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Understanding magnetic phase coexistence in Ru2Mn1−xFexSn Heusler alloys:
A neutron scattering, thermodynamic, and phenomenological analysis
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The random substitutional solid solution between the antiferromagnetic (AFM) full-Heusler alloy Ru2MnSn
and the ferromagnetic (FM) full-Heusler alloy Ru2FeSn provides a rare opportunity to study FM-AFM phase
competition in a near-lattice-matched, cubic system, with full solubility. At intermediate x in Ru2Mn1−xFexSn
this system displays suppressed magnetic ordering temperatures, spatially coexisting FM and AFM order, and
strong coercivity enhancement, despite rigorous chemical homogeneity. Here, we construct the most detailed
temperature- and x-dependent understanding of the magnetic phase competition and coexistence in this sys-
tem to date, combining wide-temperature-range neutron diffraction and small-angle neutron scattering with
magnetometry and specific heat measurements on thoroughly characterized polycrystals. A complete magnetic
phase diagram is generated, showing FM-AFM coexistence between x ≈ 0.30 and x ≈ 0.70. Important insight
is gained from the extracted length scales for magnetic phase coexistence (25–100 nm), the relative magnetic
volume fractions and ordering temperatures, and remarkable x-dependent trends in magnetic and electronic
contributions to specific heat. An unusual feature in the magnetic phase diagram (an intermediate FM phase)
is also shown to arise from an extrinsic effect related to a minor Ru-rich secondary phase. The established
magnetic phase diagram is then discussed with the aid of phenomenological modeling, clarifying the nature of
the mesoscale phase coexistence with respect to the understanding of disordered Heisenberg models.
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I. INTRODUCTION

The chemically ordered intermetallics known as Heusler
alloys have grown to encompass a large family, with broad
potential applications [1,2]. These alloys crystallize in cubic
full-Heusler (X2YZ) and half-Heusler (XYZ) variants, incor-
porating a variety of X and Y transition metals (e.g., Mn,
Fe, Co, Ru) and Z main group elements (e.g., Al, Si, Ga,
Ge, In, Sn, Sb) [1,2]. Magnetic examples from this alloy
class provide perfect illustrations of their diverse functional-
ities, which include ferromagnetism with nonmagnetic X, Y,
Z; high Curie temperature (TC) and saturation magnetization
(MS); half-metallic or highly spin-polarized character; spin-
gapless semiconducting behavior; magnetocaloric response;
and exciting topological characteristics [1–4]. Particularly
extensively studied in this context are NiMnSb and the
Co2MnZ and Ni2MnZ families, although interest has been
widespread [1–4]. A pervasive strategy in the investigation of
such materials is to study quaternary solid solution or delib-
erately off-stoichiometric versions, such as Co2FeGe1−xGax,
Ni2Mn1+xSn1−x, etc., which enable composition-based tuning
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of lattice parameter, spin-polarized electronic structure, topo-
logical band structure, and so on [1–4].

In fundamental magnetism, a particularly attractive pros-
pect with quaternary solid solution and/or off-stoichiometric
Heusler alloys is the identification of model systems
to study the long-standing problem of ferromagnetic-
antiferromagnetic (FM-AFM) phase competition. Promi-
nent examples include heavily studied Ni2Mn1+xSn1−x,
Ni2Mn1+xIn1−x, and Ni2−xCoxMn1+ySn1−y, where AFM in-
teractions (e.g., due to Mn-Mn interactions generated by MnSn

substitution) are controllably introduced into a FM Heusler
matrix (e.g., Ni2MnSn) [5–17]. The impacts of the resulting
FM-AFM phase competition are fascinating, encompassing
phase separation into short-range FM clusters in AFM or non-
magnetically ordered matrices, resulting superparamagnetism
in bulk solids, and exchange bias and coercivity enhancement
due to naturally formed FM/AFM interfaces [5–17]. Such
effects also interplay with martensitic phase transformations,
generating magnetic-field-induced transformations, magnetic
shape memory effects, magnetocaloric and barocaloric phe-
nomena, etc. [1,2,5–17].

Quaternary solid solution Heuslers, such as
Cu1−xNixMnSb [18] and Ru2Mn1−xFexSn [19–21], have
also attracted attention as more idealized systems for the
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study of FM-AFM phase competition. In Ru2Mn1−xFexSn,
this is because Ru2FeSn is FM with TC ≈ 500 K, while
Ru2MnSn is AFM with Néel temperature TN ≈ 300 K
[19–21]. Compositional tuning on a single site then enables
the study of FM-AFM phase competition with complete
solubility in Ru2Mn1−xFexSn, while maintaining cubic
structure, with only a ∼0.02 Å variation in lattice parameter
[19–21]. Such complete solubility between FM and AFM
end points in a cubic system with modest structural variations
is rare. In recent work, polycrystalline Ru2Mn1−xFexSn was
synthesized, quenched to avoid chemical phase separation,
and proven chemically homogeneous over broad length
scales [19]. This homogeneity was established via powder
x-ray diffraction (PXRD), neutron powder diffraction
(NPD), pair distribution function (PDF) analysis of neutron
scattering data, and scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) with energy
dispersive x-ray spectroscopy (EDS) [19]. Temperature
(T)-dependent magnetometry then revealed suppression of TN

as x increases from zero (i.e., as Fe is alloyed into Ru2MnSn),
and rapid suppression of TC as x decreases from unity (i.e., as
Mn is alloyed into Ru2FeSn) [19]. Critically, low T NPD at
x = 0.50 then revealed both FM and AFM reflections, with no
canted or ferrimagnetic state, suggesting spatial coexistence
of FM and AFM phases, despite the chemical homogeneity
[19]. In the FM-AFM coexistence region, a striking low
T coercivity enhancement was discovered, i.e., magnetic
hardening, ascribed to interfacial FM/AFM interactions.

This work on Ru2Mn1−xFexSn quickly stimulated the-
oretical studies. In 2017, density functional theory (DFT)
computations shed significant light by establishing the origin
of FM in Ru2FeSn and AFM in Ru2MnSn [20]. The moment
in such systems is strongly confined to Fe and Mn, with
the FM or AFM arising from a subtle balance between Sn-
mediated AFM superexchange and the itinerant electron FM
RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction [20].
Importantly, these calculations also highlighted a tendency
to chemical phase separation [20], no doubt frustrated in
practice by quenching, as in other related Heusler-based sys-
tems [22–24]. Specifically, a tendency to form (111)-oriented
stripes and short-range-ordered clusters of Fe- and Mn-rich
FM and AFM phases was uncovered [20]. In 2019, Decolve-
naere et al. built on this to advance a mixed-basis chemical and
magnetic cluster expansion method, to which Monte Carlo
simulations were applied, both to equilibrated and quenched
structures [21]. This enabled semiquantitative reproduction
of the available magnetic phase diagram, accurately describ-
ing MS(x) [21]. The Monte Carlo simulations also provided
snapshots of the separation into spatially coexisting short-
range-ordered FM and AFM regions, providing much insight
[21] and highlighting the key role of the Fe/Mn site disorder.

While the above represents substantial progress with
Ru2Mn1−xFexSn, challenges and questions remain. It would
be desirable, for example, to extend the limited neutron scat-
tering data (which are at low T only, at x = 0.00, 0.50, and
1.00 [19]) to a complete study vs x and T, to construct a full
magnetic phase diagram. The critical issue of the length scales
over which the FM-AFM phase coexistence occurs is also
poorly understood, due to limited application of experimental
probes with appropriate spatial resolution. With respect to

experimental probes in general, magnetometry, some NPD,
Mössbauer spectroscopy, local structure methods, and basic
structural and chemical characterization have been applied
[19], but thermodynamic and transport studies are absent. This
is despite the utility of the latter for probing magnetically
inhomogeneous systems.

