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Predicting and following T1 events in dry foams from geometric features
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Machine learning techniques have been recently applied in predicting deformation in amorphous materials.
In this study, we extract structural features around liquid film vertices from images of flowing 2D foam and
apply a multilayer perceptron to predict local yielding. We evaluate their importance in the description of the T1
events and show that a high level of predictability may be achieved using well-chosen combinations of features
as the prediction data. The most relevant features are extracted by performing the predictions separately for
isolated sets of features, and these findings are verified using principal component analysis. Using this approach,
we determine which properties of the images are most important with regard to the physics of the processes.
Our findings indicate that film lengths and angles between the liquid films joining at the vertex are the most
important features that predict the local yield events. These two features describe 83% of the yield events. As an
application, we extract the statistics of event waiting times from the experiment.
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I. INTRODUCTION

A mixture of gas bubbles and liquid constitutes a liq-
uid foam at bubble volume fractions surpassing a critical
one at the jamming point [1]. Both the surface tension at
the liquid-gas interfaces as well as the volume conservation
of the gas inside the bubbles create a rigid structure with
elastic responses to finite deformation stresses, making foam
a yield stress fluid [2,3]. When sheared beyond the yield
stress, foams begin to flow, exhibiting shear thinning behav-
ior; their constitutive steady behavior is often described by
the Herschel-Bulkley relation [4]. When the foam deforma-
tion exhibits plasticity, the shear enforces topological changes
to the bubble structure, known as T1 events, as shown in
Fig. 1 [5]. The continuum of mechanical properties would
correspond to meso/macroscopic elastoplastic models that are
widely used to study amorphous solids [6].

In reality, however, the first plastic activity is observed
in the form of T1 or yield events already well below the
macroscopic yielding [7–9]. The relevance of plastic shear
transformation zones, analogous to T1 events, on deformation
was originally suggested based on molecular dynamics simu-
lations of metallic glasses [10]. These plastic events have been
found to determine the global flow of amorphous materials by
forming shear bands, which may be nucleated by single events
[11] that subsequently dominate the flow [12,13]. Similarly,
in foams, the local dissipation rate has been related to the T1
event activity [14], which would explain the velocity profiles
of foams under simple shear deformation [15]. Indeed, ob-
servations of foam deformation reveal the effect of single T1
events on the shape of the surrounding bubbles [16]. Another
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way of interpreting the same nonlocal changes is via redistri-
bution of stress when a droplet cluster relaxes in a T1 event in
emulsions [17,18]. As the structure relaxes in a T1 event, new
events may be triggered nearby, resulting in avalanches of T1
events with power law size distributions [19,20].

Due to the crucial role of the yield events in the defor-
mation of foams and other amorphous materials, the ability
to predict where and when the yield events occur is critical
for anticipating the behavior of foams under mechanical load.
Solving complex problems, such as finding structural features
that indicate yielding from amorphous materials, is well suited
for machine learning tools, which continue to gain popularity
in science [21–23].

The present paper builds off our earlier work in Ref. [24],
where we identified vertices and bubbles about to yield in
T1 events in flowing 2D foam using convolutional neural
networks (CNNs) [24]. Although this technique successfully
focused on unstable states [Fig. 1(b)] in a snapshot of the
foam flow, the complexity of the CNN has hidden the physics
behind the T1 events. Here we focus solely on unstable ver-
tices [Fig. 1(b)] that connect four liquid films setting aside
the stable vertices with three liquid films. Hence, instead of
using a snapshot of the foam flow, we use various structural
features extracted from snapshots of the foam as prediction
data. We first detect potential T1 events by inspecting tens
of thousands of fourfold vertex formations within the foam
bubble raft flow. Dynamical data are created by inspecting
each frame of a video and extracting explicit T1 event-related
features. Next, we feed these fourfold structure variables to a
multilayer perceptron (MLP) and successfully predict the oc-
currence of T1 events. A recent study used a similar approach
to explore the correlation of different structural features with
future plastic deformations in two-dimensional glasses [25].
However, we measure the correlation indirectly by using pre-
diction metrics of the MLP rather than correlation of physical

2475-9953/2021/5(7)/075601(11) 075601-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9184-2892
https://orcid.org/0000-0002-9002-6989
https://orcid.org/0000-0002-3383-0946
https://orcid.org/0000-0002-3048-4339
https://orcid.org/0000-0002-4461-3648
https://orcid.org/0000-0002-2087-3330
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.075601&domain=pdf&date_stamp=2021-07-15
https://doi.org/10.1103/PhysRevMaterials.5.075601


