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Ferroelectricity in hafnia is often regarded as a breakthrough discovery in ferroelectrics, potentially able
to revolutionize the whole field. Despite increasing interests, a deep and comprehensive understanding of the
many factors driving ferroelectric stabilization is still lacking. We here address the phase transition in terms of
a Landau-theory-based approach, by analyzing symmetry-allowed distortions connecting the high-symmetry
paraelectric tetragonal phase to the low-symmetry polar orthorhombic phase. By means of first-principles
simulations, we find that the �3− polar mode is only weakly unstable, whereas the other two symmetry-allowed
distortions, Y2+ and Y4− (showing a nonpolar and antipolar behavior, respectively), are hard modes. While
none of the modes, taken alone or combined with one other mode, is able to drive the transition, the key
factor in stabilizing the ferroelectric phase is identified as the strong trilinear coupling among the three modes.
Furthermore, the experimentally acknowledged importance of substrate-induced effects in the growth of HfO2

ferroelectric thin films, along with the lack of a clear order parameter in the transition, suggested the extension
of our analysis to strain effects. Our findings suggest a complex behavior of the Y2+ mode, which can become
unstable under certain conditions (i.e., a tensile strain applied along the a direction), and an overall weakly
unstable behavior for the �3− polar mode for all the strain conditions. In any case, a robust result emerges from
our analysis: independently of the different applied strain (be it compressive or tensile, applied along the a, b, or c
orthorhombic axis), the need for a simultaneous excitation of the three coupled modes remains unaltered. Finally,
when applied to mimic experimental growth conditions under strain, our analysis shows a further stabilization
of the ferroelectric phase with respect to the unstrained case, in agreement with experimental findings.
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I. INTRODUCTION

Hafnium dioxide has been widely studied in its nonpo-
lar phases as a high-dielectric-constant nontoxic oxide with
crucial exploitation in microelectronics [1]. In fact, hafnia
has been heavily employed as a gate dielectric in field-effect
transistors, due to its compatibility with Si [2–4] and as a
favorable gate dielectric in metal-oxide-semiconductor field-
effect transistors. In 2011 the discovery of its ferroelectric
phase in thin films [5,6] shed light on a new intriguing phe-
nomenon and opened additional and promising avenues for
HfO2-based applications. In particular, due to their switch-
able persistent out-of-plane polarization, hafnia films could be
used in high-speed nonvolatile memories and logic devices,
such as ferroelectric field-effect transistors [7] and ferroelec-
tric tunnel junctions [8]. Even though different polar phases
have been detected [9–11], the polar orthorhombic phase
Pca21 is mostly recognized to be responsible for ferroelec-
tricity [5]. In bulk configuration, this phase is metastable
at standard thermodynamical conditions, where the lowest-
energy phase is the nonpolar monoclinic P21c [5,12]; as such,
the pristine ferroelectric phase cannot be stabilized through
simple thermodynamical transformations. In fact, the Y-doped
Pca21 phase has been recently obtained in bulk form through
an ultrarapid cooling following high-T annealing [13]. On
the other hand, when the thin-film limit is approached, the

orthorhombic polar phase appears to be energetically favored,
becoming naturally competitive with the monoclinic nonpolar
phase [14]. This condition is robust against the decrease of
film thickness down to subnanometer scale [15,16], at vari-
ance with the usual behavior observed in perovskite-based
thin films [17–20]. Indeed, as the film thickness decreases,
the depolarization field produced by the incomplete screen-
ing of surface charges is expected to increase, challenging
the stabilization of the out-of-plane switchable polarization.
Nonetheless, stable ferroelectric HfO2 nanometer-thick films
with finite out-of-plane polarization are regularly grown on
different substrates [10,21–23], a characteristic which further
increases their potentiality in electronics. The mechanism
causing the formation of the polar phase in films is prob-
ably dependent on the growth method, but evidences exist
[5,21,24,25] revealing the tetragonal phase as possible pre-
cursor for the activation of ferroelectricity, as the transition
temperature from the monoclinic phase is suppressed ap-
proaching low dimensions [24].

Despite the large amount of analysis, to the best of our
knowledge, a clear microscopic description of the mechanism
underlying the stabilization of ferroelectricity in hafnia is still
missing. At a phenomenological level this mechanism is usu-
ally recognized as a superposition of different effects. Possible
invoked causes are doping [26,27], oxygen vacancies [28],
grain size, and film thickness [29]. Recently the scale-free
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nature of ferroelectricity in hafnia and its high coercive field
have been connected to intrinsic flat phonon bands [16].

Another important factor is represented by mechanical ef-
fects induced by the substrate [21,22,26,30]. In closer detail,
the external strain plays a major role in the stabilization of the
orthorhombic phase in Hafnia thin films, as induced by the
lattice mismatch with the substrate. As confirmed by exper-
iments [21] and simulations [14], strain changes the relative
amount of competing phases present in the films, favoring ei-
ther the polar orthorhombic or the nonpolar monoclinic phase
depending on the lattice constant of the underlying substrate.

