dmit)2

dimers are arranged in a geometrically frustrated, scalene
triangular lattice, differing only slightly between compounds.
A single Pd(dmit)2 layer is shown in Fig. 1. The dimers form
“stacks” along the (1,1,0) lattice direction (along the horizon-
tal in the figure). All of the materials studied here, except for
P-1, are the so-called solid crossing bilayer alternate where, in
successive layers, the stacks are along the (1,1,0) and (1,1̄,0)
directions. In P-1, all layers are equivalent and stack along the
(1,1,0) lattice direction.

Their behavior above and below the Mott transition can
be well described by a Hubbard model and, in the insulating
phase, a Heisenberg model [1]. In the insulating phase, there is
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one unpaired electron on each dimer. Ab initio calculations on
these compounds, including the parametrization of effective
models, are difficult because of their chemical complexity
(with ∼300 atoms per unit cell). In effective spin models, each
spin site is an entire Pd(dmit)2 monomer or dimer.

Previous studies of x-[Pd(dmit)2]2 have parameterized
tight-binding models on the basis of band structure cal-
culations by fitting or via Wannier functions centered on
monomers or dimers [1,16–21]. Extracting tight-binding
parameters from band structure calculations relies on Kohn-
Sham eigenvalues. These do not correspond to nature, but
are rather an internal density functional theory (DFT) device
for calculating the total density [22]. Kohn-Sham eigen-
values often poorly reproduce energy differences, even in
weakly correlated materials [23,24], and dramatically fail in
strongly correlated materials [25]. For example, in Sb-1, the
Kohn-Sham band structure is metallic [1,17–20] rather than
insulating, as in experiment [1,2].

Due to the large unit cell, periodic calculations on
these compounds reduce the choice of exchange-correlation
functionals. Most previous periodic DFT studies of these
compounds [17–21] are based on pure density functionals,
i.e., the local density approximation (LDA) or generalized
gradient approximation (GGA). These functionals are known
to perform poorly for parametrizing magnetic interactions
[26–29]—particularly superexchange [30].

In this paper, we present a first-principles study of the mag-
netic interactions within several x-[Pd(dmit)2]2 compounds
(X -n = Sb-0, Sb-1, As-0, As-1, As-2, N-0, P-1) using broken-
symmetry density functional theory (BS-DFT). Although
there is a trade-off in accuracy when using a nonperiodic
approach in a crystal [26,31–34], BS-DFT has advantages in
contrast to the methods employed in previous studies. BS-
DFT makes use of ground-state energy differences, which
have a formal basis in DFT (the Hohenberg-Kohn theorem
[35]) and are much more accurate in DFT than the Kohn-Sham
eigenvalues. Moreover, it allows us to directly determine the
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FIG. 1. (a) The intralayer geometry of x-[Pd(dmit)2]2. Each layer
forms a scalene (anisotropic) triangular lattice of dimers with inter-
dimer exchange couplings JB, Jr , and JS as shown. We find that JB,
along the dimer stacking direction, is the largest for all compounds
in this paper. (b) The unit cell of As-2, showing the layered structure
perpendicular to the [Pd(dmit)2]2 layers shown in (a).

Heisenberg exchange interaction, rather than extracting the
magnetic behavior from tight-binding [18–20] or Hubbard
[17,21] models, where the electron-electron interaction pa-
rameters are often poorly known.

We find an effective Heisenberg model that is quasi-one-
dimensional (one interaction, along the stacking direction, is
much larger than the others). We then compare our model to
experimental results using the chain random phase approxi-
mation (CRPA) together with the exact form of the dynamical
susceptibility for a one-dimensional chain to calculate the
Néel ordering temperature for each compound.

