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Point defects in hexagonal silicon
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The importance of hexagonal Lonsdaleite silicon-germanium has been growing lately due to its possible uses
in optoelectronic devices. However, very little is known about defects in the hexagonal phases of group-IV
semiconductors. We extend here an efficient constrained structure prediction algorithm designed for interface
reconstructions to the study of point defect geometries. With this method we perform an exhaustive structure
prediction study of the most energetically favorable intrinsic defects in Lonsdaleite silicon. We obtain among the
lowest-energy structures the hexagonal counterparts of all known defects of cubic silicon, together with other
often more complex geometries. Neutral vacancies, fourfold-coordinated, and Frenkel defects have comparable
formation energies in both hexagonal and cubic phases, while some interstitial defects become considerably
more stable in the hexagonal lattice. Furthermore, due to the reduced symmetry, formation energies can depend
on the orientation of the defect with respect to the c axis. Finally, we calculate the density of states of the
defective supercells to determine which defects lead to electronic states in the band gap, potentially affecting the
performance of optoelectronic devices based on hexagonal group-IV crystals.
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I. INTRODUCTION

Most technologically relevant semiconductors crystallize
in either a face-centered cubic or a hexagonal closed-packed
lattice. These closely related atomic arrangements differ by
the stacking of atomic planes: An ABC stacking leads to the
cubic phase, while the ABAB stacking results in a hexagonal
symmetry. For an elemental semiconductor, the two phases
are commonly labeled as “diamond” and “Lonsdaleite”
structure, respectively, while for a binary the terminology
“zincblende” and “wurtzite” is used. The latter structures are
obviously obtained through the coloring of the two sublattices
of the former structures.

The energy difference between cubic and hexagonal pack-
ing is often very small, so the preferred choice for a certain
composition is rather subtle and hard to predict. This is under-
standable, as the nearest neighbors and next-nearest neighbors
are the same in the ideal wurtzite and zincblende structures.
For example, carbon, silicon, germanium, GaAs, etc. have a
cubic structure [1,2], while ZnO, ZnS, CdS, and CdSe are
known to crystallize in the hexagonal phase [2].

The ground-state crystal structure of silicon, the most com-
mon semiconductor, is the diamond phase. This is perhaps the
most studied crystal in solid-state physics, and every imag-
inable experimental probe or theory has been applied to it.
However, many other low-energy phases of silicon, respecting
the tetrahedral arrangement of the atoms, are possible [3–7],
and some have been experimentally synthesized [8–13].

In recent years, interest in the Lonsdaleite phase of silicon
and germanium has been growing. In fact, several methods
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have been reported for the growth of hexagonal silicon, such
as the diamond anvil cell technique at high pressures [14],
the deposition of microcrystallites during laser ablation of
SiO2 films [15], the vapor-liquid-solid method [10,16], and
the crystal structure transfer method [9,11]. Moreover, the
latter method was shown to lead to large and stable regions
of the pure hexagonal phase [9].

The importance of the hexagonal phase stems from theo-
retical calculations that predicted a tunable direct band gap for
Si1−xGex alloys [5–7,17,18], which can increase the efficiency
of light emission for these semiconductors. This has been
recently confirmed by Fadaly et al. [19] who demonstrated
experimentally efficient light emission from direct band-gap
hexagonal Ge and SiGe alloys. Furthermore, by controlling
the composition of the hexagonal SiGe alloy, they succeeded
in changing continuously the emission wavelength over a
broad range, while preserving the direct band gap [19]. This
seminal result opened the way for the use of group-IV materi-
als in optoelectronic applications.

It is well known that technological applications of semi-
conductors are extremely sensitive to the presence of defects
and can be seriously hindered, or sometimes even enabled, by
them. The defects of cubic silicon have already been exten-
sively studied both experimentally and theoretically. In fact,
by now we have detailed knowledge of which point defects
are likely to exist in cubic silicon, their electronic properties,
and their influence on functioning optoelectronic devices [20].
However, that knowledge is still to a large extent lacking for
its hexagonal counterpart.

