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Bias-dependent diffusion of a H2O molecule on metal surfaces by the first-principles
method under the grand-canonical ensemble
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We investigate the process by which a water molecule diffuses on the surface of metal electrodes under
constant bias voltage by first-principles density functional theory. In this study, we present the constant electron
chemical potential (constant-μe) methods combined with the nudged elastic band method. The water diffusion
on the Al(111) was calculated using the minimum energy paths (MEPs) for understanding the difference between
the constant-μe and conventional methods. The simulation shows that the MEP of the water molecule, its
adsorption site, and the activation barrier strongly depend on the applied bias voltage. Comparing to the constant
total number of electrons (constant-Ne), we found the larger change in the tilted angle of the water dipole in the
MEP by the constant-μe method. For the comparison between the theoretical results and the previous experiment,
we simulate the MEP for a single water diffusion on the Pt(111) surface using constant-μe method. When we
applied positive bias voltage to the Pt electrode, the result of the activation barrier for a water molecule decreases
with increasing the bias voltage, which is consistent with the previous scanning tunneling microscopy (STM)
experiment. The proposed constant-μe method plays a significant role in understanding the interaction between
the electric field and the surface of the material, and is a reliable tool for the simulation of reactions under bias
voltage not only using STM but also at the electrochemical interface.
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I. INTRODUCTION

Fundamental studies on metal/water interfaces [1–5] have
attracted much attention because understanding the process
of water reactions at the interface plays a central role in a
wide variety of applications such as catalysis [6] and fuel cells
[7]. A recent experiment to investigate the electrochemical
interface reportedly showed that the molecular structure of
water strongly depends on the electrode potential [8]. Also, an
experiment in which scanning tunneling microscopy (STM)
was used found that the applied bias voltage affected the
activation barrier of water diffusion on a Pt surface [9]. To
further understand the water diffusion processes and reactions,
it is necessary to clarify the extent to which water adsorption
and diffusion on the surface depends on the bias voltage.

First-principles density functional theory (DFT) [10,11]
is a powerful tool for investigating the molecular adsorp-
tion and diffusion at the surface [12–15]. For the study on
the molecular diffusion at the surface, the minimum energy
path (MEP) is calculated by the nudged elastic band (NEB)
method [16–18]. The details of the MEPs such as the acti-
vation barriers and water diffusion structures are useful for
understanding the microscopic physical images of the STM
observations [19,20]. However, previous theoretical studies on
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water diffusion processes were mainly carried out without the
bias voltage [13,19–24]. Generally, the electrode potential is
related to the electron chemical potential (μe) of the electrode,
and the difference in μe between the two subjects defines the
bias voltage; the STM tip and metal electrode. Thus, for a
system to which a fixed bias voltage is applied, the value of
μe for the electrode (or sample) surface must be constant.
Therefore, to control the bias voltage in the simulation, we
need to control μe [25–28] beyond the constraint of a fixed
number of electrons (constant-Ne).

The quantum mechanical theory formulated under a grand-
canonical ensemble is indispensable for a simulation with the
fixed μe (constant-μe) [25–28]. Two flexible simulation meth-
ods within the constant-μe method have been proposed: The
one is the fictitious charge particle (FCP) method developed
by Bonnet et al. [29], and the other is the grand-canonical
self-consistent field (GCSCF) method introduced by Sun-
dararaman et al. [30]. These grand-canonical methods based
on DFT can be applied not only to the electrochemical inter-
face [30–34] but also to a system subjected to a bias voltage
such as in the STM experiment. In the previous studies, how-
ever, the constant-μe methods have been mainly applied to
the electrochemical interface combining with the molecular
dynamics [29,31] or implicit solvation theories [30,32–35].