In the past, these materials have been analyzed and mod-
eled through a quasi-two-dimensional picture [1,2]. This
paradigm stems from early calculations of dimer-dimer elec-
tron transfer integrals tB, tS , and tr (cf. Fig. 1) using
an extended Hückel molecular orbital method, resulting in
tB ≈ tS > tr [14]. This two-dimensional (2D) picture was
reinforced by approximate fits of the 2D triangular Heisen-
berg model to the magnetic susceptibility data [16,36,37].
However, ab initio investigations using more sophisticated
methods such as DFT have suggested that for most com-
pounds, tB > tS ≈ tr [19,21]. Recently, BS-DFT has been used
to parametrize a spin model for the spin-liquid candidate
Sb-1, with the finding that JB � Js ≈ Jr [38]. The BS-DFT
calculations we present here confirm this result for many other
compounds in the x-[Pd(dmit)2]2 family. Hence, we argue that
they should all be understood as quasi-one-dimensional.

Our calculations reveal that in all materials, the strongest
exchange coupling is along the dimer stacking direction
(JB; cf. Fig. 1). This leads to a quasi-one-dimensional
Hamiltonian. Modeling these compounds via a quasi-1D
approach allows us to calculate their Néel ordering temper-
atures analytically. Specifically, we use the chain random
phase approximation (CRPA) around the large JB limit, start-
ing from the exact form for the one-dimensional magnetic
susceptibility of a Heisenberg spin-1/2 chain and treating
interchain interactions via the RPA [39,40]. In the case
of an isosceles triangular lattice, the interchain interactions
are perfectly frustrated. This suppresses ordering at any

temperature [40,41] within the CRPA. In x-[Pd(dmit)2]2, we
find that the anisotropy in the interchain coupling leads to
an effective unfrustrated interchain interaction, given by the
difference of the interchain couplings (δJy = Jr −JS).

The Heisenberg exchange interaction Ji j mainly arises
from two different physical contributions—superexchange
(SE) and direct exchange (DE), Ji j = JSE

i j + JDE
i j . In molec-

ular crystals such as x-[Pd(dmit)2]2, JSE
i j is often the largest

term [17,21,38]. It arises from virtual hopping processes and
usually favors antiferromagnetism [42]. This interaction is
encompassed by the Hubbard model. JDE

i j arises from the
antisymmetry of electron wave functions. It favors ferromag-
netism and depends mostly on the distance between sites.
Superexchange and direct exchange are usually of opposite
sign; a significant direct exchange can counteract the superex-
change interaction and lower the magnitude of Ji j . Estimates
of Ji j from Hückel and DFT band structure calculations typ-
ically neglect JDE

i j . However, studies that have calculated JDE
i j

directly have found that its magnitude is significant in these
compounds [3,21,38]. For this reason, studies that take direct
exchange into account are bound to be more successful at ac-
curately modeling experimental behaviors in x-[Pd(dmit)2]2.
Since we directly calculate the total Ji j in this work, all its
contributions (including superexchange and direct exchange)
are present in our modeling.

II. PARAMETRIZATION OF HEISENBERG MODEL
WITH BS-DFT

We directly parametrize a Heisenberg model,

H =
∑

i j

Ji j Si · S j, (1)

where Si is the spin operator on the ith dimer and Ji j are the
exchange coupling constants.

The exchange couplings Ji j are calculated as the energy
difference between specific spin states of each tetramer in the
compound—using BS-DFT along with the Yamaguchi spin
decontamination procedure. In this approach [43–45],

Ji j = 2
ET

i j − EBS
i j

〈S2〉T
i j − 〈S2〉BS

i j

, (2)

where ET
i j is the triplet energy of the isolated tetramer (two

neighboring dimers, i and j) and EBS
i j is the energy of the

broken-symmetry state, where the unpaired spins on each
dimer are misaligned. 〈S2〉BS

i j and 〈S2〉T
i j are the corresponding

expectation values of the spin operator, S2. In cases of large
spin contamination, the Yamaguchi approach has been shown
to lead to inaccurate results [46], in which case other mapping
procedures are preferable [26,31–34]. However, we find that
〈S2〉T