OSKAR TAINIO et al. PHYSICAL REVIEW MATERIALS 5, 075601 (2021)

FIG. 1. Schematic of a T1 event. The initial configuration
(a) evolves to an unstable fourfold configuration (b). From this unsta-
ble state, a new film is created, and a new metastable configuration
(c) is reached.

quantities. By choosing essential features, we can steadily in-
crease the accuracy of the model. Henceforth, such a tool can
be used to explore T1 dynamics and their effect on the overall
transformation of the foam. To showcase this application, we
study the waiting times between subsequent T1 events. Our
findings indicate that characterizing the ranges of film angles
and curvatures represents a major factor for the successful
prediction of T1 events.

We first introduce our methods detailing the experimental
procedure and how the features are extracted and MLP imple-
mented to allow prediction of T1 events in each frame. Next,
we present the main results of the machine learning pipeline
model, along with the weight of each feature, the principal
component analysis (PCA) component adjusted probability
density map, and the detection, extraction, and calculation of
several features in the foam with PCA 2-dimensional point
clouds. Once the 65-dimensional feature space is reduced to
8, we interpret the black-box AI results as a tangible physical
model. Finally, we describe the waiting time distributions and
conclude with the discussion and future prospects.

II. METHODS

A. Experimental procedure

The experiments were performed in a circular Hele-Shaw
cell, as illustrated in Fig. 2. The same data set has been
analyzed previously in Ref. [24] using a convolutional neu-
ral network, where we also report the detailed experimental
setup. Briefly, the foam enters the cell from an inlet located
at the center of the cell and expands toward the edges. The
setup is one of the various flow schemes where the edges or
obstacles in the flow channel cause shear and T1 events due
to that [26–28]. In our geometry, the lack of side edges causes
the T1 events to be distributed rather arbitrarily all over the
cell, unlike in channels where clear yield zones are detected
by bubble ordering caused by the cell walls [29].

FIG. 2. A two-dimensional circular Hele-Shaw cell creates a
radially symmetric expanding flow field. (a) Schematic side view
illustrates the experimental setup and how the foam is injected. The
foam flow is recorded using a camera placed perpendicular to the
cell. (b) A photograph of the Hele-Shaw cell shows a dry foam with
typically hexagonal bubbles. The 15-mm inlet pipe is located at the
bottom center of the device.

B. Feature extraction

The flowing foam is filmed and the resulting video is inter-
polated to 13 000 images. Since the background light passes
freely through the bubbles, they appear as lighter areas com-
pared to the darker films. Hence, thresholding the gray levels
of all the video frames separates the images into black and
white pixels representing liquid and gas, respectively (Fig. 3).
Skeletonization is used to reduce the widths of the liquid
films between bubbles to one pixel. Therefore, each bubble
is identified as a region of white pixels in the frames, and in
the skeletonized image, the nearest neighbors of a bubble are
exactly one pixel apart. For each frame, two lists are generated
[Fig. 3(a)]: one contains all the bubbles (blue dots) and the
other contains all the neighbors for each bubble (red dashed
lines). Comparing the lists between two consecutive frames
allows us to detect the T1 events over space and time.

Films are identified as black pixels in the frames. Vertex
points are extracted from the film net as the points where three
or more films meet [Fig. 3(b)]. We focus on vertices with
four films and label each vertex by coordinates (xv, yv ) as a
possible T1 event location. If the point is going to have a T1
event, it is tagged with a number 1 (called positive sample);
otherwise, it is tagged with a 0 (negative sample). Once a
4-fold vertex is located, we extract the end point (xe, ye) and
middle point (xm, ym) from each associated film, as indicated
in Fig. 3(b) by the purple and red dots, respectively. Based
on these three points, we calculate a series of geometrical
features to evaluate the respective weights each one of them
has in the T1 event.
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FIG. 3. Detection, extraction, and calculation of several features in the foam flow (note the division into subplots indicated by the dashed
lines). (a) Identification of bubbles (blue dots) and neighbors (red dashed lines). The difference between two consecutive frames allows T1
events to be detected. (b) Detection of 4-fold vertices of coordinates (xv, yv ) (green dot). Eight points are selected from each of the four films:
four middle points (red dots) and four end points (purple dots) of coordinates (xm, ym ) and (xe, ye), respectively. (c) α is the angle between
the red vector and an arbitrary coordinate system placed at the vertex point (line y = yv). The vector length is equal to �. (d) The curvature is
defined as the osculating circle of three points on the film: vertex (green dot), middle (red dot), and end (purple dot) points. The film length
is given by the arclength s = θ/κ . (e) Angle ζ between two consecutive films (red lines). (f) Polygon of side d formed using two consecutive
end points. (g) The area A of the polygon is marked in red; the perimeter of the polygon is P. (h) The orientation of the T1 event (red arrow)
with respect to the velocity field direction (black arrows) is represented by the angle β.