In this study, we carried out a first-principles study on
the diffusion processes of a water molecule undergoes on
the metal surfaces by varying the bias voltage using the FCP
and GCSCF methods. We developed the constant-μe methods
combined with the NEB method and applied it to the MEPs for
a single water diffusion on the metal surfaces. Comparative
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FIG. 1. (a) Schematic view of the model under a bias voltage.
The cyan, red, and pink spheres represent Al, O, and H atoms,
respectively. The coordinate z = 0 is defined as the center of the
Al/H2O system. Two ESM regions with dielectric constants ε = 1
and ε = ∞, respectively, are attached to the left and right ends of
the supercell to represent vacuum and the counter electrode (ESM-
metal). (b) Adsorption sites on the Al(111) [or Pt(111)] surface.
The cyan, green, and blue spheres represent the first-, second-, and
third-layer Al (or Pt) atoms, respectively, counting from the side of
the counter electrode.

studies on the present and conventional method were per-
formed by using a single water diffusion on the Al(111). We
also simulated the MEPs for a water monomer diffusion on the
Pt(111) surface using the constant-μe method and compared
the results of activation energies to the previous experiment.
The paper is organized as follows: Section II provides a brief
description of the basic ideas of the constant-μe methods, their
computational procedures, and the computational details for
the DFT and NEB calculations. In Sec. III, we discuss the
results obtained by the NEB combined with the constant-μe

method. Finally, the conclusions of our study are presented in
Sec. IV.

II. METHODS AND COMPUTATIONAL DETAILS

Here, we describe the computational methods and details.
First, we provide an overview of the constant-μe method un-
der the boundary condition of the effective screening medium
(ESM) technique [36]. The next subsection presents a discus-
sion of the computational procedures of the FCP and GCSCF
methods. Finally, we provide the computational details of the
proposed method.

A. Constant-μe plus ESM method

First, we briefly describe the basics of the constant-μe

method combined with the ESM method [36]. The ESM
technique, which was developed by Otani and Sugino, is a
powerful tool for studying various material surfaces under
repeated slab approximation. Figure 1(a) shows a model of
a constant-μe calculation combined with the ESM used in
this study. Two ESM regions with dielectric constants ε = 1
and ε = ∞, respectively, are attached to the two ends of the
supercell to represent the vacuum and the counter electrode

(ESM-metal). We modeled the sample surface and STM tip
as the surface slab and flat ESM-metal, respectively. Here, the
detailed shape of the STM tip is neglected, but we take into
account the effect of fixed bias voltage in the water diffusion
into the present model using the constant-μe method. In this
sense, the present model is closer to the experiment compared
to the constant-Ne method. Since the electrostatic potential at
the ESM-metal boundary was set to zero as the reference po-
tential, the ESM enables us to compare the energies measured
from the same reference level.

To achieve the constant-μe condition, we use the FCP [29]
and GCSCF methods [30]. Both of these methods can be
used compute the electronic structure and atomic geometry
under the given target chemical potential μt . μt is imposed
by a potentiostat at a potential �t , as shown in Fig. 1(a),
i.e., μt = −e�t , where e is the charge of an electron. We
can define the grand potential �, instead of the total energy
functional Etot, as follows:

� = Etot − (
Ne − N0

e

)
μt = Etot − �Neμt, (1)

where �Ne is the total number of the excess charges, which
is the difference between the total number of electrons in
the system Ne and that in the neutral system N0

e . Then, we
minimize the value of � for the atomic positions and �Ne,
where �Ne is not a constant but a dynamic variable during
the entire minimization procedure. Because both the FCP and
GCSCF methods converge to the same physical state, we
expect these two methods to yield the same results under the
same computational conditions.

B. Computational procedure of constant-μe

Here, we discuss the practical minimization procedure for
� in the FCP and GCSCF methods. Figures 2(a) and 2(b),
respectively, show the flow charts for the calculations with
FCP and GCSCF, where we show a series of flows for the DFT
calculation with geometry optimization. The SCF and geom-
etry optimization loops show the blue and green shaded areas,
respectively. In the following two subsections, we discuss the
FCP and GCSCF methods using these flows.

1. FCP method

The FCP employs a grand-canonical ensemble by the sys-
tem connecting to the fictitious potentiostat, as shown in
Fig. 1(a), and minimizes � under the constraint of constant-μe

in the loop in which the geometry is optimized, which is
shown as the green shaded area. In the SCF loop shown as
the blue shaded area, the Kohn-Sham (KS) equation is solved
with the fixed number of electrons. Therefore, the system
reaches constant-μe via simultaneously optimizing not only
the atomic positions but also the total number of electrons Ne.
To optimize Ne, we define a fictitious force for Ne as

