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Specific heat is a central property of condensed matter systems including polymers and oligomers in their
condensed phases, yet predictions of this quantity from molecular simulations and successful comparisons
with experimental data are scarce if existing at all. One reason for this may be that the internal energy and
thus the specific heat cannot be coarse-grained so that they defy their rigorous computation with united-
atom models. Moreover, many modes in a polymer barely contribute to the specific heat because of their
quantum mechanical nature. Here, we demonstrate that an analysis of the mass-weighted velocity autocor-
relation function allows specific heat predictions to be corrected for quantum effects so that agreement with
experimental data is on par with predictions of other routinely computed quantities. We outline how to construct
corrections for both all-atom and united-atom descriptions of chain molecules. Corrections computed for 11
hydrocarbon oligomers and commodity polymers deviate by <kB/10 within a subset of nine molecules. Our
results may benefit the prediction of heat conductivity.
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I. INTRODUCTION

Molecular simulation of polymers and oligomers is in a
mature state, which allows chemistry-specific predictions of
many physical properties to be made. This includes particu-
larly the prediction or reproduction of density [1,2], viscosity
[3–6], and mechanical properties [7–9] as functions of tem-
perature, pressure, and shear rate but also the computation of
complex phase diagrams [10–12]. Molecular simulation has
even reached levels making it possible to design lubricants
with small viscosity index [13]. However, we did not manage
to find any successful predictions for the specific heat cp of
systems containing chain molecules, although in principle,
the specific heat could falsely be deemed an easy-to-compute
property. After all, it only requires the temperature derivative
of the enthalpy to be taken and/or the energy or enthalpy
fluctuation to be determined. However, there are two main
reasons impeding the calculation of cp from molecular simu-
lations. First, united-atom descriptions ignore the presence of
hydrogen atoms so that their small but nonzero contribution
to cp is ignored. Second, and more importantly, both united-
atom and all-atom descriptions generally assume nuclei to
be classical objects, while in reality, their motion is quantum
mechanical. This difference makes classical simulations over-
estimate the specific heat at small temperatures. It explains
why Bhowmik et al. [14] found that the heat predicted from
classical all-atom molecular dynamics (MD) simulations of
hydrocarbon chains was almost a factor of three too high,
while results for polytetrafluoroethylene (PTFE) exceeded ex-
perimental values only by 20%.
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These findings can be rationalized in a back-of-the-
envelope calculation. The vibrational energy of a CF bond is
near 20 THz, while that of the CH bond lies near 90 THz. At
room temperature, each mode contributes to the specific heat
with ∼0.45 kB (CF) and 1 × 10−4 kB (CH), respectively, while
a classical harmonic mode would contribute kB according to
the Dulong-Petit law. Many other modes also become more
classical in PTFE compared with hydrocarbon chains because
fluorine atoms are heavier than hydrogen atoms, while bond
stiffnesses do not depend substantially on the termination. Ap-
proximating all modes in PTFE other than the CF-stretching
bond as perfectly classical would suggest that a classical
PTFE simulation at room temperature should be reduced by
twice 0.55 kB per CF2 repeat unit, so that the quantum effect
of the CF vibration can be estimated to reduce the specific heat
of PTFE by roughly 15%. A similarly accurate estimate for
hydrocarbons is difficult to make because a rather large frac-
tion of characteristic frequencies require corrections spanning
the entire domain from very small to close to unity. How-
ever, for a crude approximation, one could argue hydrogen
atoms to be completely quantum and carbon atoms to be close
to classical.

One possibility to account accurately for the quantum na-
ture of nuclear degrees of freedom (DOFs) is to treat them
in a path-integral framework, as done by Martoňák et al.
[15]. However, this approach is computationally demanding.
Reaching the proper quantum limit needed for a reasonably
accurate, direct estimate for condensed matter systems ne-
cessitates the simulations of P replica of the system, where
the so-called Trotter number P needs to slightly exceed the
ratio hν/kBT [16,17]. Here, h is Planck’s constant, ν is the
maximum characteristic frequency in the system (e.g., the
CH bond-stretching vibration), while kBT is the thermal en-
ergy. A related approach to simulate the effect of quantum
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mechanics is the use of potentials that implicitly include quan-
tum effects through the Wigner-Kirkwood expansion [18,19]
of the free energy in powers of Planck’s constant. Using
the leading-order terms, the temperature range, in which ex-
perimental data on the specific heat of magnesium oxide
were successfully reproduced, extended to temperatures a
little below the Debye temperature, but not further below
[20]. Moreover, both the extra programming and computing
time associated with the Kirkwood-Wigner expansion exceed
that by path integrals substantially, so that an alternative,
feasible, and easy-to-implement way to correct the spe-
cific heat of polymeric systems for quantum effects remains
sought after.

