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Machine learning band gaps from the electron density
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A remarkable consequence of the Hohenberg-Kohn theorem of density functional theory is the existence
of an injective map between the electronic density and any observable of the many-electron problem in an
external potential. In this work, we study the problem of predicting a particular observable, the band gap of
semiconductors and band insulators, from the knowledge of the local electronic density. Using state-of-the-art
machine learning techniques, we predict the experimental band gaps from computationally inexpensive density
functional theory calculations. We propose a modified Behler-Parrinello (BP) architecture that greatly improves
the model capacity while maintaining the symmetry properties of the BP architecture. Using this scheme, we
obtain band gaps at a level of accuracy comparable to those obtained with state-of-the-art and computationally
intensive hybrid functionals, thus significantly reducing the computational cost of the task.
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I. INTRODUCTION

The Hohenberg-Kohn (HK) theorem of density functional
theory (DFT) establishes a one-to-one correspondence be-
tween the ground-state local charge density ρ(�r) and the
external potential of a many-electron system v(�r) [2]. Thus,
the Hamiltonian of this system is uniquely and unequivocally
determined by ρ(�r). This remarkable statement implies that
any observable of the system must be a functional of the
ground-state density. However, the functionals are unknown
in most cases [3,4], and in practice physically motivated
approximations are used, such as the local density approxi-
mation (LDA) [4] or the Perdew-Burke-Ernzerhof (PBE) [5]
exchange correlation functionals. Despite the success of these
approximations in certain regimes, they can fail to describe
relevant observables, such as band gaps of semiconducting
materials [6].

For modern electronic, optoelectronic, and photovoltaic
applications [7,8], the reliable estimation of band gaps of
solids is of great relevance. The ab initio computation of
accurate band gaps tends to be a resource-intensive task, as
the cheaper exchange correlation functionals like the LDA or
generalized gradient approximations (GGAs) underestimate
the value of the band gap due to the vanishing of the so
called derivative discontinuity [5,6,9,10]. Meta and hybrid
GGA functionals, like the Heyd-Scuseria-Ernzerhof (HSE),
have a nonzero derivative discontinuity, providing more ac-
curate band gap predictions at a much higher computational
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cost [1,6]. Data-driven approaches have been used to im-
prove the band gap prediction at a lower computational cost.
Some works use the PBE band gap predictions as a starting
point to compute corrections on the level of HSE or GW
accuracy [11,12]. Another popular approach is to predict the
band gap from the positions of the atoms in the unit cell
and the crystalline structure [13–18] using synthetic data sets
for training. Another common approach is the prediction of
band gaps from a set of relevant physical quantities such as
boiling and melting points, atomic radii, and bond lengths,
among others [17,19–23]. Previous studies have successfully
demonstrated that data-driven approaches can be used to ap-
proximate the HK maps between the electron density and
observables of interest [24–28]. More recent studies have
considered the prediction of accurate band gaps from an
approximate description of the electronic density [29–31].
Despite outstanding progress, most works rely on synthetic
training sets containing a relatively small number of different
materials in different configurations.

In this article, we study the problem of inferring ex-
perimental band gaps from DFT computed valence electron
density distributions in a wide range of bulk semiconduc-
tors and band insulators, using deep neural networks (NNs).
We propose a Deep Sets [32] aided modification of the
Behler-Parrinello architecture, improving the model capacity
while maintaining the permutation invariance in the out-
put. We provide empirical evidence suggesting that learning
from the density is advantageous as opposed to learning di-
rectly from atomic positions, due to the chemical bonding
information explicitly encoded in the electronic density. We
find that learning band gaps from PBE-computed densities
yields errors comparable to the direct calculation of the band
gap using the computationally intensive and accurate HSE06
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FIG. 1. (a) Histogram of the distribution of experimental band gaps used for training and validation, from Ref. [1]. Histogram box width is
0.5 eV. Colors represent the height of each bin, matching the color labels in Fig. 3. (b) Diagram of the neural network architecture used
to approximate the density to band gap map in the specific example of TiO2. Red modules are shared among all atomic species. Blue
and yellow modules are specifically applied to Ti and O densities, respectively. From left to right: (i) Rotationally invariant atom-centered
density descriptors [see Eq. (3)]; (ii) feature extraction for dimensional reduction; (iii) Behler-Parrinello block and concatenated output {gβ

α};
(iv) species-specific Deep Sets neural network and concatenation of output of each species hβ ; (v) species-combiner Deep Sets network whose
output is the band gap.

hybrid functional [33]. Finally, we test the neural network
performance in a collection of monolayer materials, including
examples of the molybdenum family of the transition metal
dichalcogenides (TMDCs) and hexagonal boron nitride.

