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Tin-pest problem as a test of density functionals using high-throughput calculations
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At ambient pressure tin transforms from its ground state, the semimetal α-Sn (diamond structure), to metallic
β-Sn at 13 ◦C (286 K). There may be a further transition to a simple hexagonal phase, γ -Sn, above 450 K.
These relatively low transition temperatures are due to the small energy differences between the structures,
≈20 meV/atom between α- and β-Sn, which makes tin an exceptionally sensitive test of the accuracy of density
functionals and computational methods used in calculating electronic and vibrational energy, including zero-
point energy. Here we use the high-throughput automatic-flow (AFLOW) method to study the energetics of tin
in multiple structures using a variety of density functionals and examine the vibrational contributions to the free
energy with the AFLOW Automatic Phonon Library (APL). We look at the successes and deficiencies of each
functional. We also discuss the necessity of testing high-throughput calculations for convergence of systems with
small energy differences.
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I. INTRODUCTION

It is said that the failure of Napoleon’s invasion of Russia
was caused, in part, by the disintegration of his troops’ tin
buttons during the cold winter of 1812–13 [1]. Tin has also
been blamed for the failure of the 1910–13 Scott Expedition,
as their caches of kerosene evaporated, supposedly from a
failure of the tin solder in the tanks [2].

While both of these stories are apocryphal (indeed, the
Grande Armée’s buttons were most likely brass, not pure tin),
tin failure has been seen in nature. Fritzsche [3] reported
that in the Russian winter of 1687–1688 a stockpile of tin
transformed into rods and powder. In the winter of 1867–1868
tin pipes stored in the cold of St. Petersburg also met the same
fate. Shaum [4] also collected evidence of the phase transition.
In particular, he reported a sample of “white” tin which had
been partially converted into “gray” tin could be transformed
back to white tin upon heating. The low temperature gray
tin structure was eventually designated α-Sn, while the room
temperature structure is known as β-Sn. Less interesting to
historians, but of technological importance to modern society,
lead-free tin solders have also failed by the same mechanism
[5–7].

This legendary and actual degradation of element 50 is
known as tin-pest [8]. Below 286 K metallic β-Sn transforms
into brittle, semimetallic, α-Sn with a 20% increase in volume
[9,10]. This transformation is slow but dramatic [11] and leads
to extensive damage to the tin sample.
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In addition to the well-known white and gray phases, there
is some evidence that tin can transform from β-Sn to γ -Sn
at 450 K [12]. This phase is said to be a slight orthorhombic
distortion of the simple hexagonal lattice, a structure not ob-
served at ambient pressure in any other element. The simple
hexagonal structure has been observed in samples of tin al-
loyed with either cadmium, indium, lead, or mercury [13–15],
as well as tin-free alloys such as In0.45Bi0.55 [16].

These relatively low temperature phase transitions imply
that the equilibrium structures of the three phases are very
close in energy. The static lattice energy difference between α-
and β-Sn has not been directly determined by experiment, but
it is estimated to be in the range of 10–40 meV/atom [17,18].
This makes the prediction of the α-Sn ↔ β-Sn transition
difficult for density functional (DFT) calculations, which may
not achieve the required accuracy [17,19–22]. Tin is therefore
an ideal test case for assessing the accuracy of various density
functionals.

Since the tin phase transitions are thermal we can only
predict the transition temperature by finding the vibrational
free energy of the tin phases from their phonon frequencies,
which will be volume dependent. This, in turn, requires many
calculations involving large supercells and is best handled by
high-throughput methods. High-throughput methods are gen-
erally optimized for speed, so this introduces another source
of error: The basis set and k-point mesh sizes set by default
in these programs might not be accurate enough to find the
correct ordering of phases. Thorough testing of the predictive
capability of different functionals also requires testing of con-
vergence criteria in the programs that evaluate DFT energies.

Here we determine the free energy of the three tin phases
for several DFTs. First we determine the static lattice energy
at multiple volumes in a variety of crystal structures, looking
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for the static ground state of tin; next we compute the phonon
spectra for the α-, β-, and γ -Sn phases at each volume; finally
we evaluate the free energy for each phase as a function of
temperature.

The largest part of this work will be determining phonon
frequencies, which we do by extracting the harmonic inter-
atomic force constants (IFC) from first-principles calculations
of supercells involving 125–180 atoms. We do this using
the high-throughput AFLOW (automatic FLOW) platform
[23–28] and its Automatic Phonon Library (APL) [23,29] to
set up the supercells, run the first-principles calculations to
determine the atomic forces, and interpret the results. AFLOW
in turn uses the Vienna Ab initio Simulation Package (VASP)
to perform its first-principles calculations [30–33].

Our strategy is to use AFLOW and VASP to look at
possible crystal structures for elemental tin using the lo-
cal, generalized-gradient, and meta-GGA density functionals
available in VASP. While the hoped-for result is that all func-
tionals give us the same result, it is known that different
functionals can predict quite different ground state structures
[34]. Here a successful functional will predict that α-Sn is
the ground state of tin, the β-Sn phase is close enough in
energy so that a room-temperature thermal phase transition
is possible, and the γ -Sn phase (if it exists) will be just above
β-Sn. In cases where this is true, we can then compute the
phonon spectra of these phases as a function of volume, use
this to find the free energy as a function of temperature within
the quasiharmonic approximation (QHA) [35], and determine
the functional’s prediction of the transition temperature.

Since the energy differences involved here are so small, we
must check that the default settings for the VASP calculations
used by AFLOW are accurate. We therefore study the effect
of changing basis set size and k-point meshes on the energy
differences between the phases.

The paper is organized as follows: Section II describes
the crystal structures investigated in this paper, including the
many ways the structures are referred to in the literature.
Section III gives a brief description of the density functionals
used in this study, with theoretical and computational details
provided in Sec. IV. Section V tests the default convergence
settings in AFLOW by comparing those calculations with cal-
culations involving larger sets of basis functions and k points.
Section VI looks at the static lattice (no phonon) energy-
volume behavior of tin using the LDA, GGA, and meta-GGA
density functionals available in VASP. Free energy calcula-
tions require calculation of the phonon spectra of each phase
as a function of volume. We discuss the convergence of these
calculations with supercell size and k-point mesh in Sec. VII.
Section VIII C considers the thermal properties of the α-, β-,
and γ -Sn phases, including predictions of phase transition
temperatures for those functionals which predict the correct
ordering of the phases. Section IX estimates the previously
neglected thermal contribution of the electrons to the free
energy and discusses possible changes to the phase transition
temperatures. Finally, we discuss the results in Sec. X.

II. CRYSTAL STRUCTURES

We determined the static lattice energy/volume behavior
for tin using the crystal structures observed in the group-IV

elements, as well as some close-packed and nearly close-
packed elemental structures typical of metals. Some of the
many notations for these structures are summarized here:

(i) The common names of the structures (e.g., fcc, bcc,
diamond or α-Sn, β-Sn, simple hexagonal or γ -Sn, etc.). In
most cases we will refer to the structures using this notation.

(ii) Strukturbericht designations serve as a shorthand des-
ignation of the structures. We use the designations provided in
the original Strukturbericht volumes [39] and the extensions
proposed by Smithells [40]. Unfortunately Lonsdaleite [41],
the hexagonal diamond structure, has no Strukturbericht entry.
We will primarily use the Strukturbericht labels in graphs to
avoid clutter, abbreviating Lonsdaleite as “Lons.”

(iii) For high-throughput calculations it is helpful to have
a label which allows both the user and the computational
algorithm to compactly specify the structure. Since we are
using AFLOW we use the AFLOW prototype label [36],
which uniquely specifies the stoichiometry, space group, and
Wyckoff positions of the structure. Thus the diamond (A4, α-
Sn) structure is A_cF8_227_a, as it has one type of atom (A),
a face-centered cubic primitive cell with eight atoms in the
conventional cell (Pearson symbol cF8), and is in space group
#227 (Fd3m) with the atoms at the (8a) Wyckoff position.

More details about the structures, including the above in-
formation and a full description of the primitive lattice vectors
and basis vectors, can be found in the Library of Crystallo-
graphic Prototypes [36–38,42]. The Library also allows the
user to generate structure files for use as input in a wide variety
of electronic structure codes, including the POSCAR files for
these AFLOW/VASP calculations.

Table I describes all of the structures used here, including
the common name, Strukturbericht label, space group, and
AFLOW prototype. The online version also provides a link
to the corresponding entry in the Library of Crystallographic
Prototypes.