To determine the vertex angles, we define an arbitrary
rectangular coordinate system centered at the vertex under
consideration (xv, yv ). We then calculate the angles α between
the position vector of the other vertices and the positive x axis
of the coordinate system with the formal definition

α = arctan

(
y − yv

x − xv

)
, (1)

(x, y) being the coordinates of an end or middle point. Fig-
ure 3(c) shows the four vectors defined using the film end
points (red lines) and one of the four angles (green arc). The
length of each vector is called �. In total, eight α angles and
eight � lengths (four angles and four lengths both for end and
middle points) are defined for each vertex.

Film curvature κ is calculated by determining the osculat-
ing circle at the middle point (xm, ym). To calculate this, we
use the vertex, end, and middle points as shown in Fig. 3(d).
The center of the osculating circle allows us to first calculate
the central angle θ and then define the film extension as
s = θ/κ . As a consequence, four curvatures κ , four angles θ ,
and eight arclengths s are linked to each vertex point.

Next, we use two consecutive films to define a series of
features. Figure 3(e) replots the vectors from vertex to end
points in Fig. 3(c). Here, instead of a reference coordinate
system, we compute the angle ζ between two consecutive
vectors. Note that ζ , unlike α, is independent of the 4-fold
vertex orientation, thus allowing us to compute angles ζ based
on angles α, but not vice versa. Additionally, we define the
polygon side d as the distance between two end points, as
shown in Fig. 3(f). Similarly, we obtain another characteristic
for two consecutive middle points. The area A and perimeter P

of the polygon are also computed [Fig. 3(g)]. Finally, the area
a that is formed between the film and the chord is calculated.

To finalize the features calculation, we determine the ve-
locity field �v of the foam flow using the bubble position and
average over the 13 000 frames. Figure 3(h) shows the velocity
field in black arrows within a smaller area on the frame. For
groups of four bubbles involved in possible T1 events, we
calculate two vectors between opposite bubbles defined as
the vector difference between the centroids. We then take the
larger vector �t and define the T1 orientation β with respect to
the foam flow. Figure 3(h) shows the larger vector for 4-fold
vertices (red arrow) and the bubble centroids (blue dot). The
orientation β with respect to the velocity field is then defined
as

β = arccos

( �v · �t
||�v|| ||�t ||

)
. (2)

We then analyze and predict T1 events combining multiple
features. Table I summarizes the features used as input to the
MLP algorithm. In what follows, if the feature is calculated
using middle points instead of end points, a subscript m is
added on the feature symbol. Note that for each vertex point
detected, 65 features are linked to it. The following subsection
explains the artificial intelligence method used here.

C. Machine learning pipeline

Supervised learning is applied to study the binary clas-
sification problem of predicting T1 events from the local
structure of a sample foam. First, we detect all 4-fold vertices
[the possibly unstable vertices, Fig. 1(b)] from the 13 000
video frames showing foam flowing in the Hele-Shaw cell. In
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TABLE I. List of features computed and defined in Fig. 3.

Feature Symbol

Angle α

Chord of circle �

Curvature κ

Film extension θ

Arclength s
Internal angle ζ

Orientation β

Polygon side d
Polygon area A
Perimeter P
Area film and chord a

total, 172 000 4-fold samples were detected, all of which are
labeled with binary values (1,0) indicating whether the cross
section precedes a T1 event (1) or not (0). Of the 172 000
detected cases, 15 000 samples are real T1 events; i.e., they
are tagged with a number 1. 30 000 samples were chosen for
training and testing purposes, half of which represented true
T1 events. To optimize the parameters of the MLP, 24 000
of these samples are used as a training set and the remaining
6000 samples are reserved for testing the predictions. In both
the training and test sets, an equal amount of positive and
negative samples are used. Finally, in order to verify the wider
generalization, the model was tested with all extracted cases.

