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Electronic structure of van der Waals ferromagnet CrI3 from self-consistent
vertex corrected GW approaches
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The electronic structure of layered van der Waals ferromagnet CrI3 is studied with self-consistent dia-
grammatic approaches beyond GW approximation. Considerable improvement in the calculated band gap as
compared to the non-self-consistent G0W0 results has been found. Certain spectral features in the valence
bands discovered recently by angle-resolved photoemission spectroscopy are reproduced better when we use
full frequency-dependent self-energy. Density-functional theory and quasiparticle self-consistent GW method
which are based on frequency-independent self-energy are unable to resolve these features. Nonlocality effects
in the diagrams beyond GW approximation are large for both polarizability and self-energy. This finding can
potentially have an impact on the development of methods like GW+dynamical mean field theory.
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I. INTRODUCTION

Magnetic van der Waals material CrI3 represents con-
siderable interest in view of its promising applications in
spintronics. It possesses some remarkable properties which
include, for instance, the preservation of magnetic order down
to a single layer [1,2]. The bilayer of this material shows
antiferromagnetic ordering whereas its monolayer, three layer,
and bulk are all ordered ferromagnetically [1]. It is important
to understand these (and other) properties from the theoretical
point of view to be able to explain already known properties
or even to predict new ones in this class of materials. The key
to understanding them is their electronic structure.

The electronic structure of CrI3 was studied both experi-
mentally [3,4] and theoretically [5–10]. As it seems, there is a
general consensus that basic features of it (such as band gap)
are similar in bulk material and in thin films [3,6]. However,
there is still no consensus on the reasons of apparent inconsis-
tency between experimental and theoretical values of the band
gap in CrI3.

In the bulk CrI3, optical measurements [4] resulted in
the optical gap of 1.24 eV. Recent ARPES (angle resolved
photoemission spectroscopy) measurements [3] reported the
electronic band gap of about 1.3 eV. Normally, one would
think that optical gap should be a bit smaller than electronic
because of the excitonic effects. Therefore, the above two
values are consistent if we assume that the exciton binding
energies are on the scale of 0.1 eV. In theory, there are issues
on the larger scale. In density functional theory (DFT) calcu-
lations, the band gap is 0.78 eV [10]. This value corresponds
exactly to what one would expect from DFT: underestima-
tion of the gap by 30–50%. The problem reveals itself when
we try to improve DFT band gap. Routinely, it is done
by applying the so-called one-shot (non-self-consistent) GW
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approximation (G0W0). In a vast majority of semiconductors,
G0W0 improves the DFT band gap considerably [11] with
a remaining small underestimation up to 10–15%. However,
when applied to the monolayer of CrI3, G0W0 results in the
band gap 2.59–2.76 eV [9,12]. It is important to note that
reported G0W0 calculations of CrI3 monolayer used DFT+U
as a starting point. If we assume that bulk and monolayer
band gaps of CrI3 are not very different, the reported G0W0

results for the monolayer exceed considerably the experimen-
tal value, which, most likely, is the case because authors of
both works also reported very strong excitonic effects with
exciton binding energies up to 1.5 eV. Formally, the presence
of strong excitons could explain the value of the optical gap
but it doesn’t explain the value of the electronic gap, nor does
it explain the small difference between optical and electronic
gaps in experiments. However, it suggests that the electronic
gap obtained in G0W0 calculations should be a subject of
a strong renormalization if one includes diagrams beyond
GW approximation in the evaluation of the electronic gap.
For instance, if one uses the Bethe-Salpeter equation (BSE)
instead of random phase approximation (RPA) in the eval-
uation of polarizability and then applies the corresponding
screened interaction W in the evaluation of the GW diagram,
the G0W0 band gap might be much smaller. Thus, the results
obtained in Refs. [9,12] suggest studying the effect of higher
order diagrams (vertex corrections) on the electronic structure
of CrI3.

An important step forward in elucidating the electronic
structure of CrI3 (and related materials) was done by Lee
et al. [10]. In their paper, the hybrid method QSGW80 [13]
was used. The QSGW80 approach consists of empirical mix-
ing QSGW (quasiparticle self-consistent GW) self-energy and
LDA (local density approximation) exchange-correlation po-
tential: �QSGW 80 = 0.8�QSGW + 0.2V xc