It is therefore our objective to fill this gap and perform an
extensive study of structure-property relations of point defects
in Lonsdaleite silicon. Our approach relies on a constrained
structure prediction algorithm that has recently been proposed
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by some of us [21]. We will be focusing on the defect ge-
ometries and formations energies at zero temperature, while
deferring finite temperature properties to future studies. Su-
percells are built for the selected point defects, and simple
local relaxations of the atomic positions are performed at
fixed cell parameters. Such an approach is somehow unsat-
isfactory. In the best case, many defects that are energetically
unfavored are unnecessarily included in the study; and in the
worse case, relevant low-energy defects are not included. We
propose, therefore, to identify a priori the most stable defect
configurations using structure prediction. This preliminary
step is particularly relevant when new materials are studied—
as in this case, where the hexagonal symmetry implies that
the number of possible point defects is considerably larger
than for cubic silicon—but it can also lead to surprises for
well-studied materials. For example, the fourfold coordinated
defect (FFCD) of cubic silicon was neglected for a long time
in defect studies, as it was not stable in force-fields calcula-
tions and was only found very late using density functional
theory (DFT) [22].

II. METHODS

Global structural prediction calculations [23] have grown
in prominence in the past decade due to their ability to predict
the low-energy crystal structures based solely on the compo-
sition of the material. This is extremely valuable, especially in
situations where experiments are difficult or even impossible
(such as in high-pressure environments [24–27]). The basic
prediction algorithms are geared toward yielding low-energy
bulk phases; however, a judicious use of geometrical con-
straints can allow us to study other physical systems. In fact,
extensions have been put forward to investigate surfaces [28],
two-dimensional systems [29–32], grain boundaries [21,33–
35], line defects [36], etc.

Our algorithm of choice for the global structural prediction
is the minima-hopping method [37,38]. This algorithm has
already been used with success to predict surfaces [39,40],
two-dimensional systems [41], line defects [36], clusters [42],
bulk phases under pressure [25], etc. Furthermore, as it is
based on a sequence of geometry optimizations followed by
short molecular dynamics steps, it is rather simple to gener-
alize in order to impose geometrical constraints. Of course,
any other structural prediction algorithm, be it genetic al-
gorithms [43,44], particle-swarm methods [45,46], random
search [47–50], etc., could also be used for our purpose.

Here we generalize the constrained minima hopping
method [21] to predict geometries of point defects. Our pro-
cedure is the following: (i) We build a supercell of the parent
compound large enough to include the defect plus a buffer
region. For our case of Lonsdaleite silicon, the starting su-
percell is an orthorhombic cell containing 72 unit cells (of
the primitive hexagonal lattice) with lattice vectors a = 15.4,
b = 20.0, and c = 19.1 Å. It contains 288 atoms and is de-
picted in Fig. 1. (ii) We select the atoms within a slab (more
precisely, three layers of atoms) in each Cartesian direction
and fix them to their equilibrium coordinates. These are the
atoms in gray in Fig. 1. For the purposes of the algorithm,
this buffer region should be thick enough to represent the bulk
of hexagonal silicon, while the volume inscribed (atoms in

FIG. 1. Depiction of the (0001) surface of the constrained cell. In
gray we show the silicon atoms that are fixed and in blue the atoms
that are allowed to move. Note that there is a slab of silicon atoms in
the perpendicular direction that are fixed, but that are not visible in
the figure.

blue in the figure) should be large enough to contain the point
defects. We also fix the lattice vectors. (iii) We may add or
remove atoms from the blue region in case we want to study
interstitials or vacancies. (iv) We perform global structural
prediction simulations obeying the above constraints. These
yields as the lowest possible structure the bulk phase (in this
case hexagonal silicon), while metastable structures represent
point defects.