In this paper we present a first-principles-based study of the
phase transition from the bulk nonpolar tetragonal P42/nmc
to the bulk polar orthorhombic phase Pca21 and interpret our
results according to a symmetry-distortion mode analysis. We
further include external strains applied to the HfO2 primitive
cell, in order to study the dependence of the distortion modes
on external mechanical actions, with the aim of understand-
ing how certain strain states may affect the phase transition.
Finally, we address an experimentally relevant configuration
as a benchmark of our analysis.

II. SYMMETRY MODE ANALYSIS

The transition from the high-symmetry nonpolar tetragonal
phase (P42/nmc) to the polar orthorhombic phase (Pca21)
couples atomic displacements with a nontrivial deformation
of the cell. The analysis of the symmetry-allowed distor-
tions [31–34] reveals five patterns connecting the two phases:
three modes at the Brillouin zone center �1+, �4+, and �5−,
and two zone-boundary modes M1 and M3. The �1+ in-
volves atomic displacements coupled to a volume expansion,
preserving the tetragonal symmetry. The �4+ mode is a pure-
strain, volume-conserving mode responsible for lowering the
tetragonal symmetry to the orthorhombic crystal class: it cor-
responds to a small distortion of the angle γ from its ideal
tetragonal value to the low-symmetry relaxed value of 90.25◦.

The full orthorhombic cell is obtained via the doubling of
this resulting distorted tetragonal cell. In order to simplify
the description, still retaining the main ingredients, we here
focus only on the contributions to the phase transition given by
atomic displacements, i.e., throughout our analysis we fixed
the volume and shape of the cell to those of the orthorhombic
primitive cell. In closer detail, this choice corresponds to
freeze the �4+ and the normal-strain component of �1+.

Since the atomic part of �1+ does not lower the symmetry
of the atomic internal coordinates, one is allowed to freeze it
at its maximum amplitude, taking the resulting Ccce configu-
ration (space group 68) as the high-symmetry structure for our
analysis. We notice that ab initio calculations based on density
functional theory reveal that the total energy of such idealized
structure is 48 meV/f.u. higher than the energy of the tetrag-
onal phase in its optimized volume; still, this difference is
smaller than the energy separation between the tetragonal and
the cubic phase (61 meV/f.u. above the tetragonal). Nonethe-
less, the choice of the high-symmetry parent structure in the
orthorhombic class unveils some interesting features of the
phase transition. The distortion-symmetry modes connecting
the Ccce to the Pca21 structure, reported in Fig. 1 labeled ac-
cording to the Ccce irreps, drive the system in three different

FIG. 1. The supergroup tree of the orthorhombic Pca21 structure.
The parent structure P42/nmc distorted into the Pca21 primitive cell
is connected to the Ccce phase through the action of the symmetry-
lowering strain mode �4+. The transformation to the Ccce structure
also involves a totally symmetric �1+ mode comprising both a strain
and an atomic displacement. The space-group number of each struc-
ture is reported in parentheses. For each distortion, the amplitude of
the maximum atomic displacement is reported in angstroms below
the corresponding irreps. The displacements are intended from the
Ccce phase. The distortion modes are labeled according to the Ccce
(P42/nmc) irreps.

intermediate states, namely, the Aea21 (41), Pbcn (60), and
Pcca (54), connected to the parent structure (68), respectively,
through the modes �3−, Y2+, and Y4−. We note that these
three distortions correspond, respectively, to the �5−, M1, and
M3 using the labeling of the tetragonal irreps. This can be
verified by comparing the intermediate states produced by the
activation of the single modes. �3− is a polar mode, while
Y2+ and Y4− are nonpolar and antipolar modes, respectively,
at the Brillouin-zone boundary.1 The atomic displacement
characteristic of each mode is reported in the lower half of
Fig. 2. The oxygens rotate around the a primitive vector in the
Y2+ mode whereas they undergo an antiphase shift parallel
to the same axis a in the Y4−. The overall effect of �3− is to
move apart the oxygens and the hafnium atoms along the c
primitive vector, which causes the nonvanishing polarization.

Figure 2(a) reports the trend of the ab initio total energy
as a function of a λ generalized coordinate representing the
single mode distortion. We identify Y2+ and Y4− as hard,
stable modes and �3− as a soft mode connected to a weak in-
stability (4 meV/f.u.). Despite this small instability, the polar
mode does not drive by itself the transition to the ferroelectric
phase. Instead it leads towards the metastable Aea21 phase,
which is 193 meV/f.u. higher in energy with respect to the
Pca21. We thus analyze the ab initio total energies for the
coupling between modes [reported in Fig. 2(b)]. The energy

1The polar, nonpolar, and antipolar characters of the modes are
determined by the symmetry properties of the corresponding irrep.
A mode belonging to an irrep which possesses (does not possess) at
least an axis that is left invariant under the point-group operations
is said to be polar (nonpolar); if the polar irrep describes a zone-
boundary mode, the corresponding distortion is said to be antipolar.
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(a) (b)