The resulting data were first duplicated into two separate
data frames. One half was normalized to zero mean and unit
variance. This normalization process was conducted due to
the sensitive nature of the latter pipeline estimators. Our tests
showed that using the scaled input data improves the pre-
diction scores by a few percent. The cross-validation results
shown in Table II (see Appendix) show that without scaling,
the prediction results display possible overfitting. However,
the cross-validation tests confirm that overfitting is not present
when scaling is applied. Scaling is further justified since the
average values of different features vary by over three orders
of magnitude.

To predict T1 events from the features, we use an MLP
algorithm. The analysis is done using the scikit-learn Python
library [30]. The MLP model is constructed using three hidden
layers with the composition of 14 × 11 × 8 neural nodes [31].
The results were confirmed to be robust for the number of
nodes per layer and even for the number of layers; however,
the chosen values resulted in the highest accuracy (see Ap-
pendix). A rectified linear unit was used as the activation
function for the model. During the training, the parameters
of the neural network are optimized according to batches
of data points. The training requires multiple epochs, where
each sample is used once during an epoch. The training was
continued until the cross-entropy loss function between the
subsequent epochs fell below the threshold of 10−4, usually
resulting in between 100 and 200 epochs depending on the
number of features used as input data. The weights and biases
were initialized with random numbers. The weight optimiza-
tion procedure was conducted using the Adam optimization
method [32]. In addition to this MLP analysis, we performed
PCA for all of the 65 extracted structural features using the

FIG. 4. Probability density for each binary class according to the
PCA components. (a) Probability density for positive samples, T1
events. (b) Probability density for negative samples, no T1 event.
(c) The separation density [i.e., the difference between the PDFs of
panels (a) and (b)] reveals the values of components 1 and 2 that
separate the positive samples from the negative ones. The x and y
axes are the values of first and second PCA components. The axes
and their values are the two principle components produced by the
PCA method.

scikit-learn library [30] to reduce the dimensionality of the
feature space to only two orthonormal components. The two
resulting features were also tested with the MLP.

The performance of the individual models was evaluated
by examining the ratio of true positives and true negatives to
false positives and false negatives with model training and test
accuracies. The final model evaluation was conducted using
cross validation with five separate iterations and F1 scores.
To check for possible overfitting or bias in the data, we also
performed cross-validation tests.

III. RESULTS

A. Evaluating single features

As a reference control experiment, the model was run with
a mixture of both 3-fold and 4-fold vertex samples. A static
value of −1 was used in the place of the fourth feature column
values, representing the fourth film for each 3-fold feature.
The model achieved a training score of 1.0 and a test score of
0.997, similar to the results where T1 events were predicted
from images [24]. This high degree of predictability was
achieved with only small training and test sets containing 500
and 350 samples, respectively. Thus, the MLP model has the
capability of distinguishing a 4-fold cross section of bubbles
representing a potential T1 event from a core foam structure.
This result was achieved with both unmodified and scaled
data. Since special cases of 3-fold and 5-fold cross joints can
be clearly classified, they were neglected in order to focus on
the complex 4-fold data. Further performance results can be
seen in the Appendix.

The dimensionality of the scaled training data was reduced
using PCA resulting in a transformation matrix which
contains the weights of each physical feature. According to
these vector component significance values, the following
features contribute the most to the values of the two principal
components shown in Fig. 4: angles α, chord length �,
arclengths s, and angles between two films ζ . By utilizing
principal-component-derived values, it is possible to visualize
differences of T1 event and non-T1 event samples, even
within environments containing only 4-fold liquid films. The
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FIG. 5. Bar chart depicting MLP training (solid) and test (pattern) scores for each extracted feature. Features obtaining the best scores
have been placed on the right, whereas the worst-scoring features are placed on the left. Subscript m stands for middle point used for feature
extraction. The combination of all features extracted using end and middle points is shown with Ce and Cm, respectively, and all features
together with C. The score using the PCA components is labeled as PCA.

probability densities of principle components for positive
(T1) and negative (no T1) samples are represented as heat
maps in Figs. 4(a) and 4(b), where the axis represent the
value of the principle components obtained from the PCA
transformation. Figure 4(c) shows that the clouds of true T1
events are concentrated in separate areas compared to the
cloud of false T1 events.