LDA. As the authors of
Ref. [10] argue, the mixing effectively corrects the underes-
timation of screening in the QSGW method. Formally, the
QSGW80 approach should be considered as a semiempirical
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one but it allows us to improve the calculated electronic struc-
ture of simple semiconductors considerably [13,14]. For CrI3,
application of QSGW80 without spin-orbit coupling (SOC)
resulted in the band gap 2.23 eV [10] whereas calculations
with perturbative (after the self-consistency was reached) in-
clusion of SOC resulted in the band gap 1.68 eV. Thus, SOC
renormalization of the electronic structure of CrI3 is notice-
able. Unfortunately, the authors of Ref. [10] do not report the
gap value obtained with standard QSGW, i.e., without admix-
ture of LDA exchange-correlation potential. So, it is hard to
say about the actual effect of it. QSGW80 is constructed in
such a way that it empirically enhances the screening which is
underestimated by QSGW. So, the mere fact that Lee et al. use
QSGW80 instead of QSGW suggests an importance of higher
order diagrams which would directly (instead of empirically)
address the issue of insufficient screening in QSGW.

The authors of Ref. [10] also make an interesting research
into the importance of nonlocality of self-energy. Namely,
by direct comparison of DFT+U and QSGW80 calcula-
tions, they observe that DFT+U approach cannot mimic the
QSGW80 results because of single-site approximation inher-
ent to DFT+U. Obviously, this analysis of nonlocality of
self-energy in CrI3 (and related materials) makes direct impact
on the validity of other methods based on the single site
approximation [like DFT plus dynamical mean field theory
(DMFT)] when applied to this class of materials.

Motivated by the above cited works, this paper focuses
on application of the diagrammatic approaches which go be-
yond GW approximation, i.e., directly (and self-consistently)
include vertex corrections. In this way, we estimate step by
step the effect of the first-order vertex correction and then the
effect of replacing the first-order diagram for polarizability by
solving the BSE for it. We also apply QSGW and, by doing
this, we answer the question (though using different codes) on
the difference between QSGW and QSGW80. Also, the effect
of the SOC is studied directly. Namely, a fully relativistic
(FR) approach (Dirac’s equation based) is used along with
the scalar-relativistic (SR) approach to estimate SOC effect
directly and compare it with the perturbative estimate made in
Ref. [10]. We extend the study of nonlocal effects conducted
by Lee et al. [10] by investigating the nonlocal contribution
of the diagrams beyond GW. It is done by directly evaluating
them using a full setup (all functions are k dependent) and
a simplified setup where we assume the local (single site)
approximation. Our study, therefore, has an explicit impact
on the development of the methods like GW+DMFT [15–21],
where one assumes the single site approximation for the
DMFT part.

The paper begins with a brief discussion of the distinctive
features of the methods used in this paper and the setup
parameters for the calculations (the first section). The second
section provides principal results obtained for the electronic
structure of CrI3. The third section presents the results of the
investigation into the importance of nonlocal effects for higher
order diagrams. The conclusions are given afterward.

II. METHODS AND CALCULATION SETUPS

All calculations in this paper were performed using code
FLAPWMBPT [22]. Recently, a few updates were imple-

FIG. 1. Diagrammatic representation of � functional which in-
cludes the simplest nontrivial vertex. First diagram on the right-hand
side stands for scGW approximation, whereas total expression corre-
sponds to sc(GW+G3W2) approximation.

mented in the code [23,24]. For DFT calculations, we used
the LDA as parametrized by Perdew and Wang [25]. In this
paper, we use scGW method and two self-consistent ver-
tex corrected schemes (see below). They are based on L.
Hedin’s theory [26]. ScGW and one of the vertex corrected
schemes, sc(GW+G3W2) [27], can also be defined using the
�-functional formalism of Almbladh et al. [28]. The corre-
sponding � functional which includes vertex corrections is
shown in Fig. 1. In Fig. 1, the first diagram corresponds to GW
approximation, whereas the sum of the first and the second
diagram represents sc(GW+G3W2) approximation. Diagram-
matic representations for irreducible polarizability (Fig. 2)
and for self-energy (Fig. 3) in scGW and in sc(GW+G3W2)
follow from the chosen approximation for the � functional.