FIG. 2. Top: Ab initio energies (in eV/f.u.) of the single
symmetry-distortion modes (a), along with their couplings (b), as
a function of the generalized distortion coordinate λ. Each path
consists of ten intermediate structures. The energy trend relative to
the simultaneous excitation of the three modes is reported with a
bold black line. Bottom: Atomic displacements of each single mode.
Hafnium is colored in gold, and oxygen is colored in red. The arrows
point in the direction of the displacement with a length proportional
to its magnitude. For every mode the arrows relative to hafnium are
magnified by a factor of 5.

trends reveal the stability of the Ccce structure against all
pairwise combinations of modes; in other words, the hardness
of both nonpolar modes suppresses the �3− weak instability
when combined to the polar mode. Additionally, the two-
mode couplings strengthen the stability of Ccce, as can be
seen by the difference in the energy scale between panel (a)
and (b) in Fig. 2. The continuous black line in Fig. 2(b)
corresponds to the trend of the three modes coupling. The

final structure at λ = 1 corresponds to an energy gain of
0.126 eV/f.u. and shows the Pca21 symmetry group [35,36].
This confirms the necessity of the simultaneous excitation of
the three modes to stabilize the ferroelectric phase, since the
polar �3− mode is unable—neither by itself nor combined
with a single hard mode—to provide the required energy
gain. Even though symmetry analysis alone may not be suf-
ficient, when multilinear couplings are at play, to identify
the distortion mode responsible for the symmetry breaking
(i.e., the primary order parameter in the language of Landau
theory) [41], the possible role played by trilinear coupling in
inducing ferroelectric transitions has been already highlighted
in so-called hybrid improper ferroelectrics [37–40] and in
Aurivillius ferroelectric compounds [42]. In most currently
investigated hybrid improper ferroelectrics the transition is
ascribed to the hybrid mode resulting from the coupling of two
nonpolar distortions. On the other hand, the trilinear coupling
that has been proposed to explain the anomalous ferroelectric
transition in Aurivillius compounds occurs between individu-
ally hard modes, where the usual distinction between primary
and secondary order parameters cannot be made [42]. Both
these scenarios appear to be different from the situation real-
ized in HfO2, that displays a soft polar �3− mode (although
leading to a weak instability) and a hybrid Y2+ ∪ Y4− mode
which is in fact the hardest one (see Fig. 2).

In order to gain more insights on the mode coupling driving
the phase transition, we follow a Landau-theory approach
and analyze the free-energy landscape surrounding the Ccce
structure as a function of its symmetry-allowed distortion
modes. The free energy expanded up to the sixth order in the
order parameter describing each distortion and including all
polynomial terms invariant under the symmetry operation of
the high-symmetry space group [32] is

E
(
Q�3− , QY2+ , QY4−

) = E0 + β200Q2
�3− + β020Q2

Y2+ + β002Q2
Y4− + γ111Q�3−QY2+QY4− + δ400Q4

�3−

+ δ040Q4
Y2+ + δ004Q4

Y4− + δ220Q2
�3−Q2

Y2+ + δ202Q2
�3−Q2

Y4− + δ022Q2
Y2+Q2

Y4−

+ ε311Q3
�3−QY2+QY4− + ε131Q�3−Q3

Y2+QY4− + ε113Q�3−QY2+Q3
Y4−

+ η600Q6
�3− + η060Q6

Y2+ + η006Q6
Y4− + η420Q4

�3−Q2
Y2+ + η240Q2

�3−Q4
Y2+

+ η402Q4
�3−Q2

Y4− + η204Q2
�3−Q4

Y4− + η042Q4
Y2+Q2

Y4− + η024Q2
Y2+Q4

Y4− + η222Q2
�3−Q2

Y2+Q2
Y4− + · · · . (1)

The order parameters Q�3− , QY2+ , and QY4− represent the
amplitude (dimensionless) of the three modes. β, γ , δ, ε, η

are the expansion coefficients (in eV/f.u.). The condition
Q = (Q�3− , QY2+ , QY4− ) = (0, 0, 0) corresponds to the high-
symmetry Ccce, whereas Q = (1, 1, 1) corresponds to the
orthorhombic Pca21. The free energy includes coupling at dif-
ferent orders: trilinear γ , biquadratic δ, and some more com-
plex term, i.e., bilinear-cubic ε and quadratic-quartic η. The
odd terms in Eq. (1), the trilinear and the bilinear-cubic terms,
prevent the degeneracy of the Pca21 against the simultaneous
inversion of each mode: thus the phases Q = (−1,−1,−1)
and (1,1,1) are not energetically equivalent. Instead, the Pca21

is fourfold degenerate in total energy against the simulta-
neous inversion of couples of modes. Indeed the phases