In this paper, we extend a method introduced by
Horbach et al. [21] to calculate the low-temperature specific
heat of a quantum mechanical system, namely, silica well
below its glass transition temperature. To this end, they com-
puted the mass-weighted, velocity autocorrelation function
(ACF) C(�t ) using classical MD. For a fictitious harmonic
reference yielding the same C(�t ), the Fourier transform
of this function g(ν) allows the vibrational density of states
(DOS) to be directly deduced and, from it, the specific
heat. Rather than reporting that number directly, as done by
Horbach et al. [21], we use it to estimate the specific heat
difference between a classical system and a corresponding
quantum mechanical system. This way, we correct predom-
inantly the stiff, high-frequency modes, which should obey
the harmonic approximation reasonably well, while leaving
the specific heat contributions of the slow modes unaf-
fected. The latter are certainly anharmonic in the liquid
phase, whereby they contribute in a nontrivial fashion to the
heat balance.

Specific heats obtained in simulations not containing all
DOFs explicitly, such as in coarse-grained models, cannot be
corrected as straightforwardly as those measured in classical
all-atom simulations representing all DOFs explicitly. The
optimum way to proceed depends not only on the type of
coarse graining but also on whether an (unconstrained) all-
atom simulation can be conducted at one or two representative
temperatures. Thus, several avenues to estimate specific heat
corrections due to missing hydrogen atoms will also be dis-
cussed in this paper.

The remainder of this paper is organized as follows: The
simulation methods are presented in Sec. II. Section III de-
scribes our approach to correcting specific heats. Section IV
contains the results. Conclusions are drawn in Sec. V.

II. SIMULATION METHODS

The simulations in this paper were conducted by three
different people, each one with his own preferences for soft-
ware, potentials, and other details pertaining to methods, such
as thermostats. Since all of the choices are made routinely
in different contexts, the diversity of approaches allows the
robustness of the observed trends to be tested.

For this paper, we chose two different sets of chain
molecules: (1) linear and branched hydrocarbon oligomers
and (2) commodity polymers containing elements in addi-
tion to carbon and hydrogen in the repeat units, see Fig. 1
for more details of the molecular structures. All simulations

FIG. 1. Schematics showing different monomeric structures
investigated in this paper. (a) Hydrocarbon structures for
n-octane (n = 8, including end groups) and n-hexadecane (n = 16),
(b) decene-dimer (n = 2), trimer (n = 3), and tetramer (n = 4),
and (c) isohexadecane. (d)–(h) Commodity polymer structures for
poly(methyl methacrylate) (PMMA), poly(N-acryloyl piperidine)
(PAP), poly(acrylic acid) (PAA), poly(acrylamide) (PAM), and
poly(N-isopropyl acrylamide) (PNIPAM), respectively. Note that,
for (a) and (b) and (d)–(h), chain ends outside the bracket are
terminated with hydrogen atoms.

were conducted in the N pT ensemble at atmospheric pressure.
Temperature T was raised from T ≈ 300 to 560 K for all
hydrocarbons, except for n-octane, for which T varied from
200 to 380 K. In the case of commodity polymers, T was
between 440 and 600 K.

The specific heat was computed in two ways: first, by
taking finite differences of the enthalpy H (T ) according to

ccla
p (T ) ≈ H (T + �T ) − H (T − �T )

2 �T
, (1)

and second, by fitting a third-order polynomial to H (T ),
which is defined as H = U + pV , where U is the internal
energy including, of course, the mean kinetic energy, i.e.,
number of atoms times spatial dimension times kB/2, while
p is the externally imposed pressure, and V the volume. Thus,
we only averaged the volume and the potential energy and
included the “exact” contribution from the kinetic energy
for the hydrocarbons and also averaged kinetic energy for
the commodity polymers during postprocessing. Since the
temperature dependence of cp is rather weak in the consid-
ered temperature range, the second method may be slightly
preferable.

For the initial set of hydrocarbon simulations, we have
chosen six different linear and branched oligomers, see
Figs. 1(a)–1(c). The all-atom simulations were performed
using the LAMMPS MD package [22]. The improved L-OPLS-
AA force field parameters were used to simulate the all-atom
hydrocarbons [23,24], except for n-octane, where we have
used the standard OPLS-AA [25]. The potentials were cho-
sen because they reproduced experimental data on density,
viscosity, and diffusion coefficient quite accurately [24].