In light of the above, we present here a detailed wide-T-
range neutron scattering study of competing FM and AFM
order in Ru2Mn1−xFexSn, spanning x = 0.00, 0.25, 0.40,
0.50, 0.60, and 1.00, using both NPD and small-angle neu-
tron scattering (SANS). This is combined with magnetometry,
and, importantly, specific heat measurements, along with
analysis of T-dependent lattice parameters, to provide the
most comprehensive understanding to date of the T- and x-
dependent FM-AFM phase competition and coexistence in
Ru2Mn1−xFexSn. Nanoscale to mesoscale FM-AFM phase
coexistence is thus pinned down to 0.30 < x < 0.70, where
we extract detailed information on T-dependent AFM and
FM order parameters, TN and TC, AFM and FM volume
fractions, and phase coexistence length scales. Specific heat,
in addition to providing the x-dependent Debye temperature,
reveals signatures of both the FM phase and AFM-FM phase
coexistence, as well as an enhancement of the Sommerfeld
coefficient around x = 0.50. An unusual feature in the phase
diagram (an intermediate FM phase) is also elucidated as
arising from an extrinsic effect, related to a Ru-rich secondary
phase. Finally, guided by phenomenological modeling, the
deduced experimental magnetic phase diagram is appropri-
ately placed in the context of the theoretical understanding of
Heisenberg models for disordered magnets.

II. EXPERIMENTAL DETAILS

Polycrystalline Ru2Mn1−xFexSn samples (∼0.2–2 μm
grain size) were prepared via solid-state synthesis from Mn,
Fe, Ru, and Sn, then quenched in ice water, as described
earlier [19]. The exact powder samples used by Douglas et al.
[19] were employed in our magnetometry, SANS, and specific
heat measurements. These samples were previously character-
ized by PXRD (with Rietveld refinement), SEM, TEM, SEM-,
and TEM-based scanning EDS, low T NPD (at x = 0.00, 0.50,
and 1.00 only), and neutron PDF analysis [19]. As discussed
in Sec. I, chemical phase separation was ruled out at all probed
length scales [19]. For the more extensive NPD in the current
paper, new, higher mass (∼3–5 g) powder samples were pre-
pared via similar methods, resulting in similar PXRD, room
temperature lattice parameters, etc. A previously identified
Ru-rich hexagonally close-packed (HCP) minor secondary
phase (∼5% mole fraction) [19] was also detected in these
NPD samples.

Magnetometry was done in a Quantum Design PPMS vi-
brating sample magnetometer (VSM) with a high temperature
oven, from 5 to 700 K, in applied magnetic field (H) to
50 kOe. Heat capacity measurements were also performed in a
PPMS (1.8 to 380 K, zero field), using relaxation calorimetry.
2% temperature pulses were used, three measurements were
averaged at each T, the thermal coupling factor never fell
below ∼95%, and the ratio of sample to addenda heat capacity
was maintained above 1.5 [25]. NPD was done at Oak Ridge
National Laboratory on the HB-1A (FIE-TAX) and WAND
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instruments of the High Flux Isotope Reactor (HFIR), on
3–5 g powder samples. On HB-1A, a fixed incident energy
of 14.6 meV was used, employing a double pyrolytic graphite
(PG) monochromator system. Two highly oriented PG filters
were placed after each monochromator to reduce higher-order
contamination of the incident beam. Collimator settings of
open-40′-sample-40′–80′ were used. On WAND (HB-2C) a
focusing 113-Ge monochromator with an incident wavelength
of 1.486 Å was used, in tandem with a one-dimensional (1D)
position sensitive detector; the 113-Ge reflection has no wave-
length contamination. The resulting resolution dQ/Q (where
Q is the scattering wave vector) is approximately 0.02 in the
used Q range. On both instruments, a 15–700 K temperature
interval was explored, using high temperature closed-cycle re-
frigerators. Samples were mounted in sealed V cans in helium
exchange gas. SANS measurements were done on the NG7
and NGB 30 m beamlines at the NIST Center for Neutron
Research, using sample-detector distances of 3 and 12 m to
span a Q range of 0.005–0.16 Å–1. Powder samples of mass
∼200 mg were studied. Data were taken from 5 to 650 K, in a
high temperature closed-cycle refrigerator.

III. RESULTS AND ANALYSIS

In the interests of clarity, in Sec. III A we first present
the deduced experimental magnetic phase diagram of
Ru2Mn1−xFexSn, augmenting our findings with previously
reported data. Section III B then discusses the T-dependent
NPD measurements used to track the order parameters and
ordering temperatures upon which the phase diagram is based,
along with additional information on length scales associated
with the magnetic ordering. Complementary magnetometry
measurements are then presented in Sec. III C. SANS data
providing further insight into FM order and associated length
scales are provided in Sec. III D, followed by x- and T-
dependent specific heat measurements in Sec. III E. The latter
are then connected to T-dependent lattice parameter anoma-
lies in Sec. III F.

A. Magnetic phase diagram

Figure 1(a) depicts the Ru2Mn1−xFexSn magnetic phase
diagram deduced in this work. The TN and TC values shown
derive from the NPD measurements presented in Sec. III B,
corroborated by magnetometry and SANS in Secs. III C and
III D. As discussed in the Introduction, AFM order with TN ≈
300 K occurs at x = 0.00, i.e., in Ru2MnSn. As x increases,
TN gradually decreases to ∼250 K at x ≈ 0.30, above which a
drastic change occurs. Specifically, FM order is also now de-
tected, coexisting with antiferromagnetism. At x = 0.40, 0.50,
and 0.60, for example, FM ordering emerges first on cooling
(at a TC that increases rapidly with x), followed by AFM order-
ing at a lower TN that decreases rapidly with x, reaching ∼120
K at x = 0.60; TC and TN thus appear uncoupled. Increasing
x beyond ∼0.70 then results in all signatures of AFM order
being lost in neutron and magnetometry measurements, i.e.,
phase-pure ferromagnetism. (Note that while compositions
between 0.60 and 1.00 are not studied here, prior work sug-
gests phase-pure ferromagnetism at x = 0.75 [19], meaning
that the region of FM-AFM phase coexistence ends between

FIG. 1. (a) Ru2Mn1−xFexSn magnetic phase diagram deduced
from this work. The red, blue, and green points (data) and lines
(guides to the eye) are the Néel temperature (TN), Curie temperature
(TC), and T ∗ (defined in the text). TN and TC were determined from
neutron diffraction, and T ∗ from SANS (open green points) and heat
capacity (open red points). The labeled phases are PM (paramag-
netic), AFM (antiferromagnetic), FM (ferromagnetic) and FM∗ (as
discussed in the text). The blue and red dashed lines illustrate the
region over which FM-AFM phase coexistence is deduced. (b) Nor-
malized neutron diffraction intensities (Irel) of the FM 1 1 1 (blue) and
AFM 1/2 −3/2 1/2 (red) reflections at 15 K. Solid lines are guides
to the eye. As noted in the text, while compositions between 0.60 and
1.00 were not studied here, prior work [19] suggests phase-pure fer-
romagnetism at x = 0.75, meaning that FM-AFM phase coexistence
ends between 0.60 and 0.75; we thus depict the red (blue) line in
(b) to reach zero (unity) at x ≈ 0.7 [where the FM-AFM coexistence
region ends in (a)]. The black points and line (corresponding to the
right axis) are the 4 K coercivity (Hc) from Ref. [19].