Q = (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1) are
all energetically equivalent. This multiplicity is consistent
with the index of the group-subgroup relation between the
high-symmetry P42/nmc (crystallographic point group D4h

of order 16) and the low-symmetry Pca21 (crystallographic
point group C2v of order 4) space groups, that provides the
number of allowed domains in any ferroic phase transition
[43]. It could also be connected to the number of equiva-
lent hafnia growth domains detected in some experimental
configurations; see, e.g., the heterostructure considered in
Sec. III B, where four equivalent growth orientations are
identified [22]. Furthermore, the trilinear terms set the polar-
ity of the pseudorotations combination against an inversion
of the path: Y2+ ∪ Y4− must have the same parity of the
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FIG. 3. Fit of ab initio energies, represented by colored dots,
with the free energy expressed in Eq. (1) for the zero-strain case.
The path connects the high-symmetry structures from the Ccce to
the Pca21. The figure shows only part of the energy landscape, i.e.,
it reports only some portions of the fit: two-mode and three-mode
combinations are not shown. Each high-symmetry structure is la-
beled with the values of the vector (Q�3− , QY2+ , QY4− ), thus (0, 0, 0)
corresponds to the Ccce and (1, 1, 1) corresponds to the Pca21.

�3− mode, which means that the coupling of the rotations
corresponds to a polar distortion, as it happens in hybrid im-
proper ferroelectrics [37–40], with the crucial difference that
such hybrid polar mode does not soften in HfO2. Additionally,
the decomposition of the polarization onto the different modes
reveals the dominating contribution of �3−, with the hybrid
polar mode Y2+ ∪ Y4− only providing a small, higher-order
correction.

Based on these considerations we focus on the patterns
connecting Q = (0, 0, 0) to Q = (1, 1, 1) via the high-
symmetry structures produced by the three single modes and
their couplings. Each portion of the path consists of ten inter-
mediate structures. In practice, we first computed the ab initio
total energies of different structures along these paths. We
then extracted a numerical estimate of the Landau coefficients
through a fit of the total energies with the polynomial in
Eq. (1). From the ratio of the coefficients we deduced the
terms leading the transition and the character of the different
contributions to the free energy. Figure 3 reports the ab initio
energies and the relative fit for the case where no strain is ap-
plied. The initial portion of the path coincides with the trends
in Fig. 2(a). The two pseudorotations increase the energy of
Ccce in a range of 0.1–0.2 eV/f.u. with a monotonous trend:
this behavior is captured by the positiveness of β020, β002 and
δ040, δ004. Interestingly, among all the parameters, the trilinear
coupling is by far the dominant term: γ111 ≈ −1.08 eV/f.u,
confirming that the three distortions are all equally nec-
essary to complete the phase transition when no strain is
present. We further note that the coefficients of the polar mode
β200 and δ200 have opposite signs, reflecting the instability of
the �3− mode, evaluated as 3.9 meV/f.u.. It should be stressed
that β020 ≈ 1 meV/f.u. is remarkably smaller than all the
other parameters as can be seen in Table I. This is interesting
since a change in the sign of this parameter corresponds to the
insurgence of an instability in Y2+. This may occur by means

TABLE I. Fit coefficients obtained by interpolation of the ab
initio total energies with Eq. (1) for the case of zero-applied strain.

Coefficient Value (eV/f.u.) Coefficient Value (eV/f.u.)

β(200) −0.046 ε(311) −0.147
β(020) 0.001 ε(131) −0.372
β(002) 0.18 ε(113) −0.238
γ(111) −1.08 η(600) −0.011
δ(400) 0.124 η(060) −0.01
δ(040) 0.111 η(006) −0.005
δ(004) 0.029 η(420) −0.05
δ(220) 0.444 η(402) 0.007
δ(202) 0.264 η(240) 0.036
δ(022) 0.355 η(042) 0.026

η(024) 0.012
η(204) 0.021
η(222) 0.222

of some external perturbation, e.g., mechanical strain, which
modifies the relative stability of the atomic configurations
along the distortion path. Despite the corresponding sixth-
order η being negative, they are significantly smaller than the
δ, thus they do not alter the stable character of the rotations.
Nonetheless, such terms are necessary to obtain a qualita-
tively reliable fit. We further verified that the inclusion of
seventh- and eighth-order terms in the free-energy expansion
only provides a quantitative improvement of the fit but at a
cost of increased complexity of analysis and without affecting
the main features captured by the sixth-order expansion. For
instance, the trilinear coupling is found to be still dominant,
with a coupling constant γ

(8th)
111 ≈ −1.13 eV/f.u., when the

ab initio total energies are fitted by including up to eighth-
order terms.

III. STRAIN EFFECTS

As mentioned in the introduction, substrate-induced strain
is widely recognized as a major cause for the stabilization
of ferroelectricity in hafnia [10,14,21,22]. Here we investi-
gate whether such an energetically favorable dependence on
strain emerges in the depicted framework, when analyzing the
symmetry-allowed distortions. We recall that the growth of
HfO2 is possible on a variety of substrates (e.g., GdScO3, TiN,
Si), resulting in different growth relationships. In particular,
being dependent on the nature of the substrate surface and on
the growth procedure, the direction of growth can sometimes
be far from trivial. In the depicted framework, rather than
focusing on a specific growth relationship, we therefore take
a more general approach and analyze the effects of a set of el-
ementary strains applied to the primitive cell. Specifically, we
analyze the case of volume-conserving normal strain directed
along the orthorhombic primitive vectors for six strain values
ε: −3, −2, −1, 0, 1, and 3%. We note that the combination of
these simpler cases allows one to deduce how strain influences
the hafnia stability, even when directed along nontrivial direc-
tions. Due to the Pca21 orthorhombic symmetry, the strain
affects the distortion modes in different ways depending on
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(a)

