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The electrical conductivity of the polyimide R-BAPB polymer filled with single-wall carbon nanotubes (CNT)
is modeled using a multiscale approach. The modeling starts with molecular dynamics simulations of time-
dependent atomic configurations of polymer-filled CNTs junctions. Then the atomic positions obtained in the first
step are used to perform fully first-principles microscopic calculations of the CNTs junctions contact resistances
using the quantum transport technique based on Green’s functions. Finally, those contact resistances are supplied
as an input to a statistical calculation of a CNTs ensemble conductivity using a Monte Carlo percolation model.
We discuss the effects of various geometrical peculiarities of CNTs mutual orientation, including an angle ϕ

between nanotubes axes, a CNTs overlap, a separation between CNTs, as well as CNTs sizes, chiralities, CNTs
functionalization on the contact resistance of CNTs junctions. The results of the first-principles calculations show
that of all the considered geometrical peculiarities the angle dependence of CNTs intersections has the most
significant influence on contact resistance of polymer-filled CNTs junctions. A simple fitting model, describing
the dependence of a junction conductance of that angle, is proposed. Incorporating into the percolation model
this strong dependence as well as CNTs agglomeration pushed the calculated values of electrical conductivity of
the composite just above the percolation threshold below 0.01 S/m, which is within the experimental range for
composites with various base polymers. Possible mechanisms for further reduction of composites conductivity
are discussed.
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I. INTRODUCTION

Polymer materials, while possessing some unique and
attractive qualities, such as low weight, high strength, resis-
tance to chemicals, and ease of processing, are for the most
part insulators. If methods could be devised to turn com-
mon insulating polymers into conductors, that would open
great prospects for using such materials in many more ar-
eas than they are currently used. These areas may include
organic solar cells, printing electronic circuits, light-emitting
diodes, actuators, supercapacitors, chemical sensors, and
biosensors [1].

Since the reliable methods for carbon nanotubes (CNT)
fabrication had been developed in the 1990s, growing at-
tention has been paid to the possibility of dispersing CNTs
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in polymers, where CNTs junctions may form a percolation
network and turn an insulating polymer into a good conductor
when a percolation threshold is overcome. An additional ben-
efit of using such polymer/CNTs nanocomposites instead of
intrinsically conducting polymers, such as polyaniline [2] for
example, is that dispersed CNTs, besides providing electrical
conductivity, enhance polymer mechanical properties as well.

CNTs enhanced polymer nanocomposites have been in-
tensively investigated experimentally, including composites
conductivity [3]. As for the theoretical research in this
area, the results are more modest. If one is concerned with
nanocomposite conductivity, its value depends on many fac-
tors, among which are the polymer type, CNTs density,
nanocomposite preparation technique, CNTs and their junc-
tions geometry, a possible presence of defects in CNTs, and
others. Taking all these factors into account and obtaining
quantitatively correct results in modeling is a very challenging
task since the resulting conductivity is formed at different
length scales: At the microscopic level it is influenced by
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FIG. 1. The chemical structure of R-BAPB polyimide. The thick
bonds correspond to the dihedral angles used to estimate the local
relaxation properties of the polyimide chains.

the CNTs junctions contact resistance and at the mesoscopic
level it is determined by percolation through a network of
CNTs junctions. Thus a consistent multiscale method for the
modeling of conductivity, starting from atomistic first-
principles calculations of electron transport through CNTs
junctions, is necessary.

Due to the complexity of this multiscale task, the majority
of investigations in the area are carried out in some simplified
forms; this is especially true for the underlying part of the
modeling: determination of CNTs junction contact resistance.
For the contact resistance either experimental values as in
Ref. [4] or the results of phenomenological Simmons model
as in Refs. [5–8] are usually taken, or even an arbitrary value
of contact resistance reasonable by an order of magnitude may
be set [9]. In Refs. [10,11] the tunneling probability through a
CNT junction is modeled using a rectangular potential barrier
and the quasiclassical approximation.

The authors of Ref. [12] employed an oversimplified two-
parameter expression for contact resistance, with these pa-
rameters fitted to the experimental data. The best microscopic
attempt, that we are aware of, is using the semiphenomeno-
logical tight-binding approximation for the calculations of
contact resistance [13]. But in Ref. [13] just the microscopic
part of the nanocomposites conductivity problem is addressed,
and the conductivity of nanocomposite is not calculated.
Moreover, in Ref. [13] the coaxial CNTs configuration is only
considered, which is hardly realistic for real polymers.

Thus, the majority of investigations are concentrated on the
mesoscopic part of the task: refining a percolation model or
phenomenologically taking into account different geometry
peculiarities of CNTs junctions. Moreover, comparison with
experiments is missing in some publications on this topic.
Thus, a truly multiscale investigation, capable of providing
quantitative results comparable with experiments, combining
fully first-principles calculations of contact resistance on the
microscopic level with a percolation model on the mesoscopic
level seems to be missing.

In our previous research [14], we proposed an efficient
and precise method for fully first-principles calculations of
CNTs contact resistance and combined it with a Monte-Carlo
statistical percolation model to calculate the conductivity of
a simplified example network of CNTs junctions without
polymer filling. In the current paper, we are applying the
developed approach to the modeling of conductivity of the
CNTs enhanced polymer polyimide R-BAPB.

R-BAPB (Fig. 1) is a novel polyetherimide synthesized us-
ing 1,3-bis-(3′,4-dicarboxyphenoxy)-benzene (dianhidride R)

and 4,4′-bis-(4′′-aminophenoxy)diphenyl (diamine BAPB). It
is thermostable polymer with extremely high thermomechan-
ical properties (glass transition temperature Tg = 453–463 K,
melting temperature Tm = 588 K, Young’s modulus E =
3.2 GPa) [15]. This polyetherimide could be used as a
binder to produce composite and nanocomposite materials
demanded in shipbuilding, aerospace, and other fields of in-
dustry. The two main advantages of the R-BAPB among other
thermostable polymers are thermoplasticity and crystallinity.
R-BAPB-based composites could be produced and processed
using convenient melt technologies.

Crystallinity of R-BAPB in composites leads to improved
mechanical properties of the materials, including bulk com-
posites and nanocomposite fibers. It is well known that carbon
nanofillers could act as nucleating agents for R-BAPB, in-
creasing the degree of crystallinity of the polymer matrix
in composites. As it was shown in experimental and theo-
retical studies [16–19], the degree of crystallinity of carbon
nanofiller enhanced R-BAPB may be comparable to that of
bulk polymers.

Ordering of polymer chains relative to nanotube axes
could certainly influence the conductance of the polymer-
filled nanoparticle junctions. However, it is expected that
such influence will depend on many parameters, including
the structure of a junction, position, and orientation of chain
fragments on the nanotube surface close to a junction, and
others. Taking into account all of these parameters is a rather
complex task that requires high computational resources for
atomistic modeling and ab initio calculations, as well as com-
plex analysis procedures. Thus, on the current stage of the
study, we consider only systems where the polymer matrix
was in an amorphous state, i.e., no sufficient polymer chains
ordering relative to nanotubes were observed.