0.60 and 0.75; we thus take x ≈ 0.7 as an estimate.) This
phase-pure FM behavior persists to x = 1.00 (Ru2FeSn), at
which point TC reaches 500 K. Based on Fig. 1(a), the low
T (ground state) magnetic phase behavior with increasing x
can thus be characterized as phase-pure AFM to x ≈ 0.30,
and phase-pure FM beyond x ≈ 0.70, bracketing a substantial
range (0.30 < x < 0.70) over which FM and AFM order co-
exist. Crucially (see Sec. III B), NPD data at 0.30 < x < 0.70
indicate (i) no effect of the onset of AFM order (at TN) on
the development of FM order, and (ii) no evidence for a new
magnetically ordered state such as a canted antiferromagnet
or a ferrimagnet. Spatially coexisting FM and AFM order is
instead implicated. The only other phase in Fig. 1(a) [aside

064417-3



ERIC McCALLA et al. PHYSICAL REVIEW MATERIALS 5, 064417 (2021)

(a) x = 0.50

2 0 0
(nuclear)

1 1 1
(nuclear, FM)

1/2 -3/2 1/2
(AFM)

1.6 1.8 2.0 2.2

4000

6000

8000

10000

12000

14000

16000
 T = 350K
 T = 170K
 T = 15K

 

In
te

ns
ity

 (n
or

m
., 

ar
b.

 u
ni

ts
)

Q (Å-1)

FIG. 2. (a) Example low scattering wave vector (Q) NPD pat-
terns for x = 0.50 at 350, 170, and 15 K. The intensity is normalized
to beam monitor counts. As shown in the later panels (and Fig. 1),
at this x, the FM and AFM order turn on at approximately 300 and
200 K, respectively. Temperature (T) dependence of the normalized
neutron diffraction intensity (Irel), for the FM 1 1 1 (b) and AFM
1/2 −3/2 1/2 (c) reflections for various x. The inset in (b) is a
blowup of the x = 0.40 data. Solid lines are squared mean-field order

from paramagnetic (PM) at high T] is the one labeled FM∗,
which will be discussed in Secs. III D and III F, where it is
concluded that this is related to the minor Ru-rich secondary
phase. As returned to below (Sec. IV), broadly similar phase
diagrams have been reported in other quaternary Heuslers,
particularly Cu1−xNixMnSb [18].

Reinforcing the phase diagram in Fig. 1(a), shown in
Fig. 1(b) are the low T (15 K) relative NPD scattering inten-
sities (normalized to their maximum values) from the AFM
(red) and FM (blue) phases. Consistent with the end of the
phase-pure AFM region in Fig. 1(a), the relative AFM in-
tensity, a proxy for the AFM phase fraction, is seen to drop
from 1.0 between x = 0.25 and 0.40, remaining finite to
x ≈ 0.70, i.e., throughout the AFM-FM coexistence region.
Correspondingly, the relative FM intensity is 0 to between
0.25 and 0.40, above which it grows at the expense of the
AFM phase, saturating at 1.0 (phase-pure ferromagnetism)
at around 0.70. AFM and FM order parameters thus coex-
ist between approximately x = 0.30 and 0.70. (Again, while
compositions between 0.60 and 1.00 are not studied here,
prior work suggests phase-pure ferromagnetism at x = 0.75
[19], meaning that the region of FM-AFM phase coexistence
ends between 0.60 and 0.75; we thus take x ≈ 0.7 as an
estimate). Also shown for completeness in Fig. 1(b) are the
4 K coercivity values from Ref. [19], showing the magnetic
hardening due to interfacial AFM/FM coupling. Interestingly,
this peaks at x = 0.40, not at the composition where FM and
AFM volume fractions cross, but at lower x, where small vol-
ume fractions of FM phase are embedded in an AFM matrix.

B. Neutron diffraction

Figure 2(a) first shows an example NPD pattern (x = 0.50)
in the low Q region, where magnetic information can be
obtained (full data were obtained from 0.5 to 9.7 Å–1). Con-
sistent with prior work at this composition [19], on cooling
to low T both FM and AFM orderings are evident, through
the growth of the FM 1 1 1 reflection, and the emergence
of the AFM 1/2 −3/2 1/2 reflection (among others). This
AFM order corresponds to AFM coupling between (111)
planes of parallel spins [19], as in other full Heuslers such
as Ru2MnSb and Ru2MnGe [26–29]. Most importantly, and
again consistent with prior work [19], possibilities such as
canted antiferromagnetism and ferrimagnetism were found
inconsistent with these NPD data. Specifically, all low T NPD
patterns in the 0.30 < x < 0.70 regime could not be fit with a
single magnetic wave vector, implying spatial coexistence of
FM and AFM order, as opposed to a new magnetic phase.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
parameters using S = 2, L = 2, J = 4 for the FM cases and S = 5/2,
L = 0, J = 5/2 for the AFM cases, i.e., atomic values for Fe and Mn,
respectively. (d) T dependence of the Scherrer length (�) extracted
from the AFM 1/2 −3/2 1/2 reflections for various x. The solid lines
are guides to the eye. All data were acquired on the HB-1A instru-
ment (FIE-TAX) unless labeled “WAND.” The approximate length
scale corresponding to the nuclear peak broadening (determined here
from x = 0 data, where no FM occurs) is shown as the horizontal
dashed black line.
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This conclusion is further supported by detailed x- and
T-dependent measurements of the FM and AFM order pa-
rameters, using the intense 1 1 1 and 1/2 −3/2 1/2 NPD
reflections; these are the measurements used to determine the
phase behavior in Fig. 1. The order parameters were simply
obtained by taking the FM and AFM peak intensities at each
measured T then subtracting the high T (T > TN or T > TC)
average intensity. While this does not correct for nonmagnetic
effects on peak intensities (specifically the Debye-Waller fac-
tor), note that this is negligible in this low Q range, and even
in the FM case, where the magnetic intensity is superimposed
on nuclear intensity, the FM-induced growth in intensity is
substantial. This latter point is already apparent in Fig. 2(a) for
x = 0.50, and is yet clearer at higher x. Figure 2(b) first shows
the T dependence of the relative FM intensity (normalized to
the low T, x = 1.00 value), which reveals clear Curie points
followed by order-parameter-like growth for x = 1.00, 0.60,
0.50, and 0.40; the low FM intensity in the x = 0.40 case
is magnified in the inset. The low T saturation value of the
relative FM intensity is seen to gradually drop with decreas-
ing x [as in Fig. 1(b)], mirroring the decrease in TC [as in
Fig. 1(a)]. At x = 0.25 and below, no FM order was detected
by NPD [as in Fig. 1(a)], consistent with phase-pure AFM.
Figure 2(c) then shows equivalent data for the relative AFM
intensity (normalized to the low T, x = 0.00 value), which
reveals clear Néel points followed by order-parameter-like
growth for x = 0.00, 0.25, 0.40, 0.50, and 0.60. Accompa-
nying the gradual decrease in TN [as in Fig. 1(a)], the low
T saturation value of the relative AFM intensity drops as x
is increased above 0.25 [as in Fig. 1(b)], becoming unde-
tectable above x = 0.60, consistent with phase-pure FM. As
shown in Figs. 1(a) and 1(b), these low T NPD data thus sup-
port phase-pure antiferromagnetism to x ≈ 0.30, phase-pure
ferromagnetism beyond x ≈ 0.70, and FM-AFM coexistence
between ∼0.30 and ∼0.70. Critically, and consistent with
the conclusion of spatially coexisting ferromagnetism and
antiferromagnetism as opposed to a canted antiferromagnet
or ferrimagnet, TC and TN appear essentially uncoupled. The
onset of AFM order at a TN lower than TC [see Fig. 1(a), for
example] has no apparent impact on the growth of the FM
order parameter. The solid lines in Figs. 2(b) and 2(c) are in
fact fits to squared mean-field order parameters (see caption
for details), confirming mean-field-like behavior even in the
FM-AFM coexistence regime. At x = 0.50, for example, FM
order sets in at TC ≈ 280 K [Fig. 2(b)], the AFM ordering at
TN ≈ 180 K [Fig. 2(c)] having no impact on the FM order
parameter [Fig. 2(b)].