(c)

(b)

FIG. 4. (a), (b) Ab initio energies (in eV/f.u.) of the single
symmetry-distortion modes (a), along with their couplings (b), as a
function of the generalized distortion coordinate λ, when a 3% tensile
strain is applied along a. The inset in panel (b) reports a zoom of
the energies for λ in [0.0,0.5]. The colors choice follows the one in
Fig. 2: �3− in black, Y2+ in blue, Y4− in red (a); �3− ∪ Y2+ in light
blue, �3− ∪ Y2+ and �3− ∪ Y4− in purple, and Y2+ ∪ Y4− in green
(b). The excitation of the three modes is shown in black in panel (b).
Each path consists of ten intermediate structures. (c) The dependence
of energy minima of the modes �3−, in black, and Y2+, in blue, on the
applied strain. In each panel, the application direction is represented
by a different line style.

the direction of application. As such, each ε has to be applied
along each primitive vector.

A. Uniaxial strain effects

Let us first consider the evolution of the single modes. We
refer to panel (a) of Fig. 4 for an example of the effects of a 3%
tensile strain acting along the different Cartesian directions on
the single modes. Each color corresponds to a different mode
and each line style refers to a different application direction.
The ab initio total energies computed along the distortions
reveal how the polar mode �3− and the pseudorotation Y4−
maintain their character (i.e., soft and hard, respectively) inde-
pendently of the applied ε. The only response is a variation of
the mode softness or hardness with a different strain modulus
and direction of application. The effects on the second pseu-
dorotation, instead, are more complex, as can be seen from
panel (c) of Fig. 4, where the dependence of the Y2+ energy
minimum on ε is reported. The trend of the �3− instability is
also reported as a comparison.

The Y2+ mode becomes unstable when tensile strain is
applied along a and when compressive strain is applied along
b and c, whereas the other strains do not induce a softening of
the mode. The comparison between panels (a) of Figs. 2 and 4
gives an example of the evolution of Y2+ for the specific case
of 3% tensile strain applied along a. A negative ε directed

TABLE II. Difference in total energy 	 between the Ccce and
the Pca21 structures, when a strain ε is applied along a, b, c.

ε (%) 	a (eV/f.u.) 	b (eV/f.u.) 	c (eV/f.u.)

−3 −0.113 −0.152 −0.143
−2 −0.115 −0.141 −0.136
−1 −0.120 −0.132 −0.130

0 −0.126 −0.126 −0.126
1 −0.135 −0.123 −0.124
3 −0.156 −0.125 −0.125

along b and c induces a very weak instability in the pseu-
dorotation, as shown by the shallow minimum of the ab initio
energy profile (i.e., below 5 meV/f.u.). On the other hand, the
instability is strongly enhanced by positive a-directed strain:
the energy gain ≈0.039 eV/f.u. is comparable with the one
of the polar mode when tensile strain is applied along b. Thus,
essentially Y2+ becomes an extra soft mode under certain con-
ditions. The evolution of this pseudorotation under external
mechanical actions is strongly asymmetric with respect to the
sign of the strain. Such an uneven response is not specific
to the Y2+ mode, but it is common to the polar mode, with
some differences though. Indeed, asymmetric trends in the
�3− energy profile are only detected along a- and b-directed
strain; on the other hand, a c-directed strain tends to lower
the energy minimum, in both compressive and tensile cases,
resulting in a symmetric profile. Moreover, �3− remains un-
stable under all the considered strain conditions, as confirmed
by the finite energy minima. The strong dependence of Y2+
on strain shows how an external mechanical action could
give rise to nontrivial transformation of the single modes.
Nonetheless, the action of strain does not change the need
for a combination of the three single modes to complete the
transition to the ferroelectric phase. Panel (b) of Fig. 4 reports
the effects of tensile 3% strain on the distortion coupling.
Specifically, none of the combinations of two single modes
is capable of driving the parent structure towards the Pca21.
Indeed, the hybrid polar mode stemming from the coupling
of the pseudorotations retains its stable character for all the
considered strains, independently of the application direction.
This is also the case for the Y4− ∪ �3− coupling, where
the softness of the strained polar mode does not balance the
hardness of the Y4− rotation. Instead, strain destabilizes the
combination Y2+ ∪ �3−, as can be seen in the inset of panel
(b) in Fig. 4. The largest instability arises for a-directed tensile
strain at its highest value considered: �3.5 meV/f.u.. The
other strain combinations either give rise to smaller minima
or do not change the character of the combined distortion at
all. Despite the insurgence of these instabilities, the coupling
Y2+ ∪ �3− cannot guide the transition, as shown in panel (b)
of Fig. 4. Instead, as it was the case for the unstrained system,
the simultaneous activation of the three distortions is required
to reach the ferroelectric phase.