The ultimate goal of the efforts aimed at the modeling
of nanocomposites conductivity would be a model param-
eterized with the different geometrical parameters of the
polymer-nanotubes system. Those geometrical parameters in-
clude CNTs type, CNTs overlap length, the distance between
CNTs, CNTs crossing angles, and possible presence of defects
in CNTs. The mentioned peculiarities affect composites con-
ductivity to varying degrees. As was shown in our previous
work ([14]) probably the most significant geometrical factor
leading to variations in the junctions contact resistance is the
CNTs crossing angles and the distance between CNTs. Also
to some degree, the contact resistance may depend on CNTs
chirality (which determines whether CNTs are metallic or
semiconducting and CNTs size) and CNTs overlap length. In
the current work, we investigate in detail the contact resistance
of CNTs configurations filled with polymers that differ in
crossing angle and distance between CNTs. At the same time,
the influence of CNTs overlap and chirality is investigated
using just CNTs, without polymer.

II. DESCRIPTION OF THE MULTISCALE PROCEDURE

The modeling of polymer nanocomposite electrical con-
ductivity is based on a multiscale approach, in which different
simulation models are used at different scales. For the electron
transport in polymer composites with a conducting filler, the
lowest scale corresponds to the contact resistance between
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tubes. The contact resistance is determined at the atomistic
scale by tunneling of electrons between the filler particles via
a polymer matrix, and hence, analysis of contact resistance
requires knowledge of the atomistic structure of a contact.
Therefore, at the first step, we develop an atomistic model of
the contact between carbon nanotubes in a polyimide matrix
using the molecular dynamics (MD) method. This method
gives us the structure of the intercalated polymer molecules
between carbon nanotubes for different intersection angles
between the nanotubes. One should mention that since a poly-
mer matrix is soft, the contact structure varies with time,
and, therefore, we use molecular dynamics to sample these
structures.

Based on the determined atomistic structures of the con-
tacts between nanotubes in the polymer matrix we calculate
electron transport through the junction using electronic struc-
ture calculations and the formalism of the Green’s matrix.
Since this analysis requires first-principles methods, one has
to reduce the size of the atomistic structure of a contact to
acceptable values for the first-principles methods, and we
developed a special procedure for cutting the contact structure
from MD results. First-principles calculations of contact re-
sistance should be performed for all snapshots of an atomistic
contact structure of MD simulations, and an average value and
a standard deviation should be extracted. In this way, one can
get the dependence of contact resistance on the intersection
angle and contact distance.

Using information about contact resistances we estimate
the macroscopic conductivity of a composite with nanotube
fillers. For this, we used a percolation model based on the
Monte Carlo method to construct a nanotube network in a
polymer matrix. In this model, we used distributions of con-
tact resistances, obtained from the first-principles calculations
for the given angle between nanotubes. Using this Monte
Carlo percolation model one can investigate the influence of
nonuniformities of a nanotube distribution on macroscopic
electrical conductivity.

In the A section, we will describe the details of molecular
dynamics modeling of the atomistic structure of contacts be-
tween nanotubes. In the B section, we present the details of
first-principles calculations of electron transport for estimates
of contact resistance. Finally, in the C section, we present the
details of the Monte Carlo percolation model.

A. Preparation of the composite atomic configurations

Initially, two metallic CNTs with chirality (5,5) were
constructed and separated by 6 Å. The CNTs consisted of
20 periods along the axis, and each one had a total length
of 4.92 nm. The broken bonds at the ends of the CNTs were
saturated with hydrogen atoms. The distance 6 Å was chosen,
because starting with this distance polymer molecules are able
to penetrate the space between CNTs. The three configura-
tions of CNTs junctions were prepared: the first one with
parallel CNTs axes (angle between nanotube axes ϕ = 0◦),
the second one with the axes crossing at 45 degrees (ϕ = 45◦),
and the third one with perpendicular axes (ϕ = 90◦).

To produce the polymer-filled samples, we used a pro-
cedure similar to that employed for the simulations of the
thermoplastic polyimides and polyimide-based nanocompos-

FIG. 2. The snapshots of the nanocomposite system with the
parallel orientation of carbon nanotubes at the initial state (left frame)
and after the compression procedure (right frame). The black lines
represent the periodic simulation cell.

ites in the previous works [17,18,20–24]. First, partially
coiled R-BAPB chains with the polymerization degree Np =
8, which corresponds to the polymer regime onset [21,22],
were added to the simulation box at random positions avoid-
ing overlapping of polymer chains. This results in the initial
configuration of samples with a rather low overall density
(ρ ∼ 100 kg/m3) (Fig. 2). Then the molecular dynamics sim-
ulations were performed to compress the systems generated,
equilibrate them, and perform production runs.

The molecular dynamics simulations were carried out
using Gromacs simulation package [25,26]. The atomistic
models used to represent both the R-BAPB polyimide and
CNTs were parameterized using the Gromos53a6 force field
[27]. Partial charges were calculated using the Hartree-Fock
quantum-mechanical method with the 6-31G* basis set, and
the Mulliken method was applied to estimate the values of the
particle charges from an electron density distribution. As was
shown recently, this combination of the force field and particle
charges parametrization method allows one to reproduce qual-
itatively and quantitatively the thermophysical properties of
thermoplastic polyimides [20]. The model used in the present
work was successfully utilized to study structural, thermo-
physical, and mechanical properties of the R-BAPB polyimide
and R-BAPB-based nanocomposites [17,18,20–22].

All simulations were performed using the NpT ensemble
at temperature T = 600 K, which is higher than the glass
transition temperature of R-BAPB. This temperature was cho-
sen to make the equilibration of the polymer more rapid. As
the experimental evidence shows [28,29], the conductivity of
CNTs enhanced polymers does depend on temperature, but
this dependence becomes less significant at the temperatures
above 200 K. As the temperature approaches 300 K, the
changes in conductivity become practically negligible. Thus,
the temperature T = 600 K is used for the rapid thermal
equilibration and obtaining production configurations, and the
results for conductivity will be valid for temperatures above
300 K. The temperature and pressure values were maintained
using Berendsen thermostat and barostat [30,31] with relax-
ation times τT = 0.1 ps and τp = 0.5 ps, respectively. The
electrostatic interactions were taken into account using the
particle-mesh Ewald summation (PME) method [32,33].

The step-wise compression procedure allows one to
obtain dense samples with an overall density close to the
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experimental polyimide density value (ρ ≈
1250–1300 kg/m3), as shown in Fig. 2. The system pressure
p during compression was increased in a stepwise manner
up to p = 1000 bar and decreased then to p = 1 bar. After
compression and equilibration, the production runs were
performed to obtain the set of polymer-filled CNT junction
configurations.

As the conductance of polymer-filled CNT junctions is
influenced by the density and structure of a polymer matrix
in the nearest vicinity of a contact between CNTs, the relax-
ation of the overall system density was used as the system
equilibration criterion. To estimate the equilibration time, the
time dependence of the system density was calculated as well
as the density autocorrelation function Cρ (t ):

Cρ (t ) = 〈ρ(0)ρ(t )〉
〈ρ2〉 , (1)

where ρ(t ) is the density of the system at time t and 〈ρ2〉 is
the average density of the system during the simulation.

As shown in Fig. 3(a), the system density does not
change sufficiently during simulation after the compression
procedure. At the same time, the analysis of the density
autocorrelation functions shows some difference in the re-
laxation processes in the systems studied [see Fig. 3(b)]. In
the case of the system where CNTs were placed parallel to
each other (ϕ = 0◦), Cρ (t ) could be approximated by the ex-
ponential decay function Cρ (t ) = exp(−t/τ ) with relaxation
time τ = 4 ps. The density relaxation in the systems with
crossed CNTs (ϕ = 45◦ and ϕ = 90◦) was found to be slower.
For these two systems density the autocorrelation functions
could be approximated by a double exponential function
Cρ (t ) = A exp(−t/τ1) + (1 − A) exp(−t/τ2), and the relax-
ation times determined using this fitting were τ1 = 2.7 ps and
τ2 = 12.2 ns (for ϕ = 90◦) and τ1 = 9.5 ps and τ2 = 24.6 ns
(in case of ϕ = 45◦).

