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Dynamic glass transition dramatically accelerates crack propagation in rubberlike solids
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A crack propagating in a strained rubberlike solid exhibits an abrupt change of the propagation velocity by
typically more than 102 times at a specific threshold strain energy, which is a phenomenon called the “velocity
jump.” Despite its scientific and industrial significance, the mechanism of the velocity jump had been unsolved
for more than 30 years. This paper gives a clear answer to the mechanism, showing dynamic glass transition at the
crack tip is the true origin of the crack velocity jump. We present concerted investigations involving theoretical
analysis, numerical calculation, and experiment to establish an integrated understanding of the mechanism. Our
findings indicate that the velocity jump can be found in general viscoelastic materials.
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I. INTRODUCTION

A crack in a sufficiently stretched rubber body propagates
at a velocity V determined by the applied tearing energy Γ .
To investigate the V -Γ relationship, the tearing test using a
“pure shear” geometry shown in Fig. 1(a) is often conducted
because of the simplicity of the result: after a short transient
time, a crack is expected to propagate at a constant velocity V
independent of the crack length, and Γ is easily evaluated as

Γ = W L0. (1)

Here, L0 is the height of the unstrained specimen in the tensile
direction, and W is the stored strain energy density obtained
from the quasistatic stress (σ )-strain (εload) relationship as
follows:

W (εload ) =
∫ εload

0
σ (ε′)dε′. (2)

In general, behavior of a propagating crack is not simple,
as it is accompanied by several intricate phenomena such as
branching [1], crack-path oscillation [2–4], supersonic rupture
under ultimate strain conditions [5–7], and abrupt acceleration
of crack growth [8–11]; in the present study, we discuss the
abrupt acceleration of crack growth. It has been known that
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cracks in rubber undergo an abrupt change of the propagation
velocity at a specific tearing energy Γjump. This phenomenon is
called the “velocity transition” [10,11] or the “velocity jump”
[12]. Figure 1(b) shows typical V -Γ relationships in a pre-
vious experiment [11], where the velocity jump between the
“slow” and “fast” propagation regimes is clearly observed (see
movies in Supplemental Material Ref. [13]). Practically, Γjump

determines an acceptable level of external loading on rubber
bodies; i.e., failure or fatigue processes can be dramatically
facilitated under the loading condition Γ > Γjump, while for
Γ < Γjump crack propagation is tolerable. The mechanism of
the velocity jump remained to be unveiled since Kadir and
Thomas first remarked the phenomenon more than 30 years
ago [8] (some may regard earlier works in 1950s [14,15] as
the first reports of the velocity jump phenomenon).

Despite its importance, the velocity jump had not been
sufficiently understood from the theoretical and numerical
viewpoints until quite recently. Whereas a theoretical model
was proposed more than 10 years ago [16,17], and some
negative evidences [18] and questions [19] have further been
raised.

In a recent finite element method (FEM) simulation [20],
it was reported that the velocity jump can be directly repro-
duced with an experiment-based hyperviscoelasticity and a
fracture criterion. They observed the temporal development
of the stress behavior at a crack tip and explained that a
nonmonotonic temporal change in stress near the crack can
cause the velocity jump [Fig. 1(c)]. Under a small/large
external load, the stress (or strain) at the crack tip reaches
the fracture criterion after/before the local maximum point
in the nonmonotonic behavior. Then, the time necessary for
one element to fracture �t is long/short, and thus the crack
propagation velocity V (∝ �t−1) is slow/fast. This concept
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FIG. 1. Velocity jump phenomenon of crack propagation in rubber materials and hypotheses of mechanism of the jump proposed in recent
researches. (a) Procedure of pure shear test. 1. The top and bottom edges of the strip specimen are clamped and stretched up to a given strain
εload. 2. A side edge is cut to introduce an initial crack, and the crack propagation velocity V is measured as a function of εload. 3. After testing
with various εload, the V -Γ relationship is obtained via Eqs. (1) and (2). (b) Typical V -Γ relationship in a previous experiment [11]. V exhibits
an abrupt jump at a specific Γ that we call the “tearing energy at velocity jump” Γjump (indicated by the dashed lines). Three series of data were
obtained at different temperatures for an identical compound. (c) The mechanism of the velocity jump proposed by the FEM analysis [20]. At
the moment of crack propagation, stress and strain rises rapidly at the crack tip (this stage is shown in blue). After a nonmonotonic behavior
(in green-yellow), the strain and stress change gradually with time (in red). The time for the crack-tip element to fracture (Δt) depends on at
what stage the crack-tip element reaches the fracture criterion. (d) The mechanism of the velocity jump proposed by the MMCP analysis [12].
It is argued that the velocity jump appears due to a dynamic glass transition in the vicinity of the crack tip.

also explains the discontinuous nature of the velocity jump.
However, the origin of such nonmonotonic mechanical behav-
ior has remained unclear.

Meanwhile, a simple theoretical model constructed on
a maximally coarse-grained lattice network with linear
viscoelastic elements was proposed to give an analytical con-
dition of the velocity jump [12]. It is argued that the velocity
jump originates from a dynamic glass transition occurring
at the crack tip [Fig. 1(d)]. Here, the analytical condition
of the jump is obtained by taking a continuum limit along
the crack propagating direction; this fact indicates that the
structural discreteness along the crack propagation direction
is not essential for the velocity jump. Hereafter, we call this
model the minimal model for crack propagation (MMCP).

In this study, we unify the two mechanisms of the velocity
jump independently proposed by the FEM simulation [20] and
MMCP [12], by analytically and numerically showing that
the mechanical behavior observed in the FEM simulation [20]
is induced by the dynamic glass transition at the crack tip.
A simplified mechanical model (step-loading model; SLM)
is introduced to understand the origin of the near-tip me-
chanical behavior observed in the FEM simulation and to
demonstrate a lucid correspondence between the FEM and
MMCP analyses. In addition to theoretical and numerical
analyses, we perform several crack propagation experiments
to verify the mechanisms proposed by the FEM and MMCP

analyses through the correlation between the tearing energy
at velocity jump Γjump and the glass transition temperature
Tg. There the consistency between the experiments and the
MMCP analysis is discussed with the linearity in the rela-
tionship between Γjump and the stored energy density at break
Wb. We employed several unfilled rubber compounds with
material properties varied systematically for the purpose of
investigating the fundamental physics in rubbers, while filled
rubbers were examined in the previous studies [10,11].