The important issue of the length scales associated with the
magnetic order is addressed in Fig. 2(d). Plotted here are the
T dependencies of the Scherrer lengths (�) extracted from the
1/2 −3/2 1/2 AFM reflections, i.e., the lengths calculated
by applying the Scherrer equation to the peak full widths at
half maximum. We perform this analysis only for the AFM
peaks, as the FM equivalents grow from nuclear peaks, which
substantially complicates the analysis. The values shown here
were corrected for the instrumental broadenings, which were
determined from reference data on Si powder, HB-1A (FIE-
TAX) having slightly lower broadening than WAND. At x =
0.00 and 0.25 in Fig. 2(d), the low T value of � saturates
at about 60–65 nm, which, as illustrated by the horizontal

dashed line, corresponds closely to the typical � extracted
from the nuclear reflections of these samples (x = 0 data were
used to determine this, where there is no influence of FM on
the nuclear peaks). The low T AFM order in these composi-
tions is thus indistinguishable from full long-range order. The
x = 0.40, 0.50, and 0.60 behavior in Fig. 2(d), however, is
different. In this x regime, the low T length scales saturate at
25–50 nm, consistent with shorter-range antiferromagnetism.
In all cases, the extracted AFM length scales decrease as T →
TN

–, as expected. The important conclusion from Fig. 2(d) is
thus short-range AFM order on 10s of nm length scales. In
Sec. III D this will be supplemented with SANS observations
of similar length scales for the FM order, indicating spatially
coexisting FM and AFM order on nanoscopic to mesoscopic
scales.

C. Magnetometry

T-dependent magnetometry measurements providing com-
plementary insight to NPD are provided in Fig. 3, at repre-
sentative x = 1.00 (a), 0.60 (b), 0.50 (c), and 0.40 (d). The
temperature dependence of the magnetization (M) is shown at
H = 50, 200, 500, 5000, and 50 000 Oe, spanning a wider H
range than prior work. At x = 1.00, the behavior is unremark-
able; the sharp feature at the FM TC of ∼530 K simply broad-
ening as H is increased. (Note that minor variations in order-
ing temperatures occur in comparison to larger mass samples
used for NPD, ascribed to small differences in preparation and
composition.) As x is decreased to 0.60, 0.50, and 0.40, how-
ever [Figs. 3(b)–3(d); note the different T scale to Fig. 3(a)],
FM-AFM coexistence kicks in, both TC and TN becoming ap-
parent in M(T). At the highest H, M(T) in Figs. 3(b)–3(d) is es-
sentially featureless below TC, consistent with the mean-field
FM order parameter growth in Fig. 2(a). As H is decreased,
however, TN becomes progressively apparent, via features
in M(T) and conspicuous bifurcation of field-cooled (solid
lines) and zero-field-cooled curves (dashed lines). As ex-
pected, the high H, low T saturation magnetization also drops
with decreasing x, tracking the relative FM NPD intensity in
Figs. 2(a) and 1(b). Magnetometry is thus in good agreement
with Figs. 1 and 2, particularly the phase-pure FM behavior at
x > 0.70, and the FM-AFM coexistence at lower x.

D. Small-angle neutron scattering (SANS)

SANS is a powerful probe of FM ordering and inhomo-
geneity (particularly at nanoscopic to mesoscopic scales) [30]
and was thus applied here at x = 1.00, 0.60, 0.50, and 0.40,
i.e., where ferromagnetism was detected by NPD and mag-
netometry. [As a low scattering wave-vector (Q) technique,
SANS is specifically sensitive to FM (i.e., Q = 0) fluctua-
tions and order [30]]. Shown first in Fig. 4 are representative
SANS cross-section (d�/d�) vs Q plots for x = 1.00 (top
panels), 0.60 (middle panels), and 0.40 (bottom panels), at
high (right panels), intermediate (middle panels), and low
T (left panels). These were obtained from circular averag-
ing of isotropic Qx-Qy maps. At x = 1.00, the high T (i.e.,
600 K) d�/d�(Q) in Fig. 4(c) is composed of two contri-
butions: a low Q contribution with linear behavior on this
log10 − log10 plot (i.e., a power law), and a high Q contri-
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FIG. 3. Temperature (T) dependence of the magnetization (M)
for (a) x = 1.00, (b) x = 0.60, (c) x = 0.50, and (d) x = 0.40, mea-
sured in 50, 200, 500, 5000, and 50 000 Oe magnetic fields. Solid
lines are field-cooled (in the same field used for measurement) and
dashed lines are zero-field-cooled. The vertical dashed lines indicate
the approximate positions of the Néel temperature (TN, red) and

bution with a slower rolloff to the highest Q. As illustrated by
the dashed lines, these two contributions are well described by
Porod and Lorentzian terms, i.e., d�/d� = (d�/d�)P/Qn

and d�/d� = (d�/d�)L/(Q2 + 1/ξ 2), respectively, where
(d�/d�)P and (d�/d�)L parametrize the strength of the
Porod and Lorentzian scattering, n is the Porod exponent, and
ξ is the Ornstein-Zernike magnetic correlation length [30].
Our data were best fit with n = 4.15 (blue dashed lines in
Fig. 4), close to the classic n = 4 exponent for Porod scat-
tering from three-dimensional objects of size d with smooth
surfaces, in the Q � 2 π/d limit [30]. As is typical, we
ascribe this to scattering from microstructural features such
as grains and grain boundaries above TC, and from FM do-
mains and domain walls below TC [30]. In these unpolarized
measurements, the low Q Porod intensity thus saturates at a T-
independent level at T > TC, but grows below TC. This can be
seen by comparing Figs. 4(a)–4(c), where d�/d� at the low-
est Q grows significantly on cooling, as shown more clearly
below. The Lorentzian contribution, on the other hand (red
dashed line), captures the short-range FM spin fluctuations
that grow as T → TC

+ at a second-order paramagnetic-to-
FM phase transition [30]. This contribution is thus strong in
Fig. 4(c), at T = 600 K(= 1.13TC), but diminishes rapidly on
cooling [e.g., Fig. 4(a)].

Considering Figs. 4(a)–4(c) together, at x = 1.00 the ob-
served behavior is thus fairly typical: the Porod contribution
grows on cooling below TC due to long-range FM, while
the Lorentzian scattering is strong around and above TC but
diminishes on cooling. As exemplified by Fig. 4(b), how-
ever, an additional contribution emerges at intermediate T
(480 K in this case). This consists of a small but distinct
hump at intermediate Q of ∼ 0.015 Å–1, which can be cap-
tured (green dashed line) by a Gaussian peak, i.e., d�/d� =
(d�/d�)Gexp[−(Q − QG)2/(2�2

G)], where (d�/d�)G is
the peak intensity, QG is the peak position, and �G is the
peak width. This is a somewhat atypical feature, not of ob-
vious origin, although similar behavior has been found in
off-stoichiometric magnetic Heusler alloys, due to nanoscopic
FM clusters in paramagnetic, AFM, or even FM matrices
[13,17,30]. The origin in the current case will be clarified
below, in Secs. III E and III F. Most important for now, with
these three contributions (low Q Porod, intermediate Q Gaus-
sian peak, and high Q Lorentzian), all data can be fit to

d�

d�
(Q, T ) =

(
d�
d�

)
P

(T )

Qn
+

(
d�
d�

)
L
(T )

Q2 + (
1
ξ

)2

+
(

d�

d�

)
G

(T )exp

(−[Q − QG(T )]2

2�G(T )2

)
, (1)

resulting in the solid lines through the data in Fig. 4, and
the Porod, Gaussian, and Lorentzian contributions shown in
dashed blue, green, and red. At x = 0.60 (where TC ≈ 300 K)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Curie temperature (TC, blue). Some modest differences with the TC

and TN values from neutron diffraction (Figs. 1 and 2) are attributed
to the use of different samples (and very different sample masses)
in the two cases, as well as potential high T thermometry issues for
large mass neutron samples.
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FIG. 4. SANS cross section (d�/d�) vs scattering wave-vector magnitude (Q) for representative x = 1.00 [top panels (a)–(c)], x = 0.60
[middle panels (d)–(f)], and x = 0.50 [bottom panels (g)–(i)] compositions at representative temperatures (T). The temperatures decrease from
right to left, corresponding to above TC (the Curie temperature), just below TC, and far below TC, in each case. Solid blue lines are fits based on
a sum of Porod (blue dashed lines), Lorentzian (red dashed lines), and Gaussian peak (green dashed lines) contributions.

the Lorentzian scattering is again strong near TC [Fig. 4(f)],
then diminishes on cooling as the Porod scattering from long-
range FM grows, with a small Gaussian hump again showing
up at intermediate T [Fig. 4(e)]. The same qualitative trends
are then repeated for x = 0.40 [Figs. 4(g)–4(i)].