The second vertex corrected scheme which we use in this
paper is the scheme G, according to the classification intro-
duced in Ref. [29]. This scheme differs from sc(GW+G3W2)
in the evaluation of polarizability: BSE is used in scheme
G. In this case, the second term on the right-hand side of
Fig. 2 is replaced with an infinite sequence of diagrams (ladder
diagrams) so the vertex correction to polarizability can be
represented as in Fig. 4. The diagrammatic representation of
the self-energy is the same in both vertex corrected schemes
used in this paper. For convenience, let us here introduce
an abbreviation for scheme G: sc(BSE:P@GW + G3W2). In
this abbreviation, the part after the symbol @ stands for the
diagrammatic representation of self-energy, whereas the part
before the symbol @ says that polarizability is evaluated
from BSE. The rational of using sc(BSE:P@GW + G3W2) is
to directly check the relative importance of excitonic effects
on the evaluated electronic band structure. It is important
to mention that our implementation [29] of the BSE uses
the full frequency dependence of screened interaction W op-
posite to a common approximation [30,31] where one uses
static (frequency independent and taken at zero frequency)
screened interaction W. As one can deduce from its con-
struction, scheme sc(BSE:P@GW + G3W2) is not � derivable
[as opposed to scGW or sc(GW+G3W2)] and, therefore,
is not conserving. However, evaluation of polarizability in
sc(BSE:P@GW + G3W2) follows (at least approximately) its

FIG. 2. Diagrammatic representation of irreducible polarizabil-
ity in the simplest vertex corrected scheme sc(GW+G3W2).
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FIG. 3. Diagrammatic representation of self-energy in the sim-
plest vertex corrected scheme sc(GW+G3W2).

definition as being a functional derivative of electronic density
with respect to full electrostatic potential, which is the founda-
tion of the BSE. Therefore, scheme sc(BSE:P@GW + G3W2)
also has a certain strong principle built in its construction. As
evidenced in Ref. [32], it usually results in better band gaps as
compared to sc(GW+G3W2). More details about properties of
vertex corrected schemes can be found in Refs. [29,33].

Technical details of the GW part were described in
Refs. [34,35]. Detailed account of the algorithms for
sc(GW+G3W2), sc(BSE:P@GW + G3W2), and also for other
vertex corrected schemes can be found in Refs. [27,29,32,33].
Brief account of the implementation of BSE also is provided
in the Appendix. Figure 5 presents the flowchart of the calcu-
lations which gives a general idea of how the calculations are
organized. The diagrammatic (GW and the diagrams beyond
GW) parts of the FLAPWMBPT code take full advantage of the
fact that certain diagrams can more efficiently be evaluated in
reciprocal (and frequency) space whereas other diagrams are
easier to evaluate in real (and time) space. As a result, the GW
part of the code scales as NkNωN3

b , where Nk is the number of
k points in the Brillouin zone, Nω is the number of Matsubara
frequencies, and Nb stands for the size of the basis set. The
vertex part of the code scales as N2

k N2
ωN4

b . For comparison, if
one uses a naive (all in reciprocal space and frequency) imple-
mentation, then the GW part scales as N2

k N2
ωN4

b (i.e., exactly
as the vertex part when the implementation is efficient), and
the vertex part scales as N3

k N3
ωN5

b . Besides efficiency of the
implementation, we have to mention two more factors which
make the use of the diagrams beyond GW feasible. First is the
fact that the higher order diagrams converge much faster than
the GW diagram with respect to the basis set size and to the
number of k points [29,32]. Second is that the higher order
diagrams are very well suited for massive parallelization.

We also use quasiparticle self-consistent GW (QSGW)
approach. Similar to scGW, sc(GW+G3W2), and
sc(BSE:P@GW + G3W2) approaches, it is based on the
finite temperature (Matsubara) formalism and in this respect
it is different from the well-known QSGW implementation
by Kotani et al. [36]. Quasiparticle approximation includes
linearization of self-energy near zero frequency (for details,
see Refs. [34,35]) and, therefore, the method is only reliable
not very far from the Fermi level—usually within a few

FIG. 4. Ladder sequence of diagrams for the vertex correction to
polarizability in sc(BSE:P@GW + G3W2) approach.

FIG. 5. Flowchart of scGW, sc(GW+G3W2), and
sc(BSE:P@GW + G3W2) calculations. All equations are presented
using symbolic notations. In the expressions for polarizability,
first equation corresponds to scGW, second equation is used in
sc(GW+G3W2), and the third one in sc(BSE:P@GW + G3W2).
In the expressions for self-energy, first equation corresponds
to scGW, and the second one to both sc(GW+G3W2) and
sc(BSE:P@GW + G3W2). G0 stands for Green’s function in
Hartree approximation. Any calculation begins with self-consistent
DFT iterations where the basis set is formed and the initial approach
for G is generated. Iterations of scGW method use this initial
Green’s function as an input to start. During scGW iterations,
G is updated and screened interaction W is generated. Both G
and W serve as an input to start iterations of sc(GW+G3W2) or
sc(BSE:P@GW + G3W2) approaches. sc(BSE:P@GW + G3W2),
being computationally most demanding, can be run after a few
iterations of sc(GW+G3W2), which can save computer time. In
spin-polarized calculations, an external magnetic field is applied at
the first iteration to create initial spin splitting.

electron volts. Effective self-energy is static (frequency
independent) and the method is not diagrammatic. However,
as explained by Kotani et al. [36], QSGW satisfies the
zero frequency and long wave limit of the Ward identity
because of the so-called Z-factor cancellation. This fact
often makes it quite accurate, especially in simple metals
and semiconductors where the above-mentioned limit is
important. Considering the differences between QSGW and
the above introduced approaches, together they represent a
good set of methods to study new materials.