The paper is organized as follows. In Sec. II, we intro-
duce SLM with the analytical solution (Sec. II A) and explain
the methodologies and procedures of the FEM simulation
and the experiment (Secs. II B and II C, respectively). The
derivation of the analytical solution is given in Appendix A.
In addition, the stress-strain relationships and the dynamic
moduli of the examined compounds are given in Appendix B
to avoid digressing from the main subject. In the following
two sections, we demonstrate a lucid correspondence be-
tween the FEM simulation and MMCP analyses via SLM.
In Sec. III, we interpret the crack propagation mechanism
in the FEM simulation from the viewpoint of the simplified
mechanical model (SLM). The material parameters in SLM
are given in Appendix C. In Sec. IV, we show an analyti-
cal correspondence between the MMCP and SLM based on
their viscoelastic behavior. The rigorous inequalities for the
relaxation times of the MMCP and SLM are shown in
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FIG. 2. Schematic illustration of a mechanical model at a crack
tip (step-loading model). Fracture of the element A induces a rapid
loading on the new crack-tip element B. Mechanical behavior of the
element B in this process is modeled as a viscoelastic response to
a step loading. Note that m has the unit of mass per area and is
dependent on the specimen height L0.

Appendix D. We numerically compare the effective elastic
modulus of the fast/slow-velocity crack propagations in Ap-
pendix E. In Sec. V, we focus on a paradoxical aspect in
our discussion, which poses an apparent discord with the
precedent experiments but can be resolved affirmatively. In
Sec. VI, we perform several crack-propagation experiments
to verify the mechanisms. In Sec. VII, we provide concluding
remarks.

II. MATERIALS AND METHODS

A. Mechanical model of crack-tip element

We introduce a simplified mechanical model called the
step-loading model (SLM) as schematically shown in Fig. 2 to
understand the mechanical behavior at the crack tip observed
in the previous FEM simulation [20]. Before describing the
detailed formulation, we explain two major purposes of SLM.

First, SLM is applied to understand the origin of a non-
monotonic stress increase [schematically shown in Fig. 1(c)]
at the crack-tip element observed in the previous FEM simula-
tion [20]. Although the precedent FEM analysis demonstrated
that the mechanism of velocity jump can be directly explained
with the nonmonotonic mechanical behavior at the crack tip,
its origin remained unrevealed [20]. Thus understanding the
origin of the near-tip mechanical behavior is equivalent to
revealing the velocity jump mechanism, and SLM is moti-
vated to address this problem. For this purpose, our model
does not need to deal with the crack propagation process itself
directly, which enables a drastic simplification of the model,
and is designed to reproduce the nonmonotonic mechanical
behavior.

Second, SLM also aims at bridging two insights proposed
in the previous studies, FEM [20] and MMCP [12]. The analy-
sis of SLM illustrates that the mechanism of the velocity jump
presented by the FEM analysis is essentially interpreted as
the near-tip glass transition as was discussed in the MMCP
analysis. Specifically, we clarify the relationship between the
mechanical behavior (temporal developments of strain and
stress) under a rapidly applied external load and the time
scales of the glassy/rubbery states, by comparing the result
of SLM with both the FEM and MMCP analyses. For this
purpose, the model is required to cover a wide range of

viscoelastic properties (the stress-relaxation curves) because
the previous FEM simulation [20] dealt with a quite broad
distribution of the relaxation time. Meanwhile, the model is
needed to be as simple as possible for a profound mathemati-
cal analysis.

We describe the detailed formulation of SLM as shown
in Fig. 2. The crack propagation process is regarded as a
sequential breakage of unit elements. Breakage of an element
unbalances the stress field in the crack-tip vicinity, causing
a drastic change of strain and stress states. We simplify the
near-tip mechanical behavior with a linear viscoelasticity, and
the rapidly applied external force at the crack tip is modeled
as a stepwise function without considering the geometry of
the crack. It is assumed that the time between breakage of
adjoining elements is sufficiently long compared to the relax-
ation time. Thus we obtain the mechanical model for the crack
tip that consists of “a point mass connected to viscoelastic
element under step loading.” The temporal developments of
strain ε(t ) and stress σ (t ) at the crack tip are derived with
SLM.

To obtain the equation of motion, we represent the stress
relaxation function E (t ) with the Prony series:

E (t ) = E0 +
N∑

i=1

Eie
−t/τi (3)

with the relaxed elastic modulus E0 and the discrete spectrum
Ei related to the relaxation time τi (i = 1, . . . , N). Here, the
number of relaxation times N , and their distribution τi are
determined according to the purpose. For example, (i) to com-
pare with the results of FEM simulations, a broad distribution
of τi and thus large N are necessary, and (ii) to compare with
the MMCP analysis, a single relaxation time (N = 1).

The equation of motion for the point mass in SLM is given
as follows:

mε̈(t ) = σ extΘ (t ) − σ (t ), (4)

σ (t ) = E0ε(t ) +
N∑

i=1

Ei

∫ t

0
e−(t−t ′ )/τi ε̇(t ′)dt ′, (5)

where ε̇(t ) := dε(t )
dt and ε̈(t ) := d2ε(t )

dt2 . The constants m and
σ ext are the effective mass and the magnitude of external
stress, respectively. The function Θ (t ) is the Heaviside step

function: Θ (t ) :=
{

1 (t > 0)
0 (t < 0) . Equation (4) can be formally

solved for an arbitrary positive integer N (see Appendix A),
and we obtain

ε(t ) = σ ext

(
1

E0
+

N+2∑
j=1

Cje
−t/τ̂ j

)
, (6)

where Cj and τ̂ j ( j = 1, . . . , N + 2) are complex constants
determined by the material parameters m, E0, Ei, and τi (i =
1, . . . , N ). Thus ε(t ) is expressed as superposed exponen-
tial decays and damped oscillations, where τ̂ j provide the
relaxation times (1/Re(1/τ̂ j )) and frequencies (|Im(1/τ̂ j )|).
In addition, from Eqs. (4) and (6), σ (t ) is also expressed
as superposed exponential decays and damped oscillations.
Note that, while the eventual formulation of SLM is a simple
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TABLE I. Material properties of examined rubber samples.

cx (wt%) Tg (◦C) Hb (MPa) Wb (MPa)

NBR 1.4 −22 0.880 6.26
SBR 1.4a −61 0.0849 1.63
BR 1.4 −90 0.0711 1.60

SBR 0.42 −61 1.07 7.99
0.70 – 0.409 4.30
0.98 – 0.324 2.69
1.4a – 0.0849 1.63
2.1 – 0.0581 0.837
2.8 – 0.0311 0.404

aIdentical compound.

viscoelastic model, this model fulfills the requirements for the
abovementioned purposes, i.e., bridging the FEM and MMCP
results.