Due to the geometrical constraints, it turns out that the
same point defect located in different positions of the blue
region will have slightly different energies as a consequence
of the different strain imposed by the fixed atoms. As such,
they will likely be misidentified by the global structural pre-
diction algorithm as different defects. To resolve this issue, we
perform an extra step in our methodology: (v) We eliminate
the constraints on the atoms (while still keeping the lattice
vectors fixed) and perform a reoptimization of the geometry.

The process of defect creation stems from the competition
between the minimum internal energy of the ideal crystal
and the stabilizing effect of entropy related to the disorder
introduced by defect creation. Formally, the Gibbs’ free en-
ergy of formation of a defect is given at temperature T and
pressure P by the sum of the formation enthalpy and the
entropic term T �S. For single isolated defects, the variation
of volume due to the creation of a point defect is negligible
in the dilute case and the formation enthalpy can be approx-
imated by the internal energy only. The entropic term can
be split in the contributions of configurational entropy and
phonons. It is well known that vibrational entropy of defects
can give a sizable contribution to the free energy, but also
configurational entropy can be non-negligible at temperatures
near the melting point [51,52]. Including entropic terms is still
challenging, especially within DFT, and we therefore limit our
study to zero-temperature formation energies, which allows in
any case for a fundamental first step in the understanding of
defect thermodynamics.

The structural prediction algorithm requires an underlying
theory that provides total energies and forces. This is often
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DFT [53,54] as it assures unparalleled accuracy for a rela-
tively modest computational effort. Unfortunately, structural
prediction often requires tens or even hundreds of thousands
of energy and force evaluations which, for a cell containing
288 atoms, is well beyond the computational capabilities of
modern supercomputers. Therefore, we have to resort to more
efficient (and inevitably less accurate) methods.

However, here we have to be careful. Despite the rec-
ognized usefulness of classical potentials to study structural
properties of complex materials, and despite the existence
of high quality potentials for silicon, deviations from DFT
results have been demonstrated for calculations of silicon
using classical potentials [55]. It is in particular known that
force fields are not capable of stabilizing the lowest-energy
point defect in silicon [22]. This is surprisingly true even
for state-of-the-art machine-learning potentials [56]. A recent
comparison with DFT results for a large dataset also shows
that forces calculated with Stillinger-Weber or Tersoff force
fields are consistently worse than forces calculated with DFT
tight binding, provided that the tight-binding parameters are
optimized to obtain at the same time energies and forces. [57]

In view of the above, we decided to use density-functional
tight binding (DFTB), as implemented in DFTB+ [58]. This
is a quantum mechanical approach, but that allows for much
faster calculations than DFT. We used the parametrization
from Ref. [59] that was specifically crafted for structural
prediction runs, as the parameters are optimized to yield at
the same time DFT-quality energies and forces. These same
parameters gave excellent agreement with experiments for
structural prediction of grain boundaries in silicon [21]. We
remark that performing all calculations with DFT would re-
quire years in a supercomputer, while the DFTB calculations
only took a few weeks with much more modest equipment.
However, it is important to guarantee the reliability of the
tight-binding method to prevent missing low-energy minima.
We also verified that our methodology is able to obtain all
lowest-energy defects of cubic silicon.

Finally, to eliminate the error introduced by the use of
tight binding, we include a final step in our methodology: (vi)
We perform a final geometry optimization of all interesting
geometries using DFT. Our DFT calculations were performed
with the Vienna Ab Initio Simulation Package (VASP) soft-
ware [60,61] employing the projector augmented wave (PAW)
method to model the core electrons. For the geometry opti-
mizations and to calculate defect energies, we approximated
the exchange-correlation functional with the Perdew-Burke-
Ernzernhof (PBE) [62] approximation. In this case, we used
an energy cutoff of 420 eV and a mesh of 1 × 1 × 1 k-points
for the geometry optimization and 4 × 3 × 3 for the calcu-
lation of formations energies. This leads to a precision in
the defect formation energies better than a hundredth of an
eV. It is harder to estimate the intrinsic accuracy of DFT
functionals in evaluating defect formation energies. In any
case, we should remember that we are calculating energy
differences of structures that are chemically similar, so we
expect that many of the errors are likely to cancel out in this
process. We remark that we do not include here any finite-size
or band-edge correction, as our present aim is to predict the
lowest-energy defects in hexagonal silicon, and this should be
largely unaffected by these corrections.