The face-centered cubic (A1), body-centered cubic (A2),
and both body-centered tetragonal structures (A6, Aa) can all
be derived from one another by stretching or compressing the
primitive cell along the (001) direction, with the A6 structure
having a c/a ratio close to the A1 structure, and Aa near A2.

The structures of most interest in this work are α-Sn (dia-
mond structure, gray tin, or A4), β-Sn (white tin or A5) and
simple hexagonal γ -Sn (A f ) structures. These are shown in
Fig. 1. The β-Sn structure can be obtained from α-Sn by
compressing along the (001) axis of the diamond crystal.

A. The γ-Sn structure

While the α- and β-Sn structures are well known, the γ -Sn
structure is not. Smithells [40], apparently referencing Raynor
and Lee [43], used HgSn10 as the prototype for Strukturbericht
designation A f with hexagonal space group P6/mmm #191
and one atom per unit cell located at the (1a) Wyckoff po-
sition. This can only be achieved if the mercury and tin atoms
are randomly placed on the (1a) site. Alloys of tin with 5–20%
cadmium, indium, lead, and mercury also exhibit this struc-
ture, which is generally referred to as the γ phase [13–15].
Parthé et al. [16] also list In0.45Bi0.55 under the A f designation.

Though it is not the ground state of any element, the
simple hexagonal phase (γ -Sn) is observed at high pressures
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TABLE I. The elemental crystal structures investigated in this paper. As Lonsdaleite does not have a Strukturbericht designation we
abbreviate it as “Lons.” In the electronic versions of this paper the AFLOW prototype column is linked to the appropriate page in the Library
of Crystallographic Prototypes [36–38].

Common name Strukturbericht Atoms/cell Space group AFLOW prototype

fcc (face-centered cubic) A1 1 Fm3m #225 A_cF4_225_a
bcc (body-centered cubic) A2 1 Im3m #229 A_cI2_229_a
hcp (hexagonal close-packed) A3 2 P63/mmc #194 A_hP2_194_c
diamond (α-Sn) A4 2 Fd3m #227 A_cF8_227_a
β-Sn A5 2 I41/amd #141 A_tI4_141_a
In (body-centered tetragonal) A6 1 I4/mmm #139 A_tI2_139_a.In
α-Pr (body-centered tetragonal) Aa 1 I4/mmm #139 A_tI2_139_a.alpha-Pa
γ -Sn (simple hexagonal) Af 1 P6/mmm #191 A_hP1_191_a
sc (simple cubic) Ah 1 Pm3m #221 A_cP1_221_a
Lonsdaleite (hexagonal diamond) Lons. 4 P63/mmc #194 A_hP4_194_f

in silicon [44] and germanium [45]. Needs and Martin [44]
found that the simplest possible transition between β-Sn and
γ -Sn is described by distorting either of the phases into a
body-centered orthorhombic crystal, space group Imma #74,
with the atoms at the (4e) Wyckoff position. This path can
be described using a body-centered orthorhombic unit cell,
space group Imma, with atoms occupying the (4e) Wyckoff
positions, locating the atoms at

�b± = ±(
1
4 b ŷ + z c ẑ

)
. (1)

When a = b and z = 1/8 this becomes the β-Sn structure.
One can change β-Sn into α-Sn simply by moving along the
Bain path [46] and setting c = √

2a. The γ -Sn structure is
found when z = 1/4, a = 2chex, b = √

3ahex, and c = ahex,
where ahex and chex are the lattice constants of the hexagonal
structure. Note that in this case the primitive cell (1) contains
two of the hexagonal primitive cells. This gives us a simple
relationship between the α-, β-, and γ -Sn structures.

An elemental γ -Sn phase, occurring above 435 K, was
apparently described around 1960, “but it is no longer men-
tioned [in] textbooks” [12]. In 1985 Kubiak [12] found that a
structure he called the γ phase appeared after heating single
crystal β-Sn in air at 450 K for one week. He described this
structure as having space group Cmmm #65, with two atoms
in the conventional orthorhombic cell located on the (2a)
Wyckoff position and lattice parameters (a, b, c) =(5.8308
Å, 3.181 Å, 2.9154 Å). This structure is extremely close to
simple hexagonal A f , and when we run electronic structure
calculations starting with Kubiak’s γ -Sn structure it always
relaxes to the simple hexagonal A f structure. Given this we
will only consider the hexagonal structure in our calculations
below and refer to it as both γ -Sn and A f .

We should note that this γ -Sn phase is not the structure
described by Donohue [9]. That structure, also known as Sn-
II, is a high pressure tetragonal structure which we do not
consider here.

Wehinger et al. [47] did a first-principles study of hexag-
onal γ -Sn using the LDA functional. They found that it was
energetically similar to β-Sn. They did not address its thermal
behavior, nor did they discuss the relationship between β- and
γ -Sn and the ground state α-Sn structure.

The orthorhombic elemental γ -Sn phase also can be sta-
bilized in tin nanoparticles and nanowires [48]. We will not
address this work here.

III. DENSITY FUNCTIONALS USED TO STUDY TIN

In our study of the tungsten-nitrogen system [34] we found
that the predicted ground state structure of a compound can
change with the choice of density functional. Given the small
energy difference between tin phases it is quite possible that
different functionals will give different ground state struc-
tures. In this section we describe the density functionals we
used in this study. All are available in VASP.

(i) The local density approximation (LDA) [49–51], which
determines the Kohn-Sham potential [52] at a given point in
space using only the charge density at that point. It is well
known that this functional underestimates equilibrium lattice
volumes.

(ii) Generalized-gradient approximation (GGA) function-
als, where the Kohn-Sham potential depends on the local
charge density and its local gradient. These include

(1) Perdew-Burke-Ernzerhof (PBE) [53], perhaps the
most widely used GGA. This generally overestimates equi-
librium lattice volumes.

(2) Perdew-Burke-Ernzerhof revised for solids
(PBEsol) [54], a modification of PBE optimized for
solids rather than atoms.

(3) Armiento-Mattsson (AM05) [55], designed to de-
scribe surfaces, but which has proved to be very accurate
for solids [56].
(iii) Meta-GGA functionals, which depend on the orbital

kinetic energy density as well as the charge density and its
gradient. VASP provides

(1) Tao-Perdew-Staroverov-Scuseria (TPSS) [57], de-
signed to be correct for one- and two-electron systems and
systems with slowly varying charge densities.

(2) “Revised” TPSS (revTPSS) [58], which includes
the second-order gradient expansion for exchange.

(3) “Made-simple” functionals (MS0, MS1, MS2)
[59,60], which have empirical parameters.

(4) M06-L [61], optimized for main-group and transi-
tion metal chemistry.
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FIG. 1. The three low-energy structures of tin, drawn approxi-
mately to scale. Top: α-Sn, Strukturbericht A4 (gray tin, diamond
structure), AFLOW Designation A_cF8_227_a. Middle: β-Sn,
Strukturbericht A5 (white tin), AFLOW Designation A_tI4_141_a.
Bottom: simple hexagonal γ -Sn, StrukturberichtA f , AFLOW Desig-
nation A_hP1_191_a. The conventional cells are shown for the cubic
α-Sn and tetragonal β-Sn. The γ -Sn figure contains three primitive
cells to show the hexagonal structure.

(5) “Strongly constrained and appropriately normed”
(SCAN) [62], which satisfies all known constraints on the
exact density functional with no adjustable parameters.
Since the SCAN functional properly describes both cova-
lent and metallic bonding in silicon [63], it may be able to
describe similar behavior in tin.

All of the meta-GGA functionals except SCAN give simi-
lar results for the static energies for the structures in Table I.
Since a metaGGA calculation is more time consuming than
LDA or standard GGA we will use revTPSS as the reference
functional for these calculations.

The accuracy of these functionals has been tested with a
variety of datasets [56,64,65], but to our knowledge there is
no systematic test of the ability of density functional theory
to describe the tin phase transition. Several papers [17–22]
have discussed the α-β transition, and Ivanov and coworkers
[14,15] have looked at the γ -Sn phase. No one, however,
has looked at the relationship between all three phases, nor
has there been any work discussing the differences in the
predictions made by different density functionals.