Table II reports the total-energy difference 	 between
the Ccce and the Pca21 for the different strain states. The
polar phase becomes progressively more stable as tensile
strain increases along the a direction. Instead, it gains sta-
bility for increasing compressive strain when applied along
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FIG. 5. Difference in ab initio energies between the Ccce and the
Pca21 as a function of the total polarization along the distortion. Only
the trends for the most favorable strain states reported in Table II are
shown.

b and c. Since the applied strain is volume conserving, com-
pressive strain along b and c corresponds to an expansion
along a. Thus, we infer that, in order to further stabilize the
ferroelectric transition, an experimental strain state should
involve the stretching of the a primitive vector from its
minimum-enthalpy value. However, the stabilization con-
nected to strain effects may come, in some cases, with a loss
in the electric polarization. Indeed, Fig. 5 reports the relation
between the difference in total energy between the paraelectric
and the polar phase and the electric polarization arising along
the distortion from the Ccce to the Pca21 phase. We report
only the most favorable strain states from Table II: each strain
condition further stabilizes the transition with respect to the
nonstrained case (black line). The comparison of the ferro-
electric phase polarization under different strain conditions
shows how the enhanced stability corresponds to a slight
variation of the electric polarization. This is the case of ten-
sile strain applied along a where the polarization becomes
54.07 μC/cm2, to be compared with its value 54.78 μC/cm2

under zero strain applied (vertical dashed black line). Instead,
compressive strain along b and c corresponds to a slight in-
crease to 56.14 and 54.83 μC/cm2, respectively.

In order to further investigate how strain affects different
terms in the Landau free energy, we extract the parameters
describing the free-energy landscape surrounding the high-
symmetry Ccce under different strain states. The comparison
of the extracted coefficients shows that the relative weight
of the different terms in defining the Landau-energy profile
does not change as the strain varies, at least for the four
largest (in absolute value) coefficients. Instead, the relative
intensity of the remaining coefficients depends on the ap-
plied strain. Figure 6 reports the trend of γ111, ε131, and ε113

with the errors of the fit as a function of the applied strain.
In each panel, the continuous, dotted, and dashed lines
represent a-directed, b-directed, and c-directed strain, respec-
tively; the Landau coefficients are given in eV/f.u. The top
panel represents the trend of ε113. The parameter shows a
clear drop—increasing its absolute value—upon increasing
the strain along a, whereas the opposite trend is observed

FIG. 6. Strain dependence of the three leading coefficients in
Eq. (1). Top, middle, and lower panels show the ε113, ε131, and γ111

coefficients, respectively. The application directions of the strain are
represented by different line styles (see legend).

increasing strain values up to the zero-strain condition along
c and b. A further increase of strain along these directions
corresponds to a rather flat behavior of the parameter. The
middle panel shows the trend of ε131. When increasing the
strain along a and c the parameter changes towards larger
negative values, whereas increasing the strain along b from
compressive to tensile corresponds to a significant energy
increase �0.1 eV/f.u. Even with the significant changes ex-
perienced by ε131 and ε113 under certain strain conditions,
γ111 remains the largest (in absolute value) parameter for any
considered strain by at least 0.5 eV/f.u. Thus γ111 remains
the parameter leading the transition in any analyzed configu-
ration. As reported in the bottom panel of Fig. 6, negative and
positive strains along a, respectively, increase and decrease
the trilinear coefficient with respect to its value at zero strain.
Instead, b- and c-directed strains produce almost symmetric
effects for compressive and tensile, corresponding in both
cases to an energy gain with respect to the zero strain condi-
tion. The fourth three-mode coupling parameter ε311 is almost
equivalent in value and trend to ε113 and it is therefore not
shown. It is worth noticing that, in agreement with the change
in character of the Y2+ rotation, the only parameter changing
sign when moving from compressive to tensile strain is βY2+ ,
whereas the other second-order coefficients retain their sign.
Also, the corresponding fourth-order parameters keep their
sign fixed: specifically δY2+ remains positive.

B. Experimental strain

We can now combine the effects of the considered el-
ementary strains to reproduce an experimentally relevant
configuration. The strain state of the film originates from the
local lattice mismatch and relative orientation of the film with
respect to the substrate. In the case of hafnia, the relative
orientation is complicated by nontrivial growth directions.
Accordingly, the strain applied to the primitive cell of hafnia
will not be directed along its primitive lattice vectors. We
focus here on HfO2 grown on LaSrMnO3 substrate, which
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has been reported to allow for the deposition of high-quality
monocrystalline films [21,23]. Specifically we focus on the
work of Estandìa et al. [22], where domain matching epitaxy
(DME) is recognized as the growth mechanism of HfO2 [111]
on LaSrMnO [001]. DME allows one to accommodate high
strains given by the large misfit between the substrate and
the film, through the formation of local domains separated by
dislocation planes detectable by x-ray diffraction (XRD). The
presence of the domains allows one to introduce an effective
strain f ∗ representing the average strain acting inside the film
domain as

f ∗ = (ndLSMO − mdHfO2 )/(ndHfO2 ) (2)