For the analysis of the electronic structure, we employed
the modified Becke-Johnson potential of Tran and Blaha
[63,64]. It is by now known that this is the best functional
to calculate band gaps of semiconductors and insulators [65].
It is, in fact, even slightly better on average than the screened
hybrid of Heyd and Scuseria from 2006 [66] at only a fraction
of the computational effort. Moreover, it was recently shown
that it yields a very good description of the hexagonal phase
of silicon and germanium [18,19,67]. The modified Becke-
Johnson has been used in the past to calculate the electronic
structure of defects, for example, in ZrO2 [68], in the mixed
borate–carbonate Pb7O(OH)3(CO3)3(BO3) [69], or in Mg2X
(X = Si, Ge, Sn) [70]. The electronic density of states (DOS)
calculations were performed using the tetrahedron method
with a 2 × 2 × 2 k-point grid.

Following this procedure, we performed a series of simula-
tions for unit cells containing one or two vacancies (−1 or −2
atoms), one or two interstitials (+1 or +2 atoms), and with
the pristine 288-atom cell. The atoms were added/removed
to/from random positions in the lattice. For each case, we
performed four independent minima-hopping runs, and each
run was stopped after obtaining around 400 minima.

It is true that, in general, the charge state of the defect
is essential to determine its thermodynamic and electronic
properties. However, it was shown for cubic silicon that the
vacancy is the only defect stabilized by charge, and this sta-
bilization is rather small [71,72]. In view of that, in this work
we concentrate on neutral defects only.

III. RESULTS AND DISCUSSION

A summary of the lowest-energy point defects stemming
from our simulations of hexagonal silicon can be found in
Table I, while in Fig. 2 we show the geometries of the defects.
The crystallographic information files for all defects with
energies ranging from 2.52 to 7.00 eV and a depiction of their
geometries can be found in the Supplemental Material [75].

From the analysis of the runs, we found out that our
structural prediction runs were able to identify the hexago-
nal counterparts of all common defects already known for
cubic silicon. Furthermore, as the hexagonal lattice contains
fewer equivalent sites than the cubic lattice, we found a series
of variants of these defects. Note that a similar symmetry
breaking has also been observed in some polymorphs of SiC
[76,77].

To make the analysis clearer, we grouped defects with
similar spacial arrangements and reported their energy range
in Table I. The geometries of several low-energy variants can
be found in the Supplemental Material [75]. In general, these
variant defects can have quite different energies depending on
their orientation. For example, we found two split (X) intersti-
tials, oriented along different crystallographic directions, that
possess quite different formation energies (2.54 and 3.27 eV).
Another interesting example is the FFCD that possesses an
energy ranging from 2.52 to 3.44 eV, depending on its orien-
tation with respect to the hexagonal c axis. This anisotropic
behavior, and the large energy differences between different
defect orientations, suggests the possibility to observe in the
experimental samples defect alignment along certain crystal-
lographic directions.
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TABLE I. PBE formation energy (in eV) of the lowest-energy point defects in hexagonal Si, compared (when possible) with the equivalent
defect in cubic silicon. The square brackets in the column of hexagonal Si energies denote energy intervals for the possible orientations of each
defect. Note that in the hexagonal lattice we obviously cannot have a tetrahedral interstitial due to symmetry, but there is a interstitial with a
similar geometry, so we decided to keep the nomenclature.