The number of chains in a cubic simulation box was
adjusted such that each system consisted of approximately
10 000 atoms. The temperature and pressure were imposed
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using the Nosé-Hoover thermostat and barostat, respectively.
For the temperature coupling, the time constant was cho-
sen as τT = 0.1 ps and for pressure as τp = 1 ps. The
long-range electrostatic interactions were treated using the
particle-particle particle-mesh (PPPM) solver [26]. The inter-
action cutoff was chosen as rc = 1 nm. The simulations for
n-octane and n-hexadecane were performed for 6 ns, while
for the other hydrocarbon oligomers, we have conducted
10 ns simulations. These simulation time scales ensure well
equilibration of the samples, and the average of H (T ) was
calculated by taking the last 2 ns data. The typical time step
for the all-atom simulation was chosen as �t = 1 fs.

For n-hexadecane, we have also performed simulations us-
ing the united-atom TraPPE-UA force field [27]. In this case,
the employed time step was set to �t = 2 fs.

For the second set of systems, we investigated five differ-
ent commodity polymers, namely, poly(methyl methacrylate)
(PMMA), poly(N-acryloyl piperidine) (PAP), poly(acrylic
acid) (PAA), poly(acrylamide) (PAM), and poly(N-isopropyl
acrylamide) (PNIPAM), see Figs. 1(d)–1(h). The choice of
these polymers was motivated by their possible use for
the design of advanced polymeric materials [28,29]. The
chain length N = 30 was taken for PMMA, PAP, PAA, and
PAM, and N = 40 for PNIPAM. Different numbers of re-
peat units were used because all-atom chain configurations
were available from earlier studies [29–31]. Each configura-
tion consisted of 100 polymer chains randomly distributed
within a cubic simulation box. All these polymers were equili-
brated earlier in their (solvent-free) melt states at T = 600 K,
which is at least 150 K above their calculated glass transition
temperatures [29].

All commodity polymers were modeled only in the full
atomistic description. The standard OPLS-AA force field
parameters [25] were used for PAP, PAA, and PNIPAM,
while the modified parameters were used for PMMA [30]
and PAM [31]. The used potential reproduces not only bulk
polymer properties, such as the density and elastic response
[29], but also captures their solvation in dilute aqueous
solutions [30,31].

The simulations of commodity polymers are performed us-
ing the GROMACS MD package [32]. Here, 500-ns-long N pT
simulations were conducted for each system at each temper-
ature. The total accumulated MD time for the commodity
polymers was 25 μs. Here, the temperature was imposed using
the “canonical-sampling-through-velocity-rescaling thermo-
stat” [33] with τT = 1 ps, and the pressure was set to 1 atm
with a Berendsen barostat using τp = 0.5 ps [34]. Electro-
statics were treated using the particle-mesh Ewald method
[35]. The interaction cutoff for nonbonded interactions was
chosen as 1.0 nm. The simulation time step was taken as
�t = 1 fs, and the equations of motion were integrated us-
ing the leap-frog algorithm. For the calculation of H (T ),
we have used the last 50 ns data after H (T ) reached a
reasonable plateau.

All polymeric systems described above were simulated in
their liquid phase, where the equilibration of the individual
samples was still possible. Moreover, for the case of n-octane,
we have also performed simulations with a crystalline phase
at T = 40 K and a quenched phase, where an n-octane liquid
at T = 300 K was shock-quenched to T = 40 K.
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FIG. 2. Normalized mass-weighted velocity autocorrelation
function C(�t )/C(0) of hexadecane at temperature T = 300 K
(blue) and at T = 560 K (red).

III. THEORY

The central property to be computed in this paper is the
mass-weighted velocity ACF

C(�t ) =
∑

n

mn 〈vn(t ) · vn(t + �t )〉, (2)

where mn is the mass of atom n and vn(t ) its velocity at time
t , while the angles 〈...〉 denote a thermal equilibrium average.
A typical example for C(�t ) is presented in Fig. 2. It shows
long-lived fluctuations, unlike the velocity ACF of simple
liquids, in which all interactions are of similar strength.

Depending on whether C(�t ) is measured using the
coarse-grained descriptions of the polymer, as for the united-
atom potentials, or in an all-atom simulation, different
strategies can be pursued to estimate how the specific heat
needs to be corrected to account for nuclear quantum effects.
These are described in the following.

A. All-atom descriptions

In an equilibrated harmonic system, as much energy is
contained in the potential energy as in the kinetic energy. If
the frequency of a harmonic mode is known, e.g., from the
measurement of its classical velocity ACF, the specific heat of
this mode after quantization is given by

cqm
p (ν, T ) = kB

(hν/2kBT )2

sinh2(hν/2kBT )
, (3)

as can be easily derived from the partition function of the
quantum mechanical harmonic oscillator, see Refs. [21,36]
or most textbooks on statistical mechanics. Since the specific
heat of a classical harmonic mode satisfies the Dulong-Petit
law ccla

p (T ) = kB, the difference between the specific heat of
a classical and a quantum system simply is �cp = kB − cqm

p

for each DOF, or to be precise, for each DOF pair formed by
a coordinate and its conjugate momentum.