IV. THEORY AND COMPUTATIONAL DETAILS

All calculations were performed using the high-throughput
AFLOW (automatic FLOW) [23–25] framework. The first-
principles calculations were done using the Vienna ab
initio simulation package (VASP), version 5.4.4 [30–33],
with VASP POTCAR files generated with the projector
augmented-wave (PAW) method [66,67]. Calculations with
the Perdew-Burke-Ernzerhof (PBE) functional [53] used the
VASP s2 p2 “Sn” PBE POTCAR (dated 08Apr2002). Local
density approximation (LDA) and the other GGA functionals
used the corresponding LDA POTCAR (03Oct2001), with
the appropriate choice of the GGA or METAGGA tag in
the INCAR file. Meta-GGA functional calculations require
kinetic energy information only available in POTCARs avail-
able starting with VASP 5.4, so for those functionals we used
the s2 p2 LDA POTCAR (also dated 03Oct2001). In general
we used the AFLOW defaults for energy cutoffs (1.4 times
the value of ENMAX given in the VASP POTCAR file) and
�-centered k-point meshes, with the exceptions noted below.

Electronic densities of states (eDOS) were computed by
VASP using the eigenvalues determined in the self-consistent
energy runs. We did not do a separate tetrahedron method
calculation, as we only want to show general behavior of the
eDOS.

Phonon spectra, vibrational free energy, and the thermal
expansion of α-, β-, and γ -Sn were found using the auto-
matic phonon library (APL) module in AFLOW. This method
constructs a supercell of the original structure, displacing one
or more atoms a distance of 0.015 Å from its equilibrium
position. The forces generated by this displacement are used
to determine the harmonic interatomic force constants (IFC),
and these determine the phonon spectra in the harmonic ap-
proximation. Obviously the supercell must be large enough
to minimize the interaction between images of the displaced
atom, and the k-point mesh dense enough to map the intrica-
cies of the supercell’s electronic structure. We will discuss this
in detail in Sec. VII.

(i) For α-Sn we used the standard face-centered cubic
lattice vectors. APL calculations used a 4 × 4 × 4 (128 atom)
supercell and a 3 × 3 × 3 �-centered k-point mesh, yielding
10 k points in the irreducible part of the supercell’s Brillouin
zone.

(ii) β-Sn has a very small value for c/a (≈0.54), which
required some special handling. We did our calculations using
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the conventional tetragonal unit cell:

�a1 = a x̂

�a2 = a ŷ, and

�a3 = c ẑ, (2)

which contains two primitive body-centered cubic cells and
four tin atoms. APL calculations used a 3 × 3 × 5 (180
atom) supercell, corresponding to a nearly-cubic 3a × 3a ×
5c tetragonal cell. A 3 × 3 × 3 �-centered k-point mesh was
chosen, yielding 10 k points in the irreducible part of the
supercell’s Brillouin zone.

(iii) γ -Sn calculations used a 5 × 5 × 5 (125 atom) super-
cell of the simple hexagonal lattice. The phonon spectra for
this structure near � and the zone boundary was extremely
sensitive to the choice of k-point mesh, and we finally settled
on a 3 × 3 × 3 �-centered mesh with 10 k points in the irre-
ducible part of the supercell’s Brillouin zone.

For a given unit cell volume V , we used VASP to find the
value of c/a which minimized the total static lattice energy
U (V ). We then used the AFLOW APL module to determine
IFCs, the corresponding phonon spectrum and the phonon
density of states, g(V, ε) (pDOS).

With g(V, ε) in hand we can determine all of the thermody-
namic properties of the system. In particular, the energy due to
the zero-point and thermal vibrations of the phonons is given
by

Uph(V, T ) =
∫ εmax

0
g(V, ε)

[
ε

2
+ ε

eβε − 1

]
dε, (3)

where εmax is the maximum phonon energy in the system. The
first term in (3) is, of course, the zero-point energy, while the
remainder is the thermal energy.

Since we are considering systems at volume V and temper-
ature T , we must determine the Helmholtz free energy of the
phonons,

Fph(V, T ) = Uph(V, T ) − T Sph(V, T ). (4)

It is convenient to write this in the form [68]

Fph(V, T ) = 1

2

∫ εmax

0
dε g(V, ε) ε

+ kT
∫ εmax

0
dε g(V, ε) ln(1 − e−βε ). (5)

Again the first term in (5) is the zero-point energy of the
phonons, while the remainder contains the temperature de-
pendent contributions due to the phonons’ vibrational energy
and entropy. The second term is intrinsically negative and its
magnitude increases with temperature, so Fph(V, T ) is contin-
ually decreasing with temperature. It is weighted so that the
lower frequency phonons make the largest contribution to
the density of states, and this becomes more pronounced as
the temperature increases. We can also see that the free energy
is a weighted average over g(V, ε) and so it will be insensitive
to the exact behavior of the pDOS.

The free energy of the system as a function of volume and
temperature is then

F (V, T ) = U (V ) + Fph(V, T ). (6)

The temperature-dependent free energy of the system, F (T ),
will be the minimum of (6) at temperature T . As we only
find F (V, T ) at a few fixed volumes Vn, we approximate it
by fitting the points F (Vn, T ) to a fourth-order Birch equation
of state [69,70]:

F (V, T ) = F (T ) +
4∑

n=2

γn

[(
V0(T )

V

)2/3

− 1

]n

, (7)

which gives us the system’s free energy F (T ) and equilibrium
volume V0(T ) as a function of temperature.

We only need the primitive cell volume V to completely
specify the structure of α-Sn. The β- and γ -Sn phases require
that we also know the value of c/a, the ratio of the lattice
constant in the z direction compared to the lattice constant in
the x-y plane. A static lattice calculation will determine an
energy U (V, c/a). Fixing V and finding the minimum energy
as a function of c/a will determine the energy U (V ) at that
volume. As the value of c/a which minimizes (6) can change
with temperature we should compute the corresponding free
energy F (V, c/a, T ) and determine the free energy by mini-
mizing (6) in both V and c/a at fixed T . This would be an
enormous task. In practice the change in c/a with volume is
so small during thermal expansion that this is not necessary,
so we use the value of c/a determined by the static VASP
calculation at all temperatures.

Visualizing and analyzing this data was accomplished us-
ing third-party software. In particular,

(i) The crystal structures shown in the Sec. II were plotted
using Jmol [71].

(ii) Some of the experimental phonon frequencies appear-
ing in the figures were taken from published graphs. We used
the Engauge Digitizer [72] to convert this data into a form we
could use. Any errors in the process are ours.

V. HIGH-THROUGHPUT CALCULATIONS
AND CONVERGENCE

By their nature, high-throughput calculations rely on a set
of standard assumptions, in particular that the basis set size
(kinetic energy cutoff in a plane-wave code) and the density
of the k-point mesh can be fixed without regard to the crystal
structure being studied. For example, by default AFLOW sets
the kinetic energy cutoff (ENMAX in VASP) to 140% of
the minimum value recommended by VASP and the k-point
mesh to give a minimum of 10000 k-points per reciprocal
atom in the Brillouin zone [73], equivalent to a 22 × 22 × 22
k-point mesh for a cubic system. While these standard values
are usually sufficient, they may lead to errors when energy
differences between phases are small.

We tested the reliability of the default energy cutoff and
k-point size for tin by performing two sets of calculations
to find the minimum energy configuration for the α-, β-,
and γ -Sn phases described in Sec. II, looking at each of
the functionals described in Sec. III. The first runs used the
AFLOW default values of the energy cutoff and k-point mesh.
The second set approximately doubled the energy cutoff and
increased the k-point density in the Brillouin zone. The results
are shown in Table II. There is little difference between the
calculations’ equilibrium values of V0 and c/a with changing
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TABLE III. Predicted equilibrium properties of α-, β-, and γ -Sn for the density functionals described in Sec. III using the default AFLOW
parameters for each structure from Table II. These calculations were made by allowing VASP to fully relax each unit cell. �Uαβ and �Uαγ

represent the equilibrium energy difference between β-Sn or γ -Sn and α-Sn, respectively. A positive number indicates that α-Sn is lower
in energy. We also include experimentally measured lattice constants for comparison, using the alloy with stoichiometry Sn0.8In0.2 [14] as a
stand-in for γ -Sn.