Fe = − ∂�

∂Ne
= −μ + μt, (2)

where, μ = ∂Etot/∂Ne implies the instantaneous μe, and
yields the electrode potential as μ = −e�. To obtain Ne

for μt , we minimize Fe using the quasi-Newton algorithm
by using the Broyden-Fletcher-Goldfarb-Shanno minimiza-
tion method [37–40]. This method is commonly used for
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FIG. 2. Calculation flows for (a) FCP and (b) GCSCF methods. The green and blue shaded areas, respectively, indicate the calculation loops
for the geometry optimization and self-consistent field. Here, HKS, εKS

j , and ψ j denote the Kohn-Sham (KS) Hamiltonian, KS eigenvalue, and
KS wave functions, respectively. The electron charge density is obtained by n(r) = ∑

j f j |ψ j (r)|2, where f j is the occupation number for each
state j. Fα denotes the forces acting on each atom labeled by α.

geometry optimization in conjunction with DFT calculations.
In the geometry optimization with the quasi-Newton algo-
rithm, the following equation updates all degrees of freedom
for the atomic positions at the k-th iteration (xk), until all
forces acting on the atoms become zero, as follows:

xk+1 = xk + hk f k . (3)

Here, f k and hk denote the forces acting on the atoms and
Hessian, respectively. In conventional geometry optimization,
the motion of N atoms in three dimensions produces 3N
degrees of freedom. In the FCP, both Fe and Ne are included
in f k and xk , respectively. Thus, we explore the solution of
Eq. (3) within the space of the 3N + 1-th dimension. How-
ever, we cannot directly treat Fe and Ne on equal footing
with f k and xk because the units of Ne and Fe are different
from the atomic positions and forces. To address this, we
introduce the effective charge position (N ′

e = αNe), where α

is a scaling factor unit in bohr/e. Fe is also scaled by α as
follows:

F ′
e = (−μ + μt )/α. (4)

Here, the definition of α is α = Lmax/VmaxC0. Lmax and Vmax

are the upper bound of the change in the length and voltage
at each step, respectively. C0 is the capacitance determined by
the formula of the parallel-plate capacitor:

C0 = 1

4π

S

L
. (5)

Here, S denotes the surface area. Although the original def-
inition of L is the distance between the parallel plates of the
capacitor, we approximately use the half-length of the unit cell

in the z direction for convenience. In the FCP optimization, we
add N ′

e and F ′
e to xk and f k , respectively.

In Eq. (3), hk plays a role in determining the step width of
not only the new atomic positions but also the new charge Ne.
For the Hessian component of Ne, we use the first derivative of
μ with respect to the excess charge (−∂μ/∂Ne). In the present
implementation, we use the approximate inverse of the density
of states (DOS) at μ for −∂μ/∂Ne (1/ρ(μ)). Generally, for a
large DOS system near μt , μ gradually approaches μt because
of the small Hessian for Ne evaluated by 1/ρ(μ). Thus, the
convergence behavior of the FCP method depends on the DOS
near μt .

2. GCSCF method

Here, we briefly review the GCSCF method discussed in
Ref. [30]. The GCSCF reaches constant-μe during the SCF
loop, and is shown as the blue shaded area in Fig. 2. Because
the formulation of GCSCF is simple, its calculation flow is
essentially the same as that of the conventional DFT with ge-
ometry optimization. However, in the GCSCF, Ne is a variable
at each SCF step. Generally, we can evaluate Ne by summing
the occupied KS orbitals with the given μt . However, such
a simple method for evaluating Ne violates the numerical
stability of the SCF [25]. Therefore, it is necessary to modify
the numerical algorithms to determine the i-th transient Fermi
energy (μi) and update the electron density during the SCF
loop.

Now, we explain the algorithm for determining the μi. In
the GCSCF, we gradually approach μi to μt during the SCF
as follows: First, we evaluate the Fermi energy εi

F at the i-th
SCF step by the total number of electrons at the i-th SCF step,
using an ordinal method. Second, μi is determined by simply
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mixing εi
F and μt as follows:

μi = βμt + (1 − β )εi
F, (6)

where β is the mixing factor for μe (0 < β < 1). Then, the
total number of electrons corresponding to μi is determined,
and we finally update the occupation number and the electron
density using μi and the total number of electrons.