In a harmonic system, the global ACF defined in Eq. (2)
results from the superposition of individual normal modes
so that its Fourier transform allows us to determine what
percentage of modes has what resonance frequency. Toward
this end, we define the spectrum

g(ν) = 1

G

∫ ∞

0
dt cos(2πν�t )

C(�t )

C(0)
, (4)

065605-3



GAO, MENZEL, MÜSER, AND MUKHERJI PHYSICAL REVIEW MATERIALS 5, 065605 (2021)

where we have divided C(�t ) by C(0), whose exact value
is D N kBT , where D = 3 is the spatial dimension and N
the number of atoms. Finally, we chose the prefactor G in
Eq. (4) such that the integral over g(ν) is unity. This way,
g(ν) can be interpreted as the vibrational DOS normalized
to an individual DOF and in a unit system in which Planck’s
constant defines the unit of angular momentum. The typical
DOS for all molecules in Fig. 1 are shown in Fig. S1 in the
Supplemental Material [37].

The relative difference between the specific heat of a
classical and a quantum system can now be obtained as

�crel(T ) =
∫ ∞

0
dν g(ν)

{
1 − cqm

p (ν, T )

kB

}
. (5)

Thus, the specific heat of a system of quantum mechanical
harmonic oscillators would read

cp(T ) = ccla
p (T ) − cDP

p �crel(T ), (6)

where ccla
p (T ) is the specific heat of the classical system and

cDP
p the specific heat of the system assuming the Dulong-Petit

law to be valid, i.e., cDP
p = kBnDOF, where nDOF is the number

of DOFs.
We propose to use Eq. (6) for any system whose DOFs

can be partitioned into slow modes, which are typically soft
and/or anharmonic, and high-frequency modes, which tend
to be quasiharmonic. This procedure leaves (low-frequency)
contributions to the specific heat that deviate from Dulong-
Petit’s law unchanged but distinctly reduces the specific
heat associated with the high-frequency modes involving
hydrogen atoms.

Ideally, g(ν) is determined in the vicinity of the temper-
ature at which the specific heat is computed. However, we
demonstrate in Sec. IV that the high-frequency spectra and
thereby the specific heat corrections are relatively insensitive
to the temperature at which g(ν) is determined. Thus, it should
be generally sufficient to compute g(ν) at a single medium
temperature or, alternatively, to compute g(ν) at the lowest and
highest temperature and to interpolate continuously between
the spectra (or the two subsequent specific heat corrections) at
intermediate temperatures.

B. United-atom descriptions

In united-atom descriptions and/or when using bond
length constraints, the number of DOFs is reduced compared
with the real system. While only stiff modes not contributing
significantly to the specific heat are usually eliminated in
chemistry-specific, coarse-grained descriptions of polymers, a
precise calculation of cp may necessitate the estimation of the
contribution of the eliminated DOFs to the specific heat. Thus,
the full (quantum) contributions of the Nig ignored DOFs to
cp(T ) must be added to the estimate of the Nua explicitly
treated DOFs. If specific heats are normalized to individual
DOFs, this yields

cp(T ) = Nua cua
p (T ) {1 − �cua

rel(T )/kB} + Nig cig
p (T )

Nua + Nig
, (7)

where the contribution of the ignored DOFs can be estimated
with the help of the DOS associated with the motion of the

ignored DOFs gig(ν), i.e., with

cig
p (T ) =

∫ ∞

0
dν gig(ν) cqm

p (ν, T ). (8)

To clarify the calculation of Nua and Nig, we mention that their
sum must be the number of total DOFs Ntot = 2 D N of the
real system. In the most general case, it may also be better to
consider the number of DOFs after coarse graining Ncg rather
than Nua. Thus, before coarse graining Ncg = Ntot, and Nig =
0. For each ignored (hydrogen) atom Ncg decreases by 2 D,
while Nig increases by 2 D. For each constraint, e.g., a bond
length constraint, Ncg decreases by two, while Nig increases
by the same amount.

In the following, we propose three different ways to esti-
mate the DOS of the ignored DOFs.

1. Difference method

In the first method, which we call the difference method,
the all-atom and the united-atom g(ν) are both computed and
normalized to the same entity, e.g., to a single polymer or
to an atom as in a count of all atoms, including those that
were eliminated in the united-atom simulation. The missing
contribution then reads gig(ν) = gaa(ν) − gua(ν). Note that
gig(ν) may have negative contributions, which, however, do
not cause any trouble in practice.