α-Sn β-Sn γ -Sn �Uαβ �Uαγ

a (Å) a (Å) c (Å) a (Å) c (Å) (eV/atom) (eV/atom)

Expt. (90 K) 6.483 [74]
Expt. (100 K) 5.815 [75] 3.164 [75]
Expt. (296 K) 6.491 [19] 5.832 [75] 3.183 [75] 3.216 [14] 2.998 [14]
Expt. (300 K) 5.8315 [76] 3.1828 [76]

LDA 6.4785 5.7905 3.1248 3.1762 3.0012 −22.739 −18.527
PBE 6.6524 5.9455 3.2089 3.2593 3.0847 39.442 40.033
PBEsol 6.5292 5.8293 3.1461 3.1968 3.0233 −28.896 −26.389
AM05 6.5451 5.8227 3.1463 3.1947 3.0208 −4.878 −2.547
revTPSS 6.5450 5.8139 3.1412 3.1897 3.0124 −85.814 −82.689
SCAN 6.5412 5.8845 3.1553 3.2163 3.0409 73.569 79.448

basis set size/k-point mesh. There is a larger discrepancy
in the energy differences. The “worst case” seems to be the
revTPSS functional, where �U for the β-Sn phase shifts by
3.7 meV/atom when we change basis sets. SCAN is the “best”
functional, as the largest shift in �U is only 0.43 meV/atom
for β-Sn. Most shifts are on the order of 1–3 meV/atom,
which will not be large enough to change our conclusions.

There are some interesting anomalies in the last three lines
of Table II. As α-Sn is the ground state and γ -Sn is the high-
est temperature state, we would expect U

γ−Sn > U
β−Sn >

U
α−Sn, where all of the �U values should be positive. SCAN

is the only functional to achieve this in both the standard and
higher precision calculations. PBE correctly states that the
ground state energies of both β- and γ -Sn are well above that
of α-Sn, but the sign of the energy difference between those
two phases changes when we go from the lower accuracy
calculation to the higher. All other functionals predict β-Sn
to have the lowest energy of the three structures and α-Sn the
largest.

While it is desirable to have highly converged results, the
calculation of thermal properties in tin requires a large number
of calculations, so we would like to keep the energy cutoff and
k-point mesh as small as possible to speed up the calculations.
For this reason we will use the low energy cutoff (144.6 meV)
and smaller k-point mesh for all of our calculations. The only
place this might cause difficulties is when we use the PBE
functional, which switches the ordering of β- and γ -Sn when
we switch basis set size. As we shall see below, the change in
the vibrational free energy (5) between these phases will be
much larger than the change in static energy.

VI. ELECTRONIC STRUCTURE AND ENERGY

The first quantity needed to compute the free energy (6)
is the energy U (V ) of the static lattice. Here we discuss the
results of the calculations for U (V ) for all of the density
functionals in Sec. III, using the default of ENMAX and
KMESH listed in Table II. The minimization in energy versus
c/a at fixed volume is controlled by VASP. We also look at
the electronic structure for α-, β-, and γ -Sn at the equilib-

rium structures shown in Table III, confirming that α-Sn is a
semimetal and the other two structures are metals. All of the
calculations use the smaller energy cutoff and k-point mesh
listed in Table II.

A. The local density approximation (LDA)

Figure 2 shows the electronic density of states (eDOS) for
tin in α-, β-, and γ -Sn at equilibrium (Table III) within the
local density approximation (LDA). As we expect, α-Sn is a
semimetal. Both β- and γ -Sn are metals with approximately
the same density of states near the Fermi level, an unsurprising
result given the close connection of the two structures dis-
cussed in Sec. II.

The predicted energy-volume curves are shown in Fig. 3.
As is usual with the LDA the predicted equilibrium volume for
β-Sn is about 4% below the experimental volume. Somewhat
surprisingly the equilibrium volume for α-Sn is approximately
equal to the low-temperature experimental volume.
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FIG. 2. Electronic density of states for α-, β-, and γ -Sn com-
puted using the LDA at the equilibrium structure of each phase found
in Table III.
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FIG. 3. Static lattice energy-volume curves for the tin structures
discussed in Sec. II as predicted by AFLOW/VASP using the LDA
functional. Structural notation is from Table I. We plot �U, the
change in energy per atom compared to the equilibrium energy of
the α-Sn (A4) structure. The lines labeled “A5 Expt.” and “A4 Expt.”
represent the experimental volume of β-Sn (A5) at 298 K [77] and
α-Sn (A4) at 90 K [74], respectively.

As one expects there is a large equilibrium volume differ-
ence between α- and β-Sn, in agreement with experiment. In
addition, Lonsdaleite (“Lons.” in the figure), the hexagonal
diamond structure, is correctly above α-Sn (A4), and γ -Sn
(A f ) is above β-Sn (A5). We see that the LDA overbinds both
β-Sn and γ -Sn with respect to α-Sn, contrary to experiment,
predicting a β-Sn ground state. In addition, γ -Sn is nearly
degenerate with β-Sn, in agreement with the calculations of
Wehinger et al. [47].

Christensen and Methfessel [78] also found β-Sn as the
ground state within the LDA using the LMTO-ASA method.
Their equilibrium energy difference was 5 meV/atom, sub-
stantially less than our value of 20 meV/atom, but neither
result will support the experimentally observed structural tran-
sition.

B. The Perdew-Burke-Ernzerhof generalized
gradient functional (PBE)

Figure 4 shows the electronic density of states at equi-
librium for the three phases of interest. The results are very
similar to the LDA.

The PBE results for U (V ) are shown in Fig. 5. As is usual
with the PBE the predicted equilibrium volumes are 3–10%
above the experimental values. The PBE is an improvement
over LDA as it finds that the equilibrium energy of the β-Sn
phase is almost 40 meV above the α-Sn, in agreement with
previous work [21]. As with LDA, the β- and γ -Sn phases are
nearly degenerate. Using the small energy cutoff and k-point
mesh found in Table II we find β-Sn below γ -Sn, but this will
reverse if we increase the basis set size. As we will see below
thermal effects will dwarf this energy difference.
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FIG. 4. Electronic density of states for α-, β-, and γ -Sn com-
puted using the PBE functional at the equilibrium structure of each
phase found in Table III.

C. The Perdew-Burke-Ernzerhof generalized gradient
functional revised for solids (PBEsol)

The electronic density of states and energy volume curves
for the PBEsol functional are shown in Figs. 6 and 7. Since
this functional was designed to give better equilibrium vol-
umes than PBE, it is not surprising that the equilibrium
volumes for the α, β, and γ phases are between those pre-
dicted by the LDA and PBE functionals. The eDOS curves
are very similar to those of the LDA.

In other respects the PBEsol results are slightly worse than
those found by the LDA. The β-Sn phase is even more bound
compared to the α phase, and the β and γ phases are closer
together, though not as close as found with the PBE.

D. The Armiento-Mattsson generalized gradient
functional (AM05)

The results for the AM05 functional are shown in Figs. 8
and 9. Again the eDOS is similar to the LDA and nearly
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FIG. 5. Static lattice energy-volume curves for the tin structures
discussed in Sec. II as predicted by AFLOW/VASP using the PBE
functional. The notation is identical to that in Fig. 3.
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FIG. 6. Electronic density of states for α-, β-, and γ -Sn com-
puted using the PBEsol functional at the equilibrium structure of
each phase found in Table III.

identical to the PBEsol result. The equilibrium properties are
also similar to PBEsol, except that the β- and γ -Sn phases are
closer to diamond than they are in LDA or PBEsol calcula-
tions.

It is interesting to look at the close-packed (A1, A3) and
near close-packed (A2, A6, Aa) phases in this study. The pre-
vious functionals predicted that these phases had minimum
energies 20–40 meV/atom above β- and γ -Sn. Here the en-
ergy difference is only about 5 meV/atom. Even ignoring the
misplaced α-Sn phase, this small energy difference leads to
a prediction of a transition from β-Sn to body-centered cubic
Sn at 1 GPa, far below the observed experimental transition at
35 GPa [79].

E. Meta-GGA functionals (except SCAN)

With the exception of the SCAN functional discussed
below, all of the meta-GGA functionals (TPSS, revTPSS,
MS0/1/2, M06-L), significantly overbind the close-packed
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FIG. 7. Static lattice energy-volume curves for the tin structures
discussed in Sec. II as predicted by AFLOW/VASP using the PBEsol
functional. The notation is identical to that in Fig. 3.
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FIG. 8. Electronic density of states for α-, β-, and γ -Sn com-
puted using the AM05 functional at the equilibrium structure of each
phase found in Table III.

fcc (A1) and hcp (A3) structures, as well as the nearly close-
packed bcc (A2) structure and the tetragonal A6 and Aa

structures. Calculations using these functionals are signifi-
cantly more time consuming than LDA or GGA calculations,
so once we realized this, we screened the functionals by
looking at the energy difference between the hcp (A3) and
α-Sn (A4) phases. To show the trend in these systems we
did a complete set of energy/volume calculations using the
revTPSS functional and show these results in Figs. 10 and 11.
The electronic density of states for the tin phases are similar
to those obtained by other functionals, but all of the close-
packed and nearly close packed phases are well below the
experimentally observed tin phases. In addition, β- and γ -Sn
are overbound by 70 meV/atom compared to the experimental
ground state, α-Sn. These functionals have been optimized for
noncovalent interactions [61] so it is not surprising that they
do not describe the energetics of the covalently-bonded α-Sn
phase particularly well.
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FIG. 9. Static lattice energy-volume curves for the tin structures
discussed in Sec. II as predicted by AFLOW/VASP using the AM05
functional. The notation is identical to that in Fig. 3.
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FIG. 10. Electronic density of states for α-, β-, and γ -Sn com-
puted using the revTPSS functional at the equilibrium volume for
each structure found in Table III.