B. FEM calculation condition

To obtain the strain and stress responses, the FEM sim-
ulations were conducted under the identical conditions to
Ref. [20]. The Ogden model and the Prony series model were
adopted to describe the hyperelasticity and viscoelasticity,
respectively. The elastic strain energy W is given by the Ogden
model as follows:

W =
Ne∑

i=1

3∑
j=1

μi

ai

(
λ̄

ai
j − 1

) + K (J − 1 − ln J ), (7)

where λ̄ j ( j = 1, 2, 3) and J denote the deviatoric principal
stretch and relative volume change, respectively. K, μi, and
ai (i = 1, . . . , Ne) are material parameters. We set the number
of terms for the Ogden model and the Prony series to Ne = 3
and N = 12, respectively. The material parameters were de-
termined to reproduce the mechanical properties of an NBR
sample filled with carbon black [10] (see Ref. [20] for the
detail of the material parameters). The fracture criterion was
given by the maximum true principal stress (56 MPa) and the
crack propagation was realized by deleting elements beyond
the fracture criterion. We prepared a pure-shear specimen with
the dimensions of 180 mm, 20 mm, and 1 mm in the x, y, and z
directions (crack-propagation, stretching, and thickness direc-
tions), respectively. The specimen was stretched at a constant
strain rate of 5 s−1 in the y direction up to εload = 1.30, where
the slow-velocity crack propagation is expected. After stretch-
ing, the initial crack was introduced and the spontaneous crack
propagation was observed. The size of the elements around
the crack path was set to 0.50, 0.19, and 0.20 mm in the x,
y, and z directions, respectively. We focused on the temporal
developments of strain ε(t ) and stress σ (t ) at an element on
the crack path [Fig. 4(b), discussed in detail in Sec. III].

C. Experiment

Preparation and characterization of samples. We adopted
three types of unfilled rubber vulcanizates for the crack propa-
gation tests, i.e., acrylonitrile butadiene rubber (NBR), styrene
butadiene rubber (SBR), and butadiene rubber (BR), whose
key material properties are listed in Table I. We prepared two

series of compounds: (a) NBR, SBR, and BR samples with
an equal sulfur cross-linker concentration cx = 1.4 wt% for
investigation of the effect of Tg on Γjump; (b) six SBR samples
with various cx = 0.42–2.8 wt% (one of them is identical
to a sample in (a), i.e., cx = 1.4 wt%) for investigation of
the effect of Wb on Γjump. Characterization of samples were
conducted with uncracked specimens independently of crack
propagation tests, in a way similar to the previous experiments
[10,11]. The energy density at break Wb was evaluated from
the stress-strain relationship σ (εload ) of uncracked specimens
and the strain at break εb with Eq. (2), which is schematically
shown as the sum of red and blue areas in Fig. 3. Note that
Wb is not a fracture parameter but the quasistatic strain energy
density that a given rubber is able to sustain. Hysteresis loss
at break Hb was obtained from the difference in the stress-
strain relationships during loading and unloading processes
(shown as the red area in Fig. 3). The uni-axial tensile test
was carried out 8 times for each material to obtain σ (εload )
and εb. The dynamic viscoelastic behavior was evaluated by

FIG. 3. Schematic illustration of typical stress-strain relationship
of uncracked rubber specimen under loading and unloading condi-
tions. The area of stress-strain curve integrated up to the strain at
break εb indicates the strain energy density at break [i.e., Eq. (2)
with εload = εb]; the sum of red and blue areas is the energy density
applied during the loading process (Wb), the blue area is the energy
released during the unloading process, and the red area is the hys-
teresis loss during the loading cycle (Hb).
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(a) (b)

FIG. 4. Mechanical response obtained by SLM and FEM analyses. (a) Step-loading response obtained by SLM analysis: (top) strain
response and (bottom) stress response. The normalization factors for strain and stress are defined as ε∞ := σ ext/E0 and σ∞ := σ ext, respectively.
Three representative regimes are indicated in different colors according to the explanation in Ref [20]; the blue/green (I/II) boundary is
determined by the local maximum point of strain, and the green/red (II/III) boundary is determined by the time at that the strain reaches
again to the level of the local maximum point; i.e., the strain values at the both boundaries are equal. (b) Mechanical response at a crack tip
obtained with FEM simulation under the condition identical to that in Ref. [20]: (top) maximum nominal principal strain; (bottom) maximum
true principal stress.

applying an oscillatory shear deformation at 0.4% strain to
a cylindrical sample. The stress-strain relationships and the
dynamic moduli are given in Appendix B.

Crack propagation test. Crack propagation tests were per-
formed with the pure shear geometry as shown in Fig. 1(a),
in a way similar to the previous experiments [10,11]. We
prepared the unstrained specimens of NBR, SBR, and BR with
the dimensions of 180 × 20 × 1 mm in x × y × z directions
(identical to the FEM simulation). Specimens were clamped
and stretched [Fig. 1(a)] up to a given strain εload at a constant
stretch speed 1 mm/s. After stretching the specimen, an edge
of the specimen was cut to introduce an initial crack. The
temporal development of crack length c(t ) was measured with
a high-speed camera to evaluate the crack propagation veloc-
ity V = dc/dt . The tearing energy Γ was calculated from
Eqs. (1) and (2). Since a crack is expected to propagate at
a constant velocity under the pure-shear condition, each test
produces one data point in the V -Γ relationship. Repeating
this procedure with various εload, we obtain the whole V -Γ
relationship. All the crack propagation tests were carried out
at T = 298 K.