The overall T dependence for x = 1.00, 0.60, 0.50, and
0.40 is shown more clearly in Fig. 5, simply by plotting the
low and high Q scattering cross sections vs T. Scattering
wave vectors of 0.006 and 0.114 Å–1 were chosen, i.e., at the
lower and upper ends of the probed range, where Porod and
Lorentzian contributions dominate, respectively. As shown
in Figs. 5(a) and 5(b), the minimum d�/d� at any T was
subtracted here, employing the standard approach to isolate
T-dependent magnetic scattering in unpolarized SANS. As
in Figs. 2(a) and 3(a), the behavior for x = 1.00 is that
of an archetypal long-range-ordered ferromagnet, the low Q
magnetic Porod scattering [Fig. 5(a)] turning on at TC then
growing monotonically [30]. Correspondingly, in Fig. 5(b)
the high Q (Lorentzian-dominated) magnetic scattering grows
as T → TC

+ then falls quickly below TC, vanishing at low
T; this is a classic “critical scattering” peak [30]. Decreas-
ing x into the FM-AFM coexistence regime at x = 0.60 and

0.50 then leads to suppressed TC, as expected, with lower
magnetic Porod intensity [Fig. 5(a)], as well as critical scat-
tering peaks [Fig. 5(b)]. As deduced from NPD, clear FM
order thus persists in this composition regime. Regarding the
length scales of this FM order, the Porod scattering clearly
includes a significant magnetic contribution at x = 0.60 and
0.50 [Fig. 5(a)], which extends to the minimum Q in Figs. 4(d)
and 4(g) of 0.005 Å–1. This corresponds to scattering from FM
domains of size above 2π/0.005 Å–1 ≈ 100 nm, on a similar
scale to the AFM length scale of 25–55 nm deduced from
NPD [Fig. 2(d)]. Spatially intertwined AFM and FM order
on nanoscopic to mesoscopic scales is thus supported.

Finally, at x = 0.40, the behavior in Fig. 5 changes. At
this composition, at which FM order was weak in NPD, no
order-parameter-like growth is seen in Fig. 5(a) and no critical
scattering peak is seen in Fig. 5(b). The primary feature is
instead weak monotonic growth of the high Q magnetic scat-
tering intensity on cooling [Fig. 5(b)], indicating short-range
FM spin fluctuations but no long-range FM order. This sample
is thus very close to the onset of phase-pure antiferromag-
netism and the end of the FM-AFM coexistence regime, the
only semblance of the ferromagnetism being short-ranged.

064417-7



ERIC McCALLA et al. PHYSICAL REVIEW MATERIALS 5, 064417 (2021)

FIG. 5. SANS cross section (d�/d�) vs temperature (T) at
scattering wave-vector magnitudes (Q) of (a) 0.006 Å–1 and (b)
0.114 Å–1, for representative x = 1.00, 0.60, 0.50, and 0.40 com-
positions. Dashed lines are guides to the eye. The data are plotted
as [(d�/d�) − (d�/d�)min], where (d�/d�)min is the averaged
minimum (typically high T) value of d�/d�; this highlights the
magnetic scattering component. Some modest differences with the
TC values from neutron diffraction (Figs. 1 and 2) are attributed to
the use of different samples (and very different sample masses) in
the two cases, as well as potential high T thermometry issues for
large mass neutron samples.

The weak long-range FM order detected at x = 0.40 by NPD
[Fig. 2(a), inset], and the only short-range ferromagnetism de-
tected by SANS [Fig. 5(b)] are likely reconcilable via the mi-
nor sample-to-sample compositional and magnetic property
variations already noted (e.g., with respect to the small
variations in TC between NPD and SANS samples with x =
1.0, 0.60, and 0.50).

More quantitative SANS analysis is provided in Fig. 6,
which shows the T dependence of the parameters extracted
from fits of Eq. (1) to d�/d�(Q) at all T and x. Note here
that while the number of fitting parameters in (1) is significant,
in the low Q region the Porod term is entirely dominant and
in the high Q region the Lorentzian term is entirely domi-
nant, leading to high confidence in the extracted parameters.
Shown first in Fig. 6(a) is (d�/d�)P, which, consistent with

FIG. 6. Temperature (T) dependence of (a) the Porod cross sec-
tion (d�/d�)P, (b) the Lorentzian cross section (d�/d�)L, (c) the
magnetic correlation length (ξ ) from the Lorentzian contribution, (d)
the Gaussian cross section (d�/d�)G, and (e) the Gaussian peak
width (�G), for representative x = 1.00, 0.60, 0.50, and 0.40 com-
positions. Solid lines in (a) are squared mean-field order parameter
fits [as in Figs. 2(a) and 2(b)], while solid lines in (c) are power
law fits, as described in the text. Dashed lines in (b), (d), and (e)
are guides to the eye. Some modest differences with the TC values
from neutron diffraction (Figs. 1 and 2) are attributed to the use
of different samples (and very different sample masses) in the two
cases, as well as potential high T thermometry issues for large mass
neutron samples.

Fig. 5(a), shows monotonic increases on cooling below TC for
x = 1.00, 0.60, and 0.50. The solid lines are in fact fits to
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squared mean-field order parameters, confirming quantitative
agreement with NPD [Fig. 2(a)]. No such behavior occurs for
x = 0.40, however, consistent with Figs. 5(a) and 5(b). Corre-
spondingly, (d�/d�)L [Fig. 6(b)] is substantial above TC for
x = 1.00, 0.60, and 0.50 (due to short-range FM spin fluctua-
tions), falling rapidly below TC. At x = 0.40, consistent with
Fig. 5(b), no critical scattering occurs, (d�/d�)L instead
growing weakly on cooling to the lowest T, indicating short-
range FM spin fluctuations only. As expected, the extracted
ξ (T) for x = 1.00, 0.60, and 0.50 [Fig. 6(c)] then exhibits
power-law divergence as T → TC

+, i.e., ξ = ξo/(T/TC − 1)ν ,
where ξo is a constant and ν is a critical exponent [30,31].
The solid line fits in Fig. 6(c) yield ν = 0.63, 0.78, and 0.73
for x = 0.5, 0.6, and 1.0, respectively. These are close to
the three-dimensional Heisenberg and Ising FM exponents,
confirming typical behavior [30,31]; we make no attempt at
deeper quantitative analysis, as the required detailed, small-T-
spacing data were not taken. Due to the very low scattering
intensity, no such ξ values could be extracted at low T for
x = 0.40.

Figures 6(d) and 6(e) then plot the parameters related to the
intermediate Q Gaussian scattering. Given the modest inten-
sity of this hump [Figs. 4(b), 4(e), and 4(h)], one challenge
here is that it is difficult, likely futile, to separate QG, the
peak position, from �G, the width. We instead fixed QG =
0.013 Å–1 based on preliminary fits, and left (d�/d�)G and
�G as the only parameters. The behavior of (d�/d�)G(T)
in Fig. 6(d) (which is robust with respect to different fit-
ting approaches) is remarkable, revealing that this anomalous
intermediate Q scattering occurs only over a finite T win-
dow for x = 1.00, 0.60, and 0.50. Specifically, at x = 1.00,
(d�/d�)G turns on at TC, grows rapidly, but then diminishes
below ∼500 K, becoming undetectable at ∼340 K [as in
Fig. 4(a)]. Similar behavior occurs for x = 0.60 and 0.50, but
shifted to lower T, with lower intensity. In the phase diagram
in Fig. 1(a) we thus define a new region, FM∗, between TC and
the temperature T ∗ where (d�/d�)G vanishes. Figure 6(e)
plots �G(T), the width of the intermediate Q Gaussian hump,
which, as already noted [see Figs. 4(b), 4(e), and 4(h)], is
challenging to separate from QG, the peak position. The ex-
tracted �G values appear to have systematic T dependence
(decreasing on cooling for each x), falling in the approximate
range 0.002–0.035 Å–1. The length scales extracted from the
positions and widths of the anomalous intermediate Q peak
are thus in the 10s to 100s of nm range. The physical meaning
of these is returned to below, when the FM∗ region is clarified
in Secs. III E and III F.