where dLSMO and dHfO2 are the lattice constant of the sub-
strate and of the film, respectively, while n and m are the
number of film planes and of substrate planes, respectively,
forming the (m, n) domain. The DME mechanism allows for
the minimization of f ∗ through the formation of different
domains along the heterostructure interface. Through XRD
and STEM measurements, Estandìa et al. recognize four pos-
sible orientations of the hafnia supercell equivalent to, e.g.,
the one defined by the relations [−211]HfO2 ‖ [110]LSMO

and [0−22]HfO2 ‖ [−110]LSMO. The domains appearing most
frequently along this orientation are (9,10) and (3,2), respec-
tively, along [−211]HfO2 and [0−22]HfO2 . Hereafter we focus
on this specific combination. We decompose the strain state
experienced by this domain on volume-conserving normal
strains applied to the HfO2 primitive cell, named εa, εb, εc.
To this end, we convert the tensors representing these strains
to the experimental basis set identified by the Miller indices
{[−2, 1, 1], [0,−2, 2], [1, 1, 1]}, and we look for a combina-
tion of the elementary strains ε′

a, ε
′
b, ε

′
c to reproduce the stress

state identified by Estandìa et al. (see Appendix B for the
detailed derivation). According to Estandìa et al. the HfO2

domain (9,10)-(3,2) strain state is defined by the following
conditions:

ε′
x = 0.03%, ε′

y = 5.3%, σ ′
xy = 0%. (3)

where x̂ = [−2, 1, 1], ŷ = [0,−2, 2], and ẑ = [1, 1, 1]. Com-
bining the three volume-conserving normal strains written
in the experimental reference frame [Eq. (B4)] as ε′ = ε′

a −
ε′

b − ε′
c, we obtain a tensor ε′ that respects the conditions

expressed in Eq. (3). Indeed, the third condition reduces to
εb = εc; by approximating the first condition to ε′

x ≈ 0, we
obtain εa = −εb . The “experimental” strain tensor therefore
becomes

ε′ =

⎛
⎜⎝

0 0 − 2√
2
εb

0 − 3
2εb 0

− 2√
2
εb 0 0

⎞
⎟⎠. (4)

Thus we found a combination of elementary strains applied to
the primitive cell which corresponds to the experimental strain
state. Furthermore, in the context of a symmetry-distortion
mode analysis, we can show how this combination corre-
sponds to a decrease of the Landau free energy with respect to
the zero-strain condition. From the first and the second condi-
tions in Eq. (3) we know that ε′

x ≈ 0 and ε′
y > 0. Thus, εa > 0

and εb, εc < 0. Since ε′
y = 5.3% we find εb = εc = −3.53%

and εa = 3.53%. By comparing these results with Fig. 6, we
recognize how the detected elementary strain combination
lowers the leading coefficients of the free energy with respect
to the unstrained case. This condition corresponds to a further
stabilization of the ferroelectric Pca21 phase with respect to
the paraelectric phase. We stress that this decomposition only
applies to the specific strain state reported for the domain
detected most frequently in Ref. [22]. As such, our simplified
analysis has only the intent of showing how it is possible to
analyze the role of the substrate on the enhanced stability of
the HfO2 ferroelectric phase.

IV. CONCLUSIONS

In this paper we addressed the nature of the ferroelectric
transition of HfO2 through an analysis of the symmetry-
allowed distortion connecting the tetragonal high-symmetry
phase to the polar orthorhombic phase. We emphasize the
need for the simultaneous activation of three distortion modes
in order to achieve the polar phase. The first distortion �3− is
a polar unstable mode at the zone center, whereas the other
two, Y2+ and Y4−, are hard modes having a nonpolar and
antipolar character, respectively. The two hard modes become
polar only when considered as coupled, giving rise to a hy-
brid mode that, however, retains its hard character. The term
dominating the Landau free-energy expansion is the trilinear
coupling, with the fifth-order terms acting as higher-order
corrections. The lack of a clear leading order parameter raises
the question on whether the energetics is affected by different
factors, such as different growth conditions. For this reason
we analyzed how the strain affects the depicted framework.
Our results show that the need for the coupling of the three
modes remains unaltered, independently of the specific ex-
ternal mechanical action. The complex dependence on strain
appears in the change of nature of the Y2+ mode, which
becomes unstable under certain conditions. Nonetheless, as
for �3−, this instability cannot induce the complete transition
by itself. The fit of the free energy strengthens the idea that the
simultaneous excitation of the three modes, along with their
coupling, is necessary for the full transition to occur. Finally,
we applied this framework to the realistic case of HfO2 grown
on LaSrMnO3. This configuration is complicated by DME,
proposed in the context of an epitaxial film subjected to a
uniform strain. We considered the domain experimentally de-
tected most frequently by Estandìa et al. [22], but even in this
case our analysis on the effect of the strain f ∗ is valid only lo-
cally. Nonetheless, though applied with a heuristic approach,
the strain decomposition confirms the existence of strain states
that favor the transition towards a ferroelectric phase, along
with some others that penalize it. The aim of our analysis here
is not to give an exhaustive explanation for the mechanism
underlying the ferroelectric transition in HfO2, but is rather
meant as a first step towards a general microscopic descrip-
tion of the effect. Further steps in this direction will be the
analysis of the single-mode features to detect the microscopic
origin of the energy gain of their trilinear coupling, along
with the relative stability of the monoclinic vs orthorhombic
phases in strained film bulk performed through symmetry
mode analysis, issues which we leave for future works.
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APPENDIX A: COMPUTATIONAL DETAILS