F. The strongly constrained and appropriately
normed (SCAN) meta-GGA

Unlike meta-GGAs such as M06-L, the SCAN functional
is nonempirical and is designed “to satisfy all 17 exact
constraints appropriate to a semilocal functional” [63]. The
SCAN electronic density of states, Fig. 12, correctly finds the
semimetallic behavior of α-Sn and the metallic behavior of
β- and γ -Sn. As shown in Fig. 13, SCAN predicts the correct
ordering of the major tin phases, U

α−Sn < U
β−Sn < U

γ−Sn.
The simple cubic (Ah) phase is very low compared to other
calculations, while the close-packed and nearly close-packed
phases barely make the graph, with only the body-centered
tetragonal α-Pr (Aa) phase within 200 meV of α-Sn.

G. Summary of DFT calculations for the ground state of tin

Table III provides a brief summary of the equilibrium prop-
erties of the three tin phase for each choice of DFT, along
with the static energy difference between the three phases.
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FIG. 11. Static lattice energy-volume curves for most of the tin
structures discussed in Sec. II as predicted by AFLOW/VASP using
the revTPSS functional. The notation is identical to that in Fig. 3.
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FIG. 12. Electronic density of states for α-, β-, γ -Sn computed
using the SCAN functional at the equilibrium volume for each struc-
ture found in Table III. We also include the DOS of simple cubic tin
at its SCAN equilibrium structure, a = 3.0432 Å.

The SCAN functional is the only one which correctly predicts
the energy relationship U (α-Sn) < U (β-Sn) < U (γ -Sn) for
all choices of basis set and k-point mesh. In that sense it is
better than any of the other functionals studied. Unfortunately
the relative energy U (β-Sn) − U (α-Sn) is approximately 80
meV/atom, significantly larger than the 10–40 meV/atom
suggested by the 286 K transition temperature [17,18], and
like most of the functionals discussed here it overestimates
the equilibrium volumes for both white and gray tin.

VII. PHONON CONVERGENCE AND ACCURACY

When we determine the vibrational free energy Fph (5) of
the various phases of tin, we must consider both convergence
and accuracy. We will say that the calculations are converged
if the Fph(T ) is insensitive to the size of the supercell and k-
point mesh. By accuracy we mean that our computed phonon
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FIG. 13. Static lattice energy-volume curves for the tin structures
discussed in Sec. II as predicted by AFLOW/VASP using the SCAN
functional. The notation is identical to that in Fig. 3. Structures not
shown (A1, A2, A3, A6) are above the �U = 150 meV/atom limit of
the graph.
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FIG. 14. Phonon spectra of γ -Sn using the PBE functional at
equilibrium as given in Table II. The solid line shows the results for
the 125 atom supercell, while the dashed line shows the 216 atom
supercell. The high-symmetry paths through the face-centered cubic
Brillouin zone are defined by Setyawan and Curtarolo [80].

frequencies agree with experiment. Obviously we can never
be perfectly converged nor perfectly accurate, but this perfec-
tion is not needed to obtain a reasonable value of Fph. The
zero-point and thermal free energy integrals in (5) perform a
weighted average of the phonon density of states g(V, ε). The
thermal contribution to the free energy is weighted toward the
low frequency end of the phonon spectrum, where the De-
bye modes dominate. Small differences between the phonon
density of states calculated from two different supercells, or
between the computed and experimental pDOS, will be mini-
mized by the averaging process.

To see this, consider a calculation of the phonon frequen-
cies of γ -Sn. We will look at the phonons predicted by the
PBE functional, using the equilibrium structure described in
Table II. (In all of the following we will use the default
AFLOW energy cutoff, 144.6 meV.) In the first case we con-
sider a 5 × 5 × 5 supercell with 125 atoms, and the second
a 6 × 6 × 6 cell with 216 atoms. In both cases we use a
3 × 3 × 3 �-centered k-point mesh, yielding 10 k points in
the Brillouin zone.

Figure 14 shows the phonon spectrum for both cells. There
are considerable differences, especially at the “A” point (00 1

2 ),
where the smaller cell finds the highest frequency almost 0.5
THz greater than found for the larger cell. Figure 15 shows
the phonon density of states for the two calculations. Now we
see general agreement between the two calculations. Except
for a disagreement in the pDOS near 1 THz, the two curves
are in agreement up to nearly 2.5 THz. In Fig. 16 even these
differences are washed out as we compute the vibrational free
energy. The difference in the free energy of the two calcula-
tions only reaches 3 meV, a 0.5% difference, at 1000 K. The
zero point energy for the 126 atom cell is 13.67 meV, while it
is 13.50 meV for the 216 atom cell, a difference of 1.3%.

We get even better results for α-Sn. Figure 17 shows the
vibrational free energy of α-Sn at equilibrium using the PBE
functional using 4 × 4 × 4 (128 atom) and 5 × 5 × 5 (250
atom) supercells. The agreement here is even better, with less
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FIG. 15. Phonon density of states for the same cell described in
Fig. 14. The solid line shows the results for the 125 atom supercell,
while the dashed line shows the 216 atom supercell. The density of
phonon modes is normalized for one atom, so the area under each
curve is equal to three.

than 0.2% difference in the free energy at 1000 K. The zero
point energy is 10.539 meV/atom for the smaller cell and
10.544 meV for the larger, a 0.04% discrepancy.

Finally, the PBE vibrational free energy of β-Sn is shown
in Fig. 18, where we compare a 3 × 3 × 5 (180 atom) super-
cell to a 4 × 4 × 7 (448 atom) cell. The difference between
the two calculations at 1000 K is 0.5%. At 0 K the zero point
energy is 14.33 meV for the small cell and 14.20 meV for the
large cell, a 0.9% discrepancy, on the same order as the error
in γ -Sn.

We have also investigated k-point convergence in the su-
percells by increasing the k-point mesh in all three supercells.
Fph for α-Sn and β-Sn are well converged with k-point mesh
using the default APL values (�-centered 3 × 3 × 3 meshes
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FIG. 16. Vibrational free energy (5) for the same cell described
in Fig. 14. The left axis shows Fph for the 126 atom supercell (solid
line) and the 216 cell (dashed line). The dotted line is the difference
in the vibrational free energy between the cells, with the scale on the
right.
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FIG. 17. Vibrational free energy (5) for α-Sn using the PBE
functional at equilibrium (Table II). The left axis shows Fph for
the 128 atom supercell (solid line) and the 250 atom supercell (the
barely distinguishable dashed line). The dotted line is the difference
between the cells, with the scale on the right.

with 10 k points in the irreducible Brillouin zone for both
systems). γ -Sn gives imaginary phonons for meshes which
are not of the form 3n × 3n × m, where m and n are integers.
This is presumably because the behavior of the hexagonal
system strongly depends on the electronic structure near the
Brillouin zone boundary. The 6 × 6 × 4 k-point mesh gives
values for Fph close to that of the 3 × 3 × 3 mesh, so this phase
is converged as well.

We conclude that the supercells we have chosen are ade-
quate to determine the vibrational free energy below 1000 K
with an accuracy of ≈1.4% or better. But do our phonon
calculations actually correspond to reality? Since we have
experimental phonon results for all three phases of tin or a
tin alloy we can compare these to our results.
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FIG. 18. Vibrational free energy (5) for β-Sn using the PBE
functional at equilibrium (Table II). The left axis shows Fph for the
180 atom supercell (solid line) and the 448 atom supercell.
The dotted line is the difference between the cells, with the scale
on the right.
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FIG. 19. Phonon spectra of α-Sn at the experimental volume.
The solid lines are the frequencies predicted using the APL module
of AFLOW with the PBE functional, and the dashed lines are the
predicted frequencies for the SCAN functional. The circles are the
frequencies measured by Price et al. [74] at 90 K. The calcula-
tions use the supercell described in Sec. IV. The high-symmetry
paths through the face-centered cubic Brillouin zone are defined by
Setyawan and Curtarolo [80]. Note that Price et al. only determined
the frequencies of one of the transverse branches along the �-K and
U -X directions (the � line).