Next, we discuss the charge mixing method using the direct
inversion of the iterative subspace (DIIS) method [41] within
the GCSCF framework. At the i-th SCF step, we update the
electron density by solving the KS equation with an input
electron density ni

in, and then the updated electron density
is used as a ni+1

in . However, to obtain a more appropriate
value of ni+1

in , the updated electron density is mixed with
the electron density of the previous SCF steps. To accelerate
the convergence of the SCF, we usually use the optimized
electron density obtained by the solution of the DIIS method
as ni+1

in . Usually, to stabilize the DIIS acceleration, the metric
and Kerker preconditioning operators [42] M̂ and K̂ are in-
troduced, and the DIIS method updates the electron density
without altering the term of n(G = 0), where G is the recip-
rocal lattice vector. In contrast, the GCSCF requires the total
number of electrons to be updated in the SCF loop. Thus, we
need to update the n(G = 0) term that corresponds to the total
number of electrons in the system by each SCF step. However,
the conventional formulation of M̂ and K̂ used in the ordinal
DFT excludes for the terms at G = 0 because of holding the
total number of electrons. Therefore, to stably update Ne, we,
respectively, introduce the dumping factors of QK and QM

(>0) to K̂ and M̂ as follows:

〈G|K̂|G〉 = |G|2 + Q2
K

|G|2 + q2
K + Q2

K

, (7)

〈G|M̂|G〉 = 4π

|G|2 + Q2
M

. (8)

Here, qK is the original damping factor of the Kerker pre-
conditioning operator. When QK and QM are set to zero, K̂
and M̂ revert to their original values. By introducing QK and
QM, K̂ and M̂ at G = 0 becomes a finite value, and we can
always update the total number of electrons in the SCF loop.
Once both � and μi have converged, the ordinal geometry
optimization procedure provides the new atomic positions.

3. NEB method combined with constant-μe

Here, we briefly discuss the NEB method in combination
with the constant-μe methods. The NEB method [16–18] de-
scribes the MEP for a chemical reaction by combining the
images of the first and final states. The MEP is determined by
solving Eq. (3) until the forces acting on each image become
zero. Thus, in the conventional NEB method, we explore the
solution of Eq. (3) within the space of the 3N×Nim dimension,
which corresponds to the motion of N atoms in three dimen-
sions with Nim images of the MEP. In the NEB combined with
the FCP, Eq. (3) is solved within the (3N + 1)×Nim dimension
because we extended the optimization space, as discussed in
the previous section. In contrast, when used in combination
with the GCSCF, the NEB does not require special modifica-

tion of the optimization procedure for the conventional NEB
framework because of its straightforward formulation. In this
work, we employ the Broyden method [43] as a quasi-Newton
algorithm for determining the MEPs.

C. Computational details

Here, we provide the computational details of this study.
All spin-unpolarized calculations were performed using the
QUANTUM ESPRESSO package [44,45], which is a DFT
code within the plane-wave basis sets and the ultrasoft-
pseudopotential [46] framework. We implemented the FCP
and GCSCF routines in combination with the ESM method
in the package. We used the five-layered slab model in the
p(2×2) and the three-layered slab model in the p(4×4) su-
percells to represent the Al(111) and Pt(111) surfaces with
a single water molecule, respectively. The coverages of the
water molecule on the Al(111) and Pt(111) slabs used in
this study, respectively, correspond to the 0.25 and 0.0625
monolayer. The former is used in previous theoretical studies
[12–15,22], and the latter is close to the previous experimental
conditions discussed in Ref. [9]. As a representative of the
slab models, we show the H2O adsorbed Al(111) in Fig. 1(a).
The two ESM regions with ε = 1 and ε = ∞ are located at a
distance of ∼8 Å from the outermost Al (or Pt) layers.

For convenience, the experimental lattice constants of the
face-centered-cubic Al and Pt bulks (4.05×4.05×4.05 Å3