Hexagonal Si Cubic Si
Defect Energy (eV) Energy (eV)

Fourfold coordinated defect (FFCD) [2.52, 2.65] 2.42 [22]
Tetrahedral (T) interstitial [2.52, 2.60] 4.09 [73], 3.96 [74]
Split (X) interstitial [2.54, 3.27] 3.31 [22], 3.67 [73], 3.66 [74]
Hexagonal (H) interstitial [2.73, 3.25] 3.31 [22], 3.77 [73], 3.69 [74]
Extended split (EX) interstitial [3.40, 4.63]
FFCD2 [3.43, 3.44]
Pentagonal (P) interstitial [3.52, 4.97]
EX2 interstitial [3.82, 4.53]
EX3 interstitial [3.82, 4.68]
Vacancy (V) 3.78 3.17 [22]
EX4 interstitial [3.94, 4.99]
Double (XT) interstitial [4.11, 4.35]
Frenkel 4.26 4.32 [22]
Di-vacancy [5.48, 6.50]

Of course, our simulations also yielded a plethora of more
complex defects, some of them with energies in the same
range as the most common defects. The lowest of these are

also listed in Table I, while some more can be found in the
Supplemental Material [75].

In Table I we also compare the energy of the well-known
point defects of the cubic (diamond) Si lattice [22] with their

FIG. 2. Geometries of the lowest-energy defects of hexagonal silicon that stemmed from our simulations. Vacancies are depicted in red,
interstitial atoms are in green, while atoms that are slightly displaced from their bulk positions are in gray.
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hexagonal counterparts. We find that corresponding defects
have to a large extent similar formation energies. This is
consistent with the observation that Si has the same coordi-
nation in the considered cubic and hexagonal lattices. Perhaps
not surprisingly, the energy to create a single vacancy [see
Fig. 2(k)] in hexagonal silicon is essentially the same as for
the cubic lattice. We also find that removing two neighboring
silicon atoms [see Fig. 2(o)] is substantially more convenient
(by around 2 eV) than creating two isolated vacancies.

The situation is more varied for interstitials, as their energy
can be significantly lower in the hexagonal phase for certain
defect orientations as a consequence of the lowered symmetry.
This is true for the tetrahedral (T), split (X), hexagonal (H),
and extended split (EX) interstitials, with the difference in en-
ergy between cubic and hexagonal silicon around 1 eV. These
defects are expected therefore to be much more common in
samples of hexagonal silicon.

The lowest-energy point defect of hexagonal silicon, as in
cubic silicon [22], is the FFCD [see Fig. 2(b)]. This defect
results from the rotation of two atoms, allowing to preserve
the bond lengths and angles with respect to their bulk val-
ues, leading to a rather stable configuration. In particular,
we observed that when the interstitials are aligned along the
[112̄0] direction they possess lower energy than when aligned
along the [112̄1] direction [see the FFCD2 defect depict in
Fig. 2(g)].

In terms of formation energy, the second lowest-energy
defect is the tetrahedral interstitial [see Fig. 2(c)]. We note
that, strictly speaking, this defect does not exhibit tetrahe-
dral symmetry, as this is incompatible with the symmetry of
the hexagonal lattice. We decided nevertheless to keep the
nomenclature to simplify the discussion. The formation of this
defect in this lattice requires the displacement of some of its
surrounding atoms. The formation energy of this defect in the
hexagonal lattice is ≈1 eV lower than in the cubic lattice,
meaning that this defect becomes as stable as the FFCD.

The X interstitial appears afterward [see Fig. 2(d)]. In the
diamond lattice, this defect is usually described as a dumbbell
configuration formed by two silicon atoms oriented along the
[110] direction [78]. Moreover, a vacancy is located between
these interstitials. In the hexagonal lattice, the silicon atoms
can orient along the [112̄0] or the [112̄1] lattice direction,
where the former configuration is more stable.

The H interstitial follows in terms of energy [see Fig. 2(e)].
In this defect, the interstitial atom is located at the center of
the characteristic hexagons formed by the silicon atoms. The
H interstitial is considerably important in Lonsdaleite, since
its formation energy can be rather small. In fact, we found it
to vary from 2.73 eV, when located at the center of an irregular
hexagon, to 3.25 eV, when located at the center of the regular
hexagons seen in the c direction. Note that this latter value is
close to the energy of this defect in the cubic lattice.