2. Explicit method

In the second method, which we call the explicit method,
an all-atom system is first equilibrated at a representative
temperature. All heavy atoms are then fixed in space and only
hydrogen atoms are propagated in time and thermostatted,
however, only so moderately that peaks in g(ν) do not broaden
substantially. In this follow-up simulation, the hydrogen ve-
locity ACF is measured, and a first estimate for gig(ν) is
obtained through a Fourier transform of that ACF. Since the
mass of carbon atoms is finite, we suggest reinterpreting a
frequency ν as αν with α = √

13/12 so that reduced-mass
effects are accounted for approximately. At the same time, it
needs to be ensured that the integral over gig(ν) yields the rela-
tive number of hydrogen atoms so that the full transformation
can be cast as g(ν) → g(αν)/α.

3. Crude method

While only one or at most two all-atom simulation need
to be run for the difference method and the explicit method
to be executed, it might still be beneficial if setting up an
all-atom system can be avoided all together. We thus need a
third way to compute specific heat corrections, which could
be called the I-don’t-want-to-run-an-all-atom-simulation-but-
still-need-a-rough-guess-for-the-specific-heat-correction
method (quantum chemists would probably intro-
duce the catchy and easy-to-remember abbreviation
IDW2RA3SBSNARG4TSHC). To this end, we suggest
to approximate gig(ν) with a set of δ functions:

gig(ν) = nrel
H in CHx

nx∑
i=1

wx,i δ(ν − νx,i ), (9)
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FIG. 3. (a) and (d) Vibrational spectra g(ν ), (b) and (e) specific heat corrections �cp, as well as (c) and (f) specific heats for
(a)–(c) hexadecane in the top row and (d)–(f) for poly(methyl methacrylate) (PMMA) in the bottom row. In each case, g(ν ) was obtained
at a low (blue) and a high (red) temperature and �cp deduced from it. The corresponding blue and red curves essentially overlap in (b) and (e).
Their differences (diff.) are shown in their insets. Experimental data on cp for n-hexadecane [38] and PMMA [39] are shown in black lines.
They are compared with three numerical datasets: classical all-atom simulations (blue circles), results obtained using the harmonic reference
method [21] (green triangles down), and from the methodology proposed in this paper (red triangles up).

where nHinCHx with x = 2 or 3 is the relative number of
hydrogen atoms being part of a CH2 or CH3 unit, respec-
tively, while the wx,i are weights, and the νx,i are frequencies.
We describe in the Supplemental Material [37] how the
pairs (wx,i, νx,i ) were obtained and merely note their results
here. For CH2, we used (1/6, 20), (1/2, 37.5), and (1/3, 90).
For CH3, we used (1/9, 8.5), (1/9, 23), (1/9, 30), (2/9, 39),
(1/9, 50), (1/9, 75), and (2/9, 93). Frequencies are stated in
terahertz.

4. Comparison of united-atom correction methods

The difference method is directly applicable to coarse-
graining approaches going beyond the elimination of hydro-
gen atoms. The same holds for the explicit method, however,
with the constriction that the corrective factor α must be mod-
ified when deuterium atoms are involved and/or hydrogen
atoms terminate other atoms than carbon atoms. The crude
method is only meant to be used directly when hydrogen
atoms bonded to carbons are eliminated. When all hydrogen
terminations are replaced with deuterium atoms, it might suf-
fice to divide all used frequencies with

√
2. However, simple

rescaling of frequencies would not be advised for partial deu-
terium termination.

Finally, we note that a highly accurate knowledge of the
respective spectra is not needed, unless cp must be known with
a great accuracy. If a vibrational frequency has an error of,
say, 10%, which most contemporary force fields should be in a
position to reproduce, then the temperature range in which the
absolute error of the quantum correction exceeds 0.1 kB of that
mode is roughly 0.3 < kBT/(hν) < 1.2. Since the DOS spans
a broad range of frequencies, the relative number of modes
lying in such a range is typically at best ∼30%.

IV. RESULTS

A. All-atom simulations

The first step of estimating the specific heat corrections
in an explicit-atom simulation consists of measuring the
full mass-weighted velocity ACF C(�t ), which is worth
discussing in its own right. Figure 2 shows C(�t ) for
n-hexadecane at the lowest and highest temperatures investi-
gated, i.e., at T = 300 and 560 K, each time normalized such
that C(0) = 1. Both correlation functions have maxima and
minima at similar locations. Peak heights and intensities are
almost identical at very small times but start to differ at large
times. As a consequence, the Fourier transform of C(�t ), also
known as spectrum or DOS, which is shown in Fig. 3(a), is
essentially identical at high frequencies for 300 and 560 K.
Significant differences appear only at frequencies below what
could be called the thermal frequency, which we define as
νt = kBT/h. The numerical value of the “room-temperature
thermal frequency” is νrt = kB 300 K/h ≈ 6.25 THz.