and 3.925×3.925×3.925 Å3) [47,48] were used to construct
the surface slabs, respectively. For the Al slab, the cut-off
energies for the wave functions and charge density were
40y and 320 Ry, respectively. The exchange-correlation term
was described by the Perdew–Wang 91 functional within the
generalized-gradient approximation [49]. k-point sampling
used a 5×5×1 mesh in the surface Brillouin zone. For the Pt
slab, to increase computational accuracy, we used 60 and 480
Ry as the cut-off energies for the wave functions and charge
density, respectively. The van der Waals exchange correlation
functional of the vdW-DF2-B86R type [50] was used, and
k-point sampling was a 3×3×1 mesh in the surface Brillouin
zone. The number of electrons occupying the volume was
determined by the Gaussian smearing method with a smearing
width of 0.01 Ry for all calculations. We carried out the
structural optimization until Fα < 5.0×10−4Ry/Bohr with
the bottom of three Al layers (or a single Pt layer) fixed at bulk
truncated positions. In the FCP calculation, the convergence
thresholds for � and Fe, respectively, are set to 1.0×10−6 Ry
and 1.0×10−2 eV. In the GCSCF calculation, we decrease the
threshold of the convergence criteria for � to 1.0×10−8 Ry,
and used the Thomas-Fermi charge-mixing method [51].

The NEB [16–18] calculation under the constant-μe con-
dition, which enables the determination of the MEP between
two stable endpoints, was carried out to determine the acti-
vation barriers and diffusion paths of H2O molecules at the
surface. The NEB calculation was conducted with ten (nine)
discrete images for the MEP of H2O diffusion on Al(111)
[Pt(111)] with a path threshold of 0.03 eV/Å. We allowed
to relax the H2O molecule and two slab layers from the
H2O adsorbed surfaces. The activation barriers and diffusion
paths converged well for the number of images and path
threshold.
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TABLE I. The activation energies Ea (in eV) of H2O diffusion on
the Al(111) under bias voltages of U = 0.0 V, −1.0 V, and +1.0 V
using the constant-μe method. The results of Ea for the constant-Ne

method with and without �Qe are also listed. The superscripts of Ea

by the constant-μe method, respectively, denote the results obtained
by the FCP and GCSCF methods.

Constant-μe Constant-Ne

U EFCP
a EGCSCF

a �Qe Ea

0.0 V 0.092 0.091 0.000e 0.143
−1.0 V 0.161 0.161 +0.033e 0.184
+1.0 V 0.024 0.028 −0.036e 0.095

III. RESULTS AND DISCUSSIONS

First, we discuss the results of water adsorption and dif-
fusion on the Al(111) surface as calculated using the NEB
method with constant-μe. Here, we aim to check the present
implementation of the constant-μe and to understand differ-
ences in the results between the constant-μe and -Ne methods.
Finally, we compare the results for the bias-voltage depen-
dence of water diffusion on the Pt(111) to the previous STM
observation.

A. Adsorption site of water-molecule on Al(111)

First, we briefly discuss the adsorption energy and μe at the
neutral Al(111) surface with a H2O molecule for adsorption
sites, as shown in Fig. 1(b). The calculation shows that the
on-top sites are the most stable for H2O adsorption, and the
adsorption energy we obtained for these sites is 0.23 eV. These
results are consistent with the previous DFT result [22]. For
the MEP, we considered H2O diffusion from one stable on-top
site to the next on-top site via a bridge site [52]. To apply
the bias voltage U , we measure μt from μe at the potential
of zero charges (PZC), μPZC, which was −2.91eV relative to
the reference electrode level. Here, μPZC was determined as
the chemical potential of an ordinary DFT calculation at zero
excess charges (�Qe). The value of U is defined as U = (μt −
μPZC)/e [53], and the three values of U are examined: U =
0V, −1V, and +1V, respectively.

For comparative study, we also carried out the constant-Ne

calculations using values of �Qe obtained by the constant-μe

calculations of the H2O adsorbed surfaces for the first images
of the NEB. The results obtained for �Qe under U = −1V
and U = +1V are +0.033e and −0.036e, respectively. The
difference in the absolute values of �Qe between U = 1V and
−1V implies that the response of surface electrons to the ap-
plied bias potential deviates from the linear response regime.
Notably, we employ �Qe obtained above for the following
constant-Ne calculations.

B. Activation barrier of water-diffusion on Al(111)

Table I presents the results of the activation barriers Ea

obtained by the NEB with the constant-μe and -Ne methods.
First, we briefly compare the Ea obtained by the FCP and
GCSCF methods (EFCP

a and EGCSCF
a ). The results of EFCP

a
are almost the same as those of EGCSCF

a . Because the FCP
and GCSCF methods converge to the same physical state,

this agreement between the methods is reasonable. Hereafter,
unless otherwise specified, we discuss the results of Ea us-
ing those derived with FCP as being representative of the
constant-μe method.