i j − 〈S2〉BS
i j has a maximum value of 1.16, indicating a

small amount of spin contamination (see Supplemental Ma-
terial [47]). The coordinates for each tetramer included two
Pd(dmit)2 dimers and the six closest counter-ions. Calcula-
tions were performed in GAUSSIAN09 [48] with the uB3LYP
functional [49,50] and using the LANL2DZ [51–54] (for Pd,
Sb, As, and Cs) and 6-31+G* [55–58] basis sets. We included
the six nearest cations to each Pd(dmit)2 tetramer; bench-
marking revealed that the calculated exchange interactions are
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TABLE I. Our BS-DFT Heisenberg exchange interactions of
EtnMe4−nX [Pd(dmit)2]2 (the compounds are listed here according
to their values of X and n). JB is much larger than Jr and JS in all
materials. The interlayer exchange coupling Jz is very small. See
Fig. 1 for the directions of the other couplings in the lattice.

Compound (X -n) JB (K) Jr (K) JS (K) Jz (K)

Sb-0 320 145 86 −0.01
Sb-1 382 129 111 0.06
As-0 370 110 116 −0.02
As-1 353 129 100 <0.01
As-2 374 130 98 −0.01
N-0 352 131 143 0.04
P-1 499 195 148 5

well converged at this cluster size. Further details of our DFT
calculations, including functional comparisons with different
amounts of Hartree-Fock exchange and all 〈S2〉 values, are
included in the Supplemental Material [47]. We used a collec-
tion of experimental crystal structures [59].

Our BS-DFT calculations reveal three significant, pairwise,
antiferromagnetic, nearest-neighbor couplings, shown in
Table I and Fig. 1. The largest exchange coupling JB (along
the stacking direction in Fig. 1) is significantly larger than
the others in all cases. Hence, our Heisenberg model is quasi-
one-dimensional. For the two smaller (interchain) couplings,
we make a change of variables to the average of the inter-
chain couplings, J̄y = 1

2 (JS +Jr ), and their difference, δJy =
Jr −JS . Figure 2 shows a plot of J̄y and |δJy| + |Jz| for each
compound.

The interlayer couplings (Jz—perpendicular to the axes in
Fig. 1) are all less than 0.01JB. However, they are unfrus-
trated and therefore have a non-negligible contribution to the

FIG. 2. BS-DFT results for the frustrated interstack interaction,
J̄y = 1

2 (JS +Jr ), and the unfrustrated |δJy|+|Jz| = |Jr −JS|+|Jz|, in
units of the coupling along the stack direction, JB (see Fig. 1). The
marks on the axes indicate cutoffs for the validity of the CRPA
for each interaction. The upper bounds indicate the most optimistic
value in the literature, whereas the lower bounds indicate the most
pessimistic value [60–67]. The shading is a guide to the eye based
on these bounds. The colors differ based on the ground state of
the compound according to the experimental literature: antiferro-
magnetic long-range order (AFLO), valence-bond crystal (VBC) or
spin-Peierls (SP), and spin liquid (SL).

magnetic behavior. P-1 has the largest Jz by far, i.e., 5 K,
which is interesting since it is the only compound purported
to have a valence-bond crystal (VBC) or spin-Peierls (SP)
ground state [1,6,7]. The quasi-1D picture naturally gives
rise to a spin-Peierls ground state [68], whereas a 2D picture
would suggest a VBC. Experimentally, these are difficult to
distinguish. The important difference is that in a SP distor-
tion, spin-phonon coupling and lattice distortion are essential
ingredients of the mechanism, whereas the VBC is a funda-
mentally electronic effect and any lattice distortion is parasitic
and driven by the spin-phonon coupling only on the lowering
of the symmetry of the electrons. It is therefore interesting to
note that the VBC/SP ground state is only observed in P-1—
the only x-[Pd(dmit)2]2 material that does not form the bilayer
solid crossing structure. A lattice distortion would be strongly
energetically disfavored in the solid crossing structure as there
is an inherent elastic frustration between distortions along the
(1,1,0) and (1,1̄,0) directions in alternate layers [1]. Hence,
this elastic distortion may suppress the VBC/SP phase. This
suggests that there is an SP distortion rather than a VBC state
in P-1 and thus that the x-[Pd(dmit)2]2 materials are quasi-1D.