The importance of each feature to the T1 predictability was
measured by fitting and testing the MLP model with reduced
input data sets. Here, the input contained only data associated
with each individual feature as listed in Table I. Training and
test scores are shown in Fig. 5, where every derived feature has
been ranked from worst to best based on the obtained MLP
model scores. It is clearly seen that features dropped out by
utilizing PCA performed the worst. These include variables
of both end and middle point types. Model performance was
poor for polygon perimeter P and area A, and T1 orientation
β with test score close to 0.5 comparable to a coin toss. The
best scores were obtained by utilizing angles αm, angles be-
tween consecutive films ζm, and polygon side dm using middle
points. The model having only 36 of the 65 input variables
(see Cm and Ce in Fig. 5) performs nearly as well as the model
with all possible parameters. As a result, an efficient T1 pre-
diction model can be achieved by implementing a fraction of
all possible descriptive features within the foam network. This
result is supported by comparison with the weight coefficients
of the PCA components.

Finally, according to the PCA analysis and single feature
model performance, we combined all features together into an
input matrix using two components and fed this to the MLP
model. In this case, the performance of the MLP decreases by
25% compared to the best case with all features, as shown in
the Fig. 5 bar labeled as PCA. This implies that the number
of input features for the MLP can be reduced dramatically

without significantly compromising the predictability of T1
events. With this in mind, we next start to explore the model
performance with restricted input data.

B. Evaluating features in pairs

Until this point, the T1 events were predicted either us-
ing all of the structural features or only one type of feature.
However, the MLP can take any kind of set of data as an
input. Next, we pass the input features to the MLP by pairs of
features listed in Table I and predict the yielding. It could be
expected that the pairs of features with the highest individual
scores in Fig. 5 yield the best combined scores. This is not
the case, however, as shown in Fig. 6(a) (blue square). A
combination of the angles between films ζm and film length
�m achieves the best prediction score of 0.83. Interestingly,
although angles ζm result in the highest predictability alone,
the feature �m alone has a prediction score of 58%. Another
notable example from prediction scores is the angle orienta-
tions α and αm, which do not improve each others’ score at all.

The nontrivial prediction performance can be attributed
to the dependence of different features on each other. For
example, the angles α and αm contain almost the same infor-
mation, so using both as MLP input does not add any useful
information compared to only using one. On the contrary, the
features ζm and �m are completely independent; that is, the
angles between films do not give any information about film
length. This indicates that the predictability based on �m (8
percentage points better than a coin toss) can be simply added
to the score of predictions with ζm when the two are combined.

Next, we take the two best performing features, the angles
ζm and �m, for the four adjoint films in a vertex (8 features
total) and preform a dimensionality reduction using PCA vi-
sualized in Fig. 6(b). The colored areas represent the decision
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FIG. 6. (a) The images show matrix representation of T1 prediction scores using features as input pairs (vertical axis is identical to
horizontal axis). Diagonal values are scores of each single feature and labels follow the color code as in Fig. 5. The best score (0.83) is
marked with a blue frame for the combination ζm and �m. (b) To visualize the prediction data, we reduce the dimensionality of input data with
features ζm and �m from 8 to 2 using PCA, and plot the samples that precede a T1 event (blue) and those that do not precede a T1 event (red).
We also divide the space using the support vector classification in two areas where we predict T1 to occur (blue) or not (red). This division
achieves 76% prediction score.

boundary given by the support vector classification, with blue
areas indicating samples preceding a T1 event. The division
presented in Fig. 6(b) achieves a 76% prediction score, which
is lower than the score in Fig. 6(a) for ζm and �m because of the
coarse-grained decision boundary. The evaluation of features
in pairs suggests that the MLP can learn the important local
mechanical properties at the vertex from the given data and
deduce the stability of the vertex. The mechanical information
of the foam structure—such as local stresses—is encoded in
the geometry descriptors and their correlations.

C. Converting black-box AI to physics

A closer inspection of the essential data produced by
our automated data collection and processing algorithms
described above reveals the following: (i) From the 65-
dimensional feature space, the two best descriptors are ζm,i

and �m,i, i = 1 . . . 4, and (ii) the T1 events can form tilted
elliptic-like clusters seen with blue color in Fig. 6(b). Hence,
we create two elliptical decision boundaries to classify the
nodes as ones that produce T1 events, and those that do not.
The nodes that produce the T1 event reside within either
of the ellipses, while the nodes that do not produce the T1
event fall outside of both ellipses. For this, the two-variable
system produced by the PCA algorithm [similar to Fig. 6(b)]
is needed,

x = 0.40(ζ ′
m,1 + ζ ′

m,3) − 0.43(ζ ′
m,2 + ζ ′

m,4)