Also we have calculated time autocorrelation functions
Cθ (t ) = 〈cos[θ (τ ) − θ (τ + t )]〉τ for dihedral angles θ in both
dianhydride and diamine parts of the R-BAPB monomer unit
and estimated corresponding relaxation times to characterize
relaxation of local mobility of polymer chains in the sys-
tems considered. The angles chosen to calculate relaxation
characteristics are of the same nature and correspond to the
rotation around O-CAr bonds. These angles are shown by thick
bonds in the R-BAPB structure (Fig. 1). The characteristic
relaxation times τθ were obtained by fitting Cθ (t ) using the
Kohlrausch “Williams” Watts (KWW) stretched exponentials
Cθ (t ) = A exp(−(t/τθ )β ), where A � 1, and β is the stretch-
ing parameter taking into account the nonexponentiality of the
relaxational process. It was shown that for all systems con-
sidered autocorrelation functions Cθ (t ) drop to values close
to zero on 250 ns timescale, Fig. 3(c). The characteristic
relaxation times estimated by fitting of the autocorrelation
functions were τθ = 10.9 ns in the case of ϕ = 0◦, τθ =
11.8 ns (ϕ = 90◦), and τθ = 37.7 ns (ϕ = 45◦).

The results obtained after the analysis of the system density
relaxation allow us to choose the system equilibration time to
be 100 ns, which is higher than the longest system density
relaxation times determined by the density autocorrelation
function analysis. Calculation of relaxation characteristics

(a)

(b)

(c)

FIG. 3. The time dependence of the system density ρ (a), the
density autocorrelation functions Cρ (t ) (b), and the dihedral angle
autocorrelation function Cθ (t ) (c) for the systems with various angles
between nanotube axes ϕ. The dots correspond to the calculated data.
The solid lines correspond to the fitting of Cρ (t ) with the exponential
(in case of ϕ = 0◦) or double exponential (in case of ϕ = 45◦ and
ϕ = 90◦) functions, and to the fitting of Cθ (t ) using KWW stretched
exponentials.
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of dihedral angles in R-BAPB polymer chains confirms our
conclusion that we achieve local relaxation of polymer con-
formations during 100 ns of MD simulations. The same
simulation time was used in our previous works to equilibrate
the nanocomposite structure after switching on electrostatic
interactions [17,20,24]. The equilibration was followed by the
150 ns long production run. To analyze the polymer-filled
CNT junction conductance, 31 configurations of each simu-
lated system, separated by 5 ns intervals, were taken from the
production run trajectory.

After the configurational relaxation is finished, we have to
prepare atomic configurations for polymer-filled CNT junc-
tions for the first-principles calculations of contact resistance.
The method we used for the calculations of contact resistance
is based on the solution of the ballistic electronic transport
problem, finding the volt-ampere characteristic I (V ) of a de-
vice and deriving the contact resistance from the linear part
of I (V ) corresponding to the low voltages. For this purpose,
we employed the Green’s function method for solving the
scattering problem and the Landauer-Buttiker approach to find
the current through a scattering region coupled to two semi-
infinite leads, as described in Ref. [34]. Specific details of how
these techniques are applied in the case of crossed CNTs can
be found in Ref. [14].

B. The first-principles calculations of the contact resistance of
CNTs junctions filled with polymer

For the preparation of a device for the electronic transport
calculations, we first form that part of the device which con-
sists of the atoms belonging to the CNTs used in the CNTs
plus polymer relaxation. Regions with the same geometry as
in Ref. [14] are cut from the initial 20-period long CNTs, and
the rest of the atoms belonging to the CNTs are discarded.
This is done to make possible a direct comparison of the
results obtained for the polymer-filled CNTs junctions with
the results for CNTs junctions without polymer reported in
Ref. [14] for the same separation of CNTs equal to 6 Å.

Note that the CNTs parts of the scattering device contain
atoms shifted from their positions in ideal CNTs due to the
influence of the adjacent polymer molecules, and these shifts
are time dependent as a result of differences in local polymer
configuration.

The cut regions contain two fragments of CNTs each
9 periods long, and in the case of the CNTs parallel config-
uration, the CNTs overlap by 7 periods. In the nonparallel
configurations, one of the CNTs is rotated around the axis
perpendicular to the CNTs axes in the parallel configuration
and passing through the geometrical center of a device in the
parallel configuration. After the construction of the CNTs part
of the scattering region, we attach to it leads that consist of
5 period long fragments of an ideal CNT. The CNTs parts
of the scattering regions with the attached leads for the three
considered configurations are shown in Fig. 4.

For the convenience of the reader we remind here the basic
terminology used in the field of electronic quantum transport
at the microscale. An atomic configuration for calculations of
the quantum transport at the microscale consists of a central
scattering region and semi-infinite leads that serve as sources
of carriers. In Figs. 4 and 5 the leads are green and the rest of

FIG. 4. The CNTs parts of the junctions. Left: the parallel con-
figuration, center: CNTs axes are crossing at 45 degrees, right: the
perpendicular configuration. The leads atoms are colored by green.

the atoms belong to the central scattering region. Note that
only single periods of the leads are represented in Figs. 4
and 5. These single periods are repeated semi-infinitely in
the directions from the central scattering regions. A central
scattering region together with semi-infinite leads is called a
“whole device” or just a “device.” A device may contain a
different number of atoms as shown below.

After the preparation of the CNT parts of the junctions,
we still have 17 766 atoms in a device. A system with such
a large number of atoms cannot be treated by fully first-
principles atomistic methods. On the other hand, keeping all
those atoms for a precision calculation of the contact resis-
tance of polymer-filled CNTs junctions is not necessary, as
only those polymer atoms which are close enough to a CNT
will serve as tunneling bridges and give a contribution to the
junctions conductivity. Thus, for the calculations of the con-
tact resistance, only those atoms were kept which are closer
to the CNTs than a certain distance d . It has been established
by numerical experiments that if the value of d is taken equal
to the CNTs separation d = 6 Å this is quite sufficient, and
taking into account more distant atoms does not change the
contact resistance significantly.

The procedure of sorting the polymer atoms is as follows.
In our molecular dynamics simulations, we used 27 separate
polymer molecules, consisting of eight monomers each. If at
least one of the atoms of a polymer molecule was closer to the
CNTs part of a junction than d = 6 Å, the whole molecule
was kept for a while and discarded otherwise. Having
applied this first part of the procedure, we kept four polymer
molecules for the parallel configuration, eight molecules for

FIG. 5. The atomic configurations for the first-principles calcu-
lations of the polymer filled CNTs junctions contact resistance. The
configurations are for the first time steps in the corresponding series.
Left: the parallel configuration, center: CNTs axes are crossed at
45 degrees, right: the perpendicular configuration. The carbon atoms
are gray, the nitrogen atoms are blue, the oxygen atoms are red, and
the hydrogen atoms are light gray. The leads atoms are colored in
green.
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the perpendicular configuration, and 11 molecules for the
45 degrees configuration.

Then we looked at the polymer molecules that satisfied
the criterion used in the first round of selections. The same
procedure was applied to monomers as the one used earlier for
molecules: If at least one of the monomer atoms was closer to
the CNTs part of a junction than d = 6 Å, the whole monomer
was kept for a while and discarded otherwise.