Next comes the EX interstitial [see Fig. 2(f)]. Similarly to
the X interstitial, this defect is also a dumbbell configuration.
However, two additional atoms leave their pristine position
and form a relatively symmetric “U”-shaped motif with the
dumbbell interstitials. In total, three Si-sites are vacant. In
the Lonsdaleite the dumbbell interstitials are also oriented
along the [112̄0] direction. We note that the shape of the

“U” can change due to the symmetry of the hexagonal lat-
tice. Furthermore, we found several configurations where the
atoms did not manage to form this U shape. Instead, they
can fold to form a squared shape [see Fig. 2(j)] or even an
L shape [see Fig. 2(l)]. In terms of energy, the U-shaped
configurations have the lowest energy, as low as 3.40 eV, while
certain configurations of the squared and L shape achieve 3.82
and 3.94 eV, respectively. We also observed another higher
energy configuration (4.51 eV or higher) resembling the EX,
but where two vacancies form a line in the c direction and are
closer to one of the dumbbell interstitials.

The simulations with the 288-atom cell also yielded defects
that are similar to the X and EX interstitial, the difference
being that they also possess one vacant site. In particular, the
latter is quite stable [see Fig. 2(i)].

The Frenkel defect [Fig. 2(n)] occurs when an atom aban-
dons its lattice position in favor of an interstitial position. In
both types of lattice this defect has a characteristic energy of
around 4.30 eV.

Additionally, we would like to mention a couple of com-
plex defect configurations: One where the interstitials form
a pentagonal structure, with four vacancies and an energy of
3.52 eV [see Fig. 2(h)]; the second can be seen either as an
FFCD combined with three interstitials forming a triangle-
shape or as an EX combined with an additional dumbbell
interstitial. It has a formation energy of 3.82 eV. Finally, we
also found several interesting defects with energies between
4 and 5 eV, including combinations of the aforementioned
interstitials, such as the XT di-interstitial [see Fig. 2(m)],
the hexagonal analogous of the modified triangle, W, and Z
di-interstitials [79], and many other complex defects.

We note that the concentration of point defects depends
on the free energy of formation that can be approximated as
the sum of the internal energy at zero temperature and the
vibrational free energy. For cubic silicon, the calculation of
the phonon contribution was performed for the neutral va-
cancy, the hexagonal and split self-interstitials, and the FFCD
defect in Ref. [80], as well as for the vacancy in Ref. [81].
At high temperatures, the vibrational free energy associated
with a point defect in silicon is of the order of 1 eV. This
stabilization term is especially large for the vacancy and it
turns out to be similar for all studied interstitials. We expect a
similar situation for the hexagonal system due to its bonding
similarity to cubic silicon. Unfortunately, we have to keep in
mind a recent critical study [82] that casts serious doubts on
the convergence of calculations of the vibrational free energy.

In order to gain some insight into the change of elec-
tronic properties induced by the presence of these defects, we
computed the DOS for the most interesting defect structures.
These results are presented in Fig. 3, where we plot the DOS
for selected defects in an energy window around the band gap,
as this is the region of most interest for optoelectronics. In
all plots, the contribution to the DOS from the bulk region is
perfectly visible by comparing to the DOS of pristine hexag-
onal silicon, depicted as a green line. In most cases, the states
associated with the defects are found in the energy region
close to the band gap. Note that, for some interstitials, we also
find localized states at the bottom of the valence band (not
shown).
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FIG. 3. Comparison between the DOS (around the band gap)
of the pristine structure and the DOS of the structures containing
defects: (Top panel) Vacancy and di-vacancy, (middle panel) defects
conserving the number of atoms, (bottom panel) interstitial defects.
All DOS were aligned to a characteristic peak in the valence band.
For the pristine structure, this peak is located 3.1 eV below the Fermi
level.

Both vacancies and di-vacancies can have a profound effect
on the electrical properties of Lonsdaleite silicon. In fact, we
find several deep states in the gap.