Since the cp correction for a single mode with thermal fre-
quency is merely ∼8%, the total specific heat corrections are
rather insensitive to the temperature, at which the DOS was
deduced if that temperature lies in a reasonable interval. This
claim is confirmed in panel (b) of Fig. 3, particularly in its
inset, where differences between the cp corrections obtained
at 300 and 560 K are shown to differ by no more than 0.5%.

Figure 3(c) confirms the previously made observation [14]
that classical all-atom-based simulations of chain molecules
with hydrogen termination overestimate the specific heat at
room temperature by a factor �3. The discrepancy reduces
with increasing temperature but is still close to a factor
of two at T = 550 K. However, after applying the specific
heat corrections to the classical cp(T ) data, agreement with
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experimental results is obtained within 0.1 kB per atom, which
translates to a relative accuracy of ∼6%. At the same time,
our analysis reveals that the specific heat of the harmonic
reference is clearly below both experimental datasets. Thus,
while the original correction method pursued by Horbach
et al. [21] clearly reduces the error from ∼200 to 20%, our
modification reduces the error by another factor of three.
We note in passing that our treatment would not have im-
proved the accuracy of the cp prediction for their system in a
similar fashion, as they kept their supercooled silica at a rela-
tively small temperature, where thermal anharmonicity effects
are small.

The just-reported methodology was repeated for all investi-
gated systems. However, only one more example is presented
explicitly, namely, PMMA in Figs. 3(d)–3(f). At high fre-
quencies, an additional (double) peak shows up in g(ν) ∼80
THz, which we attribute to the H vibrations of the methyl
group attached to the side group, while the extra peak at
50 THz is due to the stretching vibrations of the CO dou-
ble bond. Differences between spectra measured at different
temperatures are again only substantial at frequencies at or
below the lower of the two investigated temperatures, this
time T = 440 and 600 K. Thus, specific heat corrections are
again essentially identical irrespective of the temperature at
which the DOS was acquired. In fact, identical results, within
statistical uncertainties, are obtained when computing the cp

corrections from a DOS measured in the NV E rather than in
the N pT ensemble. Finally, Fig. 3(f) confirms that the original
harmonic reference reduces the cp deviation between classical
simulations of hydrocarbons and experiment by a factor ∼10
and that using the proposed difference methodology reduces
the error much further. Given the currently available data,
agreement appears to be within 2%.

At this point, it is difficult to speculate what the main
reason for the small absolute discrepancies between experi-
mentally and in silico measured specific heats of the order of
0.1 kB may be, i.e., if they are mainly due to errors in the clas-
sical reference, if they originate from the quantum corrections,
or unlikely but not impossible, if they stem from experimental
errors. Irrespective of the answer to this question, it appears to
us that simulations should be in a position to predict specific
heat differences between different polymers to within clearly
<0.1 kB, at least if consistent potentials are used, i.e., it should
be ensured that dispersive interactions, bond stiffnesses, bond
angles, etc., are parameterized consistently when trying to
ascertain specific heat differences between two liquids. This
way, absolute errors would be highly correlated so that dif-
ferences between the specific heat of different liquids can be
resolved with great accuracy.

We note in passing that our results appear to match those
presented in Ref. [40] if the ideal gas contribution (3kB/2)
is subtracted from our classical all-atom simulations, i.e., the
specific heat decreases slightly with increasing temperature.

An interesting observation that can be made when compar-
ing the simulation data for hexadecane (HEX) with PMMA
is that the specific heat corrections at 450 K are quite similar,
i.e., 1.68 kB (HEX) vs 1.56 kB (PMMA). In fact, Fig. 4 reveals
that the specific heat correction of most of the investigated
molecules obey an almost universal function �cp(T ) in the
investigated temperature range within <0.1 kB. However, even
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FIG. 4. Specific heat corrections for explicit-atom simulations of
all chain molecules investigated in this paper. Only lines are shown at
temperatures where commodity polymers could not be equilibrated
using feasible computing times.

the two exceptions, namely, PMMA and PAA, do not stray too
far away from the general trend. This is somewhat surprising,
given the significant differences in the monomer architectures
shown in Fig. 1. The relatively small �cp of PAA can be ratio-
nalized as follows: The side group provides an extra classical
DOF, i.e., the libration of the side group, while having only
one hydrogen atom per three heavy atoms. The g(ν), from
which the cp corrections presented in Fig. 4 were deduced,
are shown in Fig. S1 in the Supplemental Material [37].