After the second round of selection with monomers was
over, we dealt in the same manner with the individual residues
comprising a monomer. The broken bonds that appeared in the
second and third stages were saturated with hydrogen atoms.
The described procedure resulted in the following numbers
of atoms in the whole device, including the central scatter-
ing region and the leads: 881 for the parallel configuration,
1150 for the perpendicular configuration, and 1074 for the
45 degrees configuration. The atomic configurations obtained
using the described procedure for the first time steps in the
corresponding series are presented in Fig. 5.

A fully ab initio method for electronic structure investiga-
tions utilizing a localized pseudoatomic basis set, as described
in Ref. [35] and implemented in Ref. [36], was used for the
calculations of the electronic structures of the whole device
and the leads. We used basis set s2p2d1, the pseudoatomic
orbitals (PAO) cutoff radius equal to 6.0 a.u., and the cutoff
energy of 150 Ry. The pseudopotentials generated according
to the Morrison, Bylander, and Kleinman scheme [37] were
used. For the density functional calculations, the exchange-
correlation functional was used in the PBE96 form [38].

Using the electronic structures of the whole device and
the leads we calculated the energy-dependent transmission
function through the device. Then the dependence I (V ) of the
current I on the voltage V between the leads was determined
with the Green’s function approach as described in detail in
Ref. [34]. Finally, the Landauer-Buttiker approach was used
to find the current through a polymer-filled CNTs junction.

Solving a scattering problem for a nanodevice at arbitrary
voltages is a computationally very complex task since it re-
quires achieving self-consistency for both electron density and
induced electrostatic potential simultaneously. Fortunately,
for contact resistance calculations one can take advantage of
the fact that the required voltages are very low.

According to the experimental evidence, the size of a
nanocomposite specimen used in conductivity experiments is
about 10 mm [39], and the typical voltages applied across such
specimen do not exceed 100 V [40]. The characteristic size of
the scattering regions (the parts of the atomic configurations
between the green leads in Fig. 5) for the devices considered
in this paper is about 1 nm in all directions. This corresponds
to the voltage drop across a scattering region about 10−5 V,
which is well within the range where the simplified approach
is applicable, thus making our computational scheme relevant.
The sizes of CNTs present in real polymers are larger approxi-
mately by one order of magnitude than the sizes of CNTs used
in our calculations. Thus the voltage drop in real polymers is
in the range from 10−4 V to 10−3 V, which is still within or
close to the linearity area.

The question of the modeling of quantum transport in the
limit of low voltages was discussed in detail in Ref. [14],
where it was demonstrated that in the case of moderate

FIG. 6. The atomic configuration used in this work to validate
the method of calculating quantum transport by comparing it against
the consistent NEGF approach.

voltages between leads, the scattering probability T (E ) is not
sensitive to the details of the electrostatic potential distribution
V (r) in the central scattering region, and some physically
reasonable approximation may be chosen for V (r).

This is due to the fact that the difference of the Fermi
functions f (ε − μL ) and f (ε − μR) for the left and right leads
with corresponding chemical potentials μL and μR, present in
the original Landauer-Buttiker formula:

I = 2e

h

∫
T (ε)( f (ε − μL ) − f (ε − μR))dε, (2)

where e is the elementary charge, h is the Planck constant, ε is
the electron energy, and T (ε) is the energy-dependent trans-
mission probability, is reduced in this case to a very narrow
and sharp peak centered at the Fermi level of the device.

In addition to the analysis performed in Ref. [14], in this
paper, to verify the accuracy of our approach, we made contact
resistance calculations for a simple test CNT junction in a
coaxial configuration, using both the simplified method we
suggest and the full NEGF method, where not only electron
charge density but the electric potential was converged as
well. The interlead voltage used in those test calculations was
set to 10−4 V, and the gap between the CNTs tips was 0.94 Å.
The atomic configurations for the test calculations are pre-
sented in Fig. 6. The consistent NEGF calculations produced
1.71 × 10−5 S for the conductance of the junctions shown in
Fig. 6, while modeling without searching for convergence of
potential yielded 1.72 × 10−5 S.

Thus, in our case, a very complex task of finding the I (V )
characteristic of a nanodevice can be significantly simplified
without the loss of precision. For the I (V ) calculations in
the current paper we employed the abrupt potential model
introduced in Ref. [14]: The potentials VL for the left lead
and VR for the right lead were set and were used for all atoms
of the corresponding CNT to which that lead belonged. As
for the polymer atoms, both VL and VR can be safely used
for them, and at the considered voltages, adopting these two
options, as we have checked by direct calculations, leads to
the differences in current not exceeding 0.1%.

C. The percolation model

Determination of the conductivity of a polymer-CNT sys-
tem can be implemented in two stages. First, a percolation
cluster is formed, and the second stage implies solving the
matrix problem for a random resistor circuit (network).
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At the first stage, the modeling area—a cube of the linear
size L—is filled with CNTs. For this task, permeable capsules
(cylinders with hemispheres at the ends) with a fixed length
and diameter were chosen as filling objects corresponding to
CNTs. The cube is filled by the successive addition of CNTs
until a fixed bulk density of CNTs

η = ((4/3)πR3 + πR2h)N

L3
(3)

in the cube is reached, where R is the radius of the cylinder
and hemisphere, h is the height of the cylinder, and N is
the number of CNTs in the cube. The percolation problem
for permeable capsules was previously solved in Ref. [41],
and in Ref. [42] capsules with a semipermeable shell were
considered.

In the percolation problem, we use periodic boundary con-
ditions as, for example, in Ref. [10]. We use the method of
finding a percolation threshold based on the Newman and
Ziff algorithm [43], where the identification of a percolation
cluster is made at the stage of its formation. When a perco-
lation cluster is formed, the obtained CNT configuration is
transformed into a resistor circuit (second stage).

The contributions to a conductance matrix resulting from
the inner resistance of CNTs and the tunneling resistance of
junctions are usually discussed in connection with construct-
ing conductivity percolation algorithms. Direct measurements
of CNTs resistance per unit length are available. In Ref. [44],
the inner resistance of CNTs is estimated as 15 × 103 
/μm.
The results of Ref. [45] give specific CNTs resistance in the
range (12–86) × 103 
/μm. Taking into account that the
characteristic CNTs lengths in nanocomposites are about sev-
eral μm [39,40], this results in the inner CNTs resistance
approximately 104–105 
, which is at least one order of
magnitude less than the tunneling resistance obtained in this
work. The specific results on tunneling resistance will be dis-
cussed below in Sec. III. Thus, in our percolation model, the
inner resistance of CNTs is neglected, and only the tunneling
resistance of CNTs junctions is taken into account. This can
significantly reduce the requirements for computational time.

When contact resistance is determined only by tunneling,
the principle of compiling the matrix for the percolation prob-
lem, after a percolation cluster has been identified, will be as
follows. First, the matrix (N, N) is compiled from the bonds
of percolation elements, where N is the number of CNTs
participating in percolation. Then this matrix is filled with
the values of the conductance of the polymer-filled CNTs
junctions Gi j . The matrix elements Gi j are calculated using
a precise quantum mechanical approach taking into account
the crossing angle between CNTs. Since the position and
direction of every filler used in the percolation problem are
known, one can calculate a crossing angle for every junction
that is a part of a percolation cluster and use the value of Gi j

corresponding to this angle. How a specific value of Gi j is
assigned to a particular junction is described in detail below
in Sec. III. Finally, the components Vk of the voltage vector
V corresponding to the kth contact point in a percolation
network are determined according to the second Kirchhoff

law [46].