− 0.28(�′
m,1 + �′

m,2 + �′
m,3 + �′

m,4), (3)

y = 0.17(ζ ′
m,1 + 2ζ ′

m,3) − 0.29(ζ ′
m,2 + ζ ′

m,4) + 0.43�′
m,1

− 0.36�′
m,2 + 0.33�′

m,3 − 0.51�′
m,4, (4)

where ζ ′
m,1 is the largest angle between neighboring films

normalized to zero mean and unit variance. A similar nor-
malization process is repeated for other angles between films
ζ ′

m,i and chord (film) lengths �′
m,i. The values of constants are

rounded to two decimals for convenience. Grouping even and
odd ζ ′

m,i together indicates that the opposite angles between
films should be alike, in a “squeezed x”-like geometry. The
asymmetry in chord lengths in �′

m,i indicates that the “x” is
sheared. This typical asymmetry in the vertex geometry is also
visible in Figs. 8 and 9.

The two elliptical decision boundaries separating the ver-
tices that produce T1 and those that do not in the coordinate
system described by (3) and (4) are determined by using
a brute force table seek algorithm with the following con-
strictions: (i) the probability of T1 events inside the ellipses
matches the probability of no-T1s outside the ellipses, i.e.,
equal probabilities for true positives and true negatives, and
the (ii) tilt and (iii) aspect ratios of the ellipses are the same.
This is motivated by the symmetry seen in Fig. 6(b). The
result is two ellipses with a tilt of α = −35 degrees, an aspect
ratio dy/dx = 0.6, and center points located in (x1, y1) =
(−2.0, 0.4) and (x2, y2) = (4.0,−0.7) with radii r1 = 1.3 and
r2 = 0.6. With this information, the coordinate system can be
manipulated to a simpler form,(

x′
y′

)
=

(
cos α − sin α

sin α cos α

)(
x

0.6y

)
, (5)

1.32 = (x′ + 2.0)2 + (y′ − 0.4)2, (6)

0.62 = (x′ − 4.0)2 + (y′ + 0.7)2, (7)

where we have essentially two center points and a radius,
shown in Fig. 7. Here, the circular decision boundary divides
the events such that both the true negatives and true positives
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FIG. 7. The two elliptical decision boundaries (green), seen as
circular in this coordinate system, capture 71% of the T1 events
(blue, true positives) and exclude 71% of the non-T1 events (red,
true negatives).

have 71% probability; i.e., 71% of blue crosses are inside
the green circles and 71% of the red crosses are outside the
circles. The physical interpretation of the black-box AI is
that the probability of finding a T1 event increases as one
moves closer to the center of either of the circles. With this
information, we can draw a typical T1-event-producing node
shown in Fig. 8 in the footsteps of Fig. 1. Here, 1000 vertices
from the experimental data are drawn with opaque coloring,
where the intensity of color increases with the probability of
encountering a film in that location. The colors indicate dif-
ferent films, where yellow is the closest to the horizontal axis
set by the camera, and the colors change counterclockwise
for other films. The diagonal panels of Figs. 8(a) and 8(d)
represent 71% of the data (true positives and negatives) while

FIG. 8. The four color-coded films are drawn for each possible
case of the AI classifier: true (white background) or false (gray back-
ground), positive (left) or negative (right). Each panel contains 1000
films drawn on top of each other. The repeating dashed construction
is a guide to visualize the differences. The dark colored lines with x
symbol are the average location and length of all the films. The labels
inside and outside refer to whether the vertex at hand falls inside or
outside the elliptical decision boundary.

the off-diagonal panels of Figs. 8(b) and 8(c) represent 29% of
the data (falsely categorized vertices). Thus, it is meaningful
to compare the diagonal panels of Figs. 8(a) and 8(d) and treat
the off-diagonal elements as errors of the method.

The dashed construction is the same for all panels, high-
lighting the differences. One of the film orientations (for green
films) is missing in Figs. 8(a) and 8(b); some of the (blue)
films are above the dashed line, indicating that nodes with this
kind of film structure produce a T1 event. On the other hand,
if the (red) films are outside the dashed ellipse, the node does
not produce the T1 event. Hence, when a node with this film
orientation is encountered, it is stable and does not produce a
T1 event with 71% probability. The asymmetry between the
green and blue sets of lines indicates that the “squeezed x”
geometry preferred by the T1 events prefers one direction over
the other. This is most likely due to the camera orientation
(laboratory coordinates) relative to the flow direction.