II. TRAINING SET AND DENSITY DESCRIPTORS

The data set we use to train and validate our neural network
is the set of bulk materials compiled in Ref. [1]. It contains 472
materials for which a reliable and accurate experimental band
gap measurement is available in the literature. The reported
band gaps are mostly from optical absorption experiments;
hence we only consider the determination of direct gaps in
this article and not of the fundamental (photoemission) or
transport gaps. We note furthermore that the reduction of the
optical gap by excitonic effects, while relevant in principle
when comparing to DFT or HSE determinations of the gaps,
is typically only a few tens of milli-electron-volts in bulk
systems, much smaller than the typical error on the band
gaps from these methods. Most materials contain less than
24 atoms per unit cell, while none exceeds 32 atoms. No
magnetic materials are included, as the band gap can be highly
affected by the magnetic configuration in antiferromagnets.
The experimental band gap distribution is shown in Fig. 1(a).
This data set also provides the Materials Project [34] identi-
fication number. This number allows for the extraction of the
relevant unit cell parameters to compute the density distribu-
tion.

The density distribution corresponding to the valence elec-
trons for each material is computed from a lattice relaxation
ab initio DFT calculation using the projector-augmented
wave (PAW) method implemented in the Vienna Ab initio
Simulation Package (VASP) [35–37]. Different levels of ap-
proximation are used to compute the density distributions.
Specifically, we use LDA and PBE exchange correlation func-
tionals. In the latter, we also include van der Waals corrections
using the DFT-D2 method [38].

The obtained density values are specified on a uniform grid
in the unit cell. Different materials have different unit cell
geometries and therefore different grids. Hence, the density
value in each grid cell cannot be used as the input of a tradi-
tional neural network. Instead, we project the density onto an
atomic centered set of orbitals:

ραβ (�r − �Rαβ ) ≈
∑

0 � n � nmax
0 � l � lmax
−l � ml � l

Cαβ

n,l,mPorth
n (r)Yl,m(θ, φ), (1)

where Yl,m(θ, φ) are real spherical harmonics, Porth
n (r) are

orthogonal polynomials in the radial coordinate, and Cαβ

n,l,m are
the expansion coefficients for atom α of atomic species β in
position �Rαβ , and therefore a set of density descriptors. Re-
cent works have demonstrated this approach to yield accurate
density descriptors for machine learning (ML) applications
[39,40]. The set {Porth

n (r)} is obtained by the orthogonalization
of the polynomial basis:

Pn(r) = 2n

r2n+1
0

(
r + r0

2n

)
(r − r0)2n, (2)

with r0 a cutoff, chosen to be the radius where the value of
the density is 5% of the value of the density at r = 0. We
follow the standard orthogonalization procedure proposed in
Ref. [39]. In order to impose rotational symmetry, i.e., ensure
that the band gap prediction does not not change if the unit
cell is rotated, we choose the set of rotationally invariant
features [40–43]

dαβ

n,l =
l∑

m=−l

[
cαβ

n,l,m

]2
. (3)

While the above rotationally invariant descriptors are not the
only choice to construct invariant features from spherical har-
monics [42], they are widely used in ML applications and
have been demonstrated to yield accurate results in the context
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TABLE I. Detailed description of the modified Behler-Parrinello architecture and the intermediate data structures generated.
See Fig. 1(b) for a schematic representation of the architecture and data structures. Bold symbols label trainable neural net-
works. In the data structures field, upper indices label the objects on a given set whereas lower indices label elements
of an array.

Name Description

Operations:
PP(x) Preprocessing fully connected NN for feature extraction.
BPβ (x) BP fully connected NN of atomic species β.
DSβ (x) Deep Sets NN of atomic species β.
DSsc(x) Deep Sets NN combining the output of each species block.
⊕γ Concatenation across index γ .
Data structures:
{dαβ

n,l } Rotationally invariant density descriptors; see Eq. (3).
{ f αβ

i } = {PP(dαβ

n,l )} Preprocessed density features. i = 1, . . . , 5.
{gβ

α} = {⊕αBPβ ( f αβ

i )} Output of the BP block concatenated for atoms in the same species.
hβ = ⊕βDSβ (gβ

α ) Concatenation of the output of the species-specific Deep Sets across the different species.
Epred = DSsc(hβ ) Output of the Deep Sets species combiner. Predicted band gap.

of ML for DFT [40]. Even though the directionality of the
principal axes of the density distribution is not present in dαβ

n,l
as noted in Ref. [41], the density descriptors still preserve the
features of the bonding.