∑
j

Gi j (Vi − Vj ) = 0; (4)

the sum of currents for all internal elements of a percolation
network is zero. The voltages on the left and right borders
of a simulation volume are set to VL = 1 V and VR = 0 V,
respectively.

Now finding the conductivity of the system is reduced to
the problem GV = I, where G is the conductance matrix and
I is the vector of the currents between the contact points.

After solving equation (4), with the elements of the G
matrix obtained by the first-principles calculations, we obtain
the voltage vector for all internal elements. Then, knowing
this vector, we sum up all the currents on each of the bound-
aries. The currents on the left IL and right IR boundaries of
a simulation volume are equal in magnitude and opposite in
sign IL = −IR. Knowing these currents, we determine the con-
ductance of the simulation system as G = |IL|/(VL − VR) =
|IR|/(VL − VR). Then the conductivity of the composite is cal-
culated as σ = GL/S, where L is the distance between the
faces of a simulation volume where voltage is applied, and S
is the area of that kind of face. In our case, for the simulation
volume of a cubic shape, S = L2, and σ = G/L.

To calculate the conductivity, the following system param-
eters were selected: The length of a nanotube is l = 3 μm, the
diameter of a CNT is D = 30 nm, the aspect ratio l/D = 100,
and the size of the system is 4 μm. The same values were used
in Ref. [6]. We adopted those values to test our realization
of the percolation algorithm against the previously obtained
results [6]. Then for the given parameters for each fixed tube
density, the Monte Carlo method (100 implementations of var-
ious configurations of CNT networks) was used to calculate
the system conductivity. The quality of CNTs dispersion is
one of the key factors that affect the properties of nanocom-
posites, and a lot of effort is taken to achieve a homogeneous
distribution of fillers in regular polymers [47].

On the other hand, there are some special cases when fillers
self-assembly in a particular manner enhances the properties
of composites compared to the homogeneous distributions of
fillers. These cases include the composites based on the spe-
cific polymers. For example, in Ref. [48] a multicomponent
polymer undergoing phase separation is modeled. The carbon
fillers in that polymer are agglomerated in the minority phase.
In Ref. [49] a block copolymer that has a sandwichlike layered
structure is considered, and the carbon nanorods are aligned in
the layers of one type. In Ref. [50], the CNTs are located in a
thin layer near the surface of the polymer.

In our case, the R-BAPB polyimide polymer does not
exhibit any of the peculiarities discussed in Refs. [48–50].
However, those peculiarities can be incorporated into the pro-
posed multiscale procedure by just distributing CNTs in some
specific manner when forming a percolation cluster. Doing
that, the information on the distribution of the fillers from
Refs. [48–50] can be used as an input for the multiscale
procedure proposed in this work. The other two steps: equi-
librating a polymer and calculating contact resistances remain
unchanged.
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(a)

(b)

FIG. 7. The uniform (a) and agglomerated with ρσ = L/12
(b) distributions of CNTs in the simulation volume.

In this work, we take into consideration the effect of inho-
mogeneity of a CNTs distribution on composite conductivity.
The spatial density of nanotubes ρCNT, in this case, has one
peak with a Gaussian distribution:

ρCNT = ρ0 · exp(−(r − r0)2/ρ2
σ ), (5)

where r0 coincides with the geometrical center of a simulation
volume, and ρσ = L/12. The value of the ρ0 parameter is
chosen so that the CNTs volume fraction in the inhomoge-
neous case is the same as in the homogeneous distribution.
The uniform and agglomerated distributions of CNTs are
shown in Fig. 7.

III. RESULTS AND DISCUSSION

To find the contact resistance of polymer filled CNTs junc-
tions one first needs to find their volt-ampere characteristics
I (V ) and to determine the voltage range where I (V ) is linear
and is not sensitive to the specific distribution of the electro-
static potential in the scattering region. In Fig. 8 the I (V ) plot
for the first time step in the atomic geometry series for the
parallel configuration is shown.

It is clearly seen from Fig. 8 that up to about 10−4 V
the I (V ) characteristic is linear, and after that value, it starts
to deviate from a simple linear dependence. Thus, for the
calculations of a contact resistance R and its inverse, a junction
conductivity G, we used the electrical current values obtained
for the interlead voltage equal to 10−4 V. Note that according
to our estimates in Sec. II B, a characteristic voltage drop on

(a)

(b)

FIG. 8. The volt-ampere characteristic for the polymer filled
CNTs junction corresponding to the first time step in the series for
the parallel configuration. (a) Maximum interlead voltage is 10−3 V,
(b) 10−4 V. The circles correspond to the results of calculations; the
lines are guides for the eye.

the length of a CNTs tunneling junction is about 10−5 V which
is well within the region where the linear I (V ) is observed.

The time dependences of the junctions conductances for
the three considered configurations are presented in Fig. 9.
One might expect that the shifts of both CNTs atoms and
polymer atoms in the central scattering region due to thermal
fluctuations would lead to fluctuations of junctions conduc-
tances G, but quantitative characteristics of this phenomenon
such as minimum Gmin, maximum Gmax, mean values 〈G〉,
and a standard deviation Gσ can only be captured by highly
precise fully atomistic first-principles methods, like those
employed in the current paper. The resulting fluctuations of
conductance are very high. For the parallel CNTs config-
uration the minimum value, Gmin = 2.4 × 10−8 S, and the
maximum value, Gmax = 6.8 × 10−6 S, differ by more than
two orders of magnitude; for the 45 degrees and perpendicular
configurations the corresponding ratios are about 30. These
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FIG. 9. The time dependence of the conductance of the polymer-
filled junctions G in S for the separation between CNTs equal to 6 Å.
The red color corresponds to the parallel configuration, the green
lines to the perpendicular configuration, and the blue lines to the
45 degrees configuration. The results of the calculations are shown by
circles, the saw-tooth lines serve as a guide for the eye. The straight
solid lines designate the mean values of conductance 〈G〉 and the
dashed ones 〈G〉 ± Gσ .

fluctuations are mainly due to the differences in local polymer
configuration. The distance between the CNTs in different
snapshots changes just negligibly.

The same strong variations of conductance over time were
reported in Ref. [13] for the coaxial CNTs configuration,
where the results were obtained using a semiempirical tight-
binding approximation. Thus, it is obvious that for the precise
determination of the conductance of polymer-filled CNTs
junctions one needs to use fully atomistic approaches, and
phenomenological methods taking atomic configurations into
account on the average are not reliable.

To assign a tunneling resistance to a polymer-filled CNT
junction the following algorithm was used. First, for each
junction that had to be used in the percolation algorithm,
the crossing angle between CNTs was calculated using the
positions and directions of the CNTs comprising this junction.
The contact resistance corresponding to this value of the angle
was calculated using the following interpolation algorithm.
The mean values and standard deviations for CNTs tunnel-

ing resistances and conductances calculated for the different
atomic configurations corresponding to the different time
steps are known for ϕ = 0, π/4, and π/2. Analyzing Fig. 4
of Ref. [14], one can see that though an angle dependence of
current and hence conductivity is a rather complex function,
in the first approximation one can adopt a roughly piecewise
linear character for this function with the minimum located at
ϕ = 0.25π . Thus the logarithm of the mean value of conduc-
tance μϕ for the generated ϕ was set by linear interpolation
between the logarithms of the mean values of conductances
for ϕ = 0 and ϕ = π/4 or ϕ = π/4 and ϕ = π/2 presented
in Table I. The same algorithm was applied to finding the stan-
dard deviation values σϕ for the generated ϕ. After the stat-
istical parameters for the generated ϕ are estimated, the
conductivity of the junction is set to a random number gen-
erated using the normal distribution with the parameters μϕ

and σϕ .
In Ref. [14], the conductances were reported for the CNTs

junctions with almost the same geometry as the CNTs parts of
the devices considered in the current paper. The only differ-
ence between the configurations is that in this work the carbon
atoms belonging to the CNTs part of the central scattering
region are shifted somewhat from their equilibrium positions
due to the interaction with polymer. The maximum values of
those shifts along the x, y, and z coordinates lie in the range
0.2–0.5 Å. This gives us the possibility to directly compare
the current results to the data from Ref. [14] and thus eluci-
date the influence of polymer filling on the conductance of
junctions. The corresponding data and the results of a basic
statistical analysis for the case of the polymer-filled junctions
are provided in Table I.