This demonstrates the possibility of creating an automated
algorithm that highlights the main differences of a high 65-
dimensional data cube and provides the result in a form
that is easily interpreted, either as a graphical representa-
tion or in the form of an equation. If the measured film
construction approaches the “squeezed x” construction vi-
sually (Fig. 8) or the data falls within one of the ellipses
described in Eqs. (3)–(7), there is a 71% chance of a T1
event. In fact, the equations describe the energy landscape
of the system E = −(x − x1)2 − (y − y1)2, which maximizes
the elastic energy of the system at the center point of the
ellipses. In such geometry, it is more favorable to create a
plastic yielding event than to further deform the bubbles.
For illustrative purposes, one can simply use the angles
without the lengths to obtain a simple formula for energy
landscape

E = −(ζm,1 − 112◦)(ζm,2 − 68◦), (8)

where the two constants are the angles (in degrees) between
yellow and green and yellow and blue films illustrated in
Fig. 9. A more detailed energy landscape could be obtained
by expanding Eqs. (3)–(7) leading to, for example, an energy
landscape near the first ellipse (6) as

E = −
∑

(ci�
′
m,i + diζ

′
m,i )

2 + (ei�
′
m,i + fiζ

′
m,i )

2

= −0.01(3.53 + �′
m,1 − 2.78�′

m,2 + 0.52�′
m,3 − 3.50�′

m,4

+ 2.33ζ ′
m,1 − 3.01ζ ′

m,2 + 3.14ζ ′
m,3 − 3.01ζ ′

m,4)2

− 0.13(5.50 + �′
m,1 + 0.44�′

m,2 + 0.93�′
m,3 + 0.34�′

m,4

− 0.87ζ ′
m,1 + 0.86ζ ′

m,2 − 0.75ζ ′
m,3 + 0.86ζ ′

m,4)2, (9)

where the ci, di, ei, and fi are obtained from the PCA anal-
ysis. Here, the values and signs of the constants reveal the
importance of the films. The values of angles are understood
as the violation of the plateau principle; i.e., energy minimum
is achieved when the angle between the films is 120 degrees.
The observation here is that if we include the film lengths,
we can improve the accuracy of the T1 prediction by 8%
(Fig. 5) and we can say that the lengths of the films obey the
same symmetry as the angles. The opposite films in the vertex
(�m,1 ≈ �m,3 and �m,2 ≈ �m,4) have similar weights, indicating
that their lengths are the same and the node is sheared. This is
also visible in Fig. 9.
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FIG. 9. Angles between films that produce the T1 event with
highest probability.

D. Waiting time distribution

Finally, we examine the inter-event arrival times and the
effect of the region-of-interest (ROI) size on the observed
statistics. The ROI is square shaped and its center is fixed
halfway between the inlet and the cell edge. Vertices that
yield a T1 event inside the ROI form a time series where
each point represents a time instance when the T1 event
was detected inside the ROI. The waiting times τ are differ-
ences in time between subsequent points of the time series.
Figure 10 shows the waiting time distribution P(τ ) for ROIs
L × L from L = 1 cm to L = 5 cm. The data are fitted to a

FIG. 10. The waiting time distribution is a power law with a ROI-
scale dependent exponential cutoff, P(τ ) = Aτ−1e−λτ . The data for
small ROIs exhibit a power law regime with exponent −1, while data
for the largest ones are dominated by the exponential cutoff. The inset
shows a scaling λ ∝ L3 indicating that in addition to a typical size
dependence of L2 the radial expansion plays a role in the scaling.

power law with an exponential cutoff P(τ ) = Aτ−1exp(−λτ ),
where A and λ are fitting parameters and the exponent of the
power law is fixed to −1. The form of the gamma distribution
P(τ ) originates from the interplay between event triggering
avalanche dynamics and the system’s intrinsic background
event rate [33,34]. The linear power law region indicates event
clustering, most evident for the smallest ROI (black dots).
As the ROI size increases, the power law region narrows
down due to the cutoff. This indicates that the event waiting
times result from observing noninteracting Poisson processes
in subareas of the larger ROI. A naive scaling would thus
scale with ROI area as λ = BL2. The actual λ = BL3 (inset of
Fig. 10) results from another scale L entering through radial
slowing of the foam flow—thus also T1 production—in the
larger ROIs. Since waiting times become uncorrelated with
large ROI size, there is a cooperativity length of a few bubble
diameters, comparable to that observed in particulate systems
[35].

IV. CONCLUSIONS

The purpose of this study was to apply machine learning
methods to image sets of flowing foams in order to understand
local yield events. To this end, we extracted structural features
and used machine learning methods to try to predict such local
yield events from the structure. We achieved a high level of
prediction accuracy by inputting all of our structural features
in a multilayer perceptron classifier, meaning that the most
relevant features have been found. The application of such ML
techniques proceeds by using the MLP classifier for selected
sets of the features. Using this approach, we find that the
most relevant features are the angles between the liquid films
joining at the vertex ζ at any location where this is attempted.
Likewise, we may conclude that the most irrelevant features
include the orientation of cluster β and the polygon area A.