III. NEURAL NETWORK ARCHITECTURE

The goal is to infer the value of the experimental band
gap given the set of vectors of rotationally invariant density
descriptors {dαβ

n,l }. As a preprocessing step, the set of descrip-

tors {dαβ

n,l } are compressed into a set of dimensionally reduced

features { f αβ
i : i = 1, . . . , 5} by a fully connected NN with

trainable parameters (the same for all atoms), as depicted in
Fig. 1 and Table I.

As noted before, different materials have different numbers
of atoms in the unit cell, belonging to different atomic species.
In order to have the ability to handle the variable size of input
density descriptors, yet respecting the permutation invariance
of the input set, we use a modified Behler-Parrinello [44]
architecture. The NN architecture is depicted in Fig. 1(b)
and detailed in Table I. Bold symbols label trainable neural
networks. In the data structures field, upper indices label the
objects on a given set whereas lower indices label elements of
an array.

The use of Deep Sets [32] after the BP block ensures the
permutation invariance of the predicted gap with respect to
permutations of the density descriptors of different atoms,
while improving the model capacity by combining in a non-
linear manner the outputs of the BP block. Deep Sets layers
consist of several channels of the composition of a nonlinear
activation function and a restricted affine transformation. The
restricted affine map imposes permutation equivariance in the
output features. It maps an M-dimensional input feature x to
an M-dimensional output feature y in the following form:

y = [λI + γ (1 · 1T)]x + b1, (4)

with λ, γ , and b optimizable parameters, I the M × M identity
matrix, and 1 the M-dimensional column vector of ones.

A reduction of overparametrization effects, owing to the
small size of the training set, is achieved via the so called
early stopping [45] and the use of minibatch gradient descent
[46,47], with 40 materials per batch.

A collection of statistical measurements of the predic-
tion error is chosen to test the performance of the band gap
prediction. Defining the error as the difference between ex-
perimental and target band gaps, Eexp − Epred, we consider
the mean absolute percentage error (MAPE), mean percent-
age error (MPE), mean absolute error (MAE), mean error
(ME), the standard deviation of the error distribution (σ ),
the interquartile range (IQR), and the parameters (a and b)
of fitting Epred vs Eexp to y = ax + b. We employ stratified
10-fold validation in order to mitigate the possible bias in the
error statistics induced by the splitting of the data set in train-
ing and validation partitions. Within each partition, we make
sure that the distribution of validation band gaps is similar to
the band gap distribution of the training set [see Fig. 1(a)]
in order to mitigate error bias. The error statistics corre-
spond to the averages of each statistical measurement over the
different partitions.

IV. MODEL CAPACITY

We compare the model capacity of the bare BP archi-
tecture against the Deep Sets improved BP architecture in
Fig. 2(a). The bare BP architecture does not possess enough
expressivity to even interpolate the data. This deficiency in
the expressive power stems from lack of physical justification
to take the band gap to be the sum of individual contri-
butions of the different atoms in the unit cell, as done in
a bare BP architecture. The improved Deep Sets architec-
ture achieves significantly lower training error by combining
in a nonlinear and parametrized manner the outputs of the
BP architecture. These results show that the addition of the
Deep Sets module provides a solution to the model rigidity
of the bare BP architecture. This modification, not limited to
the problem of band gap prediction, can be implemented in
the many applications of the BP architecture.
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FIG. 2. Radar plots of the test statistics chosen to measure the band gap prediction accuracy. (a) Train set performance comparison between
a Behler-Parrinello architecture—with preprocessing feature extraction—and the full architecture including the Deep Sets modules. Input
densities are computed from DFT-PBE. (b) Validation set performance in the full architecture including the Deep Sets modules. Left: Band
gaps are learned from atomic positions in the unit cell, from densities computed using DFT-LDA, and from densities computed using DFT-PBE.
Right: Comparison of the best performing ML scheme with DFT-calculated band gaps, using LDA, PBE, and HSE06 [6] functionals.