III. CORRESPONDENCE BETWEEN SLM AND FEM
ANALYSES

We present that the equation of motion for SLM (4) can
reproduce the crack-tip behavior observed in the FEM sim-
ulation. Here, the parameters in the Prony series (3) were
determined based on an experimental stress relaxation func-
tion E (t ) with N = 25 and τi = 10−10–102 s (see Appendix
C). The strain and stress behaviors obtained are shown in
Fig. 4(a). For comparison Fig. 4(b) shows the mechanical
response at the crack tip in the FEM simulation under the
condition identical to that employed in Ref. [20]. In the strain

response in SLM [Fig. 4(a) top], the following three regimes
are observed: (I) a sharp increase right after the step loading;
(II) a nonmonotonic behavior (accompanied with a local max-
imum point); and (III) a moderate increase to the fully relaxed
state.

This three-regime behavior resembles the strain behavior
at the crack tip obtained by the FEM simulation [Fig. 4(b)
top]. In addition, the time scale of crossover from regime
I to II is ∼0.01 ms both for the FEM simulation and the
SLM analysis. These agreements illustrate that the nonmono-
tonic mechanical behavior at the crack tip (regime II) can
be understood as a typical viscoelastic response to a rapid
loading. Note that the SLM analysis [Fig. 4(a) bottom] does
not reproduce the moderate increase of stress in the regime
III in the FEM simulation [Fig. 4(b) bottom], presumably
due to our oversimplified assumptions; e.g., we omitted the
effects of nonlinear elasticity, finite deformation in crack-tip
vicinity, etc.

The steep rise in strain (regime I) and the gentle rise
(regime III) correspond to relatively small and large relaxation
times in τ̂ j , respectively. As shown below, the regimes I and III
can be respectively regarded as the glassy and rubbery states,
which is consistent with the MMCP analysis.

IV. CORRESPONDENCE BETWEEN SLM AND MMCP
ANALYSES

We analytically show that regimes I and III in Fig. 4(a)
correspond to the glassy and rubbery states, respectively, us-
ing SLM with a single time constant τ := τ1, i.e., Eq. (3) with
N = 1 (the so-called Zener model). As shown in Fig. 5(a),
the Zener model is a minimal model that exhibits rubbery,
viscous, and glassy behaviors, depending on the strain rate.
To characterize the Zener model, it is convenient to define
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(a) (b)

FIG. 5. Viscoelastic behavior of a Zener element and mechanical response of SLM. (a) Dynamic modulus E of a Zener element as a
function of frequency. E0 and λE0 correspond to the elastic moduli at the rubbery and glassy states, respectively. (b) Schematic illustration of
strain response in SLM (black line). This behavior is characterized by three parameters, i.e., τ̂slow, τ̂fast , and ω. The contributions from τ̂slow and
τ̂fast are represented by a solid red line and dashed blue lines, respectively.

the ratio of elastic constants of glassy and rubbery states λ :=
1 + E1/E0. Parameters E0 and λE0 represent elastic moduli
of rubbery and glassy states, respectively. Also, τ and λτ

are respectively the relaxation time at the glassy and rubbery
states.

The corresponding strain response in Eq. (6) with N = 1 is
ε(t ) = σ ext

(
1

E0
+ ∑3

j=1 Cje−t/τ̂ j
)
. We can show that, for suffi-

ciently small m, {τ̂ j} j=1,2,3 consists of a positive real number
τ̂1 and a pair of complex conjugates τ̂2, τ̂3 (see Appendix D).
Then, the strain response is described as a superposition of an
exponential decay and a damped oscillation:

ε(t ) = σ ext

[
1

E0
+ C1e−t/τ̂slow + C0e−t/τ̂fast sin(ωt + θ )

]
, (8)

where the three real constants, C0,C1, and θ are determined
by initial conditions [Eq. (A1) in Appendix A]. Here, τ̂slow :=
τ̂1, 1/τ̂fast := Re(1/τ̂2) (= Re(1/τ̂3)), and ω := Im(1/τ̂2) (=
−Im(1/τ̂3)) are positive real numbers, dependent on material
parameters (τ , λ, and m). As schematically shown in Fig. 5(b),
τ̂slow and τ̂fast express the relaxation times at long and short
times, respectively, and ω gives the angular frequency of the
damped oscillation.

When λ � 1 (λ � 103 for typical rubbers), we obtain

τ̂fast � 2τ, (9)

τ̂slow � λτ (10)

(see Appendix D for the derivation). Since τ and λτ are re-
spectively the relaxation time in the glassy and rubbery states
in the Zener model, regimes I and III in Fig. 4(a) correspond to
the glassy and rubbery states, respectively [besides the factor
of 2 in Eq. (9)].

We clarify the relationship between the formulations of
SLM and MMCP. While the velocity jump was reproduced in
MMCP by taking the continuum limit along the crack prop-
agating direction [12], below we consider the discrete model
before taking the continuum limit for the convenience of dis-
cussion. We note that whether or not to take the continuum
limit along the crack propagating direction is not essential
for the occurrence of the velocity jump because the velocity

jump occurs in both discrete [20] and continuum [12] models.
(Instead, the discreteness in the direction perpendicular to
the crack path is essential.) The equation of motion in the
direction perpendicular to the crack path in MMCP (Eq. (12)
in Ref. [12]) is given by

0 = −σn(t ) + E0εload − σ shear
n (t ), (11)

where n = 1, 2, . . . label Zener models (short springs) hori-
zontally aligned along the crack propagating direction in front
of the crack. The viscoelastic normal stress σn(t ) is given by
Eq. (5) together with N = 1, ε(t ) = εn(t ), and ε̇(t ′) = ε̇n(t ′);
εload is a given real constant; the shear stress between the
neighboring elements is given by

σ shear
n (t ) := μ

2

(
1 − l

L

)
[εn+1(t ) − 2εn(t ) + εn−1(t )], (12)

where μ, L, and l are the effective shear modulus, the height
of the specimen under zero strain, and the lattice spacing
(corresponding to the natural length of the short springs) in the
direction perpendicular to the crack path, respectively. (The
exact definition of μ, L, and l are given in Ref. [12].) Then,
the equation of motion in MMCP (11) can be converted to that
in SLM (4) with N = 1, only by introducing the step-loading
term and the mass term instead of the shear term σ shear

n (t ).
Therefore time constants [Eqs. (9) and (10)] in SLM corre-
spond to those in MMCP.