Turning our attention to defects that do not change the
initial number of atoms of the 288-atom cell, we find that
the FFCD does not lead to any defect states in the band gap,
although we do find a localized state at the bottom of the
conduction band. This situation is rather different when the
interstitials align along the [112̄1] direction (as in the FFCD2
structure), as we witness the appearance of a shallow state
close to the top of the valence band. Finally, the Frenkel defect
has a shallow state at the same position as the FFCD2 and also
a localized state close to the bottom of the conduction band. In
any case, the high formation energy of this defect is expected
to limit its occurrence in experimental samples.

Finally, we analyze the modification to electronic band
structure induced by the presence of interstitials. The lowest-
energy defect of this kind, the T interstitial, exhibits a
localized shallow state in the band gap close to the valence
band edge. Both the X and the pentagonal interstitial do not
induce electronic states in the band gap, but we can easily
identify states coming from these defects in the valence band.
The H and XT interstitials have deep states localized approxi-
mately in the middle of the band gap. Finally, the EX3 defect
leads to defect states both at the top of the valence band and at
the bottom of the conduction band. While the XT interstitial
has a large formation energy and can be safely disregarded,
optimized growth processes should be considered to reduce
the occurrence of H interstitials.

IV. CONCLUSIONS

We performed a systematic investigation of the structure of
lowest-energy point defects in the Lonsdaleite phase of sili-
con. To this end, we developed a constrained crystal structure
prediction method to automatically search for point defects.
The algorithm identified a plethora of low-energy point de-
fects, including the analogous to all relevant defects known
for diamond silicon.

Our method is fully unbiased and is capable of yielding the
atomic configuration of low-energy defects, regardless of the
chemistry or the crystal symmetry of the material. It can be
particularly useful in the investigation of systems with either
low symmetry or where defect complexes are expected to
play an important role. Furthermore, and when coupled with a
quantum-mechanical method to evaluate energies and forces,
this approach can be trivially generalized to study charged
defects.

A comparison of similar defects in the two hexagonal and
cubic lattices reveals that some interstitial defects have lower
energy in Lonsdaleite silicon, meaning that they will be more
common in synthesized samples of hexagonal silicon than in
diamond silicon. We note that in the Lonsdaleite phase, the
fourfold-coordinated defect, the tetrahedral interstitial, and
the split interstitial are the defects with the lowest formation
energy (around 2.5 eV), while the vacancy is more than 0.5 eV
higher than in cubic silicon. This latter difference is, in our
opinion, very important for the emerging hexagonal silicon
technology. At typical temperatures where silicon devices are
thermally processed (around 1000–1100 K), both interstitials
and vacancies seem to exist in roughly equal measure [80].
In fact, although the energy of the vacancy is considerably
higher than the one for the interstitials, it is compensated by
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a larger entropy contribution. Assuming a similar behavior of
the entropy for the hexagonal case, we conclude that vacancies
should be significantly less common in hexagonal silicon than
in its cubic counterpart. Moreover, defects of the hexagonal
silicon lattice admit several variants due to symmetry break-
ing and can have quite different energies depending on their
relative orientation in the crystal lattice.

Analysis of the electronic DOS of the structures containing
the defects reveals that the fourfold-coordinated defect is elec-
tronically benign, but that the tetrahedral and split interstitials
exhibit localized shallow states slightly above and below the
top of the valence band, respectively. Deep states in the gap
were found for the vacancies and for the hexagonal and double
interstitials.

As most experimental techniques do not allow to deter-
mine directly which point defects are present in a sample
and, even less, their geometry, defect identification is usually

indirect, e.g., through some signatures that can be detected
in spectroscopy experiments. Our first-principles study of the
structure and associated DOS of the lowest-energy defects
offer clear defect signatures that can be employed to interpret
experiments of hexagonal silicon. Moreover, we propose our
defect supercells as a reliable starting point for more compre-
hensive studies taking into account the contribution of finite
temperatures.
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