It is reasonable that the angles between films are a strong
indicator of T1 events. In a stable state, the films form 120
degree angles, but when two vertices become close and form
a 4-fold vertex, the angles decrease such that the total sum
of the four angles is 360 degrees. Many of the other well-
performing features, such as film orientations and polygon
side lengths, are highly correlated with the angle between
films; hence adding them leads to no or modest improvements
to the predictions.

The accuracy of prediction reached by this approach is
about 80%. The result leaves some space for further devel-
opment as around one fifth of the predictions are incorrect. As
a methodological approach to improve the situation, one could
test different machine learning algorithms for the problem
using the same input data. For instance random forests could
provide a potential alternative. A more physical approach
would be to refine the input data set. This could be done by
determining new features from the experiment not related to
the structure or the affine motion of the foam, but instead
on the nonlocal effects [14], such as the stress redistribu-
tion occurring after previous yield events [6,17,18]. However,
defining such features might emerge ambiguous and difficult
to justify. It may also be such that the yielding—the T1—
events are also affected by random, thermal noise, rendering
such improvement impossible.
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The results are verified with a PCA analysis, where the fea-
tures are projected to two principal orthogonal components.
These components align with the success of MLP predictions,
and similarly imply that angles and film lengths are the most
relevant components. Such tools allow information about the
dynamics of T1s to be extracted. We demonstrate this by
considering the T1 waiting time distributions in varying ROIs
as a function of the ROI size. These distributions have a
broad, power law character with an exponential cutoff. We
note that the waiting time exponent becomes clear with a small
enough ROI having a value close to unity. The cutoff scales
with the ROI scale as its third power, which likely results
from natural geometric considerations. The above exponent
value remains an empirical observation without a theoretical
explanation.

Although the possibility of improvement remains, our anal-
ysis shows that machine learning may be exploited to detect
the essential parameters related to plastic deformation from
the structural features it receives as input. This makes it an
attractive tool to analyze foam dynamics, analogous to amor-
phous materials plasticity. This conclusion is thus in line with
other applications of machine learning techniques to extract
predictions of deformation from structure in amorphous glass
simulations [25]. A further line of research could be to search
for collective dynamics among T1 events, as a generalization
of our waiting time analysis. Likewise, more complex foams
such as particle-laden or Pickering foams present another
exciting avenue for this approach.
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APPENDIX: MACHINE LEARNING PERFORMANCE

The multilayer perceptron (MLP) algorithm used was ex-
tensively analyzed. The best performance was achieved for a
three-layer architecture 14 × 11 × 8. We used a cross valida-
tion with 5 groups and F1 score

F1 = T P

T P + (FN + FP)/2
, (A1)

FIG. 11. Learning curve for the architecture employed. As the
number of samples increases, the standard deviation decreases
(shadow). The small gap between both curves indicates that the
model is not overfitted. When the number of layers and nodes in-
creases, the score does not change significantly.

where T P is true positives, FP false positives, and FN false
negative. We also randomize the T1 label to further explore
the accuracy in the prediction. Table II summarizes our anal-
ysis. The scaled method corresponds to zeroing the mean and
scaling samples to unit variance, i.e, (x − u)/s, where x is

TABLE II. Performance of the architecture employed. RL: Randomly labeled.

Data set No. samples Scaled RL Train score Test score No. true positive No. true negative F1 Cross validation

3-fold+4-fold 6000 Yes No 1 0.998 600 5880 0.967 0.985
6000 Yes Yes 0.5 0.5 1500 1500 0.111 0.55

4-fold 6000 Yes No 0.853 0.840 2631 2407 0.845 0.82
172000 Yes No 0.860 0.832 0.487 0.918

6000 No No 0.814 0.812 2339 2532 0.806 0.59
172000 No No 0.865 0.817 0.471 0.916

6000 Yes Yes 0.555 0.508 1653 1395 0.528 0.5
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the data, and its mean and standard deviation are u and s,
respectively.

Figure 11 shows the learning curve, i.e., the training and
test scores for an increasing number of samples. The scores

are high for all the different architectures plotted, but the one
displayed here produces less variance and better generalizes
the model, as seen by the gap size between training and test
scores.
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