The principal difference between FR calculations and SR
calculations consists of the fact that we use Dirac-Kohn-Sham
equations to generate LAPW+LO basis set in the FR case
(see Ref. [23] for the implementation in the FLAPWMBPT
code) instead of SR Kohn-Sham equations [37]. Generaliza-
tion of the evaluation of diagrams to the FR case is relatively
straightforward: one just replaces the SR basis functions with
FR basis functions in the evaluation of matrix elements (see,
for instance, the generalization of scGW and QSGW to FR
variant in Ref. [34]).

Let us now specify the setup parameters used in the
calculations. To make presentation more compact, princi-
pal structural parameters for the studied solids have been
collected in Table I and the most important set up param-
eters have been collected in Table II. All calculations have
been performed for the electronic temperature 600 K. In all
calculations, we assumed the ferromagnetic ordering. The
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TABLE I. Structural parameters of the solids studied in this
paper. Lattice parameters are in angstroms, MT radii are in atomic
units (1 Bohr radius), and atomic positions are given relative to the
three primitive translation vectors. Experimental structural data from
Ref. [38] are used.

Space Atomic
Solid group a c positions RMT

CrI3 148 6.867 19.807 Cr: 1/3;2/3;0.33299 2.471
I: 0.31677;0.33453;0.4123 2.667

calculations (excluding the vertex part) were performed with
the 4 × 4 × 4 mesh of k points in the Brillouin zone. 500
band states (1000 in the FR case) were used to expand Green’s
function and self-energy. The product basis (PB) consisted of
approximately 3100 functions (depending on k point). The
diagrams beyond GW approximation were evaluated using
2 × 2 × 2 mesh of k points in the Brillouin zone and with
about 40 (80 in the FR case) bands (closest to the Fermi
level). With the above-mentioned faster convergence of higher
order diagrams with respect to these parameters, this choice
represented a reasonable compromise between the accuracy
and the computational cost. Most important convergence tests
are presented in Tables III–V. As one can deduce from the
convergence tests, the remaining uncertainty of the band gap
obtained in FR sc(BSE:P@GW + G3W2) calculations could
be at the level of 0.1–0.2 eV. Also, the most likely effect of
further refining the computational setup would be a reduction
of the calculated band gap.

III. RESULTS

We begin the presentation of results by showing in Table VI
the band gaps and magnetic moments (on chromium sites)
obtained using different approximations. Magnetic moments
do not show any noticeable dependence on the method and are
in accordance with other calculations [7]. They also depend
slightly on the choice of the muffin-tin radii and, correspond-
ingly, are given here just for the reference. Calculated band
gaps, however, show remarkable dependence on the approx-
imation used. As usual, LDA underestimates the band gap
by about 30–50%, depending on how one approximates the
relativistic effects. Both QSGW and scGW seriously overes-
timate the experimental band gap (by about a factor of 2).
QSGW does not show improvement in the calculated band
gap of CrI3 as compared to scGW, which one would expect
in small gap sp semiconductors [40]. From this fact, one can

TABLE II. Principal setup parameters of the studied solids are
given. The following abbreviations are introduced: � is for wave
functions, ρ is for the electronic density, V is for Kohn-Sham po-
tential, and PB is for the product basis.

Core Lmax Lmax

Solid states Semicore �/ρ,V PB RKmax

CrI3 Cr: [Ne] 3s, 3p 6/6 6 6.0
I: [Kr] 5s, 4d 6/6 6

TABLE III. Convergence of the band gaps obtained in scalar
relativistic G0W0 calculations with respect to the number of high
energy local orbitals (HELOs) included in the LAPW+LO basis
set. Local orbitals associated with semicore states are not included.
Numbers after orbital character indicate how many LOs are included
with a given orbital character. The results presented in the main text
correspond to the second row (i.e., s2p1d2/s1p2d1).