In a triangular, quasi-1D lattice, there are two interesting
limits to consider: when the lattice becomes perfectly frus-
trated, δJy and Jz → 0, and when there is no geometrical
frustration, JS → 0 or Jr → 0. In the first case, the model be-
comes perfectly isosceles with two equal interchain couplings,
JS = Jr = J̄y. Quantum Monte Carlo, exact diagonalization,
density matrix renormalization group (DMRG), and other
numerical calculations have shown that this model exhibits
quasi-one-dimensional behavior for J̄y/JB < 0.7 [60–66]. In
the second case, we have a cuboidal lattice with inter-
chain couplings |δJy| and Jz. This model, studied extensively
by Schulz [39], exhibits quasi-one-dimensional behavior for
(|δJy|+|Jz|)/JB < 0.3 according to RPA calculations [67].
These limits are indicated on the axes of Fig. 2, where we
find that the quasi-1D nature of the exchange couplings is
evident in all compounds. Our calculations reveal that J̄y is
always below 0.4Jx and the sum of the unfrustrated inter-
actions, |δJy| + |Jz|, is below 0.1Jx—only Sb-0 is anywhere
near these limits, as it is less strongly frustrated than the other
materials. We conclude that all compounds can be described
by quasi-one-dimensional models.

Comparison to previous first-principles studies

The couplings calculated in other first-principles studies of
x-[Pd(dmit)2]2 also reflect a quasi-1D character. As discussed
above, most previous studies report monomer and dimer
tight-binding parameters based on band structure methods
(including the use of Wannier functions). In the large U limit,
JSE

i j ≈ 4t2
i j/U , where ti j is the tight-binding transfer integral

and U is the effective on-site Coulomb repulsion. This leads
to J̄SE

y /JSE
B ≈ (t2

S + t2
r )/(2t2

B ) and δJSE
y /JSE

B ≈ (t2
S − t2

r )/t2
B. In

Table II, we list these values from three previous studies; Mis-
awa et al. [21], Tsumuraya et al. [19], and Scriven and Powell
[18]. Most fit within the 1D region in Fig. 2 (J̄SE

y /JSE
B � 0.7;

δJSE/JSE
B � 0.3). Tsumuraya et al. [19] also find weak hop-

ping between the layers, in agreement with our findings.
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TABLE II. Previous results for interdimer superexchange based
on DFT band structure calculations. Most of these models lie
in or close to a weakly coupled chain regime (J̄SE

y /JSE
B � 0.7;

JSE
y /JSE

B � 0.3).

Ref. J̄SE
y /JSE

B δJSE
y /JSE

B

[17] 0.62 0.14
[18] 0.65–0.90 0.13–0.28
[19] 0.45–0.62 0.02–0.35
[20] 0.49–0.80 0.19–0.30
[21] 0.44–0.55 0.01–0.16

III. CALCULATION OF NÉEL TEMPERATURE
WITH THE CRPA

The CRPA expression for the three-dimensional dynamical
magnetic susceptibility of a lattice of weakly coupled chains
is [39,40,69,70]

χCRPA(ω, k, T ) = χ1D(ω, kx, T )

1 − 2J̃⊥(k)χ1D(ω, kx, T )
, (3)

where χ1D(ω, kx, T ) is the dynamical susceptibility for a sin-
gle Heisenberg chain, J̃⊥(k) is the Fourier transform of the
interchain coupling, and k= (kx, ky, kz ) is the crystal momen-
tum along the axes in Fig. 1 in units of the inverse lattice
spacing.