We summarize the above analyses. The mechanism of the
velocity jump proposed by the MMCP and the FEM simula-
tion were bridged through SLM as follows. First, we related
SLM to FEM; according to the comparison in Fig. 4, the
SLM analysis well reproduces the mechanical behavior at the
crack tip in the FEM simulation. Second, we related SLM
to MMCP through an analytical correspondence of the time
constants between MMCP and SLM. Finally, SLM connects
the fast/slow-velocity cracks with the glassy/rubbery states,
which shows the consistency between FEM and MMCP.

Note that the above discussion for the Zener model
(i.e., N = 1) can be extended to the case with arbitrary
N . We can show a numerical correspondence between the
fast/slow-velocity crack propagations and the glassy/rubbery
states by comparing the effective elastic modulus Eeff (t ) :=
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(a) (b) (c)

FIG. 6. Schematic illustrations for deduction of Tg-dependence in SLM. (a) Stress relaxation functions with various Tg. (b) Corresponding
strain behaviors in SLM (the glass-rubber transition behavior is simplified and exaggerated for clarity). (c) Expected relationships between the
tearing energy and crack propagation velocity, where the tearing energy at velocity jump is not affected by Tg.

σ ext/ε(t ) with E (t ). The result of the comparison is shown in
Appendix E.

V. PARADOXICALITY IN Γjump–Tg RELATIONSHIP

The statement that the velocity jump originates from the
glass transition in the crack-tip vicinity may lead one to the
following erroneous deduction: “Glass transition occurs more
easily for a material with higher Tg because of a smaller gap
between Tg and the experimental room temperature T (> Tg).
Therefore such a material has a smaller Γjump and a negative
correlation is expected between Γjump and Tg.” In what follows
we explain why this deduction is not correct.

As shown in Eq. (8) in Ref. [12], we can obtain the analytic
formula for Γjump in MMCP as

Γjump = lλWb, (13)

where λ := 1 + E1/E0 is defined in Sec. IV, and Wb = W (εb)
is calculated from Eq. (2) with the strain at break εb. Since
the exact definition of l and a mathematical proof of Eq. (13)
have been explained in Ref. [12], we only briefly describe the
results here. In MMCP, l denotes the lattice spacing corre-
sponding to the natural length of the portion of the material
that is to be broken by crack propagation. We can consider l
as a microscopic length scale on which the continuum descrip-
tion is invalidated. Thus l is the largest length scale among
the scales such as the cross-link distance, the size of filler
particles, the filler-particle distance, and the length scale of
the inhomogeneous structure in the sample. It is evident that
Γjump is not an explicit function of Tg and the effect of Tg is
presumably introduced via l , λ and especially Wb.

The similar deduction can proceed for the strain behavior
in SLM, suggesting an indirect effect of Tg on Γjump. We as-
sume m = 0 for simplicity. Although the temperature-related
effects were omitted in the present FEM analyses as well as
the previous analysis [20], one can deduce how the glass tran-
sition temperature Tg affects the strain behavior in SLM by the
time–temperature equivalence. That is, the effect of Tg can be
considered through the shift of the relaxation times τ instead
of direct introduction of the Tg-effect. If we shift τi to aτi with
a coefficient (shift factor) a to realize the effect of Tg as shown
in Fig. 6(a), the shift is equivalent to changing the unit of
time by the factor of 1/a. Then, the strain response of SLM
is accordingly shifted along the horizontal axis (time) by a
times. The whole curve shape however does not substantially

change, nor is the strain level to cause the velocity jump af-
fected [see Fig. 6(b)]. Therefore the tearing energy at velocity
jump Γjump is not affected by such an operation, whereas a
shift of time scale may move the entire Γ -V curve uniformly
in parallel along the ordinate (crack propagation velocity), as
shown in Fig. 6(c). Note that an effect of Tg is possible if m
is sufficiently large because the inertial and viscous terms are
not equally dependent on Tg; m is independent of Tg while τ is
influenced.

By using empirical relations, we can show that there is
a positive correlation between Tg and Γjump, the reason for
which is discussed below. Here, we relate Γjump to Tg via the
following diagram:

Here, cx and Hb denote the cross-linker concentration and
the hysteresis loss at break, respectively. The arrows (a), (b),
(c), and (d) indicate the correlations between the physical
quantities. Figure 7 demonstrate the cx–Hb–Wb correlations
for the SBR compounds with various cx and the cx–Hb–Wb

correlations for the three compounds (NBR, SBR, and BR)
with equal cx, respectively. A negative cx–Hb correlation and
a positive Tg–Hb correlation have been empirically known
for (a), and in this study the cx- and Tg-dependences of Hb

were examined for several rubber compounds. Correlation (b)
was investigated by previous experiments and found to be
expressed as a power law [21–23]:

Wb = KHb
2/3, (14)

where K is a material-dependent parameter [23]. According
to tensile tests for several rubber compounds [22,23], Wb has
positive and negative correlations with Tg and T , respectively
[i.e., correlation (c)]. Correlation (d) is derived from MMCP
as Eq. (13), a linear relationship [12]. Thus correlations (c)
and (d) result in a positive correlation between Γjump and Tg

(and a negative correlation between Γjump and T ). Note that
these correlations were derived from MMCP analysis with
the experiments for uncracked body, i.e., without crack prop-
agation experiments. Below, we perform crack propagation
experiments, and a positive correlation between Γjump and
Tg is experimentally confirmed by comparing three different
rubber materials (i.e., NBR, SBR, and BR) under an identical
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Correlations between cx , Tg, Hb, and Wb. [(a)–(c)] Correlations between cx , Hb, and Wb for SBR’s with various cx obtained by
experiment; (a) Wb-cx , (b) Hb-cx , and (c) Wb-Hb relationships. The dashed lines indicate the power-law approximations of the correlations.
[(d)–(f)] Correlations between Tg, Hb, and Wb for NBR, SBR, and BR compounds with equal cx obtained by experiment; (d) Wb-Tg, (e) Hb-Tg,
and (f) Wb-Hb relationships.

condition of the experimental room temperature, cross-linker
concentration.