High energy LO

Cr I Band gap (eV)

s1d1 p1 2.09
s2p1d2 s1p2d1 2.07
s2p1d2f1 s1p2d1f1 2.07
s3p2d3f2 s2p3d2f2 2.09
s3p3d4f3 s3p4d3f3 2.10

conclude that the presence of Cr 3d electrons makes this
material somewhat different from the simple semiconduc-
tors. Noticeable improvement in the evaluated band gap
happens when we include first-order vertex correction, i.e.,
when we switch from scGW to sc(GW+G3W2). Further im-
provement, i.e., when we switch from sc(GW+G3W2) to
sc(BSE:P@GW + G3W2), is a bit smaller. The effect of
inclusion/neglecting the SOC is approximately of the same
amplitude as the effect of using BSE when we consider the
SOC effect at the sc(BSE:P@GW + G3W2) level. At this
level, it is about twice smaller than in Ref. [10], which
means that the self-consistent inclusion of the SOC makes
some difference. At the level of scGW/QSGW, however,
the effect of SOC is somewhat larger. It is interesting that
the best (and the most sophisticated) result for the band
gap in our study (1.57 eV, see Fig. 6) is quite close to the
result 1.68 eV obtained in Ref. [10] using empirical enhance-
ment of the screening. Thus, if we assume that there are
no big differences in QSGW between this paper and Ref.
[10], we can state that QSGW80 works rather well for this
material.

Our final result for the band gap (1.57 eV) still is a bit larger
as compared to the experimental 1.3 eV obtained in ARPES
studies [3]. One can name a few possible reasons for this
remaining disagreement: (i) numerical cutoffs (especially in
the vertex part), (ii) higher order diagrams not included in this
paper, and (iii) electron-phonon interaction. All three reasons,
normally, should result in some reduction of the calculated
band gap bringing it in even better agreement with the ex-
periment. But even at the present level, the error is already

TABLE IV. Dependence of the calculated band gap of CrI3 on
the k-grid Nk in G0W0 calculations. Scalar relativistic approach has
been used.

Nk Band gap

23 2.31
33 2.16
43 2.07
53 2.09
63 2.06
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TABLE V. Dependence of the calculated band gap of CrI3 on
the calculation setup for the diagrams beyond GW . Scalar relativistic
sc(GW+G3W2) approach has been used. Nvrt

bnd means the number of
band states included in the evaluation of the beyond-GW diagrams.
Nvrt

k means the k grid used for the evaluation of the beyond-GW
diagrams. Dependence on the Nvrt

bnd was studied with fixed grid of k
points: 4 × 4 × 4 for GW part and 2 × 2 × 2 for vertex part. Depen-
dence on the Nvrt

k was studied with fixed grid of k-points 6 × 6 × 6
for GW part and with Nvrt

bnd = 40. Saturation of the band gap when
Nvrt

bnd reaches 40 is related to the fact that all important band states,
i.e., Cr 3d and I 5p bands, are included.

Parameter Setup Band gap

Nvrt
bnd 20 2.91

30 2.72
40 2.25
50 2.19
60 2.16

Nvrt
k 13 2.49

23 2.25
33 2.27

small enough and allows us to state that this material is a
weakly correlated one and can be described using ab initio
diagrammatic methods.

In Fig. 7, we show partial density of states (atom and orbital
resolved) of CrI3 obtained in LDA calculations. Besides a
little shrinkage of the band gap in the FR case, there is very
little difference between SR and FR results. As one can see,
principal spectral features around the Fermi level are almost
completely defined by Cr 3d and I 5p states. In this respect,
one can point out to a certain disagreement with the experi-
mental ARPES data obtained by Kundu et al. [3]. Namely, in
experiments, valence band maximum (VBM) is formed by I
5p states only and Cr 3d states are shifted downward by about

TABLE VI. Band gaps (eV) and magnetic moments (μB,
Chromium site) of CrI3 obtained at different levels of theory. SR
stands for scalar-relativistic approximation, and FR is for fully rel-
ativistic approach. The positions of the peaks in k-resolved spectral
functions have been used to measure the band gaps. This is demon-
started in Fig. 6. Two variants of G0W0 differ by starting point:
Perdew-Burke-Ernzerhof (PBE) functional [39] and Hartree-Fock
(HF) approximation.

Band gap Moment

Approximation SR FR SR FR

LDA 0.85 0.66 2.95 3.06
G0W0(PBE) 2.07 1.99 NA NA
G0W0(HF) 4.22 3.74 NA NA
QSGW 3.11 2.64 3.08 3.11
scGW 3.03 2.51 3.23 3.35
sc(GW+G3W2) 2.25 1.97 3.21 3.32
sc(BSE:P@GW+G3W2) 1.86 1.57 3.20 3.31

Experiment:
Optical gap [4] 1.24
ARPES [3] 1.3

FIG. 6. Spectral function of CrI3 at � and T points in the Bril-
louin zone as obtained in fully relativistic sc(BSE:P@GW + G3W2)
approach. The value of the band gap defined as the difference in the
positions of peaks is shown.