E. Specific heat

Specific heat (CP) provides a direct, powerful probe of
magnetic ordering and has been extensively utilized to probe
magnetic phase coexistence and phase separation, and was
thus also applied here. Figure 7(a) shows the standard analysis
of low T (<10 K in this case) CP(T ) in metals, plotting CP/T
vs T 2 to probe for behavior of the form CP(T ) = γ T + βT 3.
The first term here describes electronic excitations, where γ ,
the Sommerfeld coefficient, is given by γ = π2kB

2D(EF)/3,
with kB Boltzmann’s constant and D(EF) the density of states

FIG. 7. (a) Low temperature (T � 10 K) specific heat (CP) plot-
ted as CP/T vs T 2 for x = 0.00, 0.25, 0.40, 0.50, 0.60, and 1.00. Solid
lines are fits to CP(T ) = γ T + βT 3 + B1T 2 + B2T 3/2, as described
in the text. x dependence of (b) the Debye temperature (�D), (c)
the Sommerfeld coefficient (γ ), and (d) the parameters B1 (left axis)
and B2 (right axis). Dashed lines are guides to the eye. No x = 0.00
value of γ is shown in (c) due to the Schottky anomaly obscuring the
electronic contribution [see (a)].

at the Fermi level [32]. The second term describes lattice ex-
citations, which, in the low T limit of the Debye model, yield
β = 234NkB/�3

D, where N is the number of atoms per mole
and �D is the Debye temperature [32]. As can be seen from
Fig. 7(a), while approximately linear behavior with a positive
intercept is found in Ru2Mn1−xFexSn at most x, deviations do
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arise. The most obvious occurs for x = 0 (Ru2MnSn), which
appears to show divergence as T → 0 on this CP/T vs T 2

plot. Such behavior is not uncommon in low T specific heat,
often indicating Schottky anomalies linked to energy level
spacings that arise from myriad factors, including paramag-
netism, crystal field splittings, nuclear hyperfine contributions
in magnetically ordered systems, etc. [33–40]. While this
obscures further low T analysis of CP(T ), this occurs at only
one composition (x = 0.00), and would require further work
at lower T to elucidate. We thus leave this as a topic for future
work. At higher x, particularly 0.40 and above, while the
intercept in Fig. 7(a) indicates finite γ , as expected in these
metals, small deviations from linear remain. Close inspection
(e.g., at x = 0.40, 0.50, 0.60) reveals that these are downward
deviations from linear on cooling, indicating CP(T ) contribu-
tions weaker than T 3. Given that spin waves in phase-pure
long-range-ordered FMs often give a CP contribution ∝ T 3/2

(e.g., [35–37]), and that T 2 specific heat has been observed
in various magnetically phase-separated systems [35–39], the
data were fit to

CP(T ) = γ T + βT 3 + B1T 2 + B2T 3/2, (2)

where B1 and B2 are prefactors of the T 2 and T 3/2 terms. The
result is excellent fits at all x other than 0.00, yielding the �D,
γ , B1, and B2 shown vs x in Figs. 7(b)–7(d).

The �D(x) data in Fig. 7(b) are fairly unremarkable. [Note
here that the x = 0.00 value shown was determined from
higher T than in Fig. 7(a).] Only a modest variation in �D

occurs across the entire phase diagram (∼40–50 K), the
increase upon substitution of Fe for Mn being unsurprising,
as are the overall �D values, which can be compared to 310,
330, 460, 474, 505, 516, and 550 K in Ni2Mn1.4Sn0.6 [41],
Cu2MnAl [42], Ru2VGa [43], Ru2MnGe [27], Cu2MnSn
[42], Ru2CrGe [27], and Ru2VAl [40] full Heuslers, re-
spectively. The behavior of γ , however, is more interesting.
Specifically, γ exhibits a broad maximum around x = 0.5,
rising from ∼9 mJ mol–1 K–2 for x = 1.00 (fairly typical for
a metallic full-Heusler alloy), to ∼17 mJ mol–1 K–2 around
x = 0.50 (quite large for a metallic full Heusler). Apply-
ing γ = π2kB

2D(EF)/3 yields D(EF) from ∼3.5 up to ∼7.0
states/eV/formula unit. Interestingly, the DFT calculations of
Decolvenaere et al. [20] also suggest nonmonotonic D(EF)
vs x in Ru2Mn1−xFexSn, rising from 3.07 states/eV/formula
unit at x = 0.00, to 3.59 states/eV/formula unit at x = 0.33,
then falling to 1.86 states/eV/formula unit at x = 1.00. This
arises from complex x-dependent changes in the spin-resolved
D(EF), reflecting the delicate magnetic phase competition.
Nevertheless, the overall nonmonotonic trend in Fig. 7(c)
is at least qualitatively consistent with first-principles re-
sults. More quantitatively, the enhancement of the measured
γ over DFT is close to 2, independent of x. This is well
within the realm of typical mass enhancement factors due
to electron-phonon interactions, electronic correlations, etc.
We note that magnetic behavior such as spin-glass freezing is
known to produce additional T-linear contributions to CP(T )
[44], but this is unlikely here given the FM-AFM coexistence
as opposed to glassy magnetism. As discussed below, the
magnetism in Ru2Mn1−xFexSn manifests in other terms in
Eq. (2).

Moving to these other terms, we first see in Fig. 7(d)
that nonzero B2 was only required to fit the CP(T ) data for
x = 1.00, i.e., in the phase-pure long-range FM state, where
B1 is negligible. Regarding statistical significance, a free fit
with CP(T ) = γ T + βT 3 + cT n (with c and n constants) sig-
nificantly improved χ2, resulting in n = 1.48, i.e., very close
to 3/2. Therefore, while deviations from linearity for x = 1.00
in Fig. 7(a) are small, the additional T dependence is conclu-
sively of B2T 3/2 form, as expected for a long-range-ordered
FM (e.g., [35–37]). The B2 of 0.4 mJ mol–1 K–2.5, while not
out of bounds in comparison to other FMs, is small, so it
is unsurprising that this CP contribution is not detected at
lower x, particularly given the maxima in γ (x) and B1(x).
Effects of long-range FM order on CP(T ) are also known to
fall off quickly as phase-pure FM is disrupted [39]. Mov-
ing to B1(x), the striking feature is the prominent peak at
intermediate x, the composition range over which B1 
= 0
corresponding exactly to the FM-AFM coexistence regime in
Fig. 1; FM-AFM phase coexistence is thus clearly manifested
in CP(T ). This T 2 contribution to CP in magnetically phase-
separated systems has a substantial history, since Woodfield
et al. suggested that coexisting FM-like and AFM-like ex-
citations in an A-type antiferromagnet could generate T 2

[35]. This T 2 contribution was subsequently found in various
magnetically phase-separated systems, including manganites
and cobaltites, suggesting that it could be a general signature
of nanoscopic FM regions embedded in non-FM matrices
[36–39]. The detection of this CP contribution here, in a metal
alloy, is thus of high interest, particularly given the peak
in B1 at x = 0.5, i.e., the exact composition at which the
FM and AFM volume fractions phases cross [Fig. 1(b)]. In
terms of statistical significance, consistent with the visible
downward curvature on cooling for x = 0.40, 0.50, and 0.60
in Fig. 7(a), reasonable fits could not be obtained without
finite B1 in Eq. (2). Free fits to CP(T ) = γ T + βT 3 + cT n

also yield n = 1.8–2.0 in all cases, leading to high confidence
in the conclusion of T 2 specific heat related to FM-AFM
coexistence.