VI. VALIDATION OF THEORETICAL PREDICTION
BY EXPERIMENT

We perform a series of crack propagation experiments to
validate the insight from FEM, MMCP and SLM analyses.
Instead of challenging work to observe the glass transition
at the crack tip, we compare the Γjump-Wb relationships ob-
tained by the experiments and the theoretical prediction by
MMCP [12]. The crack-propagation experiments demonstrate
the following three facts. (1) The relationship between Γjump

and Tg shows a positive correlation (and a negative correlation
between Γjump and T ). (2) The effect of Tg and T on Γjump

appears via the material parameters l , λ, and particularly Wb.
In other words, Γjump is not given as an explicit function of
Tg and T , but implicitly affected via Wb. (3) If l and λ are
dependent on T only weakly, Γjump is proportional to Wb.

Provided that λ and l are constant independently of the
rubber compounds, we expect Γjump ∝ Wb even if Tg, T , and cx

are varied. Since there is a previous experiment that examined
the effect of temperature on Γjump [11], we investigate the
Γjump-Wb relationship at a constant temperature dealing with
Tg and Wb as variables. First, to investigate the effect of Tg,
three different rubber compounds were examined, i.e., acry-
lonitrile butadiene rubber (NBR), styrene butadiene rubber
(SBR) and butadiene rubber (BR), all of which are unfilled
and cross-linked with an equal cross-linker concentration cx.

For three compounds, the elastic moduli at the glassy and
rubbery states are approximately equal (i.e., λ � const.) but
relaxation times and thus Tg’s are different. Second, to in-
vestigate the effect of Wb on Γjump independently of Tg, we
examined six SBR compounds with various cx, viscoelastic
behavior of which are substantially equal (see Appendix B for
further details of the material properties).

Figure 8 shows the V -Γ relationships at T = 298 K for
three rubber compounds with equal cx and those for SBR
with various cx. In all the cases, the velocity jump was clearly
observed. Figure 9 shows the Γjump-Wb relationship obtained
from the present and previous [11] experiments. This relation-
ship shows a clear linearity, regardless of Tg, T or cx, which
suggests that the effects of Tg and T on Γjump are actualized
as influences on Wb. The magnitude of Γjump was in the order
as NBR > SBR > BR, which is in accordance with that of
Tg. This result is qualitatively consistent with the theoretical
prediction by MMCP (13) with experimental results for un-
cracked bodies [22,23]. In addition, the previous experiment
reports a negative correlation between Γjump and T [11], which
is also consistent with the MMCP prediction. The apparent
negative correlation between Γjump and T in the previous study
is derived from the temperature effect on Wb.

The above remarks demonstrate the consistency between
the MMCP predictions and the experiments by confirming
linearity in the Γjump-Wb relationship. Besides the present re-
sults, some previous experiments imply the role of the glass
transition in the velocity jump. According to the experimental
observation [8], “the fracture surfaces are smooth and ‘glassy’

073608-8



DYNAMIC GLASS TRANSITION DRAMATICALLY … PHYSICAL REVIEW MATERIALS 5, 073608 (2021)

(a) (b)

FIG. 8. Crack propagation velocity V as a function of tearing energy Γ . The relationships were obtained at T = 298 K with (a) three
different rubbers (NBR, SBR, BR; all cross-linked and unfilled) with identical cross-linker concentrations cx = 1.4 wt% and (b) SBR with
various cx . The data for SBR with cx = 1.4 wt% are shown in both (a) and (b), indicated by green squares. The vertical lines indicate the
velocity jump (guide for eyes).

in appearance” at the fast crack propagation. Similar remarks
are found in other experimental observations of fracture sur-
faces [24].

Note that the MMCP prediction for the Γjump-Wb relation-
ship is valid only for approximately linear elastic materials;

FIG. 9. Tearing energy at velocity jump Γjump as a function of
energy density at break Wb obtained by experiments. The previous
result is adopted from Ref. [11], in which data were obtained at vari-
ous temperatures for an identical compound [cross-linked SBR with
silica filler, shown in Fig. 1(b) in this paper]. All data in this work
were obtained with unfilled compounds at T = 298 K [Figs. 8(a) and
8(b)]. The orange circles indicate three different substances (NBR,
SBR, and BR) with identical cx but different Tg. The dashed line
shows a result of linear fitting to the data. The error bars indicate
the standard deviation of Wb examined with 8 specimens for each
compound.

otherwise, e.g., for filled elastomers of practical use, the
Γjump-Wb relationship is deviated from linearity as discussed
in Ref. [11]. For such compounds, it is inevitable to consider
the effect of nonlinear elasticity, and a linear master curve
for the Γjump-Wb relationship is obtained [11] after compensat-
ing the effect of nonlinearity by the weakly nonlinear theory
of dynamic fracture [25–27].

VII. CONCLUDING REMARKS

The velocity jump of crack propagation in rubber was
investigated with theoretical modeling, numerical simulation,
and experiment to explain the velocity jump phenomenon
as the dynamic glass transition at the crack tip. We gave a
unified understanding of the mechanisms of the velocity jump
independently proposed by the previous FEM simulation [20]
and the MMCP analysis [12]. The mechanical model called
SLM was developed to understand the near-tip mechanical
behavior in the FEM simulation. As a result, it was revealed
that the mechanism of the velocity jump proposed by the
FEM analysis is derived from the dynamic glass transition at
the crack tip, which is consistent with the MMCP analyses.
MMCP predicts a proportional Γjump-Wb relationship if the
material parameters l and λ are constant. It is interesting that
Γjump has no direct relevance to Tg while MMCP attributes the
velocity jump to the dynamic glass transition in the crack-tip
vicinity; the effect of Tg on Γjump appears mainly via that
on Wb.

The FEM simulation and the MMCP analysis both focus
on the viscoelasticity of materials and omit the effects of
temperature, plasticity, etc. Thus we demonstrated that the
temperature effect is not necessarily required to reproduce
the velocity jump, while the previous theory [16,17] assumes
a unrealistic rise in temperature (∼1000 K) near the crack
tip. Indeed, only a modest increase in the temperature was
observed in an experiment [18] (further criticisms are found
in Ref. [19]). Since both the FEM and MMCP analyses adopt
fracture criteria based on strain or stress at break instead
of fracture parameters such as toughness, their relation to
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conventional fracture mechanics is somewhat unclear. How-
ever, they may be properly connected, for example, by
converting strength parameters and characteristic length into
fracture parameters. A full-scale discussion about their rela-
tionship remains as our future work.