V. LEARNING PERFORMANCE

The map between the density and physical properties of
interest stems from the one-to-one correspondence between
the electronic density and the external potential, which fixes
the specific form of the Hamiltonian and therefore uniquely
determines the whole collection of observables. Obviously,
there is also a map from the atomic positions and their nu-
clear charges to the band gap. We compare the prediction
of band gaps obtained directly from the atomic positions
against the prediction from electronic densities, computed
to different levels of approximation (LDA and PBE) in the
left panel of Fig. 2(b). The test error is larger if atomic
positions are used as inputs to the ML model. This dif-
ference is particularly noteworthy in the the MAPE, which
is reduced from ∼48% in the case of atomic positions
to ∼28% in the case of PBE densities. The low MPE and
ME values indicate that the ML approach does not suffer
from a systematic overestimation—or underestimation—of

the band gap. A natural explanation of the prediction im-
provement arising from the use of the density is that the
chemical bonding between the atoms in the unit cell is better
taken into account in this approach. The electronic structure
of crystals is strongly dependent on the nature of the chemical
bonding between their atoms, which is explicitly encoded in
the electronic density distribution. Our results thus provide
empirical evidence that an explicit encoding of the chemical
bonding is beneficial for the task of band gap prediction. This
claim is supported by the prediction improvement achieved
by using more accurate input densities, as the neural network
trained from PBE densities has better error statistics compared
to the model trained from LDA densities. While in some
specific cases the LDA provides more accurate ground-state
densities, the PBE functional provides more accurate densities
on average.

The right panel of Fig. 2(b) shows the error statistics
comparison between various DFT approaches to directly com-

ML: PBE densitiesComputed from LDA Computed from PBE Computed from HSE06(a) (b) (c) (d)

FIG. 3. Predicted versus experimental band gaps in the following cases: (a)–(c) Band gaps are computed from DFT calculations using
LDA, PBE, and HSE06 [6] functionals. (d) ML-predicted experimental band gaps from PBE-computed densities. Only validation set examples
are shown. Orange dashed lines are for visual reference, showing what the exact band gap prediction corresponds to. The color scale for each
point corresponds to the number of examples in the training set for that experimental band gap, matching the color scheme of the histogram in
Fig. 1(a). The error statistics of the predicted band gaps shown in this figure are those shown in the right panel of Fig. 2(b).
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FIG. 4. (a) Radar plots of the test statistics chosen to measure the band gap prediction accuracy. Validation set performance comparison
with the data set with removed examples, as indicated by the color labels. (b) Mean absolute percentage error (MAPE) in the validation set as
a function of the number of removed examples expressed as a percentage of the total number of examples of the original data set. (c) Mean
percentage error (MPE) in the validation set as a function of the number of removed examples expressed as a percentage of the total number
of examples of the original data set.

pute the band gap and our best performing ML scheme. The
DFT-calculated band gaps come from three levels of approxi-
mation: LDA, PBE, and HSE06 energy functionals. The LDA
and PBE band gaps were obtained from the same DFT cal-
culations used to compute the input densities. The errors are
consistent with those in Ref. [6]. The HSE06 band gaps are
found in Ref. [6]. The ML-predicted band gaps greatly outper-
form standard DFT-calculated band gaps in the LDA and PBE
approximations. The error in the ML-predicted band gaps is
comparable to that of the accurate [6] and computationally
intensive HSE06 functional.

These results demonstrate that, using the proposed statis-
tical learning setting, it is possible to infer the band gap at
HSE06 level of accuracy, while benefiting from the much
cheaper PBE estimation of the electronic density.

Panels (a)–(c) of Fig. 3 show the values of the DFT-
calculated band gaps vs the experimental values for LDA,
PBE, and HSE06 functionals. The LDA and PBE functionals
systematically underestimate the correct experimental value,
providing a biased estimate of the band gap. This observation
is also clear in the corresponding values of the MPE and ME
shown in Fig. 2(b). The HSE06 provides band gap values with
significantly smaller error and bias. The ML-predicted band
gaps in Fig. 3(d) are centered around the correct experimental
values, thus providing a low bias estimate. In this case the
band gaps show more spread compared to the HSE06 values.
The higher spread is related to the small number of available
training examples as discussed in the Appendix. The spread is
larger for larger band gaps due to the smaller number of train-
ing examples with band gaps larger than 4 eV [see Fig. 1(a)
and the Appendix].