The result of Ea for the constant-Ne with �Qe = 0.000e is
very close to that of the previous climbing image NEB [22]. In
contrast, constant-μe with U = 0.0 V produces a much lower
Ea compared to Ea by the constant-Ne with �Qe = 0.000e.
Under U = −1.0 V, Ea increases to 0.161 eV, which is also
smaller than the counterpart value of 0.184 eV obtained with
the constant-Ne method with �Qe = +0.033e. By switching
the value of U from 0.0 V to +1.0 V, Ea decreases from
0.092 to 0.024 eV. Ea with U = +1.0 V is still lower than
that determined by using the constant-Ne method with �Qe =
−0.036e. The above comparison between the constant-μe and
-Ne methods shows that although they yield similar trends for
Ea either as a result of applying bias voltages or introducing
excess charges, the results are quantitatively quite different.

C. MEPs for water-diffusion on Al(111)

Here, we discuss the results of the water diffusion path
obtained by the NEB with the constant-μe and -Ne methods.
Figures 3(a)–3(c), respectively, show consecutive images of
the water diffusion along the MEPs at applied bias voltage
of U = 0 V, +1.0 V, and −1.0 V. We also show the results
of the direction of the H2O dipole by obtaining the tilt angle
between the dipole normal and the surface (θdip) along with
the diffusion path in Fig. 4(a). Here, we show the results
obtained by the FCP as a representative example, because the
GCSCF and FCP provide the converged results for the images
as shown in Fig. 4(a).

Among the ten MEP images of H2O, we regard the first
and last images as identical, and the water molecules are
bonded to the surface Al atom via the O atom. Along the
diffusion path, the applied bias voltage drastically alters the
dipole direction of the water molecule. As seen in Fig. 4(a),
for overall, the change in θdip becomes smaller for the lower
bias voltage. For the first H2O image, the changes in the
adsorption structure of H2O resulting from the bias voltage
are small for the first images of MEPs. However, the value
of θdip changes drastically in the intermediate images. The
dipole direction near the bridge site at U = 0.0 V and +1.0 V
becomes nearly perpendicular to the Al surface, and the H
atoms orientate themselves downward. In contrast, the dipole
directions for all images tend to be parallel to the surface at
U = −1.0 V. We will discuss an interpretation of bias voltage
dependence of the change in θdip in the next subsection. As a
comparative study, Figs. 3(d)–3(f) shows the results obtained
for the MEP with the constant-Ne method. Here, the first and
last images of H2O in Figs. 3(d)–3(f) are the same as those in
Figs. 3(a)–3(c), respectively. However, the changes in θdip in
the intermediate images are much smaller than those in the
constant-μe, which is clearly seen in the comparison between
Figs. 4(a) and 4(b). Thus, we interpret the difference in the
results of Ea between the constant-μe and -Ne, as presented in
Table I, as the difference in the MEPs. Therefore, this result of
the H2O geometry along the MEPs denotes that the presence
of the fixed bias voltage plays an important role to understand
the diffusion process on the surface.
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FIG. 3. Consecutive views of the MEP (ten images) for water diffusion on Al(111): results of constant-μe method with bias-voltages of
(a) 0.0 V, (b) +1.0 V, (c) −1.0 V, and constant-Ne method with the excess charge of (d) 0.000e, (e) −0.036e, and (f) +0.033e. The cyan,
pink, and red spheres represent Al, H, and O atoms, respectively. The upper and lower panels show top and side views of the calculation cell,
respectively.

D. Details of H2O diffusion along the MEPs

Figure 5 shows the results of the analysis for the MEPs.
Before discussing the details of the diffusion properties, we
briefly discuss the results between the FCP and GCSCF
methods shown in Figs. 5(a) and 5(c). Overall, the results
of changes in the grand-potential (��) and �Qe along the
MEPs obtained by the FCP (represented by open circles)
and GCSCF (represented by cross symbols) are the same
within the computational accuracy. These results indicate that
we successfully implemented the constant-μe methods. The
main difference between the FCP and GCSCF methods is
the computational procedure discussed in Sec. II. Because, as
discussed above, we used the extended Hessian in the FCP
method, the convergence behavior depends on the inverse of
the DOS near μt . In contrast, the GCSCF method directly
optimizes μe during a single SCF calculation. Because these
constant-μe methods employ different optimization proce-
dures, we need to consider a different strategy to develop
the FCP and GCSCF methods to more efficiently reach the
constant-μe condition.