Further insight is provided by the higher T behavior of
CP(T ). The x = 0.5 case is shown as illustrative in Fig. 8(a),
revealing qualitatively typical form, approaching 3R at high
T. Notably, no lambda anomaly is seen in Fig. 8(a) (where
TN ≈ 180 K), as is also the case at 0.40 and 0.60. Although
at first surprising, it should be noted, as alluded to above, that
lambda anomalies at second-order magnetic phase transitions
have been reported to fall off quickly as phase-pure long-range
ferromagnetism or antiferromagnetism is disrupted by doping
into a regime of magnetic phase separation [39]. Outside of
the FM-AFM coexistence regime, where TC and TN should
be visible in CP(T ), they fall outside our measurement range
(e.g., TC = 500 K at x = 1.00), or in a range where the vac-
uum grease used to affix samples produces spurious features
(e.g., TN = 300 K at x = 0.00). Nevertheless, one aspect of
the phase behavior in Fig. 1 is detected in CP(T ), namely T ∗.
As illustrated in Figs. 8(b)–8(d), evidence exists (certainly for
x = 1.00, but also 0.60 and 0.50) for CP(T ) anomalies very
close to the T ∗(x) from SANS. For x = 1.00 a clear step in
CP(T ) occurs at T ∗ [Fig. 8(d)], becoming weaker at lower
x, although a more subtle slope change persists [Figs. 8(b)
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FIG. 8. (a) Temperature (T) dependence of the specific heat (CP)
over a wide temperature range (up to 200 K) for a representative
x = 0.50 composition. The horizontal dashed line marks the Dulong-
Petit value (3R, where R is the molar gas constant) for reference. T
dependence of CP for x = 0.50 (b), x = 0.60 (c), and x = 1.00 (d)
at temperatures around T ∗ (as defined in the text). Dashed lines are
guides to the eye. Note the differing T axes in (a)–(d).

and 8(c)]. The T ∗ values deduced from Figs. 8(b)–8(d) are the
open red points in Fig. 1(a), agreeing closely with T ∗ from
SANS [open green points, from Fig. 6(d)]. The anomalous
intermediate T range FM∗ region in Fig. 1 is thus detected not
only by SANS, but also CP(T ). Inspired by Figs. 8(b)–8(d),
the NPD data of Sec. III B were further analyzed to extract
T-dependent lattice parameters in the FM phase, searching for
an anomaly at T ∗.

F. Temperature-dependent structural measurements

Shown in Fig. 9(a) are cubic lattice parameter (a) vs T
data for x = 0.40, 0.50, 0.60, and 1.00, obtained from Paw-
ley fits of NPD data. As expected, the room temperature
a decreases slightly with x, and thermal expansion occurs.
The latter was analyzed by fitting a(T) in Fig. 9(a) using

FIG. 9. (a) Temperature (T) dependence of the Heusler cubic
lattice parameter (a) for representative x = 0.40, 0.50, 0.60, and 1.00
compositions. These were determined from Pawley fits to neutron
powder diffraction patterns. Solid lines are Grüneisen-Einstein fits,
as described in the text. The inset shows the deviation (�a) between
the data and fits for x = 0.50 and 1.00. (b) T dependence of the
c-axis lattice parameter (chcp) of the HCP (hexagonal-close-packed)
secondary phase for x = 1. This was determined from the highest
intensity (101) peak, assuming a constant c/a ratio of 1.584, i.e., that
of pure HCP Ru at 300 K.

the Grüneisen approximation for anharmonic phonon poten-
tials combined with Einstein lattice dynamics, i.e., a(T ) =
a0{1 + α0TE

2 [coth( TE
2T ) − 1]}, where ao is the T = 0 lattice

parameter, TE is the Einstein temperature, and αo is the linear
thermal expansion coefficient at T � TE [45]. The resulting
fits [Fig. 9(a)] are generally good, particularly for x = 0.40,
0.50, and 0.60, revealing no detectable anomalies at TC, TN, or
T ∗. This is shown more quantitatively for x = 0.50 in the in-
set, where the deviation between data and fit (�a) is plotted vs
T, confirming no systematic deviations. At x = 1.00, however,
deviations are visible in Fig. 9(a), the inset showing negative
deviations (i.e., experimental a values below the fit) in broad
ranges between ∼100 and 350 K, and ∼350 and 500 K. A
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fairly well-defined maximum in �a thus occurs at ∼350 K,
close to T ∗ from SANS and specific heat [see Figs. 1(a),
6(d), and 8(d)]. It is plausible that weaker anomalies at T ∗ for
x = 0.40, 0.50, and 0.60 are not detected simply due to the
significant curvature in a(T) at their respective T ∗ (∼110–150
K); the x = 1.00 composition is instead in the linear thermal
expansion regime at its T ∗ ≈ 350 K.

Further insight was obtained by analyzing the T-dependent
lattice parameters of the previously mentioned Ru-rich mi-
nority phase. In prior work this phase (∼5% molar fraction)
was hypothesized, based primarily on Rietveld refinement of
NPD data, to be a Ru-rich HCP Ru-Mn-Fe solid solution,
likely forming coherently within the cubic Heusler matrix,
and thus being strained [19]. Figure 9(b) shows the c-axis
lattice parameter of this HCP secondary phase (chcp) for x =
1.00, which, in addition to thermal expansion, reveals a clear
anomaly at ∼350 K, i.e., T ∗ at this x [see Figs. 1(a), 6(d),
8(d), and 9(a) inset]. The subtle feature at T ∗ in a(T) in the
Heusler primary phase is thus conspicuous in the chcp(T) of
the HCP Ru-rich secondary phase, supporting the conjecture
of structural coherence between the phases, and substantial
strain. Considering this in light of Figs. 6(d), 8(b)–8(d), 9(a),
and 9(b) clarifies the origin of the FM∗ phase and associated
T ∗ in Fig. 1(a). Specifically, the intermediate Q hump in the
SANS data in Fig. 4 indicates some form of inhomogeneity in
the FM-ordered regions in Ru2Mn1−xFexSn, which Fig. 6(d)
establishes to occur only at T ∗ < T < TC, on length scales
[Fig. 6(e)] of 10s to 100s of nm. Figures 8(b)–8(d), 9(a)
and 9(b) further establish a subtle structural transition in the
Ru2Mn1−xFexSn primary phase, strongly strain-coupled to the
Ru-rich HCP secondary phase. Based on Fig. 6(d), this tran-
sition apparently leads to negligible magnetization contrast
with the FM Heusler primary phase at T < T ∗, whereas this
contrast is clearly visible at T ∗ < T < TC. While the precise
origin of this behavior is difficult to pin down, one possibility
is FM ordering of the secondary Ru-Mn-Fe phase. At high T
(i.e., T ∗ < T < TC) the magnetic inhomogeneity detected by
SANS in the FM phase of the Ru2Mn1−xFexSn would thus
arise due to PM secondary phase regions dispersed in the FM
Heusler matrix, the onset of ferromagnetism in the secondary
phase regions (at T < T ∗) then decreasing the magnetization
contrast and suppressing the intermediate Q hump. Accompa-
nying strain-coupled magnetostructural anomalies could then
produce the behaviors in Figs. 9(b), 9(a) inset, and 8(b)–8(d).
Most importantly, regardless of the exact origin, the data of
Fig. 9 establish T ∗ as linked to the Ru-rich secondary phase,
meaning that it is not fundamental to the phase behavior of
Ru2Mn1−xFexSn. We thus leave the FM∗ phase on Fig. 1(a)
for completeness, but emphasize that it is very likely extrinsic.

IV. THEORETICAL DISCUSSION

With the aim to shed further light on the deduced ex-
perimental phase diagram [Fig. 1(a)], and better place it
in the context of current understanding of magnetic phase
competition in disordered magnets, we consider a general
phenomenological model for competing FM and AFM states.
Denoting the FM vector order parameter MF and the AFM
equivalent MA, the Landau free-energy expansion is (see, e.g.,

FIG. 10. Nature of the magnetic state below the multicritical
point of the phenomenological Landau model for competing AFM
and FM states. γ , w, uF , and uA are the quartic coefficients of the
free-energy expansion. Depending on their ratios, the system may
either form a new magnetic ground state where the AFM and FM
order parameters are simultaneously nonzero at every site (red and
blue shaded areas) or a state where finite-size regions with only AFM
or FM order coexist at the mesoscale (yellow shaded areas). In the
former case, the multicritical point is tetracritical, and there are two
types of magnetic ground states depending on the sign of w: a ferri-
magnetic phase (illustrated in the red shaded area), in which the FM
and AFM order parameters are parallel to each other, and a canted
spin phase (illustrated in the blue shaded area), where the FM and
AFM order parameters are perpendicular. In the case of AFM-FM
mesoscopic coexistence, the multicritical point is bicritical.