VI. EXTRAPOLATION: MONOLAYER MATERIALS

Lastly, we test the generalization capabilities of the neural
network on a collection of monolayer materials, including
the molybdenum family of transition metal dichalcogenides
and the hexagonal boron nitride. We choose structures with

available freestanding experimental band gaps or on substrates
with lattice mismatch <2%, which leads to almost no lattice
distortion. Thus, the presence of the substrate is not expected
to significantly alter the value of the measured band gap. The
training set does not contain monolayer materials. It includes
some examples of the family of TMDCs in the bulk: MoSe2,
MoS2, and MoTe2.

The mean absolute percentage errors of the ML-predicted
band gaps are shown in Table II. Except for the case of hBN,
we obtain accurate predictions of the band gap of these two
dimensional structures. Given that Eexp = 6.1 eV, the reason
behind the lack of accuracy in the hBN is believed to stem
from the reduced number of training examples in that range
of band gaps (see Appendix for a detailed discussion). As
the ML model is only trained on bulk structures, the accurate
predictions in monolayers shows the generalization capabili-
ties of the proposed statistical learning approach. The results
in the two-dimensional structures also show the improve-
ment of accuracy as the input density is improved, supporting
the claim that better predictions are related to the better
explicit description of the chemical bonding in the density
distribution.

TABLE II. Generalization error in the monolayer materials.
Mean absolute percentage error of the ML band gaps is shown
averaged across the 10 training partitions. Error bars correspond to
the standard deviation of the MAPE across the 10 training partitions.

ML from ML from ML from
atomic LDA PBE

positions densities densities

MoS2 [48] (52 ± 17)% (15 ± 5)% (7 ± 2)%
MoSe2 [49] (44 ± 15)% (40 ± 12)% (15 ± 5)%
hBN [50] (65 ± 6)% (62 ± 6)% (51 ± 16)%
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FIG. 5. (a) Absolute error statistics grouped by band gap value with group separations [0, 1, 2, 3, 4, 8] (eV) as indicated by the quartile Q1
and Q3 caps. (b) Same as panel (a) with the horizontal axis showing the number of examples in each band gap group. It shows that a small
number of training examples in a certain band gap range leads to poor performance.

VII. CONCLUSION

In this paper we propose a supervised deep learning ap-
proach to predict the experimental band gaps of solids from
the knowledge of an estimate of the electron density. This ap-
proach is justified by the Hohenberg-Kohn theorem of density
functional theory. Owing to the fundamental lack of model ca-
pacity of a bare Behler-Parrinello architecture, we introduce a
modification to the model architecture based on the utilization
of permutation-invariant Deep Sets modules. The modified
architecture shows a significant improvement in model capac-
ity. This improved architecture can be implemented in other
applications where the bare BP architecture is used [39,40].
We also show that the explicit encoding of chemical bonding
information in the electron density provides an advantage
over learning the experimental band gaps directly from atomic
positions. This observation is supported by the prediction im-
provement when using more accurate estimates of the input
densities. The ML-predicted band gaps achieve an accuracy
comparable to state-of-the-art DFT-HSE06 estimation of the
band gaps, at the much lower computational cost of PBE
calculations. Finally, we test the neural network in a collection
of monolayer materials, which are not present in the training
set, finding good generalization power when the bad gap is in
the range 0–4 eV. We believe that the largest source of error
in our approach is the small size of experimental data sets
available for training (see Appendix for a detailed discussion).
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APPENDIX: EFFECT OF THE TRAINING SET SIZE

In this Appendix we explore the effect of the training set
size on the performance of the ML approach proposed in the
main text. Starting from the full data set, we remove 5%, 10%,
15%, 20%, and 25% of the examples (randomly selected)
and study the validation performance using 10-fold validation
as described in the main text. Examples are removed in a
nonuniform fashion in order to maintain the same band gap
distribution of the original data set [see Fig. 1(a)].

Figure 4 shows the data set size effect on the validation
error statistics. Panel (a) shows a reduction in the error as the
number of materials in the training set is increased. Panels (b)
and (c) focus on the MAPE and MPE to quantify the error
decrease as the size of the data set is decreased, confirming
that the largest source or error of our approach is the small
size of experimental data sets available for training.

Furthermore, we study the effect of the number of training
examples in a certain band gap range on the performance
of the proposed ML scheme. Figure 5(a) shows the absolute
error statistics on different band gap ranges, with separa-
tion in [0, 1, 2, 3, 4, 8] (eV). The error is clearly smaller at
smaller band gaps. This error reduction as the band gap is
decreased is a direct consequence of having a larger num-
ber of training examples with smaller band gap values, as
shown in Fig. 5(b).
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