Density functional theory simulations were performed us-
ing the Vienna Ab-Initio Simulation Package (VASP) [44].
We relaxed the orthorhombic primitive cell within the re-
vised Perdew, Burke, and Ernzerhof functional for solids
[45,46] until total-energy change between two successive
self-consistent steps is smaller than 10−7 eV and forces are
smaller than 10−3 eV/Å. The cutoff for the expansion onto
the plane-wave basis is set to 400 eV. As for the distortion
mode analysis, we compute the energy of structures along the
distortion paths, with the PBEsol functional and a k-point den-
sity of ≈4.5 × 103 points Å3. The strain is included applying
the volume-conservative deformations reported in Eq. (B3) to
the orthorhombic primitive cell. We stress that these trans-

formations consist in pure normal strains: the orthorhombic
symmetry is thus preserved. Once the primitive cell is de-
formed, the internal coordinates are relaxed until the forces
are smaller than 10−3 eV/Å. The distortion paths employed to
perform the fits under different strain conditions are built from
these relaxed configurations. The symmetry-distortion analy-
sis summarized in Fig. 1 is repeated for each different consid-
ered strain. The electric polarization is computed through the
Berry-phase method [47–49] as implemented in VASP.

APPENDIX B: STRAIN

The change from the basis identified by the Miller indices
{[1, 0, 0], [0, 1, 0], [0, 0, 1]} (where we performed the simula-
tions) to the one identified by {[−2, 1, 1], [0,−2, 2], [1, 1, 1]}
is obtained through the transformation

ε′ = QTεQ

where Q is the direction-cosine matrix and QT is its transpose.
Thus Qi,j = ê′

i · ê j where ê′
i is a vector of the supercell basis,

and êj is a vector of the primitive cell basis both normalized to
unity. The Q matrix is

Q =
⎛
⎝

−2/
√

6 1/
√

6 1/
√

6

0 −1/
√

2 1/
√

2
1/

√
3 1/

√
3 1/

√
3

⎞
⎠. (B1)

Since ε is diagonal, the strain matrix in the “experimental”
reference frame will be

ε′ =

⎛
⎜⎜⎝

1
6 (4εa + εb + εc) 1√

12
(−εb + εc) 1√

18
(−2εa + εb + εc)

1√
12

(−εb + εc) 1
2 (εb + εc) 1√

6
(−εb + εc)

1√
18

(−2εa + εb + εc) 1√
6
(−εb + εc) 1

3 (εa + εb + εc)

⎞
⎟⎟⎠. (B2)

Consider now, for instance, a volume-conserving normal
strain εa directed along the primitive vector a; the primitive
vectors transform as

a = a0(1 + εa),

b = b0/
√

1 + εa,

c = c0/
√

1 + εa.

(B3)

In the limit of small εa the strain tensor reads

εa =
⎛
⎝

εa 0 0
0 −εa/2 0
0 0 −εa/2

⎞
⎠

where “small strains” refers to values up to ≈5% for which
the discrepancy between 1/(

√
1 + ε) and 1 − ε/2 is ≈0.1%.

The tensors for strains along b and c are analogous. These
three strains when acting independently are written in the
experimental frame of reference as

ε′
a =

⎛
⎝

εa/2 0 εa/
√

2

0 −εa 0
εa/

√
2 0 0

⎞
⎠,

ε′
b =

⎛
⎝

−εb/4 −√
3εb/4 εb/2

√
2

−εb/2
√

2 εb/4 −3εb/2
√

6
εb/2

√
2 −3εb/2

√
6 0

⎞
⎠,

ε′
c =

⎛
⎝

−εc/4
√

3εc/4 εc/2
√

2
εc/2

√
2 εc/4 3εc/2

√
6

εc/2
√

2 3εc/2
√

6 0

⎞
⎠. (B4)

The combination ε′ = ε′
a − ε′

b − ε′
c results in

ε′ =

⎛
⎜⎜⎝

− 1
4 (2εa + εb + εc)

√
3ε
4 (−εb + εc) 1

2
√

2
(2εa − εb − εc)

√
3ε
4 (−εb + εc) 1

4 (4εa − εb − εc) 3
2
√

6
(εb − εc)

1
2
√

2
(2εa − εb − εc) 3

2
√

6
(εb − εc) 0

⎞
⎟⎟⎠, (B5)

which can be adapted to represent the experimentally detected strain state. Notice that there exists a combination that would
lead to a diagonal tensor ε′, which is εb = εc = εa. But in such case we find ε′

x = εa and ε′
y = εa/2, which cannot reproduce the

conditions in Eq. (3).
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