Figure 5(a) presents the results of ��, where the black,
red, and blue circles, respectively, denote the values under
U = 0.0 V, −1.0 V, and +1.0 V. In terms of the overall trend,
the heights of �� reach their respective maximum values
in the intermediate images and decrease with increasing bias
voltage. This behavior indicates that Ea of the diffusion of
water on Al(111) depends on the bias voltage, as listed in
Table I. For U = +1.0 V, we found negative values of ��

at intermediate images of the diffusion path. This result indi-
cates that the stable adsorption sites of the H2O molecules on
Al(111) change from the on-top sites to sites in the vicinity of
the bridge sites. The result of Ea at U = +1.0 V measured
from bottom of the MEP is 0.043 eV, whose value is still
smaller than that at U = 0.0 V. Thus, the change in the stable
adsorption site does not alter the qualitative feature of the
bias-voltage dependence of the Ea discussed in Table I. In
contrast, the results of �Etot shown in Fig. 5(b) obtained by
the constant-Ne method do not alter the sign of �Etot for any
values of �Qe. Therefore, a comparison of the results of the
constant-μe and -Ne methods would necessitate careful adjust-

ment of the bias voltage to determine the stable adsorption
site of H2O on Al(111) in the STM experiments and at the
electrochemical interface.

Figure 5(c) shows the results of the change in the �Qe

introduced by a potentiostat along the diffusion pathway. In
the first images, the values of �Qe are the same as those used
in the constant-Ne calculations. In the next few images, the
value of �Qe slightly increases, and then it decreases in the in-
termediate images of the MEPs. This result is the consequence
of introducing excess charges from an external potentiostat to
Al(111) to maintain a constant bias voltage. Resulting from
the introduced �Qe, the electrode surface becomes negatively
charged around the intermediate images. Since �Qe enhances
the attractive (repulsive) Coulomb interaction between H (or
O) atoms and electrode surface, the change in the θdip around
the intermediate image becomes large shown in Fig. 4(a).
When the bias voltage is increased, the values of �Qe shift
towards more negative. Therefore, the bias voltage depen-
dence of θdip comes from the enhanced attractive Coulomb
interaction between the H atoms and electrode by �Qe. On
the other hand, the results obtained for �μe by using the
constant-Ne method highly depend on the MEPs shown in
Fig. 5(d). Here, we define �μe as the difference between the
μes in the MEPs and that in the first image of the MEPs of
the PZC. Thus, �μe corresponds to the bias voltage of the
electrode. Because the total number of electrons is fixed, this
result originates from the charge transfer between the H2O
adsorbate and the Al electrode. Therefore, the change in the
surface dipole barrier alters the work function, which leads
to the dependence of �μe on the H2O diffusion path. �μe

around the intermediate images tends to decrease from that
at the first image. Thus, the bias voltage for the electrode
decreases during the water diffusion, which reduces the in-
teraction between the water dipole and electric field. For this
reason, the constant-Ne method predicts the slight change in
the θdip comparing to that by constant-μe shown in Figs. 3
and 4. As discussed above, these differences in the control
mechanism of the surface charge between the constant-μe and
-Ne methods provide the different MEPs for H2O diffusion at
Al(111).
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FIG. 4. Dipole angle of the water molecule on the Al(111)
(θdip) along with the diffusion path obtained by (a) constant-μe and
(b) constant-Ne methods. The black, red, and blue symbols are θdip

with bias-voltages of 0.0 V, −1.0 V, and +1.0 V, respectively. The
open circles denotes the results obtained by the FCP method, and the
cross symbols stand for the results obtained by the GCSCF method.
The green, orange, and pink diamond symbols indicate the results of
θdip with excess charges of 0.0e, +0.033e, and −0.036e, respectively.
The solid and dashed lines are intended to guide the eyes.

E. Water-diffusion on Pt(111) surface

Finally, we compare the results of bias-voltage dependence
of the water diffusion on Pt(111) surface to the previous STM
measurements. We also assumed the water diffusion from the
most stable on-top site to the next nearest on-top site via
the bridge site. Here, we adopted the FCP method as the
constant-μe method. According to the previous theoretical
studies [19,20], it is necessary to consider the quantum effect
such as zero-point vibration energy (EZP) to calculate the
water diffusion on the surfaces more accurately. Therefore, we
carried out the vibration analysis for the water on Pt(111) in
the initial and transient states of the MEP images using the fi-
nite displacement method within the harmonic approximation
[54].