Unfortunately, we did not manage to improve the superpo-
sition of the various �cp(T ) curves by scaling the corrections
with the relative (inverse) ratio of estimated “quantum” DOFs
per total DOFs. Thus, at this point in time, we can only
recommend using the quasi-universal correction for those
(carbon-based molecules with predominant hydrogen termi-
nation) polymers that are not included in our list for a “quick
and dirty” assessment of the specific heat from classical
explicit-atom simulations.

The cp corrections do not appear to change substantially
upon crystallization. For octane, we found �cp estimated
from a 40 K crystal to exceed that deduced from a 300 K
liquid, both at atmospheric pressure, by ∼0.05 kB per DOF
in between these two limits, see Figs. S2(b) and S2(d) in the
Supplemental Material [37]. The increase is predominantly
due to the fact that the ordering and the subsequent densifica-
tion of octane increases vibrational frequencies because atoms
are pushed more deeply into the stiff, repulsive part of their
interaction. A similar comment holds for pressurized liquids
when setting the pressure in an n-octane at 2 and 4 GPa. The
corresponding data are shown in Figs. S2(a) and S2(c) in the
Supplemental Material [37].

Of course, it is only worth knowing �cp if variations in
�cp from one polymer to the next generally exceed those in
cp itself. Indeed, Fig. 5 reveals that this appears to be the case.
It shows our results for the final specific heat of polymers for
which we could not find experimental results in the tempera-
ture range where the polymers can be equilibrated, but only at
lower temperature for the experimentally and technologically
relevant polymers PAP, PAM, PAA, and PNIPAM [28]. Com-
puted cp values together with �cp estimates are listed in Table
S1 in the Supplemental Material [37].
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FIG. 5. Specific heat predictions from all-atom simulations of
various chain molecules after applying quantum corrections grouped
into (a) hydrocarbon oligomers and (b) commodity polymers.

B. United-atom simulations

The explicit-atom model simulations were repeated for a
united-atom model of hexadecane [27]. The crucial task of
estimating g(ν) is now divided into two parts: the computation
of the spectra associated with the explicitly treated units and
that of the missing DOFs. The course of action differs de-
pending on which of the three methods proposed in Sec. III B
to estimate cp from united-atom-based simulations is chosen.

However, in either case, the first step is to deduce g(ν) for
the united atoms. Figure 6(a) reveals that the low-frequency
part of the UA and AA spectra (ν � 16 THz, related to C-C-C
bond angle vibrations) are quite similar. The first peak missing
in the UA spectrum lies slightly above ν = 20 THz, which
can be associated with torsional vibrations of terminal CH3

groups. The highest frequencies in the UA spectrum, i.e.,
those slightly >30 THz, can be associated with united-atom
bond vibrations.

The difference between all-atom and united-atom spectra
(reweighted to the true number of DOFs) gH(ν) is shown in
Fig. 6(b) (violet solid line) and compared with the spectrum
that is obtained when all carbon atoms are frozen in and only
the hydrogen atoms are explicitly propagated (green dashed
line). Qualitative agreement is obtained, which, however, is
further improved when rescaling the explicit spectrum ac-
cording to g(αν)/α with α = √

13/12 (green solid line). The
integral over G(ν) ≡ ∫ ν

0 dν ′ gH(ν ′) can be approximated as a
linear combination of step function, whose derivative is given
in Eq. (9), which is demonstrated in Fig. 6(c). It turns out that
the different methods to account for the ignored DOS does not
strongly affect the predicted �cp. They differ by at most 0.05
kB in the investigated temperature interval, as demonstrated
in Fig. 6(d).

Finally, we find that cp as predicted with a UA
potential from classical simulations near room temperature
might falsely be believed to be accurate since values turn out
close to experimentally measured values, see Fig. 7. However,
cp (of n-hexadecane) decreases upon heating in UA classi-
cal simulations, while it increases experimentally. To make
accurate predictions for the right reason, the specific heat
must be corrected, e.g., in one of the three ways proposed
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FIG. 6. (a) A comparison of spectra of n-hexadecane from all-atom and united-atom models at 430 K. (b) The difference spectrum (diff)
gdiff ≡ gAA − gUA is compared with the explicit-H spectrum gH obtained as described in Sec. III B. The latter is shown in its original (orig.)
and rescaled (resc.) version in green dotted and solid lines, respectively. (c) Integral over the spectra shown in (b). Here, the data for the crude
estimation are obtained by the weighted linear combination of the data shown in Fig. S3. (d) Ignored cp of n-hexadecane in united-atom models
retrieved via the three approaches described in Sec. III.B.
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FIG. 7. Specific heat cp of n-hexadecane as a function of temper-
ature: experimental data (black lines), uncorrected cp of a classical,
united-atoms-based simulation before (blue circles) and after (green
triangles down) applying quantum corrections, as well as full esti-
mates for cp (red triangles up) obtained using Eq. (7), which includes
corrections for ignored H atoms. The experimental data on cp is taken
from Ref. [38].

in Sec. III B. This leads to an agreement within 0.1 kB per
atom throughout the investigated temperature range with the
available experimental data [38], as revealed by Fig. 7.