As discussed above, the previous work [11] suggests a lin-
ear Γjump-Wb relationship even for the filled rubber compounds
after the effect of nonlinear elasticity is properly compen-
sated by the weakly nonlinear theory [25–27]. It is therefore
worth noting that the simple assumptions in MMCP do not
mar the nature of the velocity jump phenomenon despite the
importance of the nonlinear elasticity and broadly distributed
relaxation time in rubbers [10,19,28]; a simple material model
is useful for explaining the qualitative aspect of the velocity
jump.

Lastly, we note that MMCP does not assume any special
material properties but an ordinary viscoelasticity, and we
therefore consider that the velocity jump may be found in
general viscoelastic materials, not limited to rubberlike solids.
Indeed, very recent experiments [29–32] have reported the
velocity jump phenomenon occurring on various types of
polymer materials.
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APPENDIX A: SOLUTION OF STEP-LOADING MODEL

We derive Eq. (6) as the solution of the equation of motion
for SLM (4) for general N . Applying the Laplace transform to
Eq. (4) under the initial conditions:

ε(0) = 0 and ε̇(0) = 0, (A1)

we obtain

ms2Y (s) + E0Y (s) +
N∑

i=1

EisY (s)

s + 1/τi
= σ ext

s
, (A2)

where Y (s) = ∫ ∞
0 ε(t )e−st dt is the Laplace transform of ε(t ).

Solving Eq. (A2) for Y (s), we obtain Y (s) = σ ext/(s f (s)),
where

f (s) := ms2 + E0 +
N∑

i=1

Eis

s + 1/τi
. (A3)

Y (s) can be formally transformed to

Y (s) = σ ext

(
1

E0s
+

N+2∑
j=1

Cj

s − α j

)
, (A4)

where α j ∈ C are the roots of f (s) (i.e., the poles of Y (s)).
Note that above we assumed that f (s) has no multiple roots
(i.e., α j 
= αk for j 
= k), which is valid for a general choice
of m, E0, Ei, and τi. From the Heaviside cover-up method, the
coefficients Cj ∈ C are determined as

Cj = lim
ξ→α j

ξ − α j

ξ f (ξ )
.

Applying the inverse Laplace transform to Eq. (A4), we ob-
tain the temporal development of strain Eq. (6), where α j is
replaced with −1/τ̂ j to clarify the physical meaning.

The numerical analysis to obtain Fig. 4(a) was per-
formed using an experimental relaxation function of an NBR
compound [10] fitted with N = 25. (see Appendix C for
the referred stress relaxation function and the list of fitted
parameters).

(a) (b)

FIG. 10. Mechanical properties of NBR, SBR and BR with equal cx obtained by experiment. (a) Nominal stress-strain relationships under
quasistatic condition. (b) Dynamic moduli; storage modulus (solid line) and loss modulus (dashed line). The entire curves of dynamic moduli
were reconstructed by the time-temperature superposition from the experimental data at various temperature (see text). The data of dynamic
moduli were smoothened for clarity.

073608-10



DYNAMIC GLASS TRANSITION DRAMATICALLY … PHYSICAL REVIEW MATERIALS 5, 073608 (2021)

(a) (b)

FIG. 11. Mechanical properties of SBR’s with various cx obtained by experiment. (a) Nominal stress-strain relationships under quasistatic
condition. (b) Dynamic moduli; storage modulus (solid line) and loss modulus (dashed line). The entire curves of dynamic moduli were
reconstructed by the time-temperature superposition from the experimental data at various temperature (see text).

APPENDIX B: MECHANICAL PROPERTIES OF
RUBBER SAMPLES

Figures 10 and 11 show the stress-strain relationships and
the dynamic moduli of the unfilled rubber samples listed in
Table I. The full range of dynamic moduli was reconstructed
by applying the time-temperature superposition to the fre-
quency sweep data from 0.5 to 50 Hz at various temperatures
from 193 to 373 K.

APPENDIX C: MATERIAL PARAMETERS FOR
STEP-LOADING MODEL

We determine the material parameters in the Step-Loading
Model (SLM) to obtain the results shown in Fig. 3(a). SLM
with N Maxwell segments has 2N + 2 material parameters,
i.e., m, E0, Ei and τi (i = 1, . . . , N).

The Prony-series parameters E0, Ei and τi were deter-
mined to reproduce an experimental stress relaxation function.
We employed the stress relaxation function of acrylonitrile-
butadiene rubber (NBR) with carbon black filler shown in
Fig. 12, which is obtained by the previous experiment [10]
and adopted in the precedent finite-element method analysis
[20]. We fixed the relaxation times τi such that two τi’s are
assigned for each digit of time within t = 10−10–102 s; i.e.,
N = 25. The discrete spectrum Ei was optimized to repro-
duce the experimental stress relaxation function. Table II lists
the obtained parameter set and it was confirmed in Fig. 12
that the Prony-series approximation well reproduces the ex-
perimental stress relaxation function.

The effective mass m has the unit of mass per unit area and
is dependent on the half specimen size along tension L0/2.
Thus we estimated m as

m � ρL0

2
, (C1)

where ρ denotes the mass density. In addition, the shear term
in the minimal model for crack propagation (MMCP) can
contribute to the effective mass because the effect of the shear
term is proportional to ∂2ε

∂t2 at the steady state (see Eq. (5) in
Ref. [12] with ∂

∂t = V ∂
∂x ). For the present numerical analysis

we employed m = 3ρL0. Here we chose ρ = 1.0 g/cm3, a
typical value of regular polymer solids.