0.6 eV. However, there is no such separation between I 5p and
Cr 3d states in LDA calculations. Thus, we can conclude that
LDA not only underestimates the band gap by almost 50%
but also predicts incorrect distribution of the orbital character
among the valence bands.

In Fig. 8, we present partial spectral functions for Green’s
function based methods as obtained in SR approximation.
Similar results obtained in the FR approach are shown in
Fig. 9. Similar to the DFT case, there is no considerable
difference between SR and FR results. So, our discussion is
relevant to both figures equally. First we point out that the
QSGW approximation does not show a shift between Cr 3d
and I 5p states. In this respect, it is in disagreement with
ARPES (as LDA is). Its difference with LDA is only in
the considerable overestimation of the band gap. The rest of
the methods [scGW, sc(GW+G3W2), and sc(BSE:P@GW +
G3W2)] clearly show the separation between Cr 3d and I 5p
states. In these three methods, VBM is formed solely by I 5p
orbitals (as in experiments) and the onset of Cr 3d states is
shifted downward from the VBM by 0.5–1.0 eV in agreement
with the separation 0.6 eV found in the ARPES measure-
ments [3]. The difference between QSGW and the other three
methods is that self-energy is static (frequency independent)
in QSGW whereas three other methods take full frequency
dependence of self-energy into account. Obviously, this fre-
quency dependence is crucial for CrI3. Another qualitative
feature missing in QSGW consists of breaking the Cr 3d states
in the conduction bands into two groups. Figures 8 and 9 also
show gradual reduction of the band gap, but this was already
discussed above.

An important comment about second order (in W) ver-
tex correction to self-energy has to be given. The problem
of negative spectral weight appearance (when one uses this
correction) was discussed and certain measures were taken
to circumvent the issue [43–45]. Particularly, it was stated
that it is impossible to perform self-consistent calculations
which include G3W2 correction [43]. However, as it appears,
sc(GW+G3W2) calculations can definitely be performed for
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FIG. 7. Total and partial (atom and orbital resolved) spectral functions of CrI3 obtained in LDA calculations. Scalar relativistic results are
in the left window. Fully relativistic results are in the right window. Sums of spin-up and spin-down quantities in the SR case, and sums of
spin-orbit components (i.e., p1/2 + p3/2 and d3/2 + d5/2) in the FR case are given.

CrI3. They were also performed for a number of other systems
[27,32,46] and also for electron gas [33] where sufficiently
high convergence can be achieved. Besides considerable in-
crease in computer time needed, sc(GW+G3W2) calculations
did not show any additional problems as compared to scGW
calculations. The author of this paper does not know the
explanation of why the issue does not reveal itself. Maybe
the reason is that all sc(GW+G3W2) (as well as scGW) cal-

culations are performed using Matsubara’s frequency axis
and this fact somehow conceals the problem. Or maybe the
self-consistence itself, in fact, cures the problem because the
sc(GW+G3W2) approach is � derivable and therefore is con-
serving.

As follows from the above discussion, basic features of the
electronic structure known from experiments (the band gap
and Cr 3d/I 5p separation) can quite accurately be described
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FIG. 8. Total and partial (atom and orbital resolved) spectral functions of CrI3 obtained in Green’s function based methods. Scalar
relativistic results. Sums of spin-up and spin-down quantities are given. Analytical continuation of self-energy [41,42] was used to get Green’s
function on the real frequency axis. The curves become smoother in the sequence QSGW-scGW-sc(GW+G3W2)-sc(BSE:P@GW + G3W2)
primarily because of increase in the many-body effects (incoherence).
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results. Sums of spin-orbit components (i.e., p1/2 + p3/2 and d3/2 + d5/2) are given. Analytical continuation of self-energy [41,42] was used to
get Green’s function on the real frequency axis.

using ab initio diagrammatic methods. Thus, there is no need
to apply the methods with adjustable parameters (DFT+U or
DFT+DMFT) to study CrI3 and, most likely, other materials
from this class.