First, as was expected, filling CNTs junctions with polymer
creates carrier tunneling paths and increases junctions con-
ductance by 6–7 orders of magnitude. Second, it is evident
that the CNTs axes crossing angle is crucial for the junctions
conductivity when a polymer is present as was the case with-
out polymer [14]. At the same time, the sharp dependence of
polymer-filled junctions conductance on the CNTs crossing
angle is somewhat different from the analogous dependence
for junctions without polymers. While in the latter case this
dependence is sharply nonmonotonous, with a pronounced
minimum at the angles around 0.25π , in the former case
there is a significant difference between the conductance val-
ues for the parallel and nonparallel configurations, but the
configurations with the angle ϕ between CNTs angles equal

TABLE I. The results of statistical analysis of the CNTs junctions conductances in S, for different values of CNTs separation and CNTs
crossing angles ϕ, without polymer from Ref. [14], and with polyimide R-BAPB filling obtained in the current paper.

ϕ and CNTs No polymer, Polymer present

separation, Å the results of Ref. [14] Gmin Gmax 〈G〉 Gσ

0, 6 3.6 × 10−13 2.4 × 10−8 6.8 × 10−6 1.8 × 10−6 1.6 × 10−6

0.2π , 6 1.4 × 10−14

0.25π , 6 4.8 × 10−9 1.4 × 10−7 3.4 × 10−8 2.7 × 10−8

0.3π , 6 1.2 × 10−14

0.5π , 6 4.2 × 10−14 2.2 × 10−9 4.3 × 10−8 1.4 × 10−8 1.1 × 10−8

0, 7 2.8 × 10−9 1.1 × 10−6 1.8 × 10−7 2.8 × 10−7

0, 8 3.8 × 10−9 1.2 × 10−6 1.2 × 10−7 2.2 × 10−7
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FIG. 10. The conductivity of CNT enhanced nanocomposites
above the percolation threshold obtained in this work for the CNTs
separation equal to 6 Å. The symbols of different shapes and colors
are used to designate the following results. The red circles: the fixed
CNTs tunneling junctions resistance of R = 1 M
 is used, the red
squares: the conductivity results for the fixed 1 M
 tunneling resis-
tance from Ref. [6], the black triangles: the same as the red circles but
for R = 0.54 M
 corresponding to the mean value of the tunneling
junction resistance for the parallel configuration from Table I, the
blue rhombi: the angle dependence of the CNTs junctions resistance
is taken into account, the green pentagons: CNTs agglomeration is
considered in addition to the angle dependence. The red line is a
guide for the eye.

to 0.25π and 0.5π have very close conductances, and their
mean values averaged over time 〈G〉45 and 〈G〉per lie within
the ranges 〈G〉 ± Gσ of each other. Moreover, in contrast to
the geometries without polymer, for the polymer-filled CNTs
junctions 〈G〉per is lower than 〈G〉45 by a factor of 2.4.

Note also that for the parallel configuration, the polymer
influence on the junction conductance is more pronounced
than for the nonparallel ones. For the parallel configuration,
adding polymer to a junction of CNTs separated by 6.0 Å
with initial conductance of 3.6 × 10−13 S produces a con-
ductance mean value equal to 1.8 × 10−6 S. This gives the
factor 0.5 × 107; the value of the analogous factor for the
perpendicular configuration is 0.33 × 106.

The probable reason for the more effective conductance
increase, when a polymer is added, for the configurations
with smaller angles between CNTs axes, is that the smaller
the intersection angle, the larger the overlap area between
CNTs where a polymer can penetrate and thus create tunnel-
ing bridges. The higher fluctuation of conductance with time
for the parallel configuration can be explained by the same
reason: A larger CNTs overlap area gives more freedom for
polymer atoms to adjust their positions.

The dependence of the calculated composite conductivity
σ on CNTs volume fraction η σ (η) is presented in Fig. 10.
The value of the percolation threshold ηthresh is estimated in
this work as ηthresh = 0.007. To test our realization of the per-
colation algorithm against the previous results of Ref. [6] we
calculated the composite conductivity using the fixed CNTs
junction conductance equal to 1 M
 for all junctions in a

percolation network. Our results presented in Fig. 10 by the
red circles coincide within graphical accuracy to the results of
Ref. [6] shown by the red squares.

The 1 M
, used in various sources, for example Ref. [6], is
not an arbitrary value but rather a typical contact resistance of
CNTs junctions filled with polymer for simple geometries. In
this work, we obtained for the parallel configurations 1/〈G〉 =
0.54 M
. The σ (η) dependence for the fixed tunneling resis-
tance of 0.54 M
 is shown in Fig. 10 by the black triangles.

Taking into account the angle dependence of CNTs junc-
tions conductances with the statistical parameters according
to Table I leads to the lowering of composite conductivity just
above the percolation threshold by the factor of about 30. This
number correlates with the ratio of the mean conductances
for the parallel, 〈G〉par, and 45◦, 〈G〉45, configurations: fG =
〈G〉par/〈G〉45 = 53 but is lower than fG due to the presence of
junctions with ϕ < π/4.

The calculated conductivity of composite just above the
percolation threshold without agglomeration at η = 0.0075
is equal to 3.6 × 10−3 S/m. This value is obtained with the
fixed CNTs separation equal to 6 Å. The effect of varying
the separation between CNTs on composites conductivity is
discussed below.

If agglomeration of CNTs, modeled by the inhomogeneity
of their distribution according to formula (5) and the param-
eter values discussed in Sec. II C, is taken into account in
addition to the angle dependence of conductance, the com-
posite conductivity is further reduced above a percolation
threshold by the factor of 2.5. Lowering of conductivity of
composites with agglomerated CNTs above a percolation
threshold was also mentioned in Ref. [10]. The calculated
results for the conductivity of a percolation network of
agglomerated CNTs are shown in Fig. 10 by the green pen-
tagons. Thus, taking into account agglomeration would shift
the conductivity values just above the percolation threshold
closer to 1.5 × 10−3 S/m.

Among the most important parameters that affect the con-
tact resistance of CNTs junctions are the separation between
CNTs and CNTs size. We have made direct calculations of
contact resistances of CNTs junctions filled with polymers
and the corresponding composite conductivities with separa-
tions between CNTs equal to 6.0 Å, 7.0 Å, and 8.0 Å. To save
computational time, we have made calculations for the separa-
tions equal to 7.0 Å and 8.0 Å in parallel configurations only.
The results are used to discuss the trends in conductivities as
the separation between CNTs grows, which probably will be
analogous for the other values of intersection angles.