Phonon data for α-Sn (gray tin, Strukturbericht A4) was
obtained by Price et al. [74] at 90 K, with a unit cell vol-
ume of 68.1 Å3. We compare our results with theirs along
high-symmetry lines in the Brillouin zone [80] in Fig. 19.
The calculations are reasonably good, better for the optical
modes and longitudinal acoustic modes than for the transverse
acoustic modes. We will see below that the optical modes in
α-Sn dominate the free energy, so this is acceptable. Aouissi
et al. [81] have shown that it is possible to get extremely accu-
rate computational phonon spectra for α-Sn, but this requires
supercells larger than we can afford to use and get this work
finished in a reasonable time.

Rowe et al. [75] and Price [76] measured the phonon
spectrum of β-Sn (white tin, Strukturbericht A5) at 296 K and
300 K respectively, finding a volume of 54.1 Å3. The results
are shown in Fig. 20. The agreement with experiment is worse
than it was for α-Sn in the optic modes, but better in the
acoustic modes. Since the acoustic modes dominate the free
energy in β-Sn, this, too, is acceptable.

There are no samples of simple hexagonal (Strukturbericht
A f ) tin, but alloying with indium is known to stabilize this
phase. Ivanov et al. [14] measured the phonon spectrum of
γ -Sn Sn0.8In0.2 at room temperature, where they found the
sample to have a primitive cell volume of 26.8 Å3. We com-
pare that to our calculations for pure simple hexagonal tin in
Fig. 21. Here the agreement for longitudinal mode and the
upper transverse mode is excellent. There is some error in the
lower transverse mode, on the order of that in α-Sn.

While the APL is generally reliable, as shown above, there
are points where it gives imaginary phonon frequencies. In
particular, SCAN predicts that γ -Sn has an unstable phonon
mode at M ( 1

2 00) for cell volumes �30 Å3. It may be that this
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FIG. 20. Phonon spectra of β-Sn at the experimental volume.
The solid lines are the frequencies predicted using the APL module
of AFLOW with the PBE functional, and the dashed lines are the
predicted frequencies for the SCAN functional. In both cases
the volume is held fixed, but the value of c/a is chosen to minimize
the total energy. The calculations use the supercell described in
Sec. IV. The circles are the frequencies measured by Price [76] at
300 K and Rowe et al. [75] at 296 K. The high-symmetry paths
through the body-centered tetragonal Brillouin zone are defined by
Setyawan and Curtarolo [80]. Note that Price only determined the
frequencies of one acoustic and one optic transverse branch along the
�-X (�) line. Data points were obtained from the references using
the Engauge Digitizer [72].

 0

 1

 2

 3

 4

 5

Γ M K Γ A L H A|L M|K H

ν 
(T

H
z)

FIG. 21. Phonon spectra of computational γ -Sn and experimen-
tal Sn0.8In0.2 at the experimental volume. The solid lines are the
frequencies predicted using the APL module of AFLOW with the
PBE functional, and the dashed lines are the predicted frequencies
for the SCAN functional. In both cases the volume is held fixed,
but the value of c/a is chosen to minimize the total energy. The
calculations use the supercell described in Sec. IV. The circles are
data taken by Ivanov et al. [14] for Sn0.8In0.2 at room temperature.
The high-symmetry paths through the simple hexagonal Brillouin
zone are defined by Setyawan and Curtarolo [80]. Data points were
obtained from the references using the Engauge Digitizer [72].

is an indication that the γ -Sn structure is unstable with respect
to β-Sn, but we have not investigated this point. Fortunately
the thermal expansion of tin does not take us past this critical
volume so long as we keep the temperature below 800 K,
which is sufficient for this study.

Finally, we should stress that all of these calculations are
carried out in a quasiharmonic approximation, assuming that
the vibrational energy of each phonon mode is quadratic in
the displacement of the atoms and that the IFCs only depend
on the structure and the volume of the unit cell. Since tin
melts at 505 K [82] we are obviously close to the failure
of the quasiharmonic approximation, but the consideration of
nonquadratic behavior is beyond the scope of this work.

VIII. PHONONS AND THERMODYNAMICS

The free energy F (T ) has two major contributions: the
static lattice energy U (V ) determined by VASP, and the vibra-
tional free energy Fph(T ) (5), found from the phonon density
of states g(V, ε). The behavior of the second term obviously
dominates the thermal behavior of tin. If we look at the graphs
of U (V ) in Section VI we see that a volume change of 10%
changes the energy by 10–20 meV/atom. The vibrational
free energy discussed in Sec. VII changes by hundreds of
meV/atom going from absolute zero to 500 K.

The AFLOW APL module allows us to determine g(V, ε)
and find the zero-point and temperature-dependent free energy
for all three of the tin phases. The procedure is as follows:

(i) Determine the equilibrium c/a and static energy U (V )
of the three possible phases of tin as a function of vol-
ume using AFLOW/VASP. Since the variation of c/a for
the β and γ phases is small, we will ignore changes in
c/a with temperature and use the c/a found to minimize
the static energy at each volume for all temperatures at that
volume.

(ii) Use AFLOW’s APL module to determine the phonon
spectra for each structure and volume.

(iii) The APL module finds the pDOS and then determines
the vibrational free energy (6) as a function of temperature for
each of these structures and volumes, including the zero-point
energy.

(iv) For a given temperature, determine the volume which
minimizes the free energy using the Birch fit (7), generating
the free energy F (T ) and equilibrium volume V (T ).

(v) Determine the averaged linear expansion coefficient of
each structure using the relationship

α(T ) = 1

3V (T )

dV

dT
(T ), (8)

where V (T ) is the unit cell volume of the crystal. For the
tetragonal β and hexagonal γ phases α(T ) will be the average
of the linear expansion coefficients in the x, y, and z directions.
By default the APL module prints F (V, T ) in 10 K increments
from absolute zero to 2000 K. We determine the equilibrium
V (T ) from (7) and use five-point numerical differentiation of
these results to find α(T ).

(vi) Compare the values of the free energy F (T ) for each
structure to determine the equilibrium structure as a function
of temperature.
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TABLE IV. Zero-point energy (9) for a variety of density func-
tionals. All calculations are performed at the equilibrium lattice
constants given in Table III and use the k-point meshes described
in Sec. VII. The structures marked with an asterisk have imaginary
modes. The ZPE for these structures were calculated by only inte-
grating over the real modes.

Functional α-Sn β-Sn γ -Sn

LDA 22.4 16.3 15.5
PBE 21.1 14.4 13.7
PBEsol 21.8 15.9 15.1
AM05 21.8 16.0 15.0
revTPSS 21.7 16.2* 15.3*

SCAN 22.5 15.5 14.4

A. Zero-point energy

The PBE and SCAN functionals correctly place the static
equilibrium energies of β- and γ -Sn above α-Sn. Neither
the LDA, PBEsol, nor AM05 functionals correctly order
these phases, all making β-Sn the ground state. The revTPSS
and other non-SCAN metaGGA functionals predict a close-
packed phase to be the ground state but also predict the β-Sn
phase to be lower in energy than the other two tin phases. The
obvious conclusion is that we should only concentrate on
the PBE and SCAN calculations, but we must remember that
the vibrational free energy, in particular the zero-point energy,
is not directly related to the static energy U (V ).

In that case, since the energy differences between the
phases are rather small, especially for AM05, the zero-point
energy (ZPE) in (5) might change the ordering of the phases.
The ZPE might even change the α-β energy difference found
in the SCAN functional to make it closer to that found using
PBE.

While the ZPE is implicitly contained in the calculations in
the next two parts of this section, there we will only discuss
“interesting” functionals. Here we will discuss the ZPE for all
the functionals we studied.

As we showed in Sec. IV, the ZPE is just half of the average
phonon energy as weighted by the pDOS:

FZPE(V ) = 1

2

∫ εmax

0
dε g(V, ε) ε. (9)

We used the APL module to compute the zero-point energy
at static equilibrium, as given in Table III, for a variety
of density functionals, presenting our results in Table IV.
The revTPSS calculations show that β- and γ -Sn are un-
stable, with imaginary frequencies near � (β-Sn) and M
(γ -Sn), not surprising as these structures are not the low-
est ones at their equilibrium volumes. The ZPE for these
states only includes the real modes and is presented only for
comparison.