APPENDIX D: DERIVATION OF THE ACCORDANCE OF
TIME CONSTANTS BETWEEN SLM AND MMCP

To show Eqs. (9) and (10), we consider SLM with a single
time constant τ := τ1 (i.e., Eq. (3) with N = 1: E (t ) = E0 +
E1e−t/τ ), and prove the inequalities given as

− 1

(λ − 1)τ
< α1 < − 1

λτ
, (D1)

− 1

2τ

(
1 − 1

λ

)
< Re α2 < − 1

2τ

(
1 − 1

λ − 1

)
, (D2)

FIG. 12. Stress relaxation function of filled NBR by experiment
[10] (dashed black line) and its Prony-series approximation (solid red
line) employed for SLM analysis.
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TABLE II. Material parameters of SLM based on the previous experiment [10]. The index i = 0 is assigned for the relaxed modulus
(τ0 = ∞).

i τi (s) Ei (MPa) i τi (s) Ei (MPa)

0 (∞) 0.994 13 1 × 10−4 1.33
1 1 × 10−10 27.8 14 3 × 10−4 0.272
2 3 × 10−10 84.5 15 1 × 10−3 0.536
3 1 × 10−9 85.3 16 3 × 10−3 0.158
4 3 × 10−9 108 17 1 × 10−2 0.271
5 1 × 10−8 118 18 3 × 10−2 0.165
6 3 × 10−8 97.6 19 1 × 10−1 0.204
7 1 × 10−7 79.3 20 3 × 10−1 0.164
8 3 × 10−7 41.6 21 1 0.168
9 1 × 10−6 22.7 22 3 0.117
10 3 × 10−6 5.77 23 1 × 101 0.131
11 1 × 10−5 4.27 24 3 × 101 0.0767
12 3 × 10−5 0.806 25 1 × 102 0.0903

when the effective mass m is sufficiently small:

m � 3τ 2E0 and λ > 2. (D3)

Here, αi are the roots of f (s) = 0 with the characteristic
equation for the strain response, i.e., Eq. (A3) with N = 1:

f (s) = ms2 + E0 + E1s

s + 1/τ
. (D4)

Since λ is sufficiently large (λ � 103) for typical elastomers,
the inequalities (D1) and (D2) yield the approximate ex-
pressions α1 � −1/(λτ ) and Re α2 � −1/(2τ ). By using the
definitions, τ̂slow := τ̂1, 1/τ̂fast := Re(1/τ̂2), and αi = −1/τ̂i,
the above expressions mean Eqs. (9) and (10).

To evaluate the roots of f (s) = 0, we multiply the equality
f (s) = 0 by (sτ + 1)/E0 and obtain the characteristic equa-
tion g(s) = 0 with

g(s) := mτ

E0
s3 + m

E0
s2 + τλs + 1,

where we use λ := 1 + E1/E0. Note that the roots of f (s) =
0 are equivalent with those of g(s) = 0, because f (−1/τ ) 
=
0. First, we show if the positive number (effective mass) m
is sufficiently small, then g(s) = 0 has one negative root α1

in the range −1/τ < α1 < −1/(λτ ) and two complex roots
α2, α3. To show this statement, we evaluate the function g(s)
on the real axis. The derivative of g(s) is

g′(s) = 3mτ

E0

(
s + 1

3τ

)2

+ τλ − m

3τE0
.

If τλ − m/(3τE0) > 0, i.e., m � 3τ 2E0, then g′(s) � 0,
(which has equality at most one point) and g(s) is strictly
increasing for arbitrary real number s. Since λ > 1, we have

g

(
− 1

λτ

)
= m(λ − 1)

λ3τ 2E0
> 0

and

g

(
− 1

τ

)
= 1 − λ < 0.

Therefore g(s) = 0 has one negative root α1 in the range
−1/τ < α1 < −1/(λτ ). Since g(s) = 0 is a cubic equation
with real coefficients, the remaining two complex (nonreal)
roots α2, α3 are complex conjugates of each other. Second,
we show inequality (D1) when the conditions (D3) hold.
We have

g

(
− 1

(λ − 1)τ

)
= 1

λ − 1

[
m(λ − 2)

τ 2E0(λ − 1)2
− 1

]

� 1

λ − 1

[
3(λ − 2)

(λ − 1)2
− 1

]

= −1

(λ − 1)3

[(
λ − 5

2

)2

+ 3

4

]
< 0.

Therefore α1 satisfies inequality (D1). Finally, we show in-
equality (D2). According to Vieta’s formulas (formulas that
relate the coefficients of a polynomial to sums and products
of its roots), the characteristic equation g(s) = 0 gives α1 +
α2 + α3 = −1/τ . This relation is rewritten as α1 = −1/τ −
2Re α2. Substituting this relation into inequality (D1), we have

− 1

(λ − 1)τ
< − 1

τ
− 2Re α2 < − 1

λτ
.

Therefore we have inequality (D2).

APPENDIX E: ESTIMATION OF EFFECTIVE ELASTIC
MODULUS IN SLM

We show the correspondence between the slow/fast-
velocity regimes in SLM and the rubbery/glassy states in
the case of stress relaxation functions E (t ) with general N .
We numerically evaluate the temporal development of the
effective elastic modulus Eeff (t ) := σ ext/ε(t ) and compare it
to E (t ).

We consider the following two cases, i.e., m = 0 and m >

0. Figure 13 shows Eeff (t ) for m = 0 and m > 0 compared
to E (t ). In both cases, the long-term behavior of Eeff (t ) is
common and Eeff (t ) converges to the stress relaxation function
E (t ). On the other hand, the short-term behavior is affected by
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FIG. 13. Effective elastic moduli Eeff (t ) in the cases of m = 0
and m > 0, compared with the original stress relaxation function
E (t ) obtained by an experiment [10].

the mass term. For m = 0, the short-term behavior is directly
related to E (t ) as well as the case of the long-term behavior.
Only slight discrepancy is found between Eeff (t ) and E (t )
at the viscous-state region. For m > 0, the mass-term effect

FIG. 14. Effective elastic modulus Eeff (t ) compared to the origi-
nal stress relaxation function E (t ) for a massless Zener element.

is dominant on the short-term behavior, resulting in a harder
response.

As mentioned above, the slight discrepancy between E (t )
and Eeff (t ) was found and is mainly due to the viscous be-
havior; its effect can be analytically shown with a massless
Zener element. For a massless Zener element with the stress
relaxation function E (t ) = E1e−t/τ + E0, the effective elas-
tic modulus under a stepwise load Eeff (t ) is evaluated from
Eq. (6) as Eeff (t ) = E1e−t/(λτ ) + E0. Comparing Eeff (t ) to
E (t ), we find a retardation of mechanical response by the
factor of λ at the viscous-state region, as shown in Fig. 14.
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