As shown in Fig. 11, for the polymer volume fraction just
above the percolation threshold, when the separation between
CNTs is increased, first the composite conductivity becomes
significantly lower—drops from 8.22 × 10−2 S for 6.0 Å to
8.26 × 10−3 S for 7.0 Å. If the separation is increased fur-
ther, to 8.0 Å, the conductivity gets lower to a much less
degree—4.50 × 10−3 S. Thus, then increasing separation be-
tween CNTs, the resulting composite conductivity tends to
converge to some saturation value. In this case, two opposite
tendencies are struggling: On one hand, with an increase in the
distance between CNTs, the contact resistance increases; on
the other hand, the increasing gap between CNTs allows the
polymer to fill the distance between CNTs more uniformly.
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FIG. 11. The same as in Fig. 10 for the following configurations.
The red rhombi—the mean value of the tunneling junction resistance
for the parallel configuration with CNTs separation equal to 6.0 Å
is used; the blue rhombi—the same as for the red rhombi, but the
CNTs separation is 7.0 Å. The green rhombi—the same as for the
red rhombi, but the CNTs separation is 8.0 Å.

In this case, starting from a certain distance between CNTs,
apparently, the density of the polymer between CNTs reaches
the density of the polymer in the region free of CNTs, and
the efficiency of tunneling of charge carriers between CNTs
is determined mainly by the properties of the polymer and
not by the distance between CNTs. Thus, we have shown that
by modeling the conductivity of contacts between CNTs at
small distances between CNTs, it is possible by extrapolation
to obtain estimates for the corresponding conductivities for
realistic distances between CNTs. In this case, the conduc-
tivity value for the distance between CNTs equal to 8.0 is
already quite close to the assumed limit. Thus to obtain the
conductivity of a real polymer a Richardson extrapolation to
a limit may be used [51]. If additionally to the trend in the
dependence of conductivity on the separation between CNTs
one takes into account the variations of junctions conduc-
tance with the CNTs crossing angle, the resulting conductivity
of the composite is expected to lie between 10−4 S/m and
10−3 S/m.

The sizes of CNTs used in real polymers are significantly
larger than the sizes for which precise quantum mechani-
cal calculations are viable. On the other hand, microscopic
first-principles calculations of contact resistance can only be
fulfilled for configurations of relatively modest size.

Let us now discuss the effect of the size of CNTs on the
resistance of contacts between CNTs. For this purpose, in
addition to calculating the contact resistance for the (5, 5) ×
(5, 5) configuration, we calculated the contact resistance for
the (10, 10) × (10, 10) configuration for the same distance
between CNTs—6.0 Å.

Calculations of the contact resistance for CNT configura-
tions (5, 5) × (5, 5) for a distance between CNTs of 6.0 Å,
without a polymer, show that the result depends not only on
the CNTs overlap length but also on the mutual angle of rota-

tion of CNTs around their axes. Consider two configurations
that differ in the rotation of CNTs around their axes. Sections
of these two configurations by a plane perpendicular to the
CNT axes are shown in Fig. 14. In the first configuration, let
us call it “flat,” the projections of the nearest bonds between
carbon atoms in two adjacent CNTs are parallel. In the second
configuration, let us call it “sharp,” the projections of the near-
est bonds are symmetric with respect to the vertical straight
line passing through the centers of the CNT sections and
thus form the maximum possible angles with the horizontal
straight line. For the two configurations shown, the contact
resistance differs by four orders of magnitude (see Table II).

This difference in conductivity is apparently due to the
fact that in the “flat” configuration there are more atoms, the
distances between which in neighboring CNTs are very close
to the possible minimum, than for the “sharp” configuration.
Similar calculations of the conductivity for “flat” and “sharp”
configurations were also performed for intersections of CNTs
with chirality (10, 10) × (10, 10). It was found that, as before,
the conductivity for the “sharp” configuration is less than for
the “flat” configuration. However, unlike CNTs with chirality
(5,5), this difference is not four orders of magnitude but two
times. This result seems physically reasonable, since with an
increase in the radius of CNTs, the contact area between CNTs
becomes locally more and more “flat,” and the number of
atoms in neighboring CNTs close to each other increases. An
important result, in this case, is the fact that with an increase
in the CNT radius with a change in chirality for a “flat”
configuration, the conductivity changes only by a factor of
1.4. Consequently, one can expect convergence and reaching
a certain conductivity limit with increasing CNT radius. Thus,
the calculations of the conductivity of CNT aggregations per-
formed for CNTs with small radii and small chirality indices
can be used to estimate the conductivity of real composites,
where the CNT radii are larger than those used in this work.

Note that the conductance of the polymer-filled junctions
was calculated using “flat” configurations, as it is closer to
the conductance of junctions between CNTs of larger di-
ameter found in real polymers (Table II). Also, note that
values of the conductances of the junctions with chiralities
(5,5) and overlap length equal to seven periods in “flat” and
“sharp” configurations are different from the value obtained in
Ref. [14] and shown in Table I. This is due to the fact that the
rotation of CNTs around their axes in Ref. [14] was arbitrary;
no special care was taken to provide a specific orientation in
this respect. Thus the value from Ref. [14] lies between the
“flat” and “sharp” extremes closer to the value for the “flat”
configuration.

The atomic configurations shown in Fig. 5 contain sev-
eral hundred polymer atoms. Different groups of polymer
atoms contribute to the conductivity of polymer-filled CNTs
junctions to varying degrees. To identify the possible main
tunneling bridges, we have performed the calculation of the
junction conductance for the snapshot #15 of the parallel
CNTs configuration with the separation between the CNTs
equal to 7.0 Å keeping just one of the polymer chains. This
snapshot was chosen because it has the largest conductance of
all the other snapshots (1.15 × 10−6 S), and thus one can hope
that a single polymer chain may give a major contribution to
the conductance of the whole junction. The criterion for the
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TABLE II. The conductances of the CNTs junctions without polymer for the parallel configurations with the separation between CNTs
equal to 6 Å with various CNTs chiralities, sizes, and overlap lengths.

CNTs junctions geometry Conductance (S)

(8, 0) × (8, 0) 3.66 × 10−11

(8, 0) × (5, 5) 2.84 × 10−13

(5, 5) × (5, 5), 3 periods overlap, “sharp” 1.42 × 10−17

(5, 5) × (5, 5), 7 periods overlap, “sharp” 1.01 × 10−16

(5, 5) × (5, 5), 11 periods overlap, “sharp” 2.03 × 10−16

(5, 5) × (5, 5), 7 periods overlap, “flat” 1.30 × 10−12

(10, 10) × (10, 10), 7 periods overlap, “flat” 1.86 × 10−12

(10, 10) × (10, 10), 7 periods overlap, “sharp” 7.94 × 10−13

(5, 5) × (5, 5), 7 periods overlap, “flat,” COOH inside 3.62 × 10−8

(5, 5) × (5, 5), 7 periods overlap, “flat,” COOH outside 2.13 × 10−10

choice of the chain is that it contains more atoms located
inside the gap between CNTs than all other chains in the
used atomic configuration. This atomic configuration is shown
in Fig. 12. Indeed, the conductance of the junction with the
chosen polymer chain is equal to 1.00 × 10−7 S which is two
orders of magnitude above the minimum value for the set of
the parallel configurations separated by 7.0 Å (2.81 × 10−9 S)
and comparable to the mean value for this set (1.81 × 10−7 S).
Thus, there exist groups of atoms that give major contributions
to the conductance of junctions, but at the same time to obtain
quantitative results one needs to carefully take into considera-
tion all the atoms that are close enough to a junction.