In all other cases we find that the zero-point energy of α-Sn
is 35–45% larger than that of the β- or γ -Sn phases. This
can be easily explained by looking at the phonon density of
states for the three phases. Figure 22 shows the pDOS for
all three phases using both the PBE and SCAN functionals.
Other functionals give similar results. We see that the covalent
bonding in α-Sn produces a phonon spectrum almost perfectly
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FIG. 22. Phonon density of states for α- (solid line), β- (dashed
line) and γ -Sn (dotted line) at the equilibrium configurations from
Table III. Top panel: PBE functional. Bottom panel: SCAN func-
tional. We show the number of phonon modes per atom, thus the
area under each curve is three.

divided into acoustic and optical modes. The optical modes
are concentrated near the top of the phonon conduction band,
and the maximum phonon frequency for α-Sn is roughly 20%
larger than the maximum of the other two phases. As a result
the zero-point energy (9) of α-Sn will always be larger than
that of the other two phases. This means that if the static lattice
calculation predicts that the β- or γ -Sn phase is the ground
state, then the addition of zero-point energy will increase the
energy difference. Consequently the LDA, PBEsol, AM05,
and revTPSS functionals will never find the experimentally
observed ordering between phases. The zero-point energy will
decrease the observed energy difference between α-Sn and the
other structures when using the PBE and SCAN functionals,
and so will lower the α-β-γ phase transitions tempera-
ture compared to what would be found with no zero-point
energy.

Table IV also shows that the zero-point energy of γ -Sn is
always lower than the zero-point energy of β-Sn. This will be
important when we discuss the thermal stability of tin below.
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FIG. 23. The primitive-cell volume of α-Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient α

(right axis, blue triangles) calculated by APL using the PBE density
functional. We also plot the experimental data found in Touloukian
et al. [83] (black diamonds).

B. Thermal expansion

We now look at the full effect of the phonons on the
thermodynamics of tin predicted by these functionals. First we
consider the thermal expansion of the tin structures. The APL
module of AFLOW prints the vibrational free energy Fph(T ),
so we can easily find the minimum free-energy volume V (T )
over a large number of points. We also computed the linear
expansion coefficient (8) using five-point numerical differen-
tiation of the volume.

The thermal expansion of α-Sn is shown in Figs. 23 (PBE)
and 24 (SCAN), compared to data taken by Touloukian et al.
[83]. Even though PBE overestimates the equilibrium volume,
its predicted value of α(T ) is in good agreement with exper-
iment for low temperatures and shows the same flattening at
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FIG. 24. The primitive-cell volume of α-Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient
α (right axis, blue triangles) calculated by APL using the SCAN
density functional. We also plot the experimental data found in
Touloukian et al. [83] (black diamonds).
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FIG. 25. The primitive-cell volume of β-Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient α

(right axis, blue triangles) calculated by APL using the PBE density
functional. We also plot the value of α(T) found in Touloukian
et al. [83] (solid black diamonds) and measured by Deshpande and
Sirdeshmukh [77] (open black diamonds).

high temperature, albeit at a higher value than found by exper-
iment. SCAN is somewhat less accurate at low temperatures
and shows a decreasing value of α above 150 K.

β-Sn has a tetragonal lattice, so the lattice parameters a(T )
and c(T ) can have different thermal expansion coefficients,

α‖(T ) = 1

a(T )

da

dT
(T ) and α⊥(T ) = 1

c(T )

dc

dT
(T ), (10)

where ‖ and ⊥ denote expansion in the a, b plane and along
the c axis, respectively. The averaged thermal expansion is
then

α(T ) = 1
3 [2α‖(T ) + α⊥(T )]. (11)

We compare predicted thermal expansion of β-Sn to the
experimental data cited in Touloukian et al. [83] (solid black
diamonds) and measured by Deshpande and Sirdeshmukh
[77] in Figs. 25 (PBE) and 26 (SCAN). The results here are re-
versed from α-Sn, in that SCAN has a much better prediction
for α(T ) than PBE. Given the problems noted with β-Sn in the
PBE, it is not surprising that we only get agreement between
theory and experiment below 50 K. The SCAN functional is
within 10% of experiment at temperatures below 300 K, but
its functional form is different, flattening above 100 K, while
the experimental α(T ) continues to increase up to 500 K.

There is no experimental information about the thermal
expansion of γ -Sn or even Sn0.8In0.2, but we can determine
the thermal expansion parameter, which we plot in Figs. 27
(PBE) and 28 (SCAN). We find that α(T ) is in the same range
as β-Sn, but there is a very large difference in the behavior of
α(T ) in the two phases.

The results of this section are confusing. SCAN gives a
much better prediction of the equilibrium lattice constants of
all three phases than PBE does, but the high-temperature be-
havior of α(T ) differs from experiment in all cases, and there
are large differences between PBE and SCAN. More study
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FIG. 26. The primitive-cell volume of β-Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient α

(right axis, blue triangles) calculated by APL using the SCAN den-
sity functional. We also plot the value of α(T) found in Touloukian
et al. [83] (solid black diamonds) and measured by Deshpande and
Sirdeshmukh [77] (open black diamonds).

is needed here, including going beyond the quasiharmonic
approximation.

In general both PBE and SCAN give reasonable values
of α(T ) for T < 100 K, but the higher temperature behavior
deviates from experiment. This may be due to the failure of the
harmonic approximation or may be that we simply require a
finer volume mesh to determine the equilibrium volume V (T ).

C. Thermal phase transitions

Having shown that APL/AFLOW/VASP finds reasonably
accurate phonon spectra and gives us the correct order of
magnitude of the thermal expansion parameter, we turn to the
main question of this study: Can we predict the transition from
α- to β-Sn, and is there a transition from β- to γ -Sn?
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FIG. 27. The primitive-cell volume of γ -Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient α

(right axis, blue triangles) calculated by APL using the PBE density
functional.
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FIG. 28. The primitive-cell volume of γ -Sn as a function of tem-
perature (left axis, red circles) and the linear expansion coefficient
α (right axis, blue triangles) calculated by APL using the SCAN
density functional.

We have determined the free energy F (T ) for all three
phases using the PBE and SCAN functionals as outlined at the
start of this section. Figure 29 shows the results for the PBE
functional, with the free energy for all three phases plotted
on the top of the graph and the deviation of the free energy
from α-Sn at the bottom. The transition to γ -Sn is predicted
to occur at 400 K, not too far from the 450 K transition, but it
occurs before the transition to β-Sn, which would be at about
425 K.

It could be argued that we should use the larger energy
cutoff and k-point mesh from Table II to do these calculations,
but this will only shift the static energy of β-Sn 1 meV/atom
below the γ -Sn result. By the time we get to 400 K the free
energy of γ -Sn will still be lower than β-Sn.

The SCAN functional correctly predicts the ordering
U (α-Sn) < U (β-Sn) < U (γ -Sn) (Fig. 13), so perhaps it will
do better, even though the static energy difference between α-
and β-Sn is quite large. One complication is the low energy
of the simple cubic phase, which is actually lower in energy
than γ -Sn. Because of this we did a full set of phonon cal-
culations for the simple cubic phase, using a 5 × 5 × 5 (125
atom) supercell with a 4 × 4 × 4 k-point mesh (18 k points
in the irreducible Brillouin zone). The simple cubic phase is
vibrationally unstable for volumes below 28 Å3/atom, so we
only consider larger volumes in computing the free energy.

The results of these calculations are shown in Fig. 30.
Again, the top panel shows the free energy of four phases,
and the bottom shows the deviation from α-Sn. The simple
cubic free energy is such that this phase is above γ -Sn for
temperatures greater than 120 K, so we can ignore it entirely.
The SCAN functional predicts that β-Sn will be below γ -Sn
for temperatures up to 280 K. If the free energy difference
between β-Sn and α-Sn was lowered by some 40 meV/atom
SCAN would predict the correct ordering of the states. Un-
fortunately the free energy difference is about 67 meV/atom,
so SCAN predicts a transition from α-Sn to γ -Sn at about
700 K, well above the observed melting point of tin of 505 K
[82]. This means that SCAN does not correctly describe the
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FIG. 29. Free energy predicted by the PBE functional [(6), (7)]
as a function of temperature for α-Sn (solid line), β-Sn (dashed line),
and simple hexagonal γ -Sn (dotted line). The vertical lines show the
experimental α-β phase transition at 286 K [10] and β-γ transition
at 450 K [12]. Top: the free energy of each phase shifted so that the
energy of the α phase is zero at T = 0. Bottom: the difference in
energy of the β and γ phases with respect to α-Sn.

physics of tin, but since it predicts a reasonable temperature
for the β-γ transition perhaps we can say that it is better than
the PBE functional.