Refs. [46,47])

F =
(aF

2
M2

F + uF

4
M4

F

)
+

(aA

2
M2

A + uA

4
M4

A

)

+
[γ

2
M2

F M2
A + w

2
(MF · MA)2

]
, (3)

where aF ∝ T − TC , aA ∝ T − TN , and the other coefficients
are quartic Landau parameters. We also assume uA, uF > 0 to
ensure the pure FM and AFM transitions are of second-order
nature. The transition temperatures TC and TN are then func-
tions of a tuning parameter—in our case, the concentration x
of Fe—and cross at a multicritical point. Depending on the
relationship between the quartic Landau coefficients [46,47],
the system may then display either a new thermodynamic
mixed phase, where both order parameters coexist microscop-
ically at all atomic sites, or a phase where FM and AFM
orders coexist on a mesoscopic scale without forming a new
phase, i.e., in distinct regions of the sample. In the former
case, the multicritical point is tetracritical; inside the magnet-
ically ordered phase, as one moves along the phase diagram,
there is a second-order transition from the antiferromagnetism
phase to the mixed phase, and then another second-order
transition from the mixed phase to the FM phase. In the
latter case, on the other hand, the multicritical point is bi-
critical and there is a first-order transition between the AFM
and FM phases, with mesoscopic AFM-FM coexistence as a
consequence.

The mean-field “phase diagram” describing this behav-
ior is shown in Fig. 10. Applying the standard criterion for
tetracritical vs bicritical behavior [48], the system is in a
mixed phase when −√

uF uA < γ + min(0,w) <
√

uF uA, and
displays mesoscopic coexistence otherwise. The nature of the
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mixed phase also depends on the sign of w: when w > 0,
the AFM and FM order parameters coexist on the atomic
scale and are mutually perpendicular, giving rise to a canted
spin structure. When w < 0, however, the order parameters
are parallel, resulting in a ferrimagnetic spin structure. Both
structures are depicted schematically in Fig. 10. The experi-
mental results reported here strongly support the scenario of
mesoscopic AFM-FM phase coexistence, placing the Landau
parameters in the regime corresponding to the yellow shaded
areas in Fig. 10. First, as shown in Fig. 1(b), the AFM and
FM volume fractions seem to simply grow at the expense
of one another vs x, suggesting little, if any, spatial overlap
between phases. Second, Figs. 2(a) and 2(b) show that the
squared FM order parameter M2

F is insensitive to the onset
of AFM order at a lower T. This can be compared to known
cases of competing orders coexisting on the atomic scale, such
as AFM and superconductivity in iron-based materials, where
the onset of the latter strongly suppresses the former [49].
Third, there is no signature of noncollinear or nonuniform
(from site to site) magnetization in the various experimental
probes employed here, ruling out a canted or ferrimagnetic
spin structure.

Of course, such phenomenological analysis does not ex-
plain why the Landau parameters are such that the multicritical
point is bicritical in our case. For that, microscopic models are
needed to determine those parameters. For Ru2Mn1−xFexSn,
the concentration x, which tunes the system from AFM to FM,
has two effects: tuning the delicate balance between AFM and
FM interactions and adding disorder (FeMn substitutions). The
latter is commonly captured in nearest-neighbor Heisenberg
models by introducing either site or bond disorder. For bond
disorder, one often assumes a distribution of FM and AFM
bonds across the system [47]. The expectation from analyses
of the closely related Sherrington-Kirkpatrick model is that
a spin-glass phase will then form between the FM and AFM
phases (for a review, see [50]). No signatures of spin-glass
effects appear in our experimental data, however. One can
then also consider site disorder. While there are different ways
of implementing this, let us focus on the case where each
site randomly has either a FM or AFM atomic species [46].
As discussed in Ref. [51], where Monte Carlo simulations of
this model were performed, if there is no coupling between
the two types of sites, and if the lattice is bipartite, the sys-
tem displays two independent percolation-driven AFM and
FM transitions, resulting in a so-called decoupled tetracritical
point. The tetracritical point remains stable upon inclusion of
coupling between the two types of sites, even in the frustrated
regime [51]. While these results apply directly to simple and
body-centered-cubic lattices (SC and BCC, respectively), the
situation for the nonbipartite face-centered-cubic (FCC) lat-
tice, most relevant here, is less clear. The frustration intrinsic
to the FCC lattice does not prevent the onset of AFM order,
which is expected to be collinear in the clean limit [52].
However, the Monte Carlo simulations of Ref. [51] did not
probe this more involved type of frustrated AFM order. While
it is possible that the frustration introduced by the FCC lattice
results in an intermediate spin-glass phase, it is also conceiv-
able that, similar to the cases of the BCC and SC lattices,
and to the general results of Ref. [46], the multicritical point
remains tetracritical.

These effective Heisenberg models thus do not seem to
entirely capture the phase diagram of Ru2Mn1−xFexSn. In
Ref. [21], however, a cluster-expansion Hamiltonian approach
was recently developed to model this specific quaternary
Heusler system, drawing on results from first-principles cal-
culations. The key insight with this approach is to include
not only the effects of magnetic disorder, but also chemical
disorder, i.e., the Fe/Mn site disorder. In the quenched case,
where this disorder is frozen in, a phase diagram remarkably
similar to Fig. 1(a) was obtained, suggestive of a bicritical
point. AFM-FM phase coexistence at very short length scales
was in fact observed in the Monte Carlo simulations, with a
wide x range over which AFM (FM) clusters form in an FM
(AFM) matrix, potentially explaining the exchange harden-
ing in Fig. 1(b). Based on this, it is therefore highly likely
that chemical disorder plays a key role in shaping the phase
diagram of Ru2Mn1−xFexSn. In essence, despite the absence
of gross chemical phase separation, local Mn/Fe disorder is
nevertheless important in seeding local FM or AFM order.
The observed AFM-FM phase coexistence can thus be at least
qualitatively reconciled with established models, inclusion
of quenched chemical disorder leading to more quantitative
agreement. Future work investigating annealing of quenched
Ru2Mn1−xFexSn samples, and the subsequent evolution of
short-range chemical and magnetic order [22–24], would
clearly be worthwhile.

V. SUMMARY

In short, we have presented an NPD, SANS, magnetome-
try, specific heat, and structural-based analysis of the magnetic
phase behavior of the Ru2Mn1−xFexSn system, culminating in
a detailed magnetic phase diagram. Aside from an anomalous
FM∗ phase associated with a subtle extrinsic effect related
to a minority phase, the phase diagram essentially reveals
phase-pure antiferromagnetism to x ≈ 0.30, phase-pure fer-
romagnetism above x ≈ 0.70, and a substantial regime of
FM-AFM nano- to meso-scale coexistence between, despite
chemical homogeneity. In this coexistence regime, the de-
velopment of FM order below TC is essentially unperturbed
by the onset of AFM order at a lower TN, resulting, at low
T, in intertwined FM and AFM order on 10s to 100s of
nm length scales. TC is apparent in magnetometry, NPD and
SANS, TN is apparent in magnetometry and NPD, the relevant
length scales can be determined from NPD and SANS, and
the low T FM-AFM coexistence is found to be reflected in
a T 2 contribution to specific heat. Comparison with theoret-
ical models suggests that chemical disorder is likely key to
stabilizing a bicritical point in the phase diagram (and thus
mesoscopic FM-AFM phase coexistence), as opposed to the
tetracritical point generally expected from Heisenberg models
with AFM and FM site disorder, or to the spin-glass phase
typical of the Heisenberg model with AFM and FM bond
disorder. In totality, these findings thus substantially improve
the understanding of the magnetic phase coexistence in this
model system, thereby improving the overall understanding
of the enduring topic of magnetic phase competition in com-
positionally tuned systems.
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