When developing an algorithm for determining the poly-
mer atoms that should be saved for calculating the conduc-
tivity of CNT junctions, we saved not only atoms in the gap
between the CNTs but also atoms outside the gap. Of inter-
est is the question of to what degree atoms outside the gap
can affect the conductivity of polymer-filled CNT junctions.
To answer this question, we performed calculations of CNT
junctions functionalized with the hydroxyl group COOH. In

FIG. 12. The atomic configurations for the central scattering re-
gion (without leads) with the longest polymer chain inside the gap
between the CNTs used for the illustration of the main tunneling
bridge.

one case, the hydroxyl group is located inside the gap between
the CNTs, in the other—outside. The atomic configurations
corresponding to the two cases are shown in Fig. 13. For the
atoms of the hydroxyl group, together with the nearest CNT
atoms, geometric optimization was performed.

As shown by the calculations (see Table II), the presence
of a hydroxyl group in the gap between CNTs leads to an
increase in the conductivity of CNT junctions by about a
factor of 30 000. However, the presence of COOH outside
the gap between CNTs also leads to a noticeable increase in
conductivity—about 160 times. Thus, for an accurate deter-
mination of the conductivity of CNT junctions, one cannot
completely neglect the polymer atoms located outside the gap
between CNTs.

To investigate the influence of chirality of CNTs on CNTs’
contact resistance, in addition to the configurations (5, 5) ×
(5, 5), we have calculated contact resistance for junctions of

FIG. 13. The configuration of CNTs junctions functionalized by
Hydroxyl group. Upper frame—the Hydroxyl group is inside the gap
between CNTs. Lower frame—the Hydroxyl group is outside the
gap.
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FIG. 14. A cross section view of the two configurations of the
mutual orientation of parallel CNTs: the “flat” configuration (left)
and the “sharp” configuration (right).

CNTs with chirality (8, 0) × (8, 0) and (8, 0) × (5, 5). The
distance between CNTs for these calculations was taken as 6.0
Å and the overlap length is the same as for the (5, 5) × (5, 5)

configurations with the overlap equal to seven periods. The
results for those configurations are presented in Table II. As
one can see from Table II, the chirality of CNTs does af-
fect the conductance of CNTs junctions. The variations of
conductance with chirality are about one order of magnitude
and several orders of magnitude smaller than the character-
istic conductances of the polymer-filled junctions. Thus the
conductivity of composites is basically determined by the
presence of a polymer intercalated between CNTs.

Let us now discuss a possible model of the dependence
of the CNT conductivity junctions on the geometric param-
eters characterizing the mutual position of CNTs and their
sizes. As can be seen from the calculations presented in this
work (see Table II), with an increase in the distance between
CNTs, there is a tendency for the contact resistance to sat-
urate. Also, the contact resistance, with a sufficiently large
CNT diameter, weakly depends on the CNT diameter. As
the results of calculations presented in this work show, the
dependence of the contact resistance of the intersection length
of CNTs at a sufficiently large intersection length is almost
linear. Significant deviations from the linear dependence arise
when the length of the CNT intersection is less than seven
periods or 1.7 nm. In fact, the fitting model for the dependence
of the contact resistance of CNT junctions on the geometry
should only contain the dependence of the contact resistance
on the angle between the CNT axes. As discussed above, the
dependence of the contact resistance on a given angle on a
logarithmic scale can be approximated by a piecewise linear
function.

Then the model for describing the dependence of the con-
tact resistance G on the angle between CNTs axes ϕ can be
presented using the following formula:

lg(G(ϕ)) =

⎧⎪⎨
⎪⎩

− lg(〈G〉0)ϕ − π/4
π/4 + lg(〈G〉45) ϕ

π/4 , 0 � ϕ � π/4;

− lg(〈G〉45)ϕ − π/2
π/4 + lg(〈G〉90)ϕ − π/4

π/4 , π/4 � ϕ � π/2.

(6)

Thus, the strong angular dependence of the contact resistance
is probably a consequence of the deviation from the linear
dependence of the contact resistance on the length (and hence
the intersection area of the CNTs). With an increase in the
angle between CNTs, the area of intersection of CNTs de-
creases. At the same time, the situation when CNTs are strictly
parallel, and the conductivity of the contact between them is
proportional to the length of the overlap between the CNTs,
is statistically rather rare. Consequently, it is not necessary to
include such a linear dependence in the model describing the
dependence of the conductivity of contacts on their geometry.

We believe that in this work we have identified some
of the key factors that influence the electrical conductiv-
ity of nanocomposites: the geometry of tunneling junctions
and changes of atomic configurations due to thermal fluc-
tuations. Until the specific experiments on conductivity for
R-BAPB polyimide are not available, we can make a pre-
liminary comparison of our modeling results to the available
experimental results for different composites. The calculated
conductivity of composite just above the percolation threshold

at η = 0.0075 is estimated to lie between 10−4 S/m and
10−3 S/m. This is a reasonable value that falls into the range
of experimentally observed composites conductivities (for
the comprehensive compilation of experimental results see
Table 1 of Ref. [3]). To obtain a more quantitative value for the
conductivity, computational efforts much more serious than
those undertaken in the course of the preparation of this paper
but still feasible are necessary.

IV. CONCLUSIONS

We have proposed a physically consistent, computation-
ally simple, and at the same time precise, multiscale method
for calculations of electrical conductivity of CNT enhanced
nanocomposites. The method starts with the atomistic de-
termination of the positions of polymer atoms intercalated
between CNTs junctions, proceeds with the fully first-
principles calculations of polymer-filled CNTs junctions
conductance at the microscale, and finally performs modeling
of percolation through an ensemble of CNTs junctions by the
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Monte-Carlo technique. The developed approach has been ap-
plied to the modeling of electrical conductivity of polyimide
R-BAPB plus single-wall CNTs nanocomposite.

Our major contributions to the field are the following. We
have proposed a straightforward method to calculate a contact
resistance and conductance for polymer-filled CNTs junc-
tions with arbitrary atomic configurations without resorting
to any simplifying assumptions. We have demonstrated that
a consistent multiscale approach, based on solid microscopic
physical methods can give reasonable results, lying within the
experimental range, for the conductivity of composites and
suggested a corresponding workflow.

It is shown that a contact resistance and nanocomposite
conductivity is highly sensitive to the geometry of junctions,
including an angle between CNTs axes and subtle thermal
shifts of polymer atoms in an inter-CNT’s gap. Thus, we argue
that for the precision calculations of the electrical properties
of nanocomposites rigorous atomistic quantum-mechanical
approaches are indispensable.

Among the most important results of this work are the
following. With an increase in the distance (the distances 6 Å,
7 Å, 8 Å are considered) between CNTs in the presence of a
polymer, the value of the contact resistance reaches saturation.
At a given distance between the CNT surfaces, the contact

resistance with an increase in the CNT diameter from 6.78 Å
[(5,5) chirality] to 13.56 [(10,10) chirality] weakly depends
on the CNT size. Thus, calculations for small-diameter CNTs
can be used to estimate the conductivity of contacts between
CNTs found in real composites.

The estimated composite conductivity just above the per-
colation threshold is between 0.0001 and 0.001 S/m, which
is within the experimental range for composites with various
base polymers. Thus, the results of this paper demonstrate the
possibility to model predictively the conductivity of CNTs
enhanced polymers and provide the corresponding physical,
mathematical, and computational procedures. The computa-
tional resources required to implement this procedure are
viable using modern supercomputer equipment.
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