IX. ELECTRONIC CONTRIBUTIONS
TO THE FREE ENERGY

The preceding calculations neglect the thermal energy of
the electrons. One can argue that this must be small compared
to the vibrational energy, since the electronic contributions to
metallic specific heats are much smaller than the vibrational
contributions [84]. In this case, however, the energy differ-
ences between the tin phases are themselves small, so it is
possible that the relatively small electron energy may be large
enough to change the ordering among phases.

The Kohn-Sham electronic eigenvalues found in DFT cal-
culations represent an independent approximation to the true
electron energies in the system. Using these eigenvalues, the
free energy of a system with electronic density of states ρ(ε)
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FIG. 30. Free energy predicted by the SCAN functional [(6), (7)]
as a function of temperature for α-Sn (solid line), β-Sn (dashed line),
simple hexagonal γ -Sn (dotted line), and simple cubic tin (dash-dot
line). The vertical lines show the experimental α-β phase transitions
at 286 K [10] and 450 K [12]. Top: the free energy of each phase
shifted so that the energy of the α phase is zero at T = 0. Bottom:
the difference in energy of the β- and γ -, and simple cubic phases
with respect to α-Sn.

is [85]

Uelec(T ) =
∫

dε ε ρ(ε) f (ε, T ), (12)

where

f (ε, T ) = 1

eβ[ε−μ(T )] + 1
(13)

is the Fermi distribution function, and the chemical potential
μ(T ) is chosen so that

Nelec =
∫

dε ρ(ε) f (ε, T ). (14)

Here Nelec is the number of valence electrons in the system,
four per atom for tin. The entropy of this distribution of
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FIG. 31. The approximate contribution (16) electrons to the free
energy of α-Sn (solid line), β-Sn (dashed line), γ -Sn (dotted line),
and simple cubic tin (dash-dot line) at the equilibrium volume of
each phase using the SCAN functional.

electrons is

Selec(T ) = −k
∫

dε ρ(ε)

{
f (ε, T ) ln f (ε, T )+

[1 − f (ε, T )] ln [1 − f (ε, T )]

}
,

(15)

and the resulting contribution to the free energy of the system
is

Felec(T ) = Uelec(T ) − T Selec(T ). (16)

We can compute (16) using the eigenvalues and density
of states found by VASP. Here we only present an example,
the free energy of the α, β, γ and simple cubic tin phases
at equilibrium using the SCAN functional (see Fig. 12). The
results are shown in Fig. 31. The zero-temperature contri-
bution of the electrons to the total energy are included in
the ground-state calculation, so we are only interested in the
thermal contribution to the free energy, Felec(T ) − Felec(0). We
see that the electronic contribution is indeed small compared
to the free energy shown in Fig. 30. The electronic free energy
of the metallic phases changes by about 4 meV/atom from
0–800 K, compared to the 400 meV/atom change of the
original free energy. The change in the electronic free energy
of semimetallic α-Sn is no more than 0.5 meV/atom in this
range.

This is not to say that the electronic free energy cannot
influence the predictions of transition temperatures. The dif-
ference between α- and γ -Sn is about 3 meV/atom at 700 K.
This will drive the α-γ transition temperature down by about
50 K. Unfortunately Felec for β-Sn is above that of γ -Sn, hence
the electrons will not help to move the β-Sn free energy below
γ -Sn, and there is still no α-β transition predicted by SCAN.
Indeed, the difference between the simple cubic and β-Sn
electronic free energies is such that if we add the electronic
free energy to the results of Fig. 30 the two phases will be
essentially degenerate, contrary to experiment.

In general the electronic contribution to the free energy
is small compared to the vibrational contribution, but it is
large enough to change the structural transition temperature
by about 10%. It is not, however, large enough to change our

conclusion that no functional correctly predicts the thermal
transition sequence in tin.

The caveat here is that we do not have the true electronic
spectra of tin. We only have the Kohn-Sham independent
electron eigenvalues, which are known to be at best only an
approximation to the true electronic excitation spectra [86].
At best, then, we can only use our Kohn-Sham eigenvalues
to estimate the electronic contribution to the free energy.
Although this should not significantly change the results we
cannot conclusively prove this.

X. DISCUSSION

As noted in the introduction, this work is only concerned
with the quasiharmonic approximation to the vibrational prop-
erties of tin, with volume-dependent harmonic interatomic
force constants for each structure. Some experimental studies
of anharmonicity have been done on both α-Sn [87] and β-Sn
[88], with the latter saying “the anharmonic effect in white tin
is weak.” At some point the QHA must fail, as tin melts at
505 K, not far from the observed β-γ transition. Calculation
of the melting temperature would involve a molecular dynam-
ics calculation, and that is far beyond the scope of this paper.

It is doubtful that anharmonicity would introduce large
enough corrections to help the predictions for the non-
SCAN metaGGAs, as this would involve extremely large
changes in the free energy for some phases, on the order of
100 meV/atom. Even the GGA AM05 structure would require
that β- and γ -Sn have anharmonic corrections that are around
30 meV/atom different than that found for α-Sn. This too
seems unlikely.

Returning to the QHA calculations of this paper, we find
that most of the functionals studied predict β-Sn to be the
ground state, contrary to experiment. The empirical metaGGA
functionals actually predict a close-packed ground state for
tin. Only the PBE and SCAN functionals give the correct
ground state, α-Sn, and only SCAN unambiguously places
equilibrium γ -Sn above β-Sn.

The purpose of this study is twofold: first, to see if high-
throughput methods, in particular AFLOW, could accurately
describe the system using their default settings and second,
to see if DFT can adequately describe the thermodynamic
behavior of tin.

The first question can be answered “yes.” The results in
Table II show that the static energy calculations are suffi-
ciently converged for our purposes, and the phonon conver-
gence tests in Sec. VII show that the vibrational free energy
of the system is insensitive to the supercell size. It should be
stressed that the last point is a result of the averaging over the
phonon density of states in both the zero-point and vibrational
contributions to the free energy (5). The phonon spectra them-
selves show differences, in some cases rather large, between
calculations using different cell sizes, and between calculation
and experiment, however these differences are minimized be-
cause of the averaging effect of the integrals over the phonon
density of states.

While neither PBE nor SCAN correctly predict the be-
havior of tin, we can say that they describe the trend of
the vibrational free energy correctly. Differentiating F (T )
(5) with respect to temperature shows that F ′(T ) < 0 for all
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temperatures. To see the observed phase transitions in tin, at
zero temperature we must have the ordering α < β < γ , but
the free energy of β-Sn must fall off faster than that of α-Sn,
and the free energy of γ -Sn must fall off faster than the other
two. This is the case for both PBE and SCAN. The reason
for this can be seen in Fig. 22. The phonon density of states
for α-Sn is dominated by the peak in the optical modes near
6 THz, well beyond the maximum vibrational frequency of
the other two phases. β-Sn has a large peak in its optical
modes near 4 THz, where the pDOS of γ -Sn is much less
pronounced. Since the thermal part of the free energy integral
(5) is weighted toward lower phonon energies, it follows that
these phonon spectra will give the correct ordering.

Although the electronic contribution to the thermal free en-
ergy is small, our independent electron estimate of its impact
shows that it can change the phase transition temperature and
may even change the ordering of the nearly degenerate β-Sn
and simple cubic Sn phases found by the SCAN functional.
It does not, however, change our fundamental conclusion that
none of the density functionals correctly predict the correct tin
phase transition sequence.

If we are required to say which of these functionals gives
the “best” description of tin, albeit still incorrect, it is our
opinion that the SCAN functional is the winner. Not only
does SCAN give better ground state densities than PBE,

it also gives the β-Sn → γ -Sn transition at a reasonable
temperature, even if it predicts that it cannot be observed.
However, it is obvious from this study that we still need better
density functionals to adequately describe the behavior of
tin.

In conclusion, we have shown that high-throughput calcu-
lations can be used to determine the thermal behavior of tin
as for any given density functional. Unfortunately all of the
currently available functionals are flawed, with SCAN being
better than the others, although it does not predict the correct
ordering of the phase transitions in tin. Fortunately we now
have a platform to quickly evaluate new density functionals as
they become available.
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