We find that

J̃⊥(k) = Jr cos

(
ky − kx

2

)
+ JS cos

(
ky + kx

2

)
+ Jz cos (kz )

= 2J̄y cos (ky) cos

(
kx

2

)
+ δJy sin (ky) sin

(
kx

2

)
+ Jz cos (kz ),

(4)

where, in the second line, we have used our change of variables defined above.
The dynamical susceptibility for a single Heisenberg chain around kx = k0 + π ≈ π has been calculated from a combination

of the Bethe ansatz and field theory techniques [71–75],

χ1D(ω, k0, T ) = −
√

ln(�/T )

2t (2π )3/2

�
(

1
4 − i ω−uk0

4πT

)
�

(
3
4 − i ω−uk0

4πT

) �
(

1
4 − i ω+uk0

4πT

)
�

(
3
4 − i ω+uk0

4πT

) , (5)

where k0 = kx − π , �(x) is the Euler gamma function, u = π
2 Jxb0 is the spin velocity, b0 is the interdimer separation along the

x direction in Fig. 1, and �/JB 
 24.27 [76].

We determine the Néel ordering temperature TN by consid-
ering the condition for a zero frequency pole in Eq. (3). This
occurs when

2J̃⊥(k)χ1D(0, kx, t )
∣∣
T =TN

= 1. (6)

This instability will occur at the maximum of
J̃⊥(k)χ1D(0, kx, T ). The presence of interchain couplings
will shift this maximum to an incommensurate wave
number, with the resulting order occurring at kx = π + k0.
In this case, we find the maximum occurs when
ky = arctan2{−δJy cos(k0/2), [2J̄y sin(k0/2)]}, where arctan
2(y, x) is the two-argument arctangent, which returns the
angle for the point (x, y) defined positively from the x axis.
A numerical solution of this condition using our BS-DFT
results for J̄y, δJy, and Jz gives the Néel temperatures shown
in Table III.

For all compounds in Table III, we found k0 < 10−12.
Taking the limit k0 → 0 in Eq. (6) returns

TN = 0.5558(|Jz| + |δJy|)
√

ln

(
�

TN

)
. (7)

This takes the same form as the prediction for coupled
chains with unfrustrated, bipartite interchain couplings of
magnitude δJy along the y axis and Jz along the z axis
[39]—demonstrating that δJy simply acts as an unfrustrated
coupling, while the frustrated contribution J̄y has no effect
[since Eq. (7) is independent of J̄y].

Figure 3 shows a plot of the Néel temperature from Eq. (7)
with the numerical results for each material indicated as
points. The numerical results match those from Eq. (7) per-
fectly. Comparing our results with experiment in Table III,
our estimates of TN are the same order of magnitude as the
experimentally measured values. In general, our TN values
are higher than the experimental value. For example, if our
model was qualitatively correct, the spin-liquid candidate

TABLE III. Calculated Néel temperatures of
EtnMe4−nX [Pd(dmit)2]2 compounds that are experimentally
confirmed to have a ground state with antiferromagnetic long-range
order (AFLO), along with the spin-liquid (SL) candidate, Sb-1.
These values are based on nearest-neighbor coupling parameters in
Table I and compared with experimental measurements. We find
Néel temperatures of the correct order of magnitude. Disagreements
between our theory and experiment could point to the importance of
higher-order spin processes, such a ring exchange [38,77–79].

Compound (X -n) Calc. TN (K) Expt. TN (K)

As-0 8.7 35 [3]
As-1 37 23 [4]
As-2 41 18 [3]
N-0 17 12 [5]
Sb-0 70 18 [3]
Sb-1 24 <0.02 (SL) [10]
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FIG. 3. Relationship between TN and the sum of the unfrustrated
couplings, |δJy| + |Jz|. Numerical calculations from Table III are
shown as labeled points with the same coloring as in Fig. 2. The black
line is Eq. (7), which passes perfectly through the numerical results.
This demonstrates that taking the limit k0 → 0 does not affect the
results and, hence, Eq. (7) is an accurate representation of the full
numerical solution to Eq. (6) in this regime.