IV. NONLOCAL EFFECTS

To check the quality of the local (single site) ap-
proximation, we also performed simplified calculations at
sc(GW+G3W2) level (SR) and compared the results with the
corresponding calculations which, however, take full nonlo-
cality into account. Instead of the k-dependent band states as a
basis set in full calculations, we used a set of orbitals confined
inside their muffin tin spheres as a basis in our simplified
calculations. We have to point out that our simplified (single
site) basis set was still slightly extended as compared to what
normally would be used in, for instance, GW+DMFT studies,
namely, for Cr sites, we included in the basis set not only
3d orbitals but also their energy derivatives as they naturally
appear in the linearized augmented plane wave method. We
also included 5p and their energy derivatives in the basis set on
I sites. Single site approximation makes a drastic effect on the
performance: vertex corrections in this case take practically
zero time to be evaluated. However, as we discuss below, the
calculations performed with the single site approximation are
not free from some issues.

Quite predictably, the most problematic for the local ap-
proximation quantity is the head of polarizability Pq

G=G′=0,

where vectors G and G’ represent reciprocal lattice transla-
tions. Polarizability is an intrinsically nonlocal function in real
space. In reciprocal space, the momentum dependence of its
head at small momenta is Pq

G=G′=0 = Bq2 in exact theory. This
behavior cancels the 1/q2 divergence of the bare Coulomb
potential at small momenta. In self-consistent diagrammatic
approaches, we normally have Pq

G=G′=0 = A + Bq2 with A
being small and negative. Its absolute value is normally much
smaller than the absolute value of the head at all q points on
our q mesh with nonzero momenta. In practice, we evaluate
(by fitting) the coefficients A and B and use only the Bq2

part to proceed. The A coefficient becomes smaller when the
number of the diagrams is increased (order by order or by
using the BSE). To a certain degree, its value also depends
on the numerical approximations (cutoffs) within the same
diagrammatic approach. In this respect, it is important to use
q-dependent functions in the evaluation of polarizability. If,
however, we accept the local approximation for the vertex
part, the head of the correction to polarizability becomes
momentum independent with very large A coefficient for total
polarizability.

Figure 10 illustrates the above discussion. In the full cal-
culation, the head is slightly positive at q = 0 which is to
compensate the negative value obtained from the first dia-
gram in Fig. 2 (GG part). As one can see from the right
window of Fig. 10 where the head of total polarizability is
shown, the compensation is not complete because of the nu-
merical approximations and the limited number of diagrams.
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G=G′=0(ν = 0) of the calculated irreducible polarizability as functions of the momentum q along the direction

�-L in the Brillouin zone. Vectors G and G’ represent reciprocal lattice translations. Left window shows the vertex correction, and in the right
window one can see the full polarizability.

The correction to the head of polarizability obtained in local
approximation is essentially a constant (momentum indepen-
dent) and it looks as if it approximates the average over the
Brillouin zone value. It is large compared to the GG part,
which makes total polarizability a poor approximation to the
correct function.

Another important function for comparison is self-energy.
An example of it for the VBM is shown in Fig. 11. In the full
calculation, the effects of interference make the vertex cor-
rection to self-energy relatively small and very well localized
in frequency space. It approximates zero when frequency is
about 100 eV. The vertex correction to self-energy obtained
in local approximation looks quite different. It is larger in
absolute value and it is a very slowly decaying function in
frequency space. One can speculate that slow diminishing of
the amplitude of self-energy (local approximation) at high
frequencies is somehow related to the truncation of screened
interaction W. Truncation of W is most dangerous at high
frequencies when it approaches bare Coulomb interaction and,
therefore, is of a long-ranged nature. Thus, at least for CrI3,
the interference effects which are neglected in local approx-
imation are quite important. Total self-energy (right window
in Fig. 11) shows that differences in the vertex correction part
make the total functions also quite different. It is important to
point out that the difference in total self-energy is a combined

effect of the difference in vertex correction to self-energy and
the self-consistency effect which affects also the GW part
of it.

In the evaluation of the band gap, the issues with the
local approximation become hidden to a certain degree, as
we integrate over the Brillouin zone a few times during ev-
ery self-consistency iteration. Still, the band gap evaluated
in the single site approximation (1.87 eV) tells us that the
corresponding correction to the GW value is almost 25%
larger than the correction obtained without using the local
approximation (where the gap is 2.25 eV). The effect of the
vertex correction is smaller in the full case because of the
interference effects which are neglected in the local approx-
imation. If we forget for a moment about the issues with
polarizability and self-energy detailed above, the final band
gap obtained in the single site approximation might seem
reasonable. Partial and total spectral functions obtained with
local approximation and shown in Fig. 12 show some dif-
ferences with the corresponding spectral functions obtained
without using the local approximation (Fig. 8, upper right
window) but those differences are not dramatic. However,
considering the problems with this approximation at the in-
termediate steps of the calculation, one can conclude that
the local approximation (even for the diagrams beyond GW
level) represents a poor alternative to the methods which treat