It is interesting to note that the united-atom potential leads
again to a slight overestimation of cp(T ) in comparison with
the available experimental data [38]. This could be coinci-
dence; however, there may also be a reason why different
potentials lead to similar errors. Both potentials were opti-
mized to closely match density and viscosity as a function
of temperature and pressure. Neither one, however, includes
explicitly many-body dispersion terms, which, however, are
not entirely negligible for molecular systems [41].

V. CONCLUSIONS AND OUTLOOK

We presented a method allowing the specific heat of
molecular systems to be corrected for vibrational quantum
effects and demonstrated that the specific heat of various
chain molecules can be computed with it so that the specific
heat can be predicted as reliably from molecular simulations
as any other quantity. In principle, the presented method
also applies to systems other than chain molecules. In fact,
it will most likely improve the specific heat prediction of
any classically treated system with vibrational frequencies
above what we call thermal frequencies. However, the method
does not capture quantum-mechanical anharmonicity effects,
as they occur in a nonnegligible way, for example, in the
case of water at room temperature [42]. Likewise, whenever
the temperature of a system is below its Debye temperature,
anharmonicity will affect the specific heat to some degree.
For a truly accurate computation of the specific heat of such
systems, we see no way around the use of path-integral
simulations [15,16,43]. However, for molecules with closed
valence shell other than a few small selected molecules, such
as water, methane, and ammonia, any intermolecular (includ-
ing rotational) motion can be classified as classical at room
temperature.

Of course, even for polymers—like the ones investigated in
this paper—anharmonic quantum effects do exist. To compute

them using an all-atom framework, it may not be necessary
to use Trotter numbers as large as P � hνmax/(kBT ), where
maximum frequencies are typically associated with vibra-
tions of terminating hydrogen atoms. The idea to compute a
mass-weighted velocity ACF to correct for an insufficient han-
dling of intramolecular, vibrational quantum effects, which
we presented in this paper, can be generalized to path-integral
simulations. This is possible because it can be readily worked
out how the predicted specific heat of a harmonic reference
depends on the Trotter number P and the ratio hν/(kBT )
so that the excess specific heat obtained at finite P can be
estimated. Such an approach should be particularly beneficial
when intermolecular interactions are clearly weaker than in-
tramolecular forces but not necessarily for regular metals and
ceramics.

An indirect result of our paper is that replacing hydrogen
atoms with deuterium would not only enhance their chemi-
cal stability due to a reduction of zero-point energy, which
was argued to benefit the tribological properties of hydrogen
terminated coatings [44], but it would also increase the spe-
cific heat and thereby presumably the heat conduction. We
estimate the increase in cp due to full deuteration in paraffins
and polyalphaolefins to be 0.25 kB/atom at T = 300 K and
0.3 kB/atom at T = 400 K, which would correspond to an
increase of roughly 25% in the specific heat and potentially to
a similar increase in heat conduction. However, this insight is
at best relevant for small-scale, niche applications, given that
the currently achieved production of deuterated mineral oils is
in the decagram range [45].

A more immediate implication of this paper is that a
successful computation of thermal transport properties will
necessitate a correct assessment of the specific heat [28].
When simulations using accurate potentials are conducted
carefully but a classically computed heat conductivity κ is
not reweighted with a similar factor to account for quantum
effects as the specific heat, we would expect κ to be overesti-
mated [29,46]. This might explain why one of us [29] found
κ � 0.304 and 0.264 W/Km for in silico PMMA and PAP,
respectively, while the corresponding experimental values are
0.200 and 0.160 W/Km [28].

As a final comment, we wish to alert the reader to the
risk of overlooking fortuitous error cancellation in the com-
putation of cp. As seen in this paper, values for cp obtained
with united-atom models near room temperature can easily
coincide with experimental values. However, a classical UA
model will generally predict dcp/dT to be negative in the
liquid phase, while experiments find an increase of cp with
increasing temperature. Similar trends can be observed in
all-atom simulations when ignoring the contribution from the
kinetic energy. When doing so, we also obtain a negative
dcp/dT from simulations.
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