Sb-1 would have TN ≈ 0. However, we find even lower Néel
temperatures for As-0 and N-0. Our overestimation of TN

could point to the importance of higher-order spin processes,
such as a ring exchange [38,77–79], that have different mag-
nitudes in different materials—consistent with the different
pressures/strains required to drive different materials into
metallic/superconducting states. Nevertheless, a theory based
on first-principles calculations that gives quantitatively rea-
sonable predictions for organic charge transfer salts is a
significant advance.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

We recently proposed that the “spin-liquid” state ob-
served in Sb-1 could be a remnant of a Tomonaga-Luttinger
liquid phase [38]. This prediction is consistent with the
observed linear heat capacity. This picture also provides a
natural explanation of the broad features observed around
1–4 K in 13C nuclear magnetic resonance (NMR) relaxation
rates and heat capacity in terms of short-range interchain
correlations. Finally, as detailed in [38], it provides a sim-
ple solution to the recent controversy surrounding thermal
conductivity measurements of Sb-1 [80–85] because the mag-
netic and phononic intrachain heat conductivities behave very
differently.

Tamura and Kato [36] fit magnetic susceptibility measure-
ments with a triangular model (JB =Jr =JS) and Nakamura
et al. [86] interpret their Raman scattering measurements
in the JB ≈JS >Jr regime. However, neither measurement
strongly excludes a quasi-one-dimensional picture. On the
other hand, an electron paramagnetic resonance (EPR) study

by Nakamura et al. [3] found a close relationship between
the Néel temperatures and the interstack interactions (JS and
Jr)—consistent with our finding that the magnetic exchange
interactions are quasi-1D and that TN is dominated by inter-
chain interactions, as in Eq. (7) and Fig. 3.

Thus, a quasi-1D picture is consistent with the existing
experimental literature and provides a natural explanation of
why only P-1 has a SP distortion, see Sec. II. However, more
detailed experimental tests of our proposal are needed and
we hope that this manuscript will motivate studies to test the
difference between quasi-1D and quasi-2D behavior in these
materials. Given that these compounds are soft, it may be
illuminating to conduct magnetic measurements on samples
under pressure or uniaxial strain.

V. CONCLUSIONS

We have used BS-DFT, an atomistic approach, to
parametrize a Heisenberg model for several materials in the
EtnMe4−nX [Pd(dmit)2]2 family. This revealed a frustrated
scalene triangular lattice where the largest coupling along
the stacking direction is nearly three times larger than the
others. We showed that in the relevant quasi-one-dimensional
limit, the difference in the interchain coupling acts identically
to an unfrustrated interchain coupling and favors long-range
magnetic order. This is the role of geometric frustration in a
quasi-1D triangular lattice; the effective interchain coupling,
which is the main driver for magnetic order, is reduced signif-
icantly due to competing interactions. We calculate the Néel
temperatures in this picture and find that they are the same
order of magnitude as experimental values, but are overesti-
mates in most cases. This could indicate the importance of
higher-order spin processes, such as a ring exchange, in the
x-[Pd(dmit)2]2 family.

Treating these compounds as quasi-1D is consistent with
the existing experimental literature and provides a natural
explanation of why only P-1 has a SP distortion. In this pic-
ture, geometrical frustration and strong electron correlations
still play a large role. In particular, frustration increases the
effective one-dimensionality (δJy � Jr , Js).

More broadly, the demonstration that we can get cor-
rect orders of magnitude for the Néel temperatures in the
x-[Pd(dmit)2]2 materials brings us close to achieving the long-
held goal of making quantitative predictions for electronic
phenomena in strongly correlated electron materials.
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