FIG. 11. Imaginary part of self-energy at k = (0; 0; 0) as a function of Matsubara’s frequency. Diagonal matrix element for the VBM band
is used for plotting. Left window shows the vertex correction, and in the right window one can see full self-energy.
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the nonlocal effects systematically, whereas the quantitative
effects are, most likely, material dependent, there is no reason
to think that this conclusion will be different for the majority
of materials. Considering the importance of this conclusion
for the GW+DMFT (and related) method, more studies of
this kind are needed. As a remedy for the most problematic
situations, where both the nonlocality effects beyond GW and
the strong correlations beyond sc(GW+G3W2) are important,
one can suggest an extension of GW+DMFT, for instance,
sc(GW+G3W2)+DMFT method, which, at least formally,
can be implemented along the same lines as GW+DMFT.
In this method, DMFT would only be used for evalua-
tion of the diagrams not included in the sc(GW+G3W2)
approach.

V. CONCLUSIONS

In conclusion, we have applied two self-consistent dia-
grammatic approaches beyond GW approximation to study the
electronic structure of the layered van der Waals ferromagnet
CrI3. Considerable overestimation of the band gap obtained in
other works when using the G0W0 approach was shown to be
remedied by applying the vertex corrections. The important
correction comes from the first-order vertex function used
in both polarizability and self-energy. Application of BSE
for polarizability further improves the band gap. Inclusion of
SOC is important, but its effect is smaller than the effect of
vertex corrections.

We also studied the nonlocality effects in the diagrams
beyond GW approximation and found them as sufficiently
large. This can have an impact on development of the methods
like GW+DMFT.

As an interesting venue for future work on the subject,
one can consider studying optical properties of CrI3 and other
materials using vertex-corrected GW calculations as a starting
point for a standard implementation of BSE. Standard imple-
mentation here means using static (taken at zero frequency)
screened interaction W in the kernel of the BSE. In standard
implementation, one casts the BSE in an effective eigenvalue

problem from which the exciton spectra can be directly ob-
tained. Recently, it was shown how it can be done in the
context of self-consistent QSGW calculations [47].
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APPENDIX: DETAILS OF THE BETHE-SALPETER
EQUATION IMPLEMENTATION

As mentioned in Sec. II, our implementation of BSE uses
full frequency dependence of screened interaction W opposite
to a common approximation [30,31] where one uses static
(frequency independent and taken at zero frequency) screened
interaction W. As a result, BSE is solved iteratively in this
study. Each iteration adds one more diagram from an infinite
sequence shown in Fig. 4 into the vertex correction to polar-
izability �P. In this Appendix, we give the steps of iterations
with some details on how frequency/time dependence is han-
dled. Full (and rather lengthy) account of the implementation
was published in Ref. [29], which includes the details of the
basis sets, k dependencies, and handling of time-to-frequency
and frequency-to-time transformations. In this brief account,
space arguments of all functions are represented by digits.
Integration over repeated space arguments (if they are only on
the right-hand side of equations) is assumed. Below, we use
auxiliary functions K0, K , �K , and ��, which are defined by
the corresponding equations. Before the iterations, we evalu-
ate K0,

K0(123; ω, ν) = −G(13; ω)G(32; ω − ν), (A1)

and assign �K = 0. ω and ν are fermionic and bosonic
Matsubara’s frequencies, correspondingly. Also, we transform
K0(123; τ, ν) = 1

β

∑
ω e−iωτ K0(123; ω, ν), where τ is Mat-

subara’s time and β = 1/T .
During each iteration, we perform the following steps

[Eqs. (A2)–(A6)]:

K (123; τ, ν) = K0(123; τ, ν) + �K (123; τ, ν), (A2)

��(123; τ, ν) = W (21; τ )K (123; τ, ν), (A3)

��(123; ω, ν) =
∫

dτeiωτ��(123; τ, ν), (A4)

�K (123; ω, ν) = −G(14; ω)��(453; ω, ν)G(52; ω − ν),

(A5)

�K (123; τ, ν) = 1

β

∑
ω

e−iωτ�K (123; ω, ν). (A6)

The above steps are repeated a specific number of times
(iterations). In the end of iterations, we evaluate vertex cor-
rection to polarizability:

�P(12; ν) = −�K (112; τ = 0, ν). (A7)
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For weakly correlated semicondictors, the iterations
[Eqs. (A2)–(A6)] converge very fast (see, for instance, Fig. 7

in Ref. [32]). In the case of CrI3, we also found that four
iterations were quite sufficient.
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