FIG. 5. Changes in the (a) grand-potential ��, (b) total energies
�Etot , (c) introduced excess charges �Qe, and (d) chemical potential
�μe as a function of the H2O diffusion path. The results of (a) and
(c) are obtained under U = 0.0 V, −1.0 V, and +1.0 V, and the
results of (a) and (d) are obtained with �Qe = 0.000e, +0.033e,
and −0.036e. The open circles and cross symbols denote the results
obtained by the FCP and GCSCF methods, respectively. The results
of constant-Ne are represented by diamond symbols. The solid and
dashed lines are intended to guide the eyes.

Figure 6 shows the bias-voltage dependence of the Ea

obtained by the NEB calculation. The results of Ea without
the correction of EZP (cross symbols) decrease with increas-
ing bias-voltage. This result is similar to the bias-voltage
dependence of Ea for a single water-diffusion on Al(111). By

FIG. 6. Changes in the activation energies (Ea in eV) as a func-
tion of applied bias-voltage measured from PZC level (in V). Filled
diamond and cross symbols, respectively, indicate Ea with and with-
out correction of zero-point vibration energies (EZP) for H2O, and
open triangles denote Ea corrected by EZP of the heavy water (D2O).
The solid, dotted, and dash-dotted lines are intended to guide the
eyes.
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considering EZP, the results of Ea shown as diamond symbols
decrease from those without the EZP correction. However,
considering EZP does not qualitatively alter the bias-voltage
dependence of Ea. According to the previous STM measure-
ment [9,55], the positive bias-voltage increases the hopping
rate for a single water molecule on the Pt surface. Since a
decrease in Ea denotes an increase in the hopping rate, the
present results are qualitatively consistent with the previous
experiment. Besides, we calculated Ea for the heavy water
(D2O) shown as open triangles. Here, we determine EZP for
the D2O by using the deuterium mass for the hydrogen atoms.
We found higher Ea for D2O than that for the H2O. This
result denotes that the diffusion rate of D2O becomes lower
than that of the H2O molecule, which is also consistent with
the previous experiment findings [9,55]. Thus, EZP plays a
role in considering the isotope effect on molecular diffusion.
However, experimentally, the hopping rate for H2O (or D2O)
dimer is increased by negatively increasing the bias voltage
[9], which is not in agreement with the present results. This
disagreement between theory and experiment comes from the
absence of the interaction between the water molecules used
in the present study. The previous study [20] has applied
the conventional NEB calculation to not only simple water
monomers and dimer diffusions but also a “waltzlike” diffu-
sion mechanism on metal surfaces. The waltzlike diffusion is
a two-step mechanism including rotation and donor-accepter
exchange of the hydrogen-bond [19,20]. Computationally,
comparing to the conventional method, the constant bias volt-
age might alter the details of the interaction between the
H2O molecules during the diffusion by the introduced �Qe

depending on the diffusion path. Therefore, we need to ap-
ply the constant-μe method presented in this study to such
a complex diffusion process to reveal further details of the
bias-dependent water diffusion on the surface in the future.

IV. SUMMARY

In summary, we demonstrated the realistic simulation of
the bias-dependent diffusion of H2O on the Al(111) and
Pt(111) surfaces using NEB calculations within the constant-
μe method. Our results for Al(111) showed that significant
differences exist in the activation barrier energies and MEPs
and that this depends on whether the applied bias voltage
is positive or negative. In comparison, the FCP and GCSCF
methods produced the same results within the computational
accuracy. A comparison of the constant-μe and -Ne methods
also showed that the constant-Ne method does not provide a
good description of molecular diffusion under a bias voltage
owing to the absence of excess charges introduced from the
potentiostat. For the diffusion of H2O and D2O monomers
on Pt(111), the present results are qualitatively consistent
with the previous experimental findings. However, we need
to consider the water dimer diffusion processes for further
understanding of the water diffusion depending on the bias
voltage. We expect the proposed method to find a wide variety
of applications in the simulation of STM experiments and
electrochemical reactions under